Structure of a bacterial pyridoxal 5'-phosphate synthase complex

Vitamin B₆ is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently b...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 103; no. 51; pp. 19284 - 19289
Main Authors Strohmeier, Marco, Raschle, Thomas, Mazurkiewicz, Jacek, Rippe, Karsten, Sinning, Irmgard, Fitzpatrick, Teresa B, Tews, Ivo
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 19.12.2006
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vitamin B₆ is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5'-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal α-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel.
AbstractList Vitamin B6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5'-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx 1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal α-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel. [PUBLICATION ABSTRACT]
Vitamin B6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5'-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal alpha-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel.
Vitamin B 6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5′-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal α-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel.
Vitamin B₆ is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5'-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal α-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel.
Vitamin B 6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5′-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal α-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel. 3D structure ammonia tunnel glutamine amidotransferase oxyanion vitamin B6
Vitamin B sub(6) is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5'-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal alpha -helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel.
Author Mazurkiewicz, Jacek
Strohmeier, Marco
Rippe, Karsten
Tews, Ivo
Sinning, Irmgard
Raschle, Thomas
Fitzpatrick, Teresa B
Author_xml – sequence: 1
  fullname: Strohmeier, Marco
– sequence: 2
  fullname: Raschle, Thomas
– sequence: 3
  fullname: Mazurkiewicz, Jacek
– sequence: 4
  fullname: Rippe, Karsten
– sequence: 5
  fullname: Sinning, Irmgard
– sequence: 6
  fullname: Fitzpatrick, Teresa B
– sequence: 7
  fullname: Tews, Ivo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17159152$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFMycg6gHUQ9rxZ-wLAlWFIlXiUHq2HMfpZpWNg-2g3f--jnbVLVw42dL85s2beSfoaPCDQ-gthgsMFb0cBxMvQABTHDDQF2iBQeFSMAVHaAFAqlIywo7RSYwrAFBcwit0jCvMFeZkgb7cpTDZNAVX-LYwRW1scqEzfTFuQ9f4Tf7xT-W49HFcmuSKuB3S0kRXWL8ee7d5jV62po_uzf49Rfffrn9d3ZS3P7__uPp6W1rOWSprUTvqWmss5rKWBFMmSNMIJQWnjFeWgRHSucq0lijJJGuEtIYJRQTh1NJT9HmnO0712jXWDSmYXo-hW5uw1d50-u_K0C31g_-jccXyOJkFPu4Fgv89uZj0uovW9b0ZnJ-ixopjLhjN4Nk_4MpPYcjLaQKY8iofPkOXO8gGH2Nw7ZMTDHqORs_R6EM0ueP98wUO_D6LDJzvgbnzIEc1x9kdkUy3U98nt0mZLf7DZuTdDlnF5MMTQwE4Jmoe92FXb43X5iF0Ud_fzQtCdi-U4vQRfJu2_w
CitedBy_id crossref_primary_10_1039_D1CB00160D
crossref_primary_10_1016_j_chembiol_2012_10_012
crossref_primary_10_1074_jbc_M114_626382
crossref_primary_10_1042_BJ20101241
crossref_primary_10_1007_s00253_021_11199_w
