Co-targeting RNA Polymerases IV and V Promotes Efficient De Novo DNA Methylation in Arabidopsis

The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capabl...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 176; no. 5; pp. 1068 - 1082.e19
Main Authors Gallego-Bartolomé, Javier, Liu, Wanlu, Kuo, Peggy Hsuanyu, Feng, Suhua, Ghoshal, Basudev, Gardiner, Jason, Zhao, Jenny Miao-Chi, Park, Soo Young, Chory, Joanne, Jacobsen, Steven E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 21.02.2019
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation and enables new strategies for epigenetic gene regulation via targeted DNA methylation. [Display omitted] •A panel of RdDM factors can target DNA methylation when fused to an artificial ZF•ZF-RdDM fusions in different mutant backgrounds reveal RdDM hierarchy of action•MORC6 can target DNA methylation•Co-targeting of Pol IV and Pol V synergistically enhances DNA methylation targeting Comprehensive investigation into the genetic pathway of RNA-directed DNA methylation in Arabidopsis defines epistatic relationships and allows for efficient manipulation of DNA methylation to specifically modify developmental phenotypes.
AbstractList The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation and enables new strategies for epigenetic gene regulation via targeted DNA methylation.
The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation and enables new strategies for epigenetic gene regulation via targeted DNA methylation. • A panel of RdDM factors can target DNA methylation when fused to an artificial ZF • ZF-RdDM fusions in different mutant backgrounds reveal RdDM hierarchy of action • MORC6 can target DNA methylation • Co-targeting of Pol IV and Pol V synergistically enhances DNA methylation targeting Comprehensive investigation into the genetic pathway of RNA-directed DNA methylation in Arabidopsis defines epistatic relationships and allows for efficient manipulation of DNA methylation to specifically modify developmental phenotypes.
The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation and enables new strategies for epigenetic gene regulation via targeted DNA methylation. [Display omitted] •A panel of RdDM factors can target DNA methylation when fused to an artificial ZF•ZF-RdDM fusions in different mutant backgrounds reveal RdDM hierarchy of action•MORC6 can target DNA methylation•Co-targeting of Pol IV and Pol V synergistically enhances DNA methylation targeting Comprehensive investigation into the genetic pathway of RNA-directed DNA methylation in Arabidopsis defines epistatic relationships and allows for efficient manipulation of DNA methylation to specifically modify developmental phenotypes.
The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation and enables new strategies for epigenetic gene regulation via targeted DNA methylation.The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation and enables new strategies for epigenetic gene regulation via targeted DNA methylation.
Author Park, Soo Young
Gallego-Bartolomé, Javier
Ghoshal, Basudev
Zhao, Jenny Miao-Chi
Gardiner, Jason
Chory, Joanne
Jacobsen, Steven E.
Liu, Wanlu
Feng, Suhua
Kuo, Peggy Hsuanyu
AuthorAffiliation 1 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
2 Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA
5 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
3 Howard Hughes Medical Institute, La Jolla, CA 92037, USA
4 The Salk Institute, La Jolla, CA 92037, USA
AuthorAffiliation_xml – name: 5 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
– name: 3 Howard Hughes Medical Institute, La Jolla, CA 92037, USA
– name: 4 The Salk Institute, La Jolla, CA 92037, USA
– name: 1 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– name: 2 Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA
Author_xml – sequence: 1
  givenname: Javier
  surname: Gallego-Bartolomé
  fullname: Gallego-Bartolomé, Javier
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 2
  givenname: Wanlu
  surname: Liu
  fullname: Liu, Wanlu
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Peggy Hsuanyu
  surname: Kuo
  fullname: Kuo, Peggy Hsuanyu
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 4
  givenname: Suhua
  surname: Feng
  fullname: Feng, Suhua
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 5
  givenname: Basudev
  surname: Ghoshal
  fullname: Ghoshal, Basudev
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 6
  givenname: Jason
  surname: Gardiner
  fullname: Gardiner, Jason
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 7
  givenname: Jenny Miao-Chi
  surname: Zhao
  fullname: Zhao, Jenny Miao-Chi
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 8
  givenname: Soo Young
  surname: Park
  fullname: Park, Soo Young
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
– sequence: 9
  givenname: Joanne
  surname: Chory
  fullname: Chory, Joanne
  organization: Howard Hughes Medical Institute, La Jolla, CA 92037, USA
– sequence: 10
  givenname: Steven E.
