Structure of a bacterial pyridoxal 5'-phosphate synthase complex
Vitamin B₆ is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently b...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 103; no. 51; pp. 19284 - 19289 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
19.12.2006
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vitamin B₆ is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5'-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal α-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel. |
---|---|
AbstractList | Vitamin B6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5'-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx 1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal α-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel. [PUBLICATION ABSTRACT] Vitamin B6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5'-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal alpha-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel. Vitamin B 6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5′-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal α-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel. Vitamin B₆ is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5'-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal α-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel. Vitamin B 6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5′-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal α-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel. 3D structure ammonia tunnel glutamine amidotransferase oxyanion vitamin B6 Vitamin B sub(6) is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5'-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal alpha -helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel. |
Author | Mazurkiewicz, Jacek Strohmeier, Marco Rippe, Karsten Tews, Ivo Sinning, Irmgard Raschle, Thomas Fitzpatrick, Teresa B |
Author_xml | – sequence: 1 fullname: Strohmeier, Marco – sequence: 2 fullname: Raschle, Thomas – sequence: 3 fullname: Mazurkiewicz, Jacek – sequence: 4 fullname: Rippe, Karsten – sequence: 5 fullname: Sinning, Irmgard – sequence: 6 fullname: Fitzpatrick, Teresa B – sequence: 7 fullname: Tews, Ivo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17159152$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFMycg6gHUQ9rxZ-wLAlWFIlXiUHq2HMfpZpWNg-2g3f--jnbVLVw42dL85s2beSfoaPCDQ-gthgsMFb0cBxMvQABTHDDQF2iBQeFSMAVHaAFAqlIywo7RSYwrAFBcwit0jCvMFeZkgb7cpTDZNAVX-LYwRW1scqEzfTFuQ9f4Tf7xT-W49HFcmuSKuB3S0kRXWL8ee7d5jV62po_uzf49Rfffrn9d3ZS3P7__uPp6W1rOWSprUTvqWmss5rKWBFMmSNMIJQWnjFeWgRHSucq0lijJJGuEtIYJRQTh1NJT9HmnO0712jXWDSmYXo-hW5uw1d50-u_K0C31g_-jccXyOJkFPu4Fgv89uZj0uovW9b0ZnJ-ixopjLhjN4Nk_4MpPYcjLaQKY8iofPkOXO8gGH2Nw7ZMTDHqORs_R6EM0ueP98wUO_D6LDJzvgbnzIEc1x9kdkUy3U98nt0mZLf7DZuTdDlnF5MMTQwE4Jmoe92FXb43X5iF0Ud_fzQtCdi-U4vQRfJu2_w |
