UGGT1 retains proinsulin in the endoplasmic reticulum in an arginine dependent manner
We sought to clarify a pathway by which L- and dD-arginine simulate insulin secretion in mice and cell lines and obtained the following novel two findings. (1) Using affinity magnetic nanobeads technology, we identified that proinsulin is retained in the endoplasmic reticulum (ER) through UDP-glucos...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 527; no. 3; pp. 668 - 675 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
30.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We sought to clarify a pathway by which L- and dD-arginine simulate insulin secretion in mice and cell lines and obtained the following novel two findings. (1) Using affinity magnetic nanobeads technology, we identified that proinsulin is retained in the endoplasmic reticulum (ER) through UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) when arginine availability is limited. (2) L- and d-arginine release proinsulin from UGGT1 through competition with proinsulin and promote exit of proinsulin from the ER to Golgi apparatus. The ability of arginine to release proinsulin from UGGT1 closely correlates with arginine-induced insulin secretion in several models of β cells indicating that UGGT1-proinsulin interaction regulates arginine-induced insulin secretion.
[Display omitted]
•UGGT1 binds to proinsulin in the absence of arginine.•Arginine competes with proinsulin and binds to UGGT1 in the ER.•Released proinsulin moves to Golgi apparatus and secretory vesicles to secrete. |
---|---|
AbstractList | We sought to clarify a pathway by which L- and dD-arginine simulate insulin secretion in mice and cell lines and obtained the following novel two findings. (1) Using affinity magnetic nanobeads technology, we identified that proinsulin is retained in the endoplasmic reticulum (ER) through UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) when arginine availability is limited. (2) L- and d-arginine release proinsulin from UGGT1 through competition with proinsulin and promote exit of proinsulin from the ER to Golgi apparatus. The ability of arginine to release proinsulin from UGGT1 closely correlates with arginine-induced insulin secretion in several models of β cells indicating that UGGT1-proinsulin interaction regulates arginine-induced insulin secretion. We sought to clarify a pathway by which L - and D -arginine simulate insulin secretion in mice and cell lines and obtained the following novel two findings. (1) Using affinity magnetic nanobeads technology, we identified that proinsulin is retained in the endoplasmic reticulum (ER) through UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) when arginine availability is limited. (2) L - and D -arginine release proinsulin from UGGT1 through competition with proinsulin and promote exit of proinsulin from the ER to Golgi apparatus. The ability of arginine to release proinsulin from UGGT1 closely correlates with arginine-induced insulin secretion in several models of β cells indicating that UGGT1-proinsulin interaction regulates arginine-induced insulin secretion. We sought to clarify a pathway by which L- and dD-arginine simulate insulin secretion in mice and cell lines and obtained the following novel two findings. (1) Using affinity magnetic nanobeads technology, we identified that proinsulin is retained in the endoplasmic reticulum (ER) through UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) when arginine availability is limited. (2) L- and d-arginine release proinsulin from UGGT1 through competition with proinsulin and promote exit of proinsulin from the ER to Golgi apparatus. The ability of arginine to release proinsulin from UGGT1 closely correlates with arginine-induced insulin secretion in several models of β cells indicating that UGGT1-proinsulin interaction regulates arginine-induced insulin secretion. [Display omitted] •UGGT1 binds to proinsulin in the absence of arginine.