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
  email: jacobsen@ucla.edu
  organization: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30739798$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv0zAcxS00xLrBF-CAfOSSYDtxbEsIqerGmDTGhGBXy4n_7lylcWe7lfrtSdYNAYdxsmS_9_z0fifoaAgDIPSWkpIS2nxYlR30fckIVSWhJWHqBZpRokRRU8GO0IwQxQrZiPoYnaS0IoRIzvkrdFwRUSmh5AzpRSiyiUvIflji79dzfBP6_RqiSZDw5S02g8W3-CaGdcjjzblzvvMwZHwG-DrsAj4bPV8h3-17k30YsB_wPJrW27BJPr1GL53pE7x5PE_Rz8_nPxZfiqtvF5eL-VXRcV7nwlBJq65V3EJVk0p0UAvaOmGFq5VsKBPCto20AK6RoIwjtbO8VUYoJ1jbVKfo0yF3s23XYLuxYTS93kS_NnGvg_H675fB3-ll2Ommkg2XbAx4_xgQw_0WUtZrn6Z9zQBhmzRjvGK8po34v5ROMwsup1rv_qz1u88TgFEgD4IuhpQiON35_DDk2NL3mhI9sdYrPX2gJ9aaUD2yHq3sH-tT-rOmjwcTjDB2HqJOE84OrI_QZW2Df87-C_iHwso
CitedBy_id crossref_primary_10_1093_nar_gkac826
crossref_primary_10_1038_s41467_022_35675_7
crossref_primary_10_1093_jxb_erz218
crossref_primary_10_3390_ijms22084125
crossref_primary_10_1111_nph_17586
crossref_primary_10_1093_nar_gkz618
crossref_primary_10_1093_plcell_koad260
crossref_primary_10_1038_s41467_022_32138_x
crossref_primary_10_1002_wrna_1848
crossref_primary_10_1093_plcell_koad143
crossref_primary_10_1126_science_abg6130
crossref_primary_10_59717_j_xinn_life_2024_100050
crossref_primary_10_1038_s41467_023_39751_4
crossref_primary_10_1080_10409238_2024_2320659
crossref_primary_10_1016_j_pbi_2024_102552
crossref_primary_10_1038_s41467_023_37263_9
crossref_primary_10_1073_pnas_1813645116
crossref_primary_10_1093_nar_gkab746
crossref_primary_10_1111_pbi_13955
crossref_primary_10_1073_pnas_2023347118
crossref_primary_10_1038_s41580_021_00447_6
crossref_primary_10_1111_nyas_14675
crossref_primary_10_3390_epigenomes4020009
crossref_primary_10_1016_j_devcel_2022_07_017
crossref_primary_10_1073_pnas_2125016118
crossref_primary_10_1007_s11103_020_01051_6
crossref_primary_10_1016_j_tig_2020_06_019
crossref_primary_10_1038_s41467_024_48940_8
crossref_primary_10_1111_nph_16529
crossref_primary_10_1038_s41477_025_01924_y
crossref_primary_10_1038_s41467_021_27320_6
crossref_primary_10_7554_eLife_89353_3
crossref_primary_10_3389_fpls_2021_764999
crossref_primary_10_1242_dev_175703
crossref_primary_10_1042_BST20210336
crossref_primary_10_1080_21541264_2020_1825906
crossref_primary_10_1038_s41467_022_34648_0
crossref_primary_10_1038_s41580_025_00834_3
crossref_primary_10_3390_ijms22020682
crossref_primary_10_1002_adfm_202202585
crossref_primary_10_3390_ijms22168618
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_3389_fpls_2021_798858
crossref_primary_10_1093_jxb_erae522
crossref_primary_10_1038_s41467_022_28468_5
crossref_primary_10_1186_s13072_020_00361_9
crossref_primary_10_1007_s13258_021_01199_5
crossref_primary_10_1093_plphys_kiac033
crossref_primary_10_3390_ijms21207552
crossref_primary_10_1093_bioinformatics_btab075
crossref_primary_10_3390_ijms231810492
crossref_primary_10_1101_sqb_2019_84_040394