CitedBy_id | crossref_primary_10_1039_D1CB00160D crossref_primary_10_1016_j_chembiol_2012_10_012 crossref_primary_10_1074_jbc_M114_626382 crossref_primary_10_1042_BJ20101241 crossref_primary_10_1007_s00253_021_11199_w crossref_primary_10_1038_srep15630 crossref_primary_10_1002_ange_200704390 crossref_primary_10_3390_molecules15010442 crossref_primary_10_1002_cbic_202100555 crossref_primary_10_1371_journal_pone_0001815 crossref_primary_10_1016_j_ymben_2014_06_007 crossref_primary_10_3390_ijms21175971 crossref_primary_10_1016_j_tplants_2010_07_003 crossref_primary_10_1016_j_bbapap_2017_07_021 crossref_primary_10_1021_acscatal_3c04176 crossref_primary_10_1016_j_str_2011_11_015 crossref_primary_10_1042_BJ20070765 crossref_primary_10_1093_database_baad010 crossref_primary_10_1128_mBio_01262_14 crossref_primary_10_3389_fcimb_2021_688380 crossref_primary_10_1038_nchembio_2273 crossref_primary_10_1016_j_jbiotec_2020_05_009 crossref_primary_10_1128_JB_00041_13 crossref_primary_10_1016_j_febslet_2010_09_013 crossref_primary_10_1007_s10059_012_0198_8 crossref_primary_10_1371_journal_pone_0176374 crossref_primary_10_1016_j_cplett_2008_08_076 crossref_primary_10_1111_1758_2229_12936 crossref_primary_10_1111_j_1469_8137_2009_02978_x crossref_primary_10_1016_j_pt_2009_10_006 crossref_primary_10_1021_bi801887r crossref_primary_10_1016_j_jmb_2019_05_021 crossref_primary_10_1371_journal_pcbi_1004705 crossref_primary_10_1111_1462_2920_15165 crossref_primary_10_1021_bi201618v crossref_primary_10_3390_cells7070084 crossref_primary_10_1099_mic_0_044818_0 crossref_primary_10_1007_s10858_010_9436_6 crossref_primary_10_1111_febs_13994 crossref_primary_10_1124_dmd_107_016402 crossref_primary_10_1016_j_sbi_2007_09_003 crossref_primary_10_1002_anie_200704390 crossref_primary_10_1038_nchembio_93 crossref_primary_10_1104_pp_107_096784 crossref_primary_10_1016_j_bbapap_2011_06_018 crossref_primary_10_1104_pp_114_247767 crossref_primary_10_1107_S1744309112005829 crossref_primary_10_1107_S2059798319002912 crossref_primary_10_1016_j_biotechadv_2016_11_004 crossref_primary_10_15252_embj_201593164 crossref_primary_10_3390_microorganisms9081761 crossref_primary_10_1074_jbc_M804728200 crossref_primary_10_1080_01904167_2021_1936033 crossref_primary_10_1590_S0100_879X2008005000006 crossref_primary_10_1016_j_phytochem_2009_12_015 crossref_primary_10_1021_bi901521d crossref_primary_10_1007_s11274_021_03103_5 crossref_primary_10_1016_j_cbpa_2008_02_006 crossref_primary_10_4155_fmc_13_43 crossref_primary_10_1016_j_febslet_2009_06_009 crossref_primary_10_1371_journal_pone_0016042 crossref_primary_10_1042_BJ20120925 crossref_primary_10_1016_j_jmb_2007_09_038 crossref_primary_10_1371_journal_ppat_1002509 crossref_primary_10_1007_s11244_021_01521_1 crossref_primary_10_1371_journal_pcbi_1004051 crossref_primary_10_1111_febs_13338 crossref_primary_10_1093_mp_ssq041 crossref_primary_10_3389_fpubh_2020_00026 crossref_primary_10_1038_s41598_018_22986_3 crossref_primary_10_1007_s00425_014_2069_3 