•Arginine competes with proinsulin and binds to UGGT1 in the ER.•Released proinsulin moves to Golgi apparatus and secretory vesicles to secrete. We sought to clarify a pathway by which L- and dD-arginine simulate insulin secretion in mice and cell lines and obtained the following novel two findings. (1) Using affinity magnetic nanobeads technology, we identified that proinsulin is retained in the endoplasmic reticulum (ER) through UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) when arginine availability is limited. (2) L- and d-arginine release proinsulin from UGGT1 through competition with proinsulin and promote exit of proinsulin from the ER to Golgi apparatus. The ability of arginine to release proinsulin from UGGT1 closely correlates with arginine-induced insulin secretion in several models of β cells indicating that UGGT1-proinsulin interaction regulates arginine-induced insulin secretion.We sought to clarify a pathway by which L- and dD-arginine simulate insulin secretion in mice and cell lines and obtained the following novel two findings. (1) Using affinity magnetic nanobeads technology, we identified that proinsulin is retained in the endoplasmic reticulum (ER) through UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) when arginine availability is limited. (2) L- and d-arginine release proinsulin from UGGT1 through competition with proinsulin and promote exit of proinsulin from the ER to Golgi apparatus. The ability of arginine to release proinsulin from UGGT1 closely correlates with arginine-induced insulin secretion in several models of β cells indicating that UGGT1-proinsulin interaction regulates arginine-induced insulin secretion. |
Author | Imai, Yoichi Handa, Hiroshi Masaike, Yuka Imai, Takeshi Hiramoto, Masaki Cho, Jaeyong Sakamoto, Satoshi Imai, Yumi |
AuthorAffiliation | 6 Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA 3 Department of Nanoparticle Translational Research, Tokyo Medical University, Shinjyuku, Tokyo 160-8402, Japan 4 School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 223-8503, Japan 1 Department Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan 2 Department of Biochemistry, Tokyo Medical University, Shinjyuku, Tokyo 160-8402, Japan 5 Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan |
AuthorAffiliation_xml | – name: 5 Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – name: 2 Department of Biochemistry, Tokyo Medical University, Shinjyuku, Tokyo 160-8402, Japan – name: 6 Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA – name: 3 Department of Nanoparticle Translational Research, Tokyo Medical University, Shinjyuku, Tokyo 160-8402, Japan – name: 1 Department Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan – name: 4 School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 223-8503, Japan |
Author_xml | – sequence: 1 givenname: Jaeyong surname: Cho fullname: Cho, Jaeyong email: jaeyong420@gmail.com organization: Department Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan – sequence: 2 givenname: Masaki surname: Hiramoto fullname: Hiramoto, Masaki email: hiramoto@tokyo-med.ac.jp organization: Department Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan – sequence: 3 givenname: Yuka surname: Masaike fullname: Masaike, Yuka email: yukamasaike@gmail.com organization: Department of Nanoparticle Translational Research, Tokyo Medical University, Shinjyuku, Tokyo, 160-8402, Japan – sequence: 4 givenname: Satoshi surname: Sakamoto fullname: Sakamoto, Satoshi email: ssakamoto@bio.titech.ac.jp organization: School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 223-8503, Japan – sequence: 5 givenname: Yoichi orcidid: 0000-0002-2938-6133 