crossref_primary_10_1038_s42003_021_01933_5
crossref_primary_10_1371_journal_pgen_1009034
crossref_primary_10_1016_j_jmb_2019_12_043
crossref_primary_10_1038_s41467_019_11759_9
crossref_primary_10_1101_gad_343871_120
crossref_primary_10_1038_s41477_023_01362_8
crossref_primary_10_1186_s13059_023_03059_9
crossref_primary_10_1093_bfgp_elae017
crossref_primary_10_1007_s12298_024_01486_x
crossref_primary_10_1016_j_copbio_2021_07_008
crossref_primary_10_1098_rstb_2020_0123
crossref_primary_10_1073_pnas_2014419117
crossref_primary_10_1016_j_ncrops_2024_100055
crossref_primary_10_3389_fpls_2020_606800
crossref_primary_10_1007_s10529_020_02950_w
crossref_primary_10_1093_jxb_eraa346
crossref_primary_10_3389_fpls_2024_1372880
crossref_primary_10_1093_jxb_erad175
crossref_primary_10_1016_j_jgg_2024_01_006
crossref_primary_10_1134_S1062360421060047
crossref_primary_10_3390_cells10112952
crossref_primary_10_3389_fgene_2022_876987
crossref_primary_10_1016_j_cofs_2022_100843
crossref_primary_10_1007_s13258_021_01189_7
crossref_primary_10_1093_plphys_kiae024
crossref_primary_10_3390_ijms222312912
crossref_primary_10_1016_j_molp_2020_02_010
crossref_primary_10_1038_s41467_021_24553_3
crossref_primary_10_3390_ijms20122888
crossref_primary_10_3390_ijms22020512
crossref_primary_10_3390_biology10080766
crossref_primary_10_3390_epigenomes4040025
crossref_primary_10_1093_nargab_lqab061
crossref_primary_10_1016_j_pbi_2022_102315
crossref_primary_10_1073_pnas_2216822120
crossref_primary_10_1016_j_envexpbot_2021_104479
crossref_primary_10_3390_ijms24065608
crossref_primary_10_1016_j_jbiotec_2023_07_008
crossref_primary_10_1111_tpj_15064
crossref_primary_10_1111_nph_17353
crossref_primary_10_3389_fpls_2025_1544744
crossref_primary_10_1080_15592324_2021_1925440
crossref_primary_10_1073_pnas_2208441119
crossref_primary_10_1038_s41467_021_23346_y
crossref_primary_10_1038_s41576_021_00407_y
crossref_primary_10_1126_sciadv_adi9036
crossref_primary_10_1038_s41477_023_01599_3
crossref_primary_10_3389_fpls_2023_1181039
crossref_primary_10_3389_fpls_2020_00056
crossref_primary_10_1038_s41477_023_01364_6
crossref_primary_10_1016_j_tig_2023_12_009
crossref_primary_10_7554_eLife_89353
Cites_doi 10.1093/bioinformatics/btu638
10.1038/nsmb.2354
10.1186/gb-2008-9-9-r137
10.7554/eLife.09591
10.1016/j.cell.2015.09.032
10.1105/tpc.2.8.741
10.1038/nplants.2016.163
10.7554/eLife.19092
10.1371/journal.pgen.1006026
10.1038/s41556-018-0089-0
10.1093/nar/gkw1179
10.1371/journal.pgen.1005998
10.1186/s13059-014-0550-8
10.1016/j.jgg.2016.10.009
10.1016/j.cell.2006.05.032
10.1038/s41477-017-0100-y
10.1016/j.cub.2012.03.061
10.1101/gad.451207
10.1016/j.molcel.2010.05.004
10.1371/journal.pgen.1003948
10.1016/j.cell.2012.10.054
10.1093/bioinformatics/btp120
10.1016/j.molp.2016.05.006
10.1105/tpc.109.072199
10.1073/pnas.1406611111
10.1038/ng1804
10.1016/j.cub.2004.04.037