crossref_primary_10_1038_srep15630
crossref_primary_10_1002_ange_200704390
crossref_primary_10_3390_molecules15010442
crossref_primary_10_1002_cbic_202100555
crossref_primary_10_1371_journal_pone_0001815
crossref_primary_10_1016_j_ymben_2014_06_007
crossref_primary_10_3390_ijms21175971
crossref_primary_10_1016_j_tplants_2010_07_003
crossref_primary_10_1016_j_bbapap_2017_07_021
crossref_primary_10_1021_acscatal_3c04176
crossref_primary_10_1016_j_str_2011_11_015
crossref_primary_10_1042_BJ20070765
crossref_primary_10_1093_database_baad010
crossref_primary_10_1128_mBio_01262_14
crossref_primary_10_3389_fcimb_2021_688380
crossref_primary_10_1038_nchembio_2273
crossref_primary_10_1016_j_jbiotec_2020_05_009
crossref_primary_10_1128_JB_00041_13
crossref_primary_10_1016_j_febslet_2010_09_013
crossref_primary_10_1007_s10059_012_0198_8
crossref_primary_10_1371_journal_pone_0176374
crossref_primary_10_1016_j_cplett_2008_08_076
crossref_primary_10_1111_1758_2229_12936
crossref_primary_10_1111_j_1469_8137_2009_02978_x
crossref_primary_10_1016_j_pt_2009_10_006
crossref_primary_10_1021_bi801887r
crossref_primary_10_1016_j_jmb_2019_05_021
crossref_primary_10_1371_journal_pcbi_1004705
crossref_primary_10_1111_1462_2920_15165
crossref_primary_10_1021_bi201618v
crossref_primary_10_3390_cells7070084
crossref_primary_10_1099_mic_0_044818_0
crossref_primary_10_1007_s10858_010_9436_6
crossref_primary_10_1111_febs_13994
crossref_primary_10_1124_dmd_107_016402
crossref_primary_10_1016_j_sbi_2007_09_003
crossref_primary_10_1002_anie_200704390
crossref_primary_10_1038_nchembio_93
crossref_primary_10_1104_pp_107_096784
crossref_primary_10_1016_j_bbapap_2011_06_018
crossref_primary_10_1104_pp_114_247767
crossref_primary_10_1107_S1744309112005829
crossref_primary_10_1107_S2059798319002912
crossref_primary_10_1016_j_biotechadv_2016_11_004
crossref_primary_10_15252_embj_201593164
crossref_primary_10_3390_microorganisms9081761
crossref_primary_10_1074_jbc_M804728200
crossref_primary_10_1080_01904167_2021_1936033
crossref_primary_10_1590_S0100_879X2008005000006
crossref_primary_10_1016_j_phytochem_2009_12_015
crossref_primary_10_1021_bi901521d
crossref_primary_10_1007_s11274_021_03103_5
crossref_primary_10_1016_j_cbpa_2008_02_006
crossref_primary_10_4155_fmc_13_43
crossref_primary_10_1016_j_febslet_2009_06_009
crossref_primary_10_1371_journal_pone_0016042
crossref_primary_10_1042_BJ20120925
crossref_primary_10_1016_j_jmb_2007_09_038
crossref_primary_10_1371_journal_ppat_1002509
crossref_primary_10_1007_s11244_021_01521_1
crossref_primary_10_1371_journal_pcbi_1004051
crossref_primary_10_1111_febs_13338
crossref_primary_10_1093_mp_ssq041
crossref_primary_10_3389_fpubh_2020_00026
crossref_primary_10_1038_s41598_018_22986_3
crossref_primary_10_1007_s00425_014_2069_3
crossref_primary_10_1073_pnas_1608125113
crossref_primary_10_1016_j_abb_2014_01_004
crossref_primary_10_3389_fmolb_2019_00032
crossref_primary_10_1016_j_ymben_2015_03_007
crossref_primary_10_1016_j_bbagen_2009_02_016
crossref_primary_10_1016_j_jprot_2017_06_004
crossref_primary_10_1039_b703108b
crossref_primary_10_1074_jbc_M610614200
crossref_primary_10_1111_j_1742_4658_2008_06275_x
crossref_primary_10_1016_j_pt_2007_01_009