surname: Imai fullname: Imai, Yoichi email: imaiyo-tky@umin.ac.jp organization: Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan – sequence: 6 givenname: Yumi orcidid: 0000-0001-5046-4223 surname: Imai fullname: Imai, Yumi email: yumi-imai@uiowa.edu organization: Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA – sequence: 7 givenname: Hiroshi surname: Handa fullname: Handa, Hiroshi email: hhanda@tokyo-med.ac.jp organization: Department of Nanoparticle Translational Research, Tokyo Medical University, Shinjyuku, Tokyo, 160-8402, Japan – sequence: 8 givenname: Takeshi orcidid: 0000-0002-9503-7353 surname: Imai fullname: Imai, Takeshi email: timai@ncgg.go.jp organization: Department Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32423812$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9r1UAUxQep2NfqF3AhWbpJvPMnkwyIIEWfQsFNH7gbJpObdh7JTJxJCn57J7xW1EWFC3dxz_lxuOeCnPngkZDXFCoKVL47Vl0XbcWAQQWionX7jOwoKCgZBXFGdgAgS6bo93NykdIRgFIh1QtyzplgvKVsRw6H_f6GFhEX43wq5hjyWkfnizzLHRbo-zCPJk3Obipn13GdtqPJE2-ddx6LHuesQ78Uk_Ee40vyfDBjwlcP-5IcPn-6ufpSXn_bf736eF3auhZL2cmeiRa46gRthoFJYy3UA8hGGU6lyTF7gbVSqlW9kZwK0SlkvRF1I9RA-SX5cOLOazdhb3OCaEY9RzeZ-FMH4_TfF-_u9G24100reeZlwNsHQAw_VkyLnlyyOI7GY1iTZjUTnDUNiP9LBQjJFYiN-ubPWL_zPL49C9qTwMaQUsRBW7eYxYUtpRs1Bb01rI96a1hvDWsQOjecrewf6yP9SdP7kwlzGfcOo07WobfYu4h20X1wT9l_AW7svys |
CitedBy_id | crossref_primary_10_1016_j_humpath_2024_105674 crossref_primary_10_3390_nu14050961 crossref_primary_10_1038_s41598_022_18902_5 crossref_primary_10_3390_ijms23169094 crossref_primary_10_1016_j_bbrc_2021_09_039 crossref_primary_10_2174_0115748855260802231019072509 crossref_primary_10_1016_j_aqrep_2024_101932 crossref_primary_10_1016_j_jprot_2024_105361 crossref_primary_10_1016_j_bbrc_2022_05_060 crossref_primary_10_1038_s42003_020_01226_3 |
Cites_doi | 10.1073/pnas.0707291104 10.1073/pnas.1703682114 10.1038/nature19079 10.2337/diacare.17.9.1015 10.1016/j.bbrc.2015.09.006 10.1016/j.molmet.2017.06.019 10.1242/dmm.014589 10.2337/db11-0878 10.1046/j.1471-4159.2003.01695.x 10.1016/j.bbamem.2007.02.016 10.1016/j.molmet.2017.04.010 10.2337/db07-0991 10.1152/ajpendo.00337.2014 10.1186/1471-2164-15-620 10.1021/bi9916473 10.1002/bmc.1334 10.1111/dom.13378 10.1152/physrev.00008.2017 10.1016/j.bbrc.2013.08.018 10.1016/j.molmet.2016.12.006 10.1016/j.molcel.2005.09.027 10.1038/s41598-017-12283-w 10.1016/S0092-8674(00)80546-2 10.1016/j.cell.2016.02.035 10.1038/nature726 10.1073/pnas.1607532113 10.1016/B978-0-12-800174-5.00002-8 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.bbrc.2020.04.158 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1090-2104 |
EndPage | 675 |
ExternalDocumentID | PMC7863631 32423812 10_1016_j_bbrc_2020_04_158 S0006291X20309037 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK090490 – fundername: NIDDK NIH HHS grantid: P30 DK054759 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 D0L DM4 DOVZS EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 XPP XSW ZA5 ZMT ~02 ~G- .55 .GJ .HR 1CY 3O- 9M8 AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM OHT R2- RIG SBG SEW SSH UQL WUQ X7M Y6R ZGI ZKB ~KM CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c554t-b6d248039b417ff26acc05f0679a316a324d4e599989da63144b9e2da45749f13 |
IEDL.DBID | .~1 |
ISSN | 0006-291X 1090-2104 |
IngestDate | Thu Aug 21 18:17:24 EDT 2025 Fri Jul 11 08:30:57 EDT 2025 Tue Aug 05 10:23:19 EDT 2025 Thu Apr 03 07:04:35 EDT 2025 Tue Jul 01 01:44:10 EDT 2025 Thu Apr 24 22:51:36 EDT 2025 Fri Feb 23 02:47:21 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Reticulum Arginine Insulin UGGT1 Endoplasmic |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-b6d248039b417ff26acc05f0679a316a324d4e599989da63144b9e2da45749f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 JC, MH, YM, and SS performed the experiments, TI designed the experiments, analyzed the data, and wrote the manuscript. YoI, YuI and HH interpreted the data and wrote the manuscript. Author Contribution |