10.1073/pnas.1716945115
10.1186/1471-2105-10-232
10.1186/gb-2009-10-3-r25
10.1101/gad.1980311
10.1104/pp.103.027979
10.1073/pnas.1413053112
10.1038/nature12931
10.1371/journal.pgen.1000280
10.1038/s41588-018-0115-y
10.1371/journal.pgen.1002195
10.1186/1471-2164-15-284
10.1093/bioinformatics/btp352
10.1046/j.1365-313X.2001.01105.x
10.1146/annurev-arplant-043014-114633
10.1038/nrg2719
10.1101/gr.182238.114
10.1016/S1097-2765(05)00090-0
10.1038/nature09025
10.1186/gb-2010-11-10-r106
10.1016/j.cell.2014.03.056
10.1126/science.1221472
10.4161/epi.6.3.14242
10.1038/nature12178
10.1016/j.cub.2010.03.062
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2019.01.029
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1082.e19
ExternalDocumentID PMC6386582
30739798
10_1016_j_cell_2019_01_029
S0092867419300923
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Howard Hughes Medical Institute
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c554t-a1813cb95de34037ce471bf7d7f49861277db68deef68e9af04fd5b9a79f72b63
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:20:41 EDT 2025
Fri Jul 11 03:46:58 EDT 2025
Tue Aug 05 10:47:46 EDT 2025
Thu Apr 03 06:49:54 EDT 2025
Tue Jul 01 02:17:02 EDT 2025
Thu Apr 24 23:08:06 EDT 2025
Fri Feb 23 02:27:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-a1813cb95de34037ce471bf7d7f49861277db68deef68e9af04fd5b9a79f72b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867419300923
PMID 30739798
PQID 2185557586
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6386582
proquest_miscellaneous_2253254167
proquest_miscellaneous_2185557586
pubmed_primary_30739798
crossref_citationtrail_10_1016_j_cell_2019_01_029
crossref_primary_10_1016_j_cell_2019_01_029
elsevier_sciencedirect_doi_10_1016_j_cell_2019_01_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-21
PublicationDateYYYYMMDD 2019-02-21
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2019
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Zhai, Bischof, Wang, Feng, Lee, Teng, Chen, Park, Liu, Gallego-Bartolome (bib48) 2015; 163
Henderson, Zhang, Lu, Johnson, Meyers, Green, Jacobsen (bib16) 2006; 38
Gao, Liu, Daxinger, Pontes, He, Qian, Lin, Xie, Lorkovic, Zhang (bib11) 2010; 465
Xi, Li (bib47) 2009; 10
Pastor, Liu, Chen, Ho, Kim, Hunt, Lukianchikov, Liu, Polo, Jacobsen, Clark (bib40) 2018; 20
Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib29) 2009; 25
Greenberg, Ausin, Chan, Cokus, Cuperus, Feng, Law, Chu, Pellegrini, Carrington, Jacobsen (bib12) 2011; 6
Moissiard, Bischof, Husmann, Pastor, Hale, Yen, Stroud, Papikian, Vashisht, Wohlschlegel, Jacobsen (bib39) 2014; 111
Law, Vashisht, Wohlschlegel, Jacobsen (bib26) 2011; 7
Soppe, Jacobsen, Alonso-Blanco, Jackson, Kakutani, Koornneef, Peeters (bib43) 2000; 6
Cuerda-Gil, Slotkin (bib7) 2016; 2
Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nusbaum, Myers, Brown, Li, Liu (bib49) 2008; 9