crossref_primary_10_1073_pnas_1608125113 crossref_primary_10_1016_j_abb_2014_01_004 crossref_primary_10_3389_fmolb_2019_00032 crossref_primary_10_1016_j_ymben_2015_03_007 crossref_primary_10_1016_j_bbagen_2009_02_016 crossref_primary_10_1016_j_jprot_2017_06_004 crossref_primary_10_1039_b703108b crossref_primary_10_1074_jbc_M610614200 crossref_primary_10_1111_j_1742_4658_2008_06275_x crossref_primary_10_1016_j_pt_2007_01_009 crossref_primary_10_1534_g3_118_200831 crossref_primary_10_1093_molbev_msn141 crossref_primary_10_1093_nar_gkt1199 crossref_primary_10_1371_journal_pone_0020519 crossref_primary_10_1016_j_jbc_2024_107404 crossref_primary_10_1074_jbc_M113_540526 crossref_primary_10_1038_s41467_021_22968_6 crossref_primary_10_3390_cryst12030437 crossref_primary_10_1016_j_syapm_2023_126426 crossref_primary_10_1155_2014_108516 crossref_primary_10_1021_bi101291d crossref_primary_10_1002_cbic_201000084 crossref_primary_10_3389_fmicb_2023_1271798 crossref_primary_10_1111_febs_17110 crossref_primary_10_1016_j_fm_2019_103343 crossref_primary_10_1074_mcp_RA119_001400 crossref_primary_10_1111_tpj_12195 |
Cites_doi | 10.1074/jbc.274.33.23565 10.1021/bi0014047 10.1107/S0108767390010224 10.1074/jbc.M508696200 10.1016/S0014-5793(99)00393-2 10.1074/jbc.M310311200 10.1073/pnas.0506228102 10.1021/cr030191z 10.1074/jbc.M206978200 10.1529/biophysj.104.058651 10.1016/S0092-8674(00)81418-X 10.3177/jnsv.50.69 10.1529/biophysj.106.081372 10.1002/prot.10161 10.1021/ja9914947 10.1016/S0021-9258(17)38649-0 10.1126/science.1101952 10.1021/bi034320h 10.1021/bi050706b 10.1515/bchm3.1992.373.2.393 10.1074/jbc.M408360200 10.1073/pnas.96.16.9374 10.1016/S0006-3495(00)76630-6 10.1016/S0076-6879(04)84012-6 10.1074/jbc.M412475200 10.1016/j.bbapap.2004.09.001 10.1002/pro.5560031202 10.1021/ja042792t 10.1016/S0969-2126(01)00661-X 10.1016/S0969-2126(02)00702-5 10.1016/S0076-6879(97)77016-2 10.1107/S0907444994003112 10.1107/S0021889897006766 10.1021/bi00241a001 10.1074/jbc.M503642200 10.1074/jbc.M501356200 10.1016/S0076-6879(97)76066-X |
ContentType | Journal Article |
Copyright | Copyright 2006 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 19, 2006 2006 by The National Academy of Sciences of the USA 2006 |
Copyright_xml | – notice: Copyright 2006 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 19, 2006 – notice: 2006 by The National Academy of Sciences of the USA 2006 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7T7 5PM |
DOI | 10.1073/pnas.0604950103 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Architecture |
EISSN | 1091-6490 |
EndPage | 19289 |
ExternalDocumentID | 1184096861 10_1073_pnas_0604950103 17159152 103_51_19284 30051292 US201300736995 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ GJ KM PQEST X XHC ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7T7 5PM |
