A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids
Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR-associated gene 9 (Cas9) genome editing is set to revolutionize genetic manipulation of pathogens, including kinetoplastids. CRISPR technology provides the opportunity to develop scalable methods for high-throughput productio...
Saved in:
Published in | Royal Society open science Vol. 4; no. 5; p. 170095 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society Publishing
01.05.2017
The Royal Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR-associated gene 9 (Cas9) genome editing is set to revolutionize genetic manipulation of pathogens, including kinetoplastids. CRISPR technology provides the opportunity to develop scalable methods for high-throughput production of mutant phenotypes. Here, we report development of a CRISPR-Cas9 toolkit that allows rapid tagging and gene knockout in diverse kinetoplastid species without requiring the user to perform any DNA cloning. We developed a new protocol for single-guide RNA (sgRNA) delivery using PCR-generated DNA templates which are transcribed in vivo by T7 RNA polymerase and an online resource (LeishGEdit.net) for automated primer design. We produced a set of plasmids that allows easy and scalable generation of DNA constructs for transfections in just a few hours. We show how these tools allow knock-in of fluorescent protein tags, modified biotin ligase BirA*, luciferase, HaloTag and small epitope tags, which can be fused to proteins at the N- or C-terminus, for functional studies of proteins and localization screening. These tools enabled generation of null mutants in a single round of transfection in promastigote form Leishmania major, Leishmania mexicana and bloodstream form Trypanosoma brucei; deleted genes were undetectable in non-clonal populations, enabling for the first time rapid and large-scale knockout screens. |
---|---|
AbstractList | Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR-associated gene 9 (Cas9) genome editing is set to revolutionize genetic manipulation of pathogens, including kinetoplastids. CRISPR technology provides the opportunity to develop scalable methods for high-throughput production of mutant phenotypes. Here, we report development of a CRISPR-Cas9 toolkit that allows rapid tagging and gene knockout in diverse kinetoplastid species without requiring the user to perform any DNA cloning. We developed a new protocol for single-guide RNA (sgRNA) delivery using PCR-generated DNA templates which are transcribed
in vivo
by T7 RNA polymerase and an online resource (LeishGEdit.net) for automated primer design. We produced a set of plasmids that allows easy and scalable generation of DNA constructs for transfections in just a few hours. We show how these tools allow knock-in of fluorescent protein tags, modified biotin ligase BirA*, luciferase, HaloTag and small epitope tags, which can be fused to proteins at the N- or C-terminus, for functional studies of proteins and localization screening. These tools enabled generation of null mutants in a single round of transfection in promastigote form
Leishmania major
,
Leishmania mexicana
and bloodstream form
Trypanosoma brucei
; deleted genes were undetectable in non-clonal populations, enabling for the first time rapid and large-scale knockout screens. Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR-associated gene 9 (Cas9) genome editing is set to revolutionize genetic manipulation of pathogens, including kinetoplastids. CRISPR technology provides the opportunity to develop scalable methods for high-throughput production of mutant phenotypes. Here, we report development of a CRISPR-Cas9 toolkit that allows rapid tagging and gene knockout in diverse kinetoplastid species without requiring the user to perform any DNA cloning. We developed a new protocol for single-guide RNA (sgRNA) delivery using PCR-generated DNA templates which are transcribed in vivo by T7 RNA polymerase and an online resource (LeishGEdit.net) for automated primer design. We produced a set of plasmids that allows easy and scalable generation of DNA constructs for transfections in just a few hours. We show how these tools allow knock-in of fluorescent protein tags, modified biotin ligase BirA*, luciferase, HaloTag and small epitope tags, which can be fused to proteins at the N- or C-terminus, for functional studies of proteins and localization screening. These tools enabled generation of null mutants in a single round of transfection in promastigote form Leishmania major, Leishmania mexicana and bloodstream form Trypanosoma brucei; deleted genes were undetectable in non-clonal populations, enabling for the first time rapid and large-scale knockout screens. Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR-associated gene 9 (Cas9) genome editing is set to revolutionize genetic manipulation of pathogens, including kinetoplastids. CRISPR technology provides the opportunity to develop scalable methods for high-throughput production of mutant phenotypes. Here, we report development of a CRISPR-Cas9 toolkit that allows rapid tagging and gene knockout in diverse kinetoplastid species without requiring the user to perform any DNA cloning. We developed a new protocol for single-guide RNA (sgRNA) delivery using PCR-generated DNA templates which are transcribed by T7 RNA polymerase and an online resource (LeishGEdit.net) for automated primer design. We produced a set of plasmids that allows easy and scalable generation of DNA constructs for transfections in just a few hours. We show how these tools allow knock-in of fluorescent protein tags, modified biotin ligase BirA*, luciferase, HaloTag and small epitope tags, which can be fused to proteins at the N- or C-terminus, for functional studies of proteins and localization screening. These tools enabled generation of null mutants in a single round of transfection in promastigote form , and bloodstream form ; deleted genes were undetectable in non-clonal populations, enabling for the first time rapid and large-scale knockout screens. |
Author | Makin, Laura Madden, Ross Beneke, Tom Gluenz, Eva Valli, Jessica Sunter, Jack |
AuthorAffiliation | Sir William Dunn School of Pathology , University of Oxford , Oxford , UK |
AuthorAffiliation_xml | – name: Sir William Dunn School of Pathology , University of Oxford , Oxford , UK |
Author_xml | – sequence: 1 givenname: Tom surname: Beneke fullname: Beneke, Tom – sequence: 2 givenname: Ross orcidid: 0000-0003-1448-8441 surname: Madden fullname: Madden, Ross – sequence: 3 givenname: Laura surname: Makin fullname: Makin, Laura – sequence: 4 givenname: Jessica surname: Valli fullname: Valli, Jessica – sequence: 5 givenname: Jack surname: Sunter fullname: Sunter, Jack – sequence: 6 givenname: Eva orcidid: 0000-0003-4346-8896 surname: Gluenz fullname: Gluenz, Eva email: eva.gluenz@path.ox.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28573017$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdFrFDEQh4NUbK198l32UZCtk8tONnkRyqH1oKBUfQ7ZJLub697mTLKF--_dc2tpwackk49vhvm9JidjGB0hbylcUpDiY0whXdIaQOILcrYCrEqsgZ08uZ-Si5S2AEARWM3rV-R0JbBmQOszcn1VrG83P77fFmudZNH7ri9zH8PU9fspF50bw84Vzvrsx67IIQx3PhdtiMWdH10O-0Gn7G16Q162ekju4uE8J7--fP65_lrefLverK9uSoNY5VJLZCiZpcBafpyIcVsDZShc24i24kZU0lotjWQ1Su6wNQ2lzQo155a27JxsFq8Neqv20e90PKigvfpbCLFTOmZvBqeYaFzDgQPVvNKIGsTKMuAMjaO8MrPr0-LaT83OWePGHPXwTPr8Z_S96sK9wgqpoGIWvH8QxPB7cimrnU_GDYMeXZiSohLmPUvGYEY_LKiJIaXo2sc2FNQxSXVMUi1JzvS7p5M9sv9ymwFYgBgO87qD8S4f1DZMcZyf_3X-AR8uqy0 |
CitedBy_id | crossref_primary_10_1021_acsinfecdis_1c00509 crossref_primary_10_3390_pathogens12101217 crossref_primary_10_1371_journal_ppat_1008784 crossref_primary_10_3389_fcimb_2020_00149 crossref_primary_10_3389_fcimb_2022_900878 crossref_primary_10_1371_journal_pntd_0007570 crossref_primary_10_3390_pathogens11040447 crossref_primary_10_1111_mmi_15199 crossref_primary_10_1186_s13071_019_3355_5 crossref_primary_10_3389_fcimb_2018_00439 crossref_primary_10_7554_eLife_85605 crossref_primary_10_1073_pnas_2103803118 crossref_primary_10_1016_j_pt_2020_06_005 crossref_primary_10_3389_fcimb_2019_00126 crossref_primary_10_1111_jeu_12747 crossref_primary_10_1590_0074_02760200634 crossref_primary_10_1186_s13071_021_04838_8 