ORCID | 0000-0002-2938-6133 0000-0002-9503-7353 0000-0001-5046-4223 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7863631 |
PMID | 32423812 |
PQID | 2404639041 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7863631 proquest_miscellaneous_2524327704 proquest_miscellaneous_2404639041 pubmed_primary_32423812 crossref_citationtrail_10_1016_j_bbrc_2020_04_158 crossref_primary_10_1016_j_bbrc_2020_04_158 elsevier_sciencedirect_doi_10_1016_j_bbrc_2020_04_158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-30 |
PublicationDateYYYYMMDD | 2020-06-30 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemical and biophysical research communications |
PublicationTitleAlternate | Biochem Biophys Res Commun |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hagiwara, Komatsu, Sugiura (bib16) 2013; 439 Nelson, Chandrashekar, Hoon (bib14) 2002; 416 Arnold, Fessler, Fessler (bib30) 2000; 39 Zapata, Ding, Willing (bib26) 2016; 113 Liu M, R. Lara-Lemus, S.O. Shan, J. et al, Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes. Diabetes 61(212)828-837 Pi, Nishimoto, Quarles (bib13) 2016; 6 Støy, Edghill, Flanagan, H (bib22) 2007; 104 Manner, Nicholson, MacLeod (bib7) 2003; 85 Saxton, Chantranupong, Knockenhauer (bib18) 2016; 536 Boland, Rhodes, Grimsby (bib4) 2017; 6 Crosby, Gramates, Dos Santos (bib25) 2015; 24 Liu, Wright, Guo (bib20) 2014; 95 Kulkarni, Brüning, Winnay, C (bib11) 1999; 96 Leiss, Flockerzie, Novakovic (bib5) 2014; 307 Rorsman, Ashcroft (bib6) 2018; 98 Herquin (bib2) 2005 Roversi, Marti, Caputo (bib27) 2017; A114 Chantranupong, Scaria, Saxton (bib17) 2016; 165 Chen, Cohrs, Stertmann (bib3) 2017; 6 Ferris, Kodali, Kaufman (bib24) 2014; 7 Pueyo, Clement, Vaxillaire (bib10) 1994; vol. 17 Liu (bib21) 2018; 2 Rhodes, Shoelson, Halban (bib1) 2005 Benner (bib19) 2014; 15 Braun, Ramracheya, Bengtsson (bib12) 2008; 57 Molinari, Galli, Vanoni (bib31) 2005; 20 Visigalli, Barilli, Bussolati (bib8) 2007; 1768 Satoh, Song, Zhu (bib28) 2017; 7 Lu, Wang, Wang (bib9) 2013; 8 Hiramoto, Maekawa, Kuge, F (bib15) 2010; 24 Umeda, Hiramoto, Watanabe (bib23) 2015; 466 Leiss (10.1016/j.bbrc.2020.04.158_bib5) 2014; 307 Rorsman (10.1016/j.bbrc.2020.04.158_bib6) 2018; 98 Braun (10.1016/j.bbrc.2020.04.158_bib12) 2008; 57 Saxton (10.1016/j.bbrc.2020.04.158_bib18) 2016; 536 Herquin (10.1016/j.bbrc.2020.04.158_bib2) 2005 Kulkarni (10.1016/j.bbrc.2020.04.158_bib11) 1999; 96 Pi (10.1016/j.bbrc.2020.04.158_bib13) 2016; 6 Chantranupong (10.1016/j.bbrc.2020.04.158_bib17) 2016; 165 Lu (10.1016/j.bbrc.2020.04.158_bib9) 2013; 8 Benner (10.1016/j.bbrc.2020.04.158_bib19) 2014; 15 Umeda (10.1016/j.bbrc.2020.04.158_bib23) 2015; 466 Boland (10.1016/j.bbrc.2020.04.158_bib4) 2017; 6 Satoh (10.1016/j.bbrc.2020.04.158_bib28) 2017; 7 Chen (10.1016/j.bbrc.2020.04.158_bib3) 2017; 6 Visigalli (10.1016/j.bbrc.2020.04.158_bib8) 2007; 1768 Nelson (10.1016/j.bbrc.2020.04.158_bib14) 2002; 416 10.1016/j.bbrc.2020.04.158_bib29 Støy (10.1016/j.bbrc.2020.04.158_bib22) 2007; 104 Crosby (10.1016/j.bbrc.2020.04.158_bib25) 2015; 24 Zapata (10.1016/j.bbrc.2020.04.158_bib26) 2016; 113 Roversi (10.1016/j.bbrc.2020.04.158_bib27) 2017; A114 Rhodes (10.1016/j.bbrc.2020.04.158_bib1) 2005 Arnold (10.1016/j.bbrc.2020.04.158_bib30) 2000; 39 Pueyo (10.1016/j.bbrc.2020.04.158_bib10) 1994; vol. 17 Ferris (10.1016/j.bbrc.2020.04.158_bib24) 2014; 7 Hagiwara (10.1016/j.bbrc.2020.04.158_bib16) 2013; 439 Molinari (10.1016/j.bbrc.2020.04.158_bib31) 2005; 20 Liu (10.1016/j.bbrc.2020.04.158_bib20) 2014; 95 Manner (10.1016/j.bbrc.2020.04.158_bib7) 2003; 85 Hiramoto (10.1016/j.bbrc.2020.04.158_bib15) 2010; 24 Liu (10.1016/j.bbrc.2020.04.158_bib21) 2018; 2 |