ID | FETCH-LOGICAL-c554t-b6be3efcac158b8213462dd698653457c40a68ee7afc298484d68ca46926253c3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:15:49 EDT 2024 Fri Oct 25 04:27:09 EDT 2024 Thu Oct 10 15:49:50 EDT 2024 Fri Aug 23 01:50:56 EDT 2024 Sat Nov 02 12:24:16 EDT 2024 Wed Nov 11 00:29:19 EST 2020 Thu May 30 08:51:22 EDT 2019 Fri Feb 02 07:05:36 EST 2024 Wed Dec 27 19:31:08 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-b6be3efcac158b8213462dd698653457c40a68ee7afc298484d68ca46926253c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: M.S. and T.R. contributed equally to this work; K.R., T.B.F., and I.T. designed research; M.S., T.R., J.M., T.B.F., and I.T. performed research; M.S., T.R., J.M., K.R., I.S., T.B.F., and I.T. analyzed data; and I.S., T.B.F., and I.T. wrote the paper. Edited by Robert M. Stroud, University of California, San Francisco, CA, and approved October 14, 2006 |
OpenAccessLink | https://doi.org/10.1073/pnas.0604950103 |
PMID | 17159152 |
PQID | 201357073 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_19515643 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1748218 fao_agris_US201300736995 proquest_journals_201357073 crossref_primary_10_1073_pnas_0604950103 pnas_primary_103_51_19284_fulltext jstor_primary_30051292 pnas_primary_103_51_19284 pubmed_primary_17159152 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2006-12-19 |
PublicationDateYYYYMMDD | 2006-12-19 |
PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-19 day: 19 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2006 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_5_28_2 e_1_3_5_27_2 e_1_3_5_26_2 e_1_3_5_25_2 e_1_3_5_24_2 e_1_3_5_23_2 Murshudov GN (e_1_3_5_40_2) 1998; 54 e_1_3_5_22_2 e_1_3_5_21_2 e_1_3_5_29_2 e_1_3_5_2_2 Mittenhuber G (e_1_3_5_6_2) 2001; 3 Bender DA (e_1_3_5_1_2) 1989; 43 e_1_3_5_41_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_7_2 DeLano WL (e_1_3_5_42_2) 2002 e_1_3_5_9_2 e_1_3_5_4_2 e_1_3_5_3_2 e_1_3_5_5_2 e_1_3_5_17_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_36_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_33_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_19_2 e_1_3_5_18_2 Zalkin H (e_1_3_5_10_2) 1998; 72 e_1_3_5_31_2 e_1_3_5_30_2 Zein F (e_1_3_5_43_2) 2006 |
References_xml | – ident: e_1_3_5_7_2 doi: 10.1074/jbc.274.33.23565 – ident: e_1_3_5_22_2 doi: 10.1021/bi0014047 – volume: 72 start-page: 87 year: 1998 ident: e_1_3_5_10_2 publication-title: Adv Enzymol Relat Areas Mol Biol contributor: fullname: Zalkin H – ident: e_1_3_5_39_2 doi: 10.1107/S0108767390010224 – ident: e_1_3_5_14_2 doi: 10.1074/jbc.M508696200 – ident: e_1_3_5_5_2 doi: 10.1016/S0014-5793(99)00393-2 – ident: e_1_3_5_13_2 doi: 10.1074/jbc.M310311200 – ident: e_1_3_5_3_2 doi: 10.1073/pnas.0506228102 – ident: e_1_3_5_18_2 doi: 10.1021/cr030191z – ident: e_1_3_5_25_2 doi: 10.1074/jbc.M206978200 – volume: 54 start-page: 905 year: 1998 ident: e_1_3_5_40_2 publication-title: Acta Crystallogr D contributor: fullname: Murshudov GN – ident: e_1_3_5_33_2 doi: 10.1529/biophysj.104.058651 – ident: e_1_3_5_30_2 doi: 10.1016/S0092-8674(00)81418-X – ident: e_1_3_5_11_2 doi: 10.3177/jnsv.50.69 – ident: e_1_3_5_20_2 doi: 10.1529/biophysj.106.081372 – ident: e_1_3_5_26_2 doi: 10.1002/prot.10161 – ident: e_1_3_5_4_2 doi: 10.1021/ja9914947 – volume: 43 start-page: 289 year: 1989 ident: e_1_3_5_1_2 publication-title: Eur J Clin Nutr contributor: fullname: Bender DA – ident: e_1_3_5_17_2 doi: 10.1016/S0021-9258(17)38649-0 – ident: e_1_3_5_32_2 doi: 10.1126/science.1101952 – ident: e_1_3_5_23_2 doi: 10.1021/bi034320h – ident: e_1_3_5_21_2 doi: 10.1021/bi050706b – volume-title: The PyMOL Molecular Graphics System year: 2002 ident: e_1_3_5_42_2 contributor: fullname: DeLano WL – ident: e_1_3_5_24_2 doi: 10.1515/bchm3.1992.373.2.393 – ident: e_1_3_5_27_2 doi: 10.1074/jbc.M408360200 – ident: e_1_3_5_2_2 doi: 10.1073/pnas.96.16.9374 – ident: e_1_3_5_35_2 doi: 10.1016/S0006-3495(00)76630-6 – ident: e_1_3_5_19_2 doi: 10.1016/S0076-6879(04)84012-6 – volume: 3 start-page: 1 year: 2001 ident: e_1_3_5_6_2 publication-title: J Mol Microbiol Biotechnol contributor: fullname: Mittenhuber G – ident: e_1_3_5_28_2 doi: 10.1074/jbc.M412475200 – year: 2006 ident: e_1_3_5_43_2 publication-title: Biochemistry contributor: fullname: Zein F – ident: e_1_3_5_31_2 doi: 10.1016/j.bbapap.2004.09.001 – ident: e_1_3_5_34_2 doi: 10.1002/pro.5560031202 – ident: e_1_3_5_8_2 doi: 10.1021/ja042792t – ident: e_1_3_5_15_2 doi: 10.1016/S0969-2126(01)00661-X – ident: e_1_3_5_16_2 doi: 10.1016/S0969-2126(02)00702-5 – ident: e_1_3_5_41_2 doi: 10.1016/S0076-6879(97)77016-2 – ident: e_1_3_5_37_2 doi: 10.1107/S0907444994003112 – ident: e_1_3_5_38_2 doi: 10.1107/S0021889897006766 – ident: e_1_3_5_29_2 doi: 10.1021/bi00241a001 – ident: e_1_3_5_12_2 doi: 10.1074/jbc.M503642200 – ident: e_1_3_5_9_2 doi: 10.1074/jbc.M501356200 – ident: e_1_3_5_36_2 doi: 10.1016/S0076-6879(97)76066-X |
SSID | ssj0009580 |
Score | 2.273991 |
Snippet | Vitamin B₆ is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two... Vitamin B 6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two... Vitamin B6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two... Vitamin B 6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two... Vitamin B sub(6) is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19284 |
SubjectTerms | Active sites Amino acids Ammonia Architecture Bacillus subtilis - chemistry Bacteria Biochemistry Biological Sciences Catalysis Enzymes Glutaminase - chemistry Glutamine - chemistry Models, Molecular Multiprotein Complexes - chemistry Mutagenesis Nitrogen Protein synthesis Proteins Pyridoxal Phosphate - biosynthesis Pyridoxal Phosphate - chemistry Tunnels |
Title | Structure of a bacterial pyridoxal 5'-phosphate synthase complex |