Jing, Sun, Yuan, Wang, Li, Liu, Li, Qian (bib18) 2016; 9
Love, Huber, Anders (bib35) 2014; 15
El-Shami, Pontier, Lahmy, Braun, Picart, Vega, Hakimi, Jacobsen, Cooke, Lagrange (bib9) 2007; 21
Langmead, Trapnell, Pop, Salzberg (bib23) 2009; 10
Catoni, Tsang, Greco, Zabet (bib6) 2018; 46
Liu, Zhou, Huang, Li, Shao, Li, Cai, Chen, He (bib32) 2016; 12
Zhou, Palanca, Law (bib52) 2018; 50
Law, Jacobsen (bib24) 2010; 11
Stroud, Greenberg, Feng, Bernatavichute, Jacobsen (bib44) 2013; 152
Trapnell, Pachter, Salzberg (bib45) 2009; 25
Harris, Husmann, Liu, Kasmi, Wang, Papikian, Pastor, Moissiard, Vashisht, Dangl (bib13) 2016; 12
Lu, Hofmeister, Vollmers, DuBois, Schmitz (bib36) 2017; 45
Irish, Sussex (bib17) 1990; 2
Blevins, Podicheti, Mishra, Marasco, Wang, Rusch, Tang, Pikaard (bib3) 2015; 4
Johnson, Law, Khattar, Henderson, Jacobsen (bib19) 2008; 4
Law, Ausin, Johnson, Vashisht, Zhu, Wohlschlegel, Jacobsen (bib25) 2010; 20
Moissiard, Cokus, Cary, Feng, Billi, Stroud, Husmann, Zhan, Lajoie, McCord (bib38) 2012; 336
Matzke, Kanno, Matzke (bib37) 2015; 66
Wesley, Helliwell, Smith, Wang, Rouse, Liu, Gooding, Singh, Abbott, Stoutjesdijk (bib46) 2001; 27
Anders, Pyl, Huber (bib2) 2015; 31
Johnson, Du, Hale, Bischof, Feng, Chodavarapu, Zhong, Marson, Pellegrini, Segal (bib20) 2014; 507
Rajakumara, Law, Simanshu, Voigt, Johnson, Reinberg, Patel, Jacobsen (bib41) 2011; 25
Bond, Baulcombe (bib5) 2015; 112
Havecker, Wallbridge, Hardcastle, Bush, Kelly, Dunn, Schwach, Doonan, Baulcombe (bib14) 2010; 22
Shen, Shao, Liu, Nestler (bib42) 2014; 15
Li, Pontes, El-Shami, Henderson, Bernatavichute, Chan, Lagrange, Pikaard, Jacobsen (bib28) 2006; 126
Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib15) 2010; 38
Lorković, Naumann, Matzke, Matzke (bib34) 2012; 22
Böhmdorfer, Sethuraman, Rowley, Krzyszton, Rothi, Bouzit, Wierzbicki (bib4) 2016; 5
Gallego-Bartolomé, Gardiner, Liu, Papikian, Ghoshal, Kuo, Zhao, Segal, Jacobsen (bib10) 2018; 115
Liu, Duttke, Hetzel, Groth, Feng, Gallego-Bartolome, Zhong, Kuo, Wang, Zhai (bib33) 2018; 4
Law, Du, Hale, Feng, Krajewski, Palanca, Strahl, Patel, Jacobsen (bib27) 2013; 498
Kuo, Jacobsen, Long, Chen, Zhai (bib22) 2017; 44
Kanno, Mette, Kreil, Aufsatz, Matzke, Matzke (bib21) 2004; 14
Zhong, Du, Hale, Gallego-Bartolome, Feng, Vashisht, Chory, Wohlschlegel, Patel, Jacobsen (bib51) 2014; 157
Anders, Huber (bib1) 2010; 11
Li, Vandivier, Tu, Gao, Won, Li, Zheng, Gregory, Chen (bib30) 2015; 25
Zhong, Hale, Law, Johnson, Feng, Tu, Jacobsen (bib50) 2012; 19
Liu, Shao, Zhang, Zhou, Zhang, Li, Chen, Huang, Cai, He (bib31) 2014; 10
Curtis, Grossniklaus (bib8) 2003; 133
Li (10.1016/j.cell.2019.01.029_bib29) 2009; 25
Pastor (10.1016/j.cell.2019.01.029_bib40) 2018; 20
Love (10.1016/j.cell.2019.01.029_bib35) 2014; 15
Law (10.1016/j.cell.2019.01.029_bib24) 2010; 11
Trapnell (10.1016/j.cell.2019.01.029_bib45) 2009; 25