crossref_primary_10_1534_g3_118_200831
crossref_primary_10_1093_molbev_msn141
crossref_primary_10_1093_nar_gkt1199
crossref_primary_10_1371_journal_pone_0020519
crossref_primary_10_1016_j_jbc_2024_107404
crossref_primary_10_1074_jbc_M113_540526
crossref_primary_10_1038_s41467_021_22968_6
crossref_primary_10_3390_cryst12030437
crossref_primary_10_1016_j_syapm_2023_126426
crossref_primary_10_1155_2014_108516
crossref_primary_10_1021_bi101291d
crossref_primary_10_1002_cbic_201000084
crossref_primary_10_3389_fmicb_2023_1271798
crossref_primary_10_1111_febs_17110
crossref_primary_10_1016_j_fm_2019_103343
crossref_primary_10_1074_mcp_RA119_001400
crossref_primary_10_1111_tpj_12195
Cites_doi 10.1074/jbc.274.33.23565
10.1021/bi0014047
10.1107/S0108767390010224
10.1074/jbc.M508696200
10.1016/S0014-5793(99)00393-2
10.1074/jbc.M310311200
10.1073/pnas.0506228102
10.1021/cr030191z
10.1074/jbc.M206978200
10.1529/biophysj.104.058651
10.1016/S0092-8674(00)81418-X
10.3177/jnsv.50.69
10.1529/biophysj.106.081372
10.1002/prot.10161
10.1021/ja9914947
10.1016/S0021-9258(17)38649-0
10.1126/science.1101952
10.1021/bi034320h
10.1021/bi050706b
10.1515/bchm3.1992.373.2.393
10.1074/jbc.M408360200
10.1073/pnas.96.16.9374
10.1016/S0006-3495(00)76630-6
10.1016/S0076-6879(04)84012-6
10.1074/jbc.M412475200
10.1016/j.bbapap.2004.09.001
10.1002/pro.5560031202
10.1021/ja042792t
10.1016/S0969-2126(01)00661-X
10.1016/S0969-2126(02)00702-5
10.1016/S0076-6879(97)77016-2
10.1107/S0907444994003112
10.1107/S0021889897006766
10.1021/bi00241a001
10.1074/jbc.M503642200
10.1074/jbc.M501356200
10.1016/S0076-6879(97)76066-X
ContentType Journal Article
Copyright Copyright 2006 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 19, 2006
2006 by The National Academy of Sciences of the USA 2006
Copyright_xml – notice: Copyright 2006 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 19, 2006
– notice: 2006 by The National Academy of Sciences of the USA 2006
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7T7
5PM
DOI 10.1073/pnas.0604950103
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE
CrossRef



Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Architecture
EISSN 1091-6490
EndPage 19289
ExternalDocumentID 1184096861
10_1073_pnas_0604950103
17159152
103_51_19284
30051292
US201300736995
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
GJ
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7T7
5PM
ID FETCH-LOGICAL-c554t-b6be3efcac158b8213462dd698653457c40a68ee7afc298484d68ca46926253c3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:15:49 EDT 2024
Fri Oct 25 04:27:09 EDT 2024
Thu Oct 10 15:49:50 EDT 2024
Fri Aug 23 01:50:56 EDT 2024
Sat Nov 02 12:24:16 EDT 2024
Wed Nov 11 00:29:19 EST 2020
Thu May 30 08:51:22 EDT 2019
Fri Feb 02 07:05:36 EST 2024
Wed Dec 27 19:31:08 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-b6be3efcac158b8213462dd698653457c40a68ee7afc298484d68ca46926253c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: M.S. and T.R. contributed equally to this work; K.R., T.B.F., and I.T. designed research; M.S., T.R., J.M., T.B.F., and I.T. performed research; M.S., T.R., J.M., K.R., I.S., T.B.F., and I.T. analyzed data; and I.S., T.B.F., and I.T. wrote the paper.