URI | https://www.jstor.org/stable/30051292 http://www.pnas.org/content/103/51/19284.abstract https://www.ncbi.nlm.nih.gov/pubmed/17159152 https://www.proquest.com/docview/201357073 https://search.proquest.com/docview/19515643 https://pubmed.ncbi.nlm.nih.gov/PMC1748218 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB11e-KCKKXUFNoIcSiH7DaO7ThHqKgKqAiprNSbZTsOuxJNomYrtTe-qZ_UL2HsJLvdCi7cItkeR-MZz7Nm_Azwjie21MKYGGMZ92lGERtm0d2PuCt5anIbimjOvonTKftywS82gA93YULRvjXzcfXrclzNZ6G2srm0k6FObPL97BhRtMTQNBnBCA10OKIvmXZld--E4vbLKBv4fLJ00lS6HXu2mJz75w08YWiG4TzhdC0qjUpdD-WJnvMUR_0Nfz4uo3wQl06ewdMeUEYfuh_fgg1XPYet3mXb6LDnlX6_DR_PA1fs9ZWL6jLSkemImnFwc3s1L-ob_OL3v-_iZla3zQxBaNTeVosZxrkoVJ67mxcwPfn04_g07p9QiC3ihEVshHGpK622CZdGevo2QYtC5FLwlPHMsiMtpHOZLi3NJZOsENJqPDNTPBilNt2Bzaqu3C5ERY7h3WpukkQz3AUQ6ApTYpSzgmtmLYHDQYWq6ZgyVMhwZ6nyKlQrxRPYRRUr_RP3MTU9pz57it1EnnMCO0HvSxGeTh8xCSVAgpSV6FTxRCFAlYzA23-2qbIvoiGwNyyh6v20VX5qnuHcBA6WrehgPmuiK1dftyiFe0Id7PGyW-7VNL3xEMjWDGHZwVN3r7egRQcK796CX_33yD14QvsnlJL8NWyiAbk3CI8WZh8PBp-_7gen-ANYGAuR |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB215QAXRIHSUEojxKEcsrtxbMc5tlWrBboVUrtSb5btOOxKNImardTe-CY-iS9h7CS7LIILt0i2x9F4xvOsGT8DvGexKRTXOsJYxlyakUeaGnT3EbMFS3RmfBHN5IKPp_TTNbveANbfhfFF-0bPB-W3m0E5n_nayvrGDPs6seGXyQmiaIGhabgJj9BfR7Q_pC-5dkV784TgBkwJ7Rl90mRYl6oZOL6YjLkHDhxlaIoBPWZkLS5tFqrqCxQd6ymO-hsC_bOQ8rfIdPYMnnaQMjxqf30bNmz5HLY7p23Cw45Z-sMLOL70bLF3tzasilCFuqVqxsH1w-08r-7xi_38_iOqZ1VTzxCGhs1DuZhhpAt97bm9fwnTs9Ork3HUPaIQGUQKi0hzbRNbGGViJrRwBG6c5DnPBGcJZamhI8WFtakqDMkEFTTnwig8NRM8GiUm2YGtsirtLoR5hgHeKKbjWFHcBxDqcl1gnDOcKWpMAIe9CmXdcmVIn-NOE-lUKFeKD2AXVSzVV9zJ5PSSuPwpduNZxgLY8XpfinCE-ohKSACBl7ISnUgWS4Soggbw7p9tsujKaALY65dQdp7aSDc1S3HuAA6WrehiLm-iSlvdNSiFOUod7PGqXe7VNJ3xBJCuGcKygyPvXm9Bm_Yk3p0Nv_7vkQfweHw1OZfnHy8-78ET0j2oFGdvYAuNye4jWFrot941fgFGVQ3u |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB7RIiEuqAVKQ4FGiEM5ZLNxbMc5QmFVflpVKiv1ZtmOw65Ek6jZSu2tz8Qj8SSMnWS3i-DCLZLtcTSZ8XzWTL4BeMMSUyqudYSxjLk0I480NejuY2ZLlurc-CKa4xN-NKWfz9n5nVZfvmjf6Pmo-nExquYzX1vZXJh4qBOLT48PEUULDE1xU5TxBtxHnx3z4aK-5NsV3d8nBA9hSujA6pOlcVOpduQ4Y3Lmmhw42tAMg3rCyFps2ihVPRQpOuZTXPU3FPpnMeWd6DTZgkc9rAzfda-_Dfds9Ri2e8dtw4OeXfrtE3h_5hljry5tWJehCnVH14yLm5vLeVFf4xP7dfszamZ128wQiobtTbWYYbQLff25vX4K08nHb4dHUd9IITKIFhaR5tqmtjTKJExo4UjcOCkKngvOUsoyQ8eKC2szVRqSCypowYVReHMmeD1KTboDm1Vd2V0IixyDvFFMJ4mieBYg3OW6xFhnOFPUmAAOBhXKpuPLkD7PnaXSqVCuFB_ALqpYqu94msnpGXE5VJzG85wFsOP1vhThSPURmZAAAi9lJTqVLJEIUwUN4PU_x2TZl9IEsDd8Qtl7ayvd1izDvQPYX46im7nciapsfdWiFOZodXDGs-5zr7bpjSeAbM0QlhMcgff6CNq1J_Lu7fj5f6_chwenHyby66eTL3vwkPQ9lZL8BWyiLdmXiJcW-pX3jN84LA8B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+of+a+Bacterial+Pyridoxal+5%27-Phosphate+Synthase+Complex&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Strohmeier%2C+Marco&rft.au=Raschle%2C+Thomas&rft.au=Mazurkiewicz%2C+Jacek&rft.au=Rippe%2C+Karsten&rft.date=2006-12-19&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=51&rft.spage=19284&rft.epage=19289&rft_id=info:doi/10.1073%2Fpnas.0604950103&rft.externalDocID=30051292 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F51.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F103%2F51.cover.gif |