References_xml | – volume: 6 start-page: 185 year: 2016 end-page: 193 ident: bib13 article-title: GPRC6A: jack of all metabolism (or master of none) publication-title: Mol Metab – volume: 2 start-page: 28 year: 2018 end-page: 50 ident: bib21 article-title: Biosynthesis, structure, and folding of the insulin precursor protein publication-title: Diabetes Obes Metab 20Suppl – volume: 96 start-page: 329 year: 1999 end-page: 339 ident: bib11 article-title: Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes publication-title: Cell – volume: 536 start-page: 229 year: 2016 end-page: 233 ident: bib18 article-title: Mechanism of arginine sensing by CASTOR1 upstream of mTORC1 publication-title: Nature – volume: vol. 17 start-page: 1015 year: 1994 end-page: 1021 ident: bib10 article-title: Arginine-Induced Insulin Release in Glucokinase-Deficient Subjects publication-title: Diabetes Care – volume: 439 start-page: 413 year: 2013 end-page: 417 ident: bib16 article-title: POT1b regulates phagocytosis and NO production by modulating activity of the small GTPase Rab5 publication-title: Biochem. Biophys. Res. Commun. – volume: 57 start-page: 1618 year: 2008 end-page: 1628 ident: bib12 article-title: Voltage-gated ion channels in human pancreatic β-cells: electrophysiological characterization and role in insulin secretion publication-title: Diabetes – volume: 165 start-page: 153 year: 2016 end-page: 164 ident: bib17 article-title: The CASTOR proteins are arginine sensors for the mTORC1 pathway publication-title: Cell – volume: 466 start-page: 717 year: 2015 end-page: 722 ident: bib23 article-title: Arginine-induced insulin secretion in endoplasmic reticulum publication-title: Biochem. Biophys. Res. Commun. – volume: 307 start-page: E800 year: 2014 end-page: E812 ident: bib5 article-title: Insulin secretion stimulated by publication-title: Am J Physiol Endcrinol Metab – volume: 113 start-page: E4052 year: 2016 end-page: E4060 ident: bib26 article-title: Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms publication-title: Proc. Natl. Acad. Sci. U. S. A. – reference: Liu M, R. Lara-Lemus, S.O. Shan, J. et al, Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes. Diabetes 61(212)828-837 – volume: 15 start-page: 620 year: 2014 ident: bib19 article-title: The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression publication-title: BMC Genom. – volume: 85 start-page: 476 year: 2003 end-page: 482 ident: bib7 article-title: CAT2 arginine transporter deficiency significantly reduces iNOS-mediated NO production in astrocytes publication-title: J. Neurochem. – volume: 24 start-page: 606 year: 2010 end-page: 612 ident: bib15 article-title: High-performance affinity chromatography method for identification of publication-title: Biomed. Chromatogr. – volume: 7 start-page: 331 year: 2014 end-page: 341 ident: bib24 article-title: Glycoprotein folding and quality-control mechanisms in protein-folding diseases publication-title: Disease Models & Mechanism – volume: A114 start-page: 8544 year: 2017 end-page: 8549 ident: bib27 article-title: Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2005 ident: bib1 article-title: Insulin biosynthesis, processing, and chemistry – volume: 6 start-page: 943 year: 2017 end-page: 957 ident: bib3 article-title: Human β-cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis publication-title: Mol Metab – volume: 6 start-page: 958 year: 2017 end-page: 973 ident: bib4 article-title: The dynamic plasticity of insulin production in beta-cells publication-title: Mol Metab – volume: 39 start-page: 2149 year: 2000 end-page: 2163 ident: bib30 article-title: Two homologues encoding human UDP-glucose:glycoprotein glucosyltransferase differ in mRNA expression and enzymatic activity publication-title: Biochemistry – year: 2005 ident: bib2 article-title: Cell biology of insulin secretion – volume: 1768 start-page: 1479 year: 2007 