Edited by Robert M. Stroud, University of California, San Francisco, CA, and approved October 14, 2006
OpenAccessLink https://doi.org/10.1073/pnas.0604950103
PMID 17159152
PQID 201357073
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_19515643
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1748218
fao_agris_US201300736995
proquest_journals_201357073
crossref_primary_10_1073_pnas_0604950103
pnas_primary_103_51_19284_fulltext
jstor_primary_30051292
pnas_primary_103_51_19284
pubmed_primary_17159152
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2006-12-19
PublicationDateYYYYMMDD 2006-12-19
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-19
  day: 19
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2006
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_5_28_2
e_1_3_5_27_2
e_1_3_5_26_2
e_1_3_5_25_2
e_1_3_5_24_2
e_1_3_5_23_2
Murshudov GN (e_1_3_5_40_2) 1998; 54
e_1_3_5_22_2
e_1_3_5_21_2
e_1_3_5_29_2
e_1_3_5_2_2
Mittenhuber G (e_1_3_5_6_2) 2001; 3
Bender DA (e_1_3_5_1_2) 1989; 43
e_1_3_5_41_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_7_2
DeLano WL (e_1_3_5_42_2) 2002
e_1_3_5_9_2
e_1_3_5_4_2
e_1_3_5_3_2
e_1_3_5_5_2
e_1_3_5_17_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_36_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_33_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_19_2
e_1_3_5_18_2
Zalkin H (e_1_3_5_10_2) 1998; 72
e_1_3_5_31_2
e_1_3_5_30_2
Zein F (e_1_3_5_43_2) 2006
References_xml – ident: e_1_3_5_7_2
  doi: 10.1074/jbc.274.33.23565
– ident: e_1_3_5_22_2
  doi: 10.1021/bi0014047
– volume: 72
  start-page: 87
  year: 1998
  ident: e_1_3_5_10_2
  publication-title: Adv Enzymol Relat Areas Mol Biol
  contributor:
    fullname: Zalkin H
– ident: e_1_3_5_39_2
  doi: 10.1107/S0108767390010224
– ident: e_1_3_5_14_2
  doi: 10.1074/jbc.M508696200
– ident: e_1_3_5_5_2
  doi: 10.1016/S0014-5793(99)00393-2
– ident: e_1_3_5_13_2
  doi: 10.1074/jbc.M310311200
– ident: e_1_3_5_3_2
  doi: 10.1073/pnas.0506228102
– ident: e_1_3_5_18_2
  doi: 10.1021/cr030191z
– ident: e_1_3_5_25_2
  doi: 10.1074/jbc.M206978200
– volume: 54
  start-page: 905
  year: 1998
  ident: e_1_3_5_40_2
  publication-title: Acta Crystallogr D
  contributor:
    fullname: Murshudov GN
– ident: e_1_3_5_33_2
  doi: 10.1529/biophysj.104.058651
– ident: e_1_3_5_30_2
  doi: 10.1016/S0092-8674(00)81418-X
– ident: e_1_3_5_11_2
  doi: 10.3177/jnsv.50.69
– ident: e_1_3_5_20_2
  doi: 10.1529/biophysj.106.081372
– ident: e_1_3_5_26_2
  doi: 10.1002/prot.10161
– ident: e_1_3_5_4_2
  doi: 10.1021/ja9914947
– volume: 43
  start-page: 289
  year: 1989
  ident: e_1_3_5_1_2
  publication-title: Eur J Clin Nutr
  contributor:
    fullname: Bender DA
– ident: e_1_3_5_17_2
  doi: 10.1016/S0021-9258(17)38649-0