crossref_primary_10_1038_s42003_022_04280_1 crossref_primary_10_1016_j_cell_2018_10_041 crossref_primary_10_1038_s41467_022_28293_w crossref_primary_10_1371_journal_ppat_1008494 crossref_primary_10_1093_nar_gkab109 crossref_primary_10_3390_molecules27228045 crossref_primary_10_1371_journal_ppat_1011269 crossref_primary_10_1038_s41467_022_32728_9 crossref_primary_10_1021_jacsau_4c00007 crossref_primary_10_3390_genes11070722 crossref_primary_10_1128_mSphere_00408_19 crossref_primary_10_1111_jeu_12999 crossref_primary_10_3389_fbioe_2021_623278 crossref_primary_10_1002_adbi_202000252 crossref_primary_10_1016_j_mib_2019_05_004 crossref_primary_10_12688_wellcomeopenres_17964_1 crossref_primary_10_1016_j_exppara_2020_107849 crossref_primary_10_3389_fcimb_2022_988688 crossref_primary_10_3390_pathogens10121608 crossref_primary_10_1096_fj_201901184RR crossref_primary_10_7554_eLife_42282 crossref_primary_10_1016_j_dnarep_2018_11_005 crossref_primary_10_1038_s41467_021_21360_8 crossref_primary_10_12688_wellcomeopenres_17964_2 crossref_primary_10_1038_s41598_021_88685_8 crossref_primary_10_1016_j_jbc_2021_100566 crossref_primary_10_1016_j_redox_2024_103122 crossref_primary_10_1038_s41598_017_18442_3 crossref_primary_10_1096_fj_201901274RR crossref_primary_10_1371_journal_ppat_1009694 crossref_primary_10_1038_s41467_019_08696_y crossref_primary_10_1128_Spectrum_00809_21 crossref_primary_10_1128_MMBR_00079_19 crossref_primary_10_1371_journal_pntd_0010041 crossref_primary_10_7554_eLife_73488 crossref_primary_10_1371_journal_pntd_0010040 crossref_primary_10_3390_ph15020135 crossref_primary_10_33043_FF_5_1_23_34 crossref_primary_10_1038_s44319_024_00084_y crossref_primary_10_1021_acssynbio_7b00461 crossref_primary_10_1371_journal_ppat_1007828 crossref_primary_10_1007_s12639_022_01534_x crossref_primary_10_3389_fchem_2020_574103 crossref_primary_10_1111_mmi_14763 crossref_primary_10_3389_fcimb_2022_826287 crossref_primary_10_1017_S0031182020000207 crossref_primary_10_1007_s11686_023_00756_0 crossref_primary_10_1038_s41598_020_80956_0 crossref_primary_10_1016_j_redox_2017_12_010 crossref_primary_10_1186_s12896_019_0587_6 crossref_primary_10_3390_ijms222312720 crossref_primary_10_1186_s13071_020_04397_4 crossref_primary_10_1016_j_parint_2021_102444 crossref_primary_10_1371_journal_pntd_0008352 crossref_primary_10_1016_j_bbamcr_2022_119416 crossref_primary_10_1093_nar_gky517 crossref_primary_10_1371_journal_pntd_0011880 crossref_primary_10_3390_genes11101198 crossref_primary_10_1038_s41467_023_42789_z crossref_primary_10_1098_rsob_170165 crossref_primary_10_12688_wellcomeopenres_18575_2 crossref_primary_10_1016_j_celrep_2019_11_074 crossref_primary_10_12688_wellcomeopenres_18575_1 crossref_primary_10_1128_mBio_01057_20 crossref_primary_10_7554_eLife_86325 crossref_primary_10_7554_eLife_93522 crossref_primary_10_1016_j_ejmech_2023_115378 crossref_primary_10_1038_s41541_022_00449_1 crossref_primary_10_1038_d41586_018_05765_y crossref_primary_10_1016_j_ijantimicag_2024_107092 crossref_primary_10_1371_journal_pntd_0009951 crossref_primary_10_1021_acsinfecdis_0c00857 crossref_primary_10_1093_nar_gkad836 crossref_primary_10_1096_fj_202000118RR crossref_primary_10_3389_fcimb_2021_790418 crossref_primary_10_1093_nar_gky1287 crossref_primary_10_1111_1462_2920_14041 crossref_primary_10_1096_fj_202302091RR crossref_primary_10_3390_ijms23158139 crossref_primary_10_1128_mBio_01606_21 crossref_primary_10_3389_fvets_2021_800361 crossref_primary_10_3389_fcimb_2021_772311 crossref_primary_10_1016_j_ijpara_2018_02_002 crossref_primary_10_1186_s13104_020_05089_z crossref_primary_10_1111_cmi_13159 crossref_primary_10_1074_jbc_RA120_014065 crossref_primary_10_12688_wellcomeopenres_18586_2 crossref_primary_10_12688_wellcomeopenres_18586_1 crossref_primary_10_1128_mbio_00477_24 crossref_primary_10_1038_s41598_019_39348_2 crossref_primary_10_1016_j_exppara_2023_108589 crossref_primary_10_3389_fcimb_2023_1102462 crossref_primary_10_1128_mBio_00875_19 crossref_primary_10_1016_j_meegid_2018_02_030 crossref_primary_10_7554_eLife_51620 crossref_primary_10_1038_s41467_022_31742_1 crossref_primary_10_1128_mBio_01788_17 