end-page: 1487 ident: bib8 article-title: Rapamycin stimulates arginine influx through CAT2 transporters in human endothelial cells publication-title: Biochim. Biophys. Acta – volume: 104 start-page: 15040 year: 2007 end-page: 15044 ident: bib22 article-title: Neonatal Diabetes International Collaborative Group, Insulin gene mutations as a cause of permanent neonatal diabetes publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 98 start-page: 117 year: 2018 end-page: 214 ident: bib6 article-title: Pancreatic β-cell electrical activity and insulin secretion: of mice and men publication-title: Physiol. Rev. – volume: 24 start-page: 1737 year: 2015 end-page: 1749 ident: bib25 article-title: Gene model annotations for Drosophila melanogaster publication-title: The Rule-Benders – volume: 95 start-page: 35 year: 2014 end-page: 62 ident: bib20 article-title: Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells publication-title: Vitam. Horm. – volume: 20 start-page: 503 year: 2005 end-page: 512 ident: bib31 article-title: Persistent glycoprotein misfolding activates the glucosidase II/UGT1-driven calnexin cycle to delay aggregation and loss of folding competence publication-title: Mol. Cell. – volume: 7 start-page: 12142 year: 2017 ident: bib28 article-title: Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT publication-title: Sci. Rep. – volume: 416 start-page: 199 year: 2002 end-page: 202 ident: bib14 article-title: An amino-acid taste receptor publication-title: Nature – volume: 8 year: 2013 ident: bib9 article-title: Overexpression of arginine transporter CAT-1 is associated with accumulation of publication-title: PloS One – volume: 104 start-page: 15040 year: 2007 ident: 10.1016/j.bbrc.2020.04.158_bib22 article-title: Neonatal Diabetes International Collaborative Group, Insulin gene mutations as a cause of permanent neonatal diabetes publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0707291104 – volume: A114 start-page: 8544 year: 2017 ident: 10.1016/j.bbrc.2020.04.158_bib27 article-title: Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1703682114 – volume: 536 start-page: 229 year: 2016 ident: 10.1016/j.bbrc.2020.04.158_bib18 article-title: Mechanism of arginine sensing by CASTOR1 upstream of mTORC1 publication-title: Nature doi: 10.1038/nature19079 – year: 2005 ident: 10.1016/j.bbrc.2020.04.158_bib2 – volume: vol. 17 start-page: 1015 year: 1994 ident: 10.1016/j.bbrc.2020.04.158_bib10 article-title: Arginine-Induced Insulin Release in Glucokinase-Deficient Subjects publication-title: Diabetes Care doi: 10.2337/diacare.17.9.1015 – volume: 466 start-page: 717 issue: 4 year: 2015 ident: 10.1016/j.bbrc.2020.04.158_bib23 article-title: Arginine-induced insulin secretion in endoplasmic reticulum publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.09.006 – volume: 6 start-page: 943 year: 2017 ident: 10.1016/j.bbrc.2020.04.158_bib3 article-title: Human β-cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis publication-title: Mol Metab doi: 10.1016/j.molmet.2017.06.019 – volume: 8 year: 2013 ident: 10.1016/j.bbrc.2020.04.158_bib9 article-title: Overexpression of arginine transporter CAT-1 is associated with accumulation of L-arginine and cell growth in human colorectal cancer tissue publication-title: PloS One – volume: 7 start-page: 331 year: 2014 ident: 10.1016/j.bbrc.2020.04.158_bib24 article-title: Glycoprotein folding and quality-control mechanisms in protein-folding diseases publication-title: Disease Models & Mechanism doi: 10.1242/dmm.014589 – ident: 10.1016/j.bbrc.2020.04.158_bib29 doi: 10.2337/db11-0878 – volume: 85 start-page: 476 year: 2003 ident: 10.1016/j.bbrc.2020.04.158_bib7 article-title: CAT2 arginine transporter deficiency significantly reduces iNOS-mediated NO production in astrocytes publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2003.01695.x – volume: 24 start-page: 1737 year: 2015 ident: 10.1016/j.bbrc.2020.04.158_bib25 article-title: Gene model annotations for Drosophila melanogaster publication-title: The Rule-Benders – volume: 1768 start-page: 1479 year: 2007 ident: 10.1016/j.bbrc.2020.04.158_bib8 article-title: Rapamycin stimulates arginine influx through CAT2 transporters in human endothelial cells publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2007.02.016 – volume: 6 start-page: 958 year: 2017 ident: 10.1016/j.bbrc.2020.04.158_bib4 article-title: The dynamic plasticity of insulin production in beta-cells publication-title: Mol Metab doi: 10.1016/j.molmet.2017.04.010 – volume: 57 start-page: 1618 year: 2008 ident: 10.1016/j.bbrc.2020.04.158_bib12 article-title: Voltage-gated ion channels in human pancreatic β-cells: electrophysiological characterization and role in insulin secretion publication-title: Diabetes doi: 10.2337/db07-0991 – year: 2005 ident: 10.1016/j.bbrc.2020.04.158_bib1 – volume: 307 start-page: E800 year: 2014 ident: 10.1016/j.bbrc.2020.04.158_bib5 article-title: Insulin secretion stimulated by L-arginine and its metabolite L-ornithine depends on Gαi2 publication-title: Am J Physiol Endcrinol Metab doi: 10.1152/ajpendo.00337.2014 – volume: 15 start-page: 620 year: 2014 ident: 10.1016/j.bbrc.2020.04.158_bib19 article-title: The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression publication-title: BMC Genom. doi: 10.1186/1471-2164-15-620 – volume: 39 start-page: 2149 year: 2000 ident: 10.1016/j.bbrc.2020.04.158_bib30 article-title: Two homologues encoding human UDP-glucose:glycoprotein glucosyltransferase differ in mRNA expression and enzymatic activity publication-title: Biochemistry doi: 10.1021/bi9916473 – volume: 24 start-page: 606 year: 2010 ident: 10.1016/j.bbrc.2020.04.158_bib15 article-title: High-performance affinity chromatography method for identification of L-arginine interacting factors using magnetic nanobeads publication-title: Biomed. Chromatogr. doi: 10.1002/bmc.1334 – volume: 2 start-page: 28 year: 2018 ident: 10.1016/j.bbrc.2020.04.158_bib21 article-title: Biosynthesis, structure, and folding of the insulin precursor protein publication-title: Diabetes Obes Metab 20Suppl doi: 10.1111/dom.13378 – volume: 98 start-page: 117 year: 2018 ident: 10.1016/j.bbrc.2020.04.158_bib6 article-title: Pancreatic β-cell electrical activity and insulin secretion: of mice and men publication-title: Physiol. Rev. doi: 10.1152/physrev.00008.2017 – volume: 439 start-page: 413 year: 2013 ident: 10.1016/j.bbrc.2020.04.158_bib16 article-title: POT1b regulates phagocytosis and NO production by modulating activity of the small GTPase Rab5 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2013.08.018 – volume: 6 start-page: 185 year: 2016 ident: 10.1016/j.bbrc.2020.04.158_bib13 article-title: GPRC6A: jack of all metabolism (or master of none) publication-title: Mol Metab doi: 10.1016/j.molmet.2016.12.006 – volume: 20 start-page: 503 year: 2005 ident: 10.1016/j.bbrc.2020.04.158_bib31 article-title: Persistent glycoprotein misfolding activates the glucosidase II/UGT1-driven calnexin cycle to delay aggregation and loss of folding competence publication-title: Mol. Cell. doi: 10.1016/j.molcel.2005.09.027 – volume: 7 start-page: 12142 year: 2017 ident: 10.1016/j.bbrc.2020.04.158_bib28 article-title: Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT publication-title: Sci. Rep. doi: 10.1038/s41598-017-12283-w – volume: 96 start-page: 329 year: 1999 ident: 10.1016/j.bbrc.2020.04.158_bib11 article-title: Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes publication-title: Cell doi: 10.1016/S0092-8674(00)80546-2 – volume: 165 start-page: 153 year: 2016 ident: 10.1016/j.bbrc.2020.04.158_bib17 article-title: The CASTOR proteins are arginine sensors for the