– ident: e_1_3_5_32_2
  doi: 10.1126/science.1101952
– ident: e_1_3_5_23_2
  doi: 10.1021/bi034320h
– ident: e_1_3_5_21_2
  doi: 10.1021/bi050706b
– volume-title: The PyMOL Molecular Graphics System
  year: 2002
  ident: e_1_3_5_42_2
  contributor:
    fullname: DeLano WL
– ident: e_1_3_5_24_2
  doi: 10.1515/bchm3.1992.373.2.393
– ident: e_1_3_5_27_2
  doi: 10.1074/jbc.M408360200
– ident: e_1_3_5_2_2
  doi: 10.1073/pnas.96.16.9374
– ident: e_1_3_5_35_2
  doi: 10.1016/S0006-3495(00)76630-6
– ident: e_1_3_5_19_2
  doi: 10.1016/S0076-6879(04)84012-6
– volume: 3
  start-page: 1
  year: 2001
  ident: e_1_3_5_6_2
  publication-title: J Mol Microbiol Biotechnol
  contributor:
    fullname: Mittenhuber G
– ident: e_1_3_5_28_2
  doi: 10.1074/jbc.M412475200
– year: 2006
  ident: e_1_3_5_43_2
  publication-title: Biochemistry
  contributor:
    fullname: Zein F
– ident: e_1_3_5_31_2
  doi: 10.1016/j.bbapap.2004.09.001
– ident: e_1_3_5_34_2
  doi: 10.1002/pro.5560031202
– ident: e_1_3_5_8_2
  doi: 10.1021/ja042792t
– ident: e_1_3_5_15_2
  doi: 10.1016/S0969-2126(01)00661-X
– ident: e_1_3_5_16_2
  doi: 10.1016/S0969-2126(02)00702-5
– ident: e_1_3_5_41_2
  doi: 10.1016/S0076-6879(97)77016-2
– ident: e_1_3_5_37_2
  doi: 10.1107/S0907444994003112
– ident: e_1_3_5_38_2
  doi: 10.1107/S0021889897006766
– ident: e_1_3_5_29_2
  doi: 10.1021/bi00241a001
– ident: e_1_3_5_12_2
  doi: 10.1074/jbc.M503642200
– ident: e_1_3_5_9_2
  doi: 10.1074/jbc.M501356200
– ident: e_1_3_5_36_2
  doi: 10.1016/S0076-6879(97)76066-X
SSID ssj0009580
Score 2.273991
Snippet Vitamin B₆ is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two...
Vitamin B 6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two...
Vitamin B6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two...
Vitamin B 6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two...
Vitamin B sub(6) is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19284
SubjectTerms Active sites
Amino acids
Ammonia
Architecture
Bacillus subtilis - chemistry
Bacteria
Biochemistry
Biological Sciences
Catalysis
Enzymes
Glutaminase - chemistry
Glutamine - chemistry
Models, Molecular
Multiprotein Complexes - chemistry
Mutagenesis
Nitrogen
Protein synthesis
Proteins
Pyridoxal Phosphate - biosynthesis
Pyridoxal Phosphate - chemistry
Tunnels
Title Structure of a bacterial pyridoxal 5'-phosphate synthase complex
URI https://www.jstor.org/stable/30051292
http://www.pnas.org/content/103/51/19284.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17159152
https://www.proquest.com/docview/201357073
https://search.proquest.com/docview/19515643
https://pubmed.ncbi.nlm.nih.gov/PMC1748218