crossref_primary_10_1371_journal_ppat_1008455 crossref_primary_10_3390_molecules27228087 crossref_primary_10_1007_s00018_019_03258_3 crossref_primary_10_12688_f1000research_16903_1 crossref_primary_10_1371_journal_pone_0192723 crossref_primary_10_1371_journal_ppat_1009666 crossref_primary_10_3390_pathogens6030039 crossref_primary_10_1016_j_molbiopara_2024_111619 crossref_primary_10_3389_fmolb_2023_1191934 crossref_primary_10_1007_s00253_018_8927_3 crossref_primary_10_1021_acsinfecdis_7b00244 crossref_primary_10_1534_g3_120_401048 crossref_primary_10_1186_s13071_019_3526_4 crossref_primary_10_1016_j_crmicr_2022_100165 crossref_primary_10_1128_mSphere_01204_20 crossref_primary_10_1016_j_pt_2021_03_002 crossref_primary_10_1016_j_yjsbx_2020_100033 crossref_primary_10_1242_jcs_239855 crossref_primary_10_1016_j_molbiopara_2024_111620 crossref_primary_10_1073_pnas_1805827115 crossref_primary_10_1371_journal_pone_0259752 crossref_primary_10_1016_j_ijpara_2020_09_005 crossref_primary_10_1038_s41598_018_26303_w crossref_primary_10_1111_mmi_14979 crossref_primary_10_3390_pathogens7020036 crossref_primary_10_1111_mmi_14859 crossref_primary_10_1371_journal_pntd_0011731 crossref_primary_10_1371_journal_ppat_1010364 crossref_primary_10_3389_fcimb_2020_00408 crossref_primary_10_1128_msphere_00156_22 crossref_primary_10_1016_j_mib_2024_102477 crossref_primary_10_3390_tropicalmed7100309 crossref_primary_10_1002_ddr_21664 crossref_primary_10_3389_fcimb_2019_00397 crossref_primary_10_1021_acs_jmedchem_1c01437 crossref_primary_10_3389_fcimb_2022_1021332 crossref_primary_10_3390_ijms24043144 crossref_primary_10_1042_ETLS20170119 crossref_primary_10_1128_mSphere_00625_19 crossref_primary_10_7554_eLife_93522_3 crossref_primary_10_1083_jcb_202401154 crossref_primary_10_1111_mmi_15256 crossref_primary_10_1128_mbio_00433_22 crossref_primary_10_1242_jcs_260655 crossref_primary_10_1038_s41467_024_47309_1 crossref_primary_10_1073_pnas_2309306120 crossref_primary_10_1016_j_jbc_2021_100977 crossref_primary_10_1128_mBio_00166_21 crossref_primary_10_1371_journal_pntd_0006388 crossref_primary_10_1371_journal_pgen_1008828 crossref_primary_10_12688_wellcomeopenres_15452_1 crossref_primary_10_3390_pathogens8040241 crossref_primary_10_1128_mbio_01803_23 crossref_primary_10_1002_med_21667 crossref_primary_10_1016_j_pt_2019_03_004 crossref_primary_10_1128_mbio_00319_24 crossref_primary_10_1242_jcs_231795 crossref_primary_10_3390_microorganisms11041043 crossref_primary_10_1016_j_parint_2021_102366 crossref_primary_10_1016_j_actatropica_2022_106732 crossref_primary_10_1093_gbe_evaa226 crossref_primary_10_1242_jcs_242271 crossref_primary_10_1371_journal_pntd_0010510 crossref_primary_10_1038_s41420_019_0178_2 crossref_primary_10_3390_pathogens12111367 crossref_primary_10_1109_TASE_2022_3208152 crossref_primary_10_3389_fmolb_2021_767088 crossref_primary_10_1242_jcs_246637 crossref_primary_10_1016_j_ijpara_2024_04_007 crossref_primary_10_3390_genes11101159 crossref_primary_10_1091_mbc_E22_06_0222 crossref_primary_10_7554_eLife_83135 crossref_primary_10_1128_mSphere_00450_19 crossref_primary_10_61186_ibj_27_5_219 crossref_primary_10_1128_mbio_03264_21 crossref_primary_10_1093_nar_gkad394 |
Cites_doi | 10.1128/mBio.01012-15 10.1111/j.1432-1033.1993.tb18283.x 10.1371/journal.ppat.1003566 10.1242/jcs.02969 10.1016/j.cell.2014.05.010 10.1038/nature14651 10.1074/jbc.M116.749655 10.1083/jcb.139.1.103 10.1126/science.1258096 10.1038/nature12864 10.1016/S0166-6851(00)00383-2 10.1128/mSphere.00340-16 10.1111/cmi.12456 10.2307/3282883 10.1128/mBio.01414-14 10.1038/nature10771 10.1021/cb3002478 10.1111/jeu.12338 10.1073/pnas.160257897 10.1098/rsob.110037 10.1073/pnas.97.1.406 10.1038/nbt.2925 10.1126/science.1231143 10.1016/0166-6851(96)02598-4 10.1083/jcb.201112098 10.1242/jcs.03078 10.1101/gr.115089.110 10.1038/nmeth.1209 10.1016/j.molbiopara.2014.11.002 10.1371/journal.ppat.1005186 10.1038/nbt1037 10.1371/journal.pone.0134432 10.1101/gr.122945.111 10.1083/jcb.98.1.229 10.1073/pnas.0901698106 10.1016/j.molbiopara.2005.09.002 10.1093/emboj/19.9.1953 10.1016/j.ymeth.2014.02.019 10.1371/journal.ppat.1001161 10.1128/mBio.00861-15 10.1155/2012/165126 10.1083/jcb.132.3.359 10.1021/cb800025k 10.1038/ncomms9964 10.1016/j.molbiopara.2010.09.002 10.1038/nrg980 10.1016/j.cell.2016.08.019 10.1038/nmeth.3063 10.1098/rsob.140197 10.1016/S0166-6851(97)00048-0 10.1038/nmeth.2413 10.1128/mBio.02097-14 10.1128/EC.5.4.696-711.2006 |
ContentType | Journal Article |
Copyright | 2017 The Authors. 2017 The Authors. 2017 |
Copyright_xml | – notice: 2017 The Authors. – notice: 2017 The Authors. 2017 |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1098/rsos.170095 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | CRISPR toolkit |
EISSN | 2054-5703 |
EndPage | 170095 |
ExternalDocumentID | oai_doaj_org_article_38beb60601a64a55a082d30635ce164c 10_1098_rsos_170095 28573017 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust; ; grantid: 102052/Z/13/Z; 104627/Z/14/Z; WT066839MA funderid: http://dx.doi.org/10.13039/100004440 – fundername: Medical Research Council; ; grantid: 13/14_MSD_OSS_363238; 15/16_MSD_836338 funderid: http://dx.doi.org/10.13039/501100000265 – fundername: Royal Society; ; grantid: UF100435 funderid: http://dx.doi.org/10.13039/501100000288 – fundername: Oxford University Press (OUP) Research Fund; ; grantid: 132/029 – fundername: ; grantid: 102052/Z/13/Z; 104627/Z/14/Z; WT066839MA – fundername: ; grantid: 13/14_MSD_OSS_363238; 15/16_MSD_836338 – fundername: ; grantid: 132/029 – fundername: ; grantid: UF100435 |
GroupedDBID | 53G 5VS AAFWJ ABXXB ADBBV ADRAZ AFPKN ALAEF ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS EJD GROUPED_DOAJ HYE ICLEN KQ8 M48 M~E OK1 OP1 RPM V1E 7X2 88I ABJCF ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ H13 HCIFZ KB. M0K M2P M7P M7S NPM PATMY PCBAR PDBOC PGMZT PIMPY PTHSS PYCSY AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c554t-a953593d103f6001536d701358efb8f46c849dda9c937596e5fcb11b25a66d1f3 |
IEDL.DBID | RPM |
ISSN | 2054-5703 |
IngestDate | Tue Oct 22 14:54:22 EDT 2024 Tue Sep 17 20:34:19 EDT 2024 Tue Aug 27 04:59:58 EDT 2024 Fri Nov 22 00:57:32 EST 2024 Sat Sep 28 08:08:20 EDT 2024 Wed Jan 17 02:37:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | CRISPR T7 RNA polymerase genome editing Trypanosoma Leishmania |
Language | English |
License | open-access: Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-a953593d103f6001536d701358efb8f46c849dda9c937596e5fcb11b25a66d1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this study. Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.3744365. Present address: School of Life Sciences, University of Dundee, Dundee, UK. |
ORCID | 0000-0003-1448-8441 0000-0003-4346-8896 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451818/ |
PMID | 28573017 |
PQID | 1905739330 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmed_primary_28573017 proquest_miscellaneous_1905739330 royalsociety_journals_10_1098_rsos_170095 doaj_primary_oai_doaj_org_article_38beb60601a64a55a082d30635ce164c crossref_primary_10_1098_rsos_170095 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5451818 |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Royal Society open science |
PublicationTitleAbbrev | R. Soc. open sci |
PublicationTitleAlternate | R Soc Open Sci |
PublicationYear | 2017 |
Publisher | The Royal Society Publishing The Royal Society |
Publisher_xml | – name: The Royal Society Publishing – name: The Royal Society |
References | 26452044 - PLoS Pathog. 2015 Oct 09;11(10):e1005186 12509749 - Nat Rev Genet. 2003 Jan;4(1):11-9 9233680 - Mol Biochem Parasitol. 1997 Jul;87(1):113-5 19383793 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7583-8 18533659 - ACS Chem Biol. 2008 Jun 20;3(6):373-82 18454154 - Nat Methods. 2008 Jun;5(6):545-51 27793988 - J Biol Chem. 2016 Dec 2;291(49):25505-25515 25550322 - MBio. 2014 Dec 30;6(1):e02097-14 22278056 - Nature. 2012 Jan 25;482(7384):232-6 10790362 - EMBO J. 2000 May 2;19(9):1953-62 22038252 - Genome Res. 2011 Dec;21(12):2129-42 10908670 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9258-63 23524392 - Nat Methods. 2013 May;10(5):407-9 27315329 - J Eukaryot Microbiol. 2016 Sep;63(5):679-90 22894855 - ACS Chem Biol. 2012 Nov 16;7(11):1848-57 27863903 - Trends Parasitol. 