Shen (10.1016/j.cell.2019.01.029_bib42) 2014; 15
Anders (10.1016/j.cell.2019.01.029_bib2) 2015; 31
Law (10.1016/j.cell.2019.01.029_bib25) 2010; 20
Stroud (10.1016/j.cell.2019.01.029_bib44) 2013; 152
Lorković (10.1016/j.cell.2019.01.029_bib34) 2012; 22
Zhong (10.1016/j.cell.2019.01.029_bib50) 2012; 19
Gallego-Bartolomé (10.1016/j.cell.2019.01.029_bib10) 2018; 115
Law (10.1016/j.cell.2019.01.029_bib26) 2011; 7
Catoni (10.1016/j.cell.2019.01.029_bib6) 2018; 46
Li (10.1016/j.cell.2019.01.029_bib28) 2006; 126
Liu (10.1016/j.cell.2019.01.029_bib32) 2016; 12
Curtis (10.1016/j.cell.2019.01.029_bib8) 2003; 133
Henderson (10.1016/j.cell.2019.01.029_bib16) 2006; 38
Xi (10.1016/j.cell.2019.01.029_bib47) 2009; 10
Zhang (10.1016/j.cell.2019.01.029_bib49) 2008; 9
Bond (10.1016/j.cell.2019.01.029_bib5) 2015; 112
Moissiard (10.1016/j.cell.2019.01.029_bib38) 2012; 336
Liu (10.1016/j.cell.2019.01.029_bib33) 2018; 4
Moissiard (10.1016/j.cell.2019.01.029_bib39) 2014; 111
Li (10.1016/j.cell.2019.01.029_bib30) 2015; 25
Havecker (10.1016/j.cell.2019.01.029_bib14) 2010; 22
Zhong (10.1016/j.cell.2019.01.029_bib51) 2014; 157
Anders (10.1016/j.cell.2019.01.029_bib1) 2010; 11
Blevins (10.1016/j.cell.2019.01.029_bib3) 2015; 4
Jing (10.1016/j.cell.2019.01.029_bib18) 2016; 9
Harris (10.1016/j.cell.2019.01.029_bib13) 2016; 12
Irish (10.1016/j.cell.2019.01.029_bib17) 1990; 2
Greenberg (10.1016/j.cell.2019.01.029_bib12) 2011; 6
Johnson (10.1016/j.cell.2019.01.029_bib19) 2008; 4
Heinz (10.1016/j.cell.2019.01.029_bib15) 2010; 38
Johnson (10.1016/j.cell.2019.01.029_bib20) 2014; 507
Liu (10.1016/j.cell.2019.01.029_bib31) 2014; 10
Soppe (10.1016/j.cell.2019.01.029_bib43) 2000; 6
Law (10.1016/j.cell.2019.01.029_bib27) 2013; 498
Kanno (10.1016/j.cell.2019.01.029_bib21) 2004; 14
Matzke (10.1016/j.cell.2019.01.029_bib37) 2015; 66
El-Shami (10.1016/j.cell.2019.01.029_bib9) 2007; 21
Gao (10.1016/j.cell.2019.01.029_bib11) 2010; 465
Cuerda-Gil (10.1016/j.cell.2019.01.029_bib7) 2016; 2
Rajakumara (10.1016/j.cell.2019.01.029_bib41) 2011; 25
Lu (10.1016/j.cell.2019.01.029_bib36) 2017; 45
Böhmdorfer (10.1016/j.cell.2019.01.029_bib4) 2016; 5
Kuo (10.1016/j.cell.2019.01.029_bib22) 2017; 44
Zhai (10.1016/j.cell.2019.01.029_bib48) 2015; 163
Wesley (10.1016/j.cell.2019.01.029_bib46) 2001; 27
Langmead (10.1016/j.cell.2019.01.029_bib23) 2009; 10
Zhou (10.1016/j.cell.2019.01.029_bib52) 2018; 50
References_xml – volume: 9
  start-page: 1156
  year: 2016
  end-page: 1167
  ident: bib18
  article-title: SUVH2 and SUVH9 Couple Two Essential Steps for Transcriptional Gene Silencing in Arabidopsis
  publication-title: Mol. Plant
– volume: 25
  start-page: 235
  year: 2015
  end-page: 245
  ident: bib30
  article-title: Detection of Pol IV/RDR2-dependent transcripts at the genomic scale in Arabidopsis reveals features and regulation of siRNA biogenesis
  publication-title: Genome Res.