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB11e-KCKKXUFNoIcSiH7DaO7ThHqKgKqAiprNSbZTsOuxJNomYrtTe-qZ_UL2HsJLvdCi7cItkeR-MZz7Nm_Azwjie21MKYGGMZ92lGERtm0d2PuCt5anIbimjOvonTKftywS82gA93YULRvjXzcfXrclzNZ6G2srm0k6FObPL97BhRtMTQNBnBCA10OKIvmXZld--E4vbLKBv4fLJ00lS6HXu2mJz75w08YWiG4TzhdC0qjUpdD-WJnvMUR_0Nfz4uo3wQl06ewdMeUEYfuh_fgg1XPYet3mXb6LDnlX6_DR_PA1fs9ZWL6jLSkemImnFwc3s1L-ob_OL3v-_iZla3zQxBaNTeVosZxrkoVJ67mxcwPfn04_g07p9QiC3ihEVshHGpK622CZdGevo2QYtC5FLwlPHMsiMtpHOZLi3NJZOsENJqPDNTPBilNt2Bzaqu3C5ERY7h3WpukkQz3AUQ6ApTYpSzgmtmLYHDQYWq6ZgyVMhwZ6nyKlQrxRPYRRUr_RP3MTU9pz57it1EnnMCO0HvSxGeTh8xCSVAgpSV6FTxRCFAlYzA23-2qbIvoiGwNyyh6v20VX5qnuHcBA6WrehgPmuiK1dftyiFe0Id7PGyW-7VNL3xEMjWDGHZwVN3r7egRQcK796CX_33yD14QvsnlJL8NWyiAbk3CI8WZh8PBp-_7gen-ANYGAuR
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB215QAXRIHSUEojxKEcsrtxbMc5tlWrBboVUrtSb5btOOxKNImardTe-CY-iS9h7CS7LIILt0i2x9F4xvOsGT8DvGexKRTXOsJYxlyakUeaGnT3EbMFS3RmfBHN5IKPp_TTNbveANbfhfFF-0bPB-W3m0E5n_nayvrGDPs6seGXyQmiaIGhabgJj9BfR7Q_pC-5dkV784TgBkwJ7Rl90mRYl6oZOL6YjLkHDhxlaIoBPWZkLS5tFqrqCxQd6ymO-hsC_bOQ8rfIdPYMnnaQMjxqf30bNmz5HLY7p23Cw45Z-sMLOL70bLF3tzasilCFuqVqxsH1w-08r-7xi_38_iOqZ1VTzxCGhs1DuZhhpAt97bm9fwnTs9Ork3HUPaIQGUQKi0hzbRNbGGViJrRwBG6c5DnPBGcJZamhI8WFtakqDMkEFTTnwig8NRM8GiUm2YGtsirtLoR5hgHeKKbjWFHcBxDqcl1gnDOcKWpMAIe9CmXdcmVIn-NOE-lUKFeKD2AXVSzVV9zJ5PSSuPwpduNZxgLY8XpfinCE-ohKSACBl7ISnUgWS4Soggbw7p9tsujKaALY65dQdp7aSDc1S3HuAA6WrehiLm-iSlvdNSiFOUod7PGqXe7VNJ3xBJCuGcKygyPvXm9Bm_Yk3p0Nv_7vkQfweHw1OZfnHy8-78ET0j2oFGdvYAuNye4jWFrot941fgFGVQ3u
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB7RIiEuqAVKQ4FGiEM5ZLNxbMc5QmFVflpVKiv1ZtmOw65Ek6jZSu2tz8Qj8SSMnWS3i-DCLZLtcTSZ8XzWTL4BeMMSUyqudYSxjLk0I480NejuY2ZLlurc-CKa4xN-NKWfz9n5nVZfvmjf6Pmo-nExquYzX1vZXJh4qBOLT48PEUULDE1xU5TxBtxHnx3z4aK-5NsV3d8nBA9hSujA6pOlcVOpduQ4Y3Lmmhw42tAMg3rCyFps2ihVPRQpOuZTXPU3FPpnMeWd6DTZgkc9rAzfda-_Dfds9Ri2e8dtw4OeXfrtE3h_5hljry5tWJehCnVH14yLm5vLeVFf4xP7dfszamZ128wQiobtTbWYYbQLff25vX4K08nHb4dHUd9IITKIFhaR5tqmtjTKJExo4UjcOCkKngvOUsoyQ8eKC2szVRqSCypowYVReHMmeD1KTboDm1Vd2V0IixyDvFFMJ4mieBYg3OW6xFhnOFPUmAAOBhXKpuPLkD7PnaXSqVCuFB_ALqpYqu94msnpGXE5VJzG85wFsOP1vhThSPURmZAAAi9lJTqVLJEIUwUN4PU_x2TZl9IEsDd8Qtl7ayvd1izDvQPYX46im7nciapsfdWiFOZodXDGs-5zr7bpjSeAbM0QlhMcgff6CNq1J_Lu7fj5f6_chwenHyby66eTL3vwkPQ9lZL8BWyiLdmXiJcW-pX3jN84LA8B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+of+a+Bacterial+Pyridoxal+5%27-Phosphate+Synthase+Complex&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Strohmeier%2C+Marco&rft.au=Raschle%2C+Thomas&rft.au=Mazurkiewicz%2C+Jacek&rft.au=Rippe%2C+Karsten&rft.date=2006-12-19&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=51&rft.spage=19284&rft.epage=19289&rft_id=info:doi/10.1073%2Fpnas.0604950103&rft.externalDocID=30051292
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F51.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F51.cover.gif