2017 Feb;33(2):80-82 26199333 - MBio. 2015 Jul 21;6(4):e01012 27594426 - Cell. 2016 Sep 8;166(6):1423-1435.e12 27584862 - J Vis Exp. 2016 Aug 12;(114):null 24336212 - Nature. 2014 Jan 30;505(7485):681-5 22412018 - J Cell Biol. 2012 Mar 19;196(6):801-10 23287718 - Science. 2013 Feb 15;339(6121):819-23 25461484 - Mol Biochem Parasitol. 2014 Nov;198(1):11-3 24906146 - Cell. 2014 Jun 5;157(6):1262-78 15558047 - Nat Biotechnol. 2004 Dec;22(12):1567-72 28124028 - mSphere. 2017 Jan 18;2(1):null 16269191 - Mol Biochem Parasitol. 2006 Jan;145(1):117-20 16882690 - J Cell Sci. 2006 Aug 15;119(Pt 16):3443-55 20851719 - Mol Biochem Parasitol. 2011 Jan;175(1):91-4 43092 - Acta Trop. 1979 Sep;36(3):289-92 26199327 - MBio. 2015 Jul 21;6(4):e00861 23990786 - PLoS Pathog. 2013;9(8):e1003566 24987097 - MBio. 2014 Jul 01;5(4):e01414-14 6707088 - J Cell Biol. 1984 Jan;98(1):229-36 26667778 - Nat Commun. 2015 Dec 15;6:8964 27226299 - Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7225-30 25430774 - Science. 2014 Nov 28;346(6213):1258096 9314532 - J Cell Biol. 1997 Oct 6;139(1):103-14 25567099 - Open Biol. 2015 Jan;5(1):140197 16607017 - Eukaryot Cell. 2006 Apr;5(4):696-711 24880488 - Nat Biotechnol. 2014 Aug;32(8):819-21 25108687 - Nat Methods. 2014 Sep;11(9):915-8 2614608 - J Parasitol. 1989 Dec;75(6):985-9 22523640 - J Parasitol Res. 2012;2012:165126 24576617 - Methods. 2014 Sep;69(2):128-36 11254965 - Mol Biochem Parasitol. 2001 Mar;113(1):171-3 21060810 - PLoS Pathog. 2010 Oct 28;6(10):e1001161 7693464 - Eur J Biochem. 1993 Oct 15;217(2):603-15 16720646 - J Cell Sci. 2006 Jun 15;119(Pt 12):2405-13 8381972 - Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1599-603 21363968 - Genome Res. 2011 Jun;21(6):915-24 10618431 - Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):406-11 26176919 - Nature. 2015 Jul 23;523(7561):477-80 22645659 - Open Biol. 2012 Feb;2(2):110037 26266938 - PLoS One. 2015 Aug 12;10(8):e0134432 25939677 - Cell Microbiol. 2015 Oct;17(10):1405-12 8813669 - Mol Biochem Parasitol. 1996 May;77(2):235-9 8636214 - J Cell Biol. 1996 Feb;132(3):359-70 e_1_3_6_30_2 e_1_3_6_51_2 e_1_3_6_32_2 e_1_3_6_53_2 e_1_3_6_19_2 Peng D (e_1_3_6_22_2) 2015; 6 e_1_3_6_13_2 e_1_3_6_38_2 e_1_3_6_59_2 e_1_3_6_11_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_55_2 e_1_3_6_36_2 e_1_3_6_57_2 e_1_3_6_40_2 e_1_3_6_21_2 e_1_3_6_42_2 e_1_3_6_4_2 e_1_3_6_2_2 e_1_3_6_8_2 e_1_3_6_6_2 Dyer P (e_1_3_6_14_2) 2016; 114 e_1_3_6_27_2 e_1_3_6_48_2 e_1_3_6_29_2 e_1_3_6_23_2 e_1_3_6_44_2 e_1_3_6_25_2 e_1_3_6_46_2 e_1_3_6_52_2 e_1_3_6_31_2 e_1_3_6_54_2 e_1_3_6_10_2 e_1_3_6_50_2 Brun R (e_1_3_6_56_2) 1979; 36 Dean S (e_1_3_6_15_2) 2016; 1862 e_1_3_6_37_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_58_2 e_1_3_6_41_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_5_2 e_1_3_6_3_2 e_1_3_6_9_2 e_1_3_6_7_2 e_1_3_6_26_2 e_1_3_6_49_2 e_1_3_6_28_2 e_1_3_6_45_2 e_1_3_6_24_2 e_1_3_6_47_2 |
References_xml | – ident: e_1_3_6_23_2 doi: 10.1128/mBio.01012-15 – ident: e_1_3_6_49_2 doi: 10.1111/j.1432-1033.1993.tb18283.x – volume: 1862 start-page: 210 year: 2016 ident: e_1_3_6_15_2 article-title: TrypTag.org: a trypanosome genome-wide protein localisation resource publication-title: Trends Parasitol. contributor: fullname: Dean S – ident: e_1_3_6_53_2 doi: 10.1371/journal.ppat.1003566 – ident: e_1_3_6_43_2 doi: 10.1242/jcs.02969 – ident: e_1_3_6_54_2 doi: 10.1016/j.cell.2014.05.010 – ident: e_1_3_6_20_2 doi: 10.1038/nature14651 – ident: e_1_3_6_26_2 doi: 10.1074/jbc.M116.749655 – ident: e_1_3_6_51_2 doi: 10.1083/jcb.139.1.103 – ident: e_1_3_6_16_2 doi: 10.1126/science.1258096 – ident: e_1_3_6_4_2 doi: 10.1038/nature12864 – ident: e_1_3_6_11_2 doi: 10.1016/S0166-6851(00)00383-2 – ident: e_1_3_6_27_2 doi: 10.1128/mSphere.00340-16 – ident: e_1_3_6_25_2 doi: 10.1111/cmi.12456 – ident: e_1_3_6_55_2 doi: 10.2307/3282883 – volume: 114 start-page: e54342 year: 2016 ident: e_1_3_6_14_2 article-title: High-throughput gene tagging in Trypanosoma brucei publication-title: J. Vis. Exp. contributor: fullname: Dyer P – ident: e_1_3_6_19_2 doi: 10.1128/mBio.01414-14 – ident: e_1_3_6_6_2 doi: 10.1038/nature10771 – ident: e_1_3_6_37_2 doi: 10.1021/cb3002478 – ident: e_1_3_6_8_2 – ident: e_1_3_6_5_2 – ident: e_1_3_6_17_2 doi: 10.1111/jeu.12338 – ident: e_1_3_6_47_2 doi: 10.1073/pnas.160257897 – ident: e_1_3_6_50_2 doi: 10.1098/rsob.110037 – ident: e_1_3_6_45_2 doi: 10.1073/pnas.97.1.406 – volume: 36 start-page: 289 year: 1979 ident: e_1_3_6_56_2 article-title: Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication publication-title: Acta Trop. contributor: fullname: Brun R – ident: e_1_3_6_18_2 doi: 10.1038/nbt.2925 – ident: e_1_3_6_28_2 doi: 10.1126/science.1231143 – ident: e_1_3_6_35_2 doi: 10.1016/0166-6851(96)02598-4 – ident: e_1_3_6_38_2 doi: 10.1083/jcb.201112098 – ident: e_1_3_6_42_2 doi: 10.1242/jcs.03078 – ident: e_1_3_6_3_2 doi: 10.1101/gr.115089.110 – ident: e_1_3_6_52_2 doi: 10.1038/nmeth.1209 – ident: e_1_3_6_30_2 doi: 10.1016/j.molbiopara.2014.11.002 – ident: e_1_3_6_39_2 doi: 10.1371/journal.ppat.1005186 – ident: e_1_3_6_34_2 doi: 10.1038/nbt1037 – ident: e_1_3_6_59_2 doi: 10.1371/journal.pone.0134432 – ident: e_1_3_6_9_2 doi: 10.1101/gr.122945.111 – ident: e_1_3_6_40_2 doi: 10.1083/jcb.98.1.229 – ident: e_1_3_6_57_2 doi: 10.1073/pnas.0901698106 – ident: e_1_3_6_12_2 doi: 10.1016/j.molbiopara.2005.09.002 – ident: e_1_3_6_48_2 doi: 10.1093/emboj/19.9.1953 – ident: e_1_3_6_29_2 doi: 10.1016/j.ymeth.2014.02.019 – ident: e_1_3_6_7_2 doi: 10.1371/journal.ppat.1001161 – ident: e_1_3_6_24_2 doi: 10.1128/mBio.00861-15 – ident: e_1_3_6_46_2 doi: 10.1155/2012/165126 – ident: e_1_3_6_41_2 doi: 10.1083/jcb.132.3.359 – ident: e_1_3_6_36_2 doi: 10.1021/cb800025k – ident: e_1_3_6_58_2 doi: 10.1038/ncomms9964 – ident: e_1_3_6_31_2 doi: 10.1016/j.molbiopara.2010.09.002 – ident: e_1_3_6_2_2 doi: 10.1038/nrg980 – ident: e_1_3_6_21_2 doi: 10.1016/j.cell.2016.08.019 – ident: e_1_3_6_32_2 doi: 10.1038/nmeth.3063 – ident: e_1_3_6_13_2 doi: 10.1098/rsob.140197 – ident: e_1_3_6_10_2 doi: 10.1016/S0166-6851(97)00048-0 – ident: e_1_3_6_33_2 doi: 10.1038/nmeth.2413 – volume: 6 year: 2015 ident: e_1_3_6_22_2 article-title: CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi publication-title: mBio doi: 10.1128/mBio.02097-14 contributor: fullname: Peng D – ident: e_1_3_6_44_2 doi: 10.1128/EC.5.4.696-711.2006 |
SSID | ssj0001503767 |
Score | 2.5421758 |
Snippet | Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR-associated gene 9 (Cas9) genome editing is set to revolutionize genetic manipulation... |
SourceID | doaj pubmedcentral proquest crossref pubmed royalsociety |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 170095 |
SubjectTerms | Cellular And Molecular Biology Crispr Genome Editing leishmania T7 Rna Polymerase trypanosoma |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NT9wwEIZHFadeKmihpLSVK3GAQyCJPzY-0hUUeqgqWiRukR3b6gpIViT7_zsTB5SVVuLCNbFkeyb2PI7HrwEONRchVz6kRZGLVATpUl3PXJoHbenoYsjtkOX7S13eiJ-38nZy1RflhEV54Gi4U15abxWphhgljJQGY5ZDzuWy9oj69TD7ZsVkMRXPB2ckUzIeyMt0eYr42p2QGB3dJDEJQYNS_ya83JAl-Ugr-i5mU06i0MU2vBvxkZ3FZu_AG9-8h51xgHbsaFSRPv4AP87Y_Prqz-9rNjedZiRLnI6X8ixXPSNt1gfPMHRR3jPr2_b-btEzRFh2h-DZt0vE6n7hul24uTj_O79Mx1sT0hrRoE-Nllxq7vKMB6IZyZWbIejJ0gdbBqHqUmjnjK6RTKRWXoba5rktpFHK5YHvwVbTNn4fmDDkqwILeC1CcNqbkHEXhNC1lV4lcPhkyGoZxTGquKldVmTvKto7ge9k5OcipGg9PEA_V6Ofq5f8nMC3JxdVOAJoW8M0vl1hJZpEHenHTAIfo8ueqypKSVPYLIHZmjPX2rL-pln8G1S2ES2RfsoEjqdur8Yh3m3q6KfX6OgBvC0IHYakys-w1T-u_BcEn95-Hb7x_76zAcs priority: 102 providerName: Directory of Open Access Journals – databaseName: Royal Society Open Access dbid: OP1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BuXBBlM9QQEbqgR4C6_gj8bGsKIUDVIVKvUV2bKurQrJqsv-_M4m77KK9cE0c2ZmXid-Mx88Ah0bIyHWIeVFwmcuofG6a0uc8GkdbFyN3Y5Xvd316Ib9dqst0zinthbmhoLmfChaX60TMuKRPPk456SSCVH1ERtp_IH05o-7Dg6LkkqKvH2f8b5JFzUitJO3L--eZrZloFOzfxTJ3FEtujnFjMjp5DI8Si2THE-z7cC-0T2A_-WnP3icx6aOn8OWYzc-__jw7Z3PbG0bqxHk6m2e5GhhJtP4JDGcwKn9mQ9f9vl4MDJksu0b-OXRLZNfDwvfP4OLk86_5aZ4OT8gbZAhDbo0SygjPZyISqVFC-xL5nqpCdFWUuqmk8d6aBgmKMjqo2DjOXaGs1p5H8Rz22q4NL4FJS5AV2CAYGaM3wcaZ8FFK0zgVdAaHd4asl5NGRj2tbVc12bue7J3BJzLyugkJW48XENw6-UktKhecJpEYq6VVyiJF8RjWCNUEjOyaDN7dQVSjI9Dqhm1Dt8JODGk7Un4mgxcTZOuuikrRn6zMoNwCc2ss23faxdUoto0ME0lQlcHRJux18vR-14u--o-2B_CwIKIwllC-hr3hZhXeIM0Z3NvxU74FAB3-vA priority: 102 providerName: Royal Society Publications – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpVy4oJZneMlIPdBDyiZ-bHxAqKwoBQmECiv1FtmxDauWZLvJSvDfM5M4VRftiWviyMmMrfkmHv8McKC5CJnyIc3zTKQiSJfqaurSLGhLWxdDZvsq3y_qdC4-ncvzHRgP44wGbLemdnSe1Hx1efT76s9bnPBvBjGk4jWSaXtEOnNa3oLbOYZEqu36HDl_2C48IdWSuD_vn2dID7iQNNKnG8Gp1_DfBp5b6idXlOu3Q53ljfh0sgd3I1iy42Ek7MOOr-_Bfpy6LXsV9aUP78OHYzY7-_jt6xmbmVYzEixO43E9y3XHSLX1l2cY1KgimnVNc3mx6BjCLbtAJO2aJQJ3t3DtA5ifvP8-O03jeQpphdDQpUZLLjV32YQH4hzJlZsiAsrCB1sEoapCaOeMrpBZpFZehspmmc2lUcplgT-E3bqp_WNgwpAXc2zgtQjBaW_ChLsghK6s9CqBg9GQ5XKQzSiH5e6iJNOXg-kTeEdGvm5CWtf9hWb1o4xTp-SF9VaRboxRwkhpkFocZjpcVh6TvSqBl6OLSpwbtOBhat-ssRNNco_0yyaBR4PLrrsaXZ7AdMOZG--yeade_Oz1txE6kYuKBA5vur0cx-62D33y3708hTs5kURfY_kMdrvV2j9HDursi36M_wUnJgoD priority: 102 providerName: Scholars Portal |
Title | A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids |
URI | https://royalsocietypublishing.org/doi/full/10.1098/rsos.170095 https://www.ncbi.nlm.nih.gov/pubmed/28573017 https://search.proquest.com/docview/1905739330 https://pubmed.ncbi.nlm.nih.gov/PMC5451818 https://doaj.org/article/38beb60601a64a55a082d30635ce164c |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED4kmboUTfpS2wQskKEZZFsSSYtjajRNC6Q10gbIJvDZGoklw5L_f-_0CGzAUxcNEgFSdyTuO_K7jwDnKuMhkT7EaZrwmAfhYmWnLk6CMlS6GBLTsnx_yOs7_v1e3B-AGGphWtK-NYtR-bgclYu_LbdytbTjgSc2nt_MMOpjYMrHh3CI4XcrRe9KgyekUNLX4k1UPkbkWo9Ih07RPTVpLmhWT3cCUavXvw9k7uFKrimvrztO5VYsunoBz3sQyS67wR7DgS9P4LhfpjX71GtJX7yEr5dsdvvt1_yWzXStGIkTx_3VPKtNw0ihdekZBjBiP7Omqh4fFg1DIMseEH421QrBdbNw9Su4u_rye3Yd93cnxBYBQhNrJTKhMpdMskCYRmTSTRHuidwHkwcubc6Vc1pZxCdCSS-CNUliUqGldEnIXsNRWZX-LTCuyWMpNvCKh-CU12GSucC5skZ4GcH5YMhi1UlkFN3Rdl6Q6YvO9BF8JiM_NSFd6_ZFtf5T9N4tstx4I0kjRkuuhdCIUBxmNZmwHhM7G8HHwUUFrgM63NClrzbYiSJpR9qeieBN57KnrgaXRzDdcebOWHa_4NRrtbb7qRbBxbbbi36h1_t-9N1_9_IenqWEGlo-5Qc4atYbf4qYpzFn7V4BPm94js-f8-SsnfX_AJ-sBdw |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,3322,24318,27147,27924,27925,53791,53793,55555,55565 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB2k6aG9FE1XdWWBHJqDbEtcJB5To6nTJkGQJkBuAtfWSCwZlvz_5WgJbMCnXiUCpGaGmDfim0eAQ0mZT4TzcZomLGae21iazMaJlxpbF32iW5bvhZjdsJ-3_HYP-NAL05L2jZ6PyvvFqJz_bbmVy4UZDzyx8eX5NGT9kJjy8SN4zGkmk40ivWsOnqBGSd-NN5H5OGDXeoRKdBJvqklzjnGdbaWiVrF_F8zcwZZcYWVfd6zKjWx08hye9TCSHHfLPYA9V76Ag36j1uRrryZ99BJ-HJPp1envyysyVbUkKE8c95fzLNcNQY3WhSMhhSH_mTRVdX83b0iAsuQuANCmWgZ43cxt_QpuTr5fT2dxf3tCbAJEaGIlOeWS2mRCPaIaToXNAuDjufM690yYnElrlTQBoXApHPdGJ4lOuRLCJp6-hv2yKt1bIEyhz9IwwEnmvZVO-Qm1njFpNHcigsPBkMWyE8kousPtvEDTF53pI_iGRn4YgsrW7YNq9afo_VvQXDstUCVGCaY4VwGj2FDXUG5cKO1MBF8GFxVhJ-DxhipdtQ6TSBR3xB80EbzpXPYw1eDyCLItZ26tZftNCL5WbbsPtgiONt1e9Fu93vWh7_57ls_wZHZ9flacnV78eg9PU8QQLbvyA-w3q7X7GBBQoz-18f4PE60GcQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BkRAXRHnVPBepB3pwHHsf8R5LILQ8qqhQqTdrnxC1sa3Y-f_M2k6VSDlxtVfa9cys5hvvt98AHEvKfCqcj7MsZTHz3MbSTGyceqnD1UWf6o7leyHOrti3a3691eqrI-0bvRiVt8tRufjbcSvrpUk2PLFk_nOKWR8TU57U1if34QGnGGRbhXp_QXgcdEqGG3ljmSeIX5tRUKOToVtNlvMQ25OddNSp9u-DmnsYk6tQ3Tc9s3IrI82ewOMBSpLTfsmHcM-VT-Fw2KwN-TgoSp88g6-nZHp5_mt-SaaqkSRIFMdDg5563ZKg07p0BNNY4ECTtqpubxYtQThLbhCEtlWNELtd2OY5XM2-_J6exUMHhdggTGhjJTnlktp0TH1ANpwKO0HQx3Pnde6ZMDmT1ippEKVwKRz3RqepzrgSwqaevoCDsirdERCmgt8yHOAk895Kp_yYWs-YNJo7EcHxxpBF3QtlFP0Bd14E0xe96SP4FIx8NySoW3cPqtWfYvBxQXPttAhKMUowxblCnGKxtqHcOCzvTAQfNi4qcDeEIw5VumqNk8gg8Bh-0kTwsnfZ3VQbl0cw2XHmzlp232AAdorbQ8BFcLLt9mLY7s2-D33137O8h4fzz7Pix_nF99fwKAswoiNYvoGDdrV2bxEEtfpdF-7_AM-AB4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CRISPR+Cas9+high-throughput+genome+editing+toolkit+for+kinetoplastids&rft.jtitle=Royal+Society+open+science&rft.au=Beneke%2C+Tom&rft.au=Madden%2C+Ross&rft.au=Makin%2C+Laura&rft.au=Valli%2C+Jessica&rft.date=2017-05-01&rft.pub=The+Royal+Society+Publishing&rft.eissn=2054-5703&rft.volume=4&rft.issue=5&rft_id=info:doi/10.1098%2Frsos.170095&rft_id=info%3Apmid%2F28573017&rft.externalDBID=PMC5451818 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-5703&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-5703&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-5703&client=summon |