– volume: 163
  start-page: 445
  year: 2015
  end-page: 455
  ident: bib48
  article-title: A One Precursor One siRNA Model for Pol IV-Dependent siRNA Biogenesis
  publication-title: Cell
– volume: 50
  start-page: 865
  year: 2018
  end-page: 873
  ident: bib52
  article-title: Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family
  publication-title: Nat. Genet.
– volume: 126
  start-page: 93
  year: 2006
  end-page: 106
  ident: bib28
  article-title: An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana
  publication-title: Cell
– volume: 336
  start-page: 1448
  year: 2012
  end-page: 1451
  ident: bib38
  article-title: MORC family ATPases required for heterochromatin condensation and gene silencing
  publication-title: Science
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: bib29
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
– volume: 11
  start-page: R106
  year: 2010
  ident: bib1
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol.
– volume: 15
  start-page: 550
  year: 2014
  ident: bib35
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 2
  start-page: 16163
  year: 2016
  ident: bib7
  article-title: Non-canonical RNA-directed DNA methylation
  publication-title: Nat. Plants
– volume: 66
  start-page: 243
  year: 2015
  end-page: 267
  ident: bib37
  article-title: RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 20
  start-page: 553
  year: 2018
  end-page: 564
  ident: bib40
  article-title: TFAP2C regulates transcription in human naive pluripotency by opening enhancers
  publication-title: Nat. Cell Biol.
– volume: 15
  start-page: 284
  year: 2014
  ident: bib42
  article-title: ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases
  publication-title: BMC Genomics
– volume: 19
  start-page: 870
  year: 2012
  end-page: 875
  ident: bib50
  article-title: DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons
  publication-title: Nat. Struct. Mol. Biol.
– volume: 465
  start-page: 106
  year: 2010
  end-page: 109
  ident: bib11
  article-title: An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation
  publication-title: Nature
– volume: 10
  start-page: 232
  year: 2009
  ident: bib47
  article-title: BSMAP: whole genome bisulfite sequence MAPping program
  publication-title: BMC Bioinformatics
– volume: 11
  start-page: 204
  year: 2010
  end-page: 220
  ident: bib24
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
– volume: 6
  start-page: 791
  year: 2000
  end-page: 802
  ident: bib43
  article-title: The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene
  publication-title: Mol. Cell
– volume: 10
  start-page: e1003948
  year: 2014
  ident: bib31
  article-title: The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci
  publication-title: PLoS Genet.
– volume: 6
  start-page: 344
  year: 2011
  end-page: 354
  ident: bib12
  article-title: Identification of genes required for de novo DNA methylation in Arabidopsis
  publication-title: Epigenetics
– volume: 46
  start-page: e114
  year: 2018
  ident: bib6
  article-title: DMRcaller: a versatile R/Bioconductor package for detection and visualization of differentially methylated regions in CpG and non-CpG contexts
  publication-title: Nucleic Acids Res.