mTORC1 pathway publication-title: Cell doi: 10.1016/j.cell.2016.02.035 – volume: 416 start-page: 199 year: 2002 ident: 10.1016/j.bbrc.2020.04.158_bib14 article-title: An amino-acid taste receptor publication-title: Nature doi: 10.1038/nature726 – volume: 113 start-page: E4052 year: 2016 ident: 10.1016/j.bbrc.2020.04.158_bib26 article-title: Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1607532113 – volume: 95 start-page: 35 year: 2014 ident: 10.1016/j.bbrc.2020.04.158_bib20 article-title: Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells publication-title: Vitam. Horm. doi: 10.1016/B978-0-12-800174-5.00002-8 |
SSID | ssj0011469 |
Score | 2.39712 |
Snippet | We sought to clarify a pathway by which L- and dD-arginine simulate insulin secretion in mice and cell lines and obtained the following novel two findings. (1)... We sought to clarify a pathway by which L - and D -arginine simulate insulin secretion in mice and cell lines and obtained the following novel two findings.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 668 |
SubjectTerms | Animals Arginine Arginine - metabolism Cells, Cultured Endoplasmic endoplasmic reticulum Endoplasmic Reticulum - metabolism Glucosyltransferases - metabolism Golgi apparatus HEK293 Cells Humans Insulin Insulin Secretion Insulin-Secreting Cells - metabolism magnetism Male Mice Mice, Transgenic Models, Molecular proinsulin Proinsulin - metabolism Reticulum UGGT1 |
Title | UGGT1 retains proinsulin in the endoplasmic reticulum in an arginine dependent manner |
URI | https://dx.doi.org/10.1016/j.bbrc.2020.04.158 https://www.ncbi.nlm.nih.gov/pubmed/32423812 https://www.proquest.com/docview/2404639041 https://www.proquest.com/docview/2524327704 https://pubmed.ncbi.nlm.nih.gov/PMC7863631 |
Volume | 527 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWixBcEOzyKI-VkRAXFNaOx05yLBW7BcSetlJvlp04EETTqts97GV_OzOJU1FAPSD5kMQTyfFM7M_2NzOMvalw1obMmaQAlSZgHCRe5iHRUFdQ68KJLlj11wszncHnuZ4fsMngC0O0yjj292N6N1rHJ6exN09XTUM-vsKkhZyndEogFHmUA2Rk5e9vtzQPcrqNENgkJB0dZ3qOl_drCmOYCgp3Kint-78np7_B558cyt8mpbOH7EFEk3zcN_gROwjtETset7iSXtzwt7zjd3Yb50fs7ofh6t5kyPJ2zGaz8_NLyYl12LRXHFsQ2ekcC4JDHtpquUKIvWhK3nk80nYhVTos62-UXyLwIZXuhi8c5fJ6zGZnHy8n0ySmWkhKxBObxJsqhVyowoPM6jo1riyFrmmXySlpHMKuCoJGNJkXlTMKl2G-CGnlQGdQ1FI9YYftsg3PGA9FpUTACu0UatsVPkAtvfK5d4jV5IjJoY9tGeOQUzqMn3YgnP2wpBdLerECLOplxN5t31n1UTj2SutBdXbHlixOE3vfez3o2aIW6OTEtWF5fWUR9gBCOQFyj4xO0dyzTMCIPe1tY9vWDrUilBqxbMdqtgIU5Hu3pm2-d8G-s9wo7O_n__lNL9h9uusZji_Z4WZ9HV4hjNr4k-4_OWF3xp--TC9-AcSnHBY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEWovCFqgy9NIwAWF-hUnOXAohXZLH6ddaW_GThwIYrOr3a1QL_wp_iAzibNiAe0BqZIPUWxHjsf2fLa_mSHkRQFaWyVWR5mSIlLaqsjx1EexKgtVxplljbPq8wvdH6qPo3i0QX52tjBIqwxrf7umN6t1eLMfenN_WlVo48u0yPhI4C0Bk0lgVp76q--wb5u_PXkPQn4pxNGHwWE_CqEFohz05yJyuhAqZTJziidlKbTNcxaXeKpiJdcWYEahfAzoKc0KqyVsO1zmRWFVnKis5BK-e4PcVLBcYNiENz-WvBK08g2YW0fYvGCp05LKnJuh30TB0L8qxzjz_9aGf6PdP0mbv2nBozvkdoCv9KDtobtkw9c7ZPeghq37-Iq-og2htDmp3yG33nVPW4ddWLldMhweHw84RZpjVc8ptCDQ4SkkQKPU18VkCph-XOW0MbHE80nMtJBmnzGghadd7N4FHVsMHnaPDK9FAPfJZj2p_R6hPisk85ARWwnDy2bOq5I76VJnARzyHuFdH5s8OD7H-BvfTMdw-2pQLgblYpgyIJceeb2sM23dfqwtHXeiMyuD14BeWlvveSdnA1LAqxpb-8nl3ADOUoAdmeJrysQC5leSMNUjD9qxsWxrA5MBu_VIsjJqlgXQq_hqTl19abyLJ6mW0N8P__OfnpGt_uD8zJydXJw-ItuY09IrH5PNxezSPwEMt3BPmzlDyafrnqS_AHGIViA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UGGT1+retains+proinsulin+in+the+endoplasmic+reticulum+in+an+arginine+dependent+manner&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Cho%2C+Jaeyong&rft.au=Hiramoto%2C+Masaki&rft.au=Masaike%2C+Yuka&rft.au=Sakamoto%2C+Satoshi&rft.date=2020-06-30&rft.pub=Elsevier+Inc&rft.issn=0006-291X&rft.eissn=1090-2104&rft.volume=527&rft.issue=3&rft.spage=668&rft.epage=675&rft_id=info:doi/10.1016%2Fj.bbrc.2020.04.158&rft.externalDocID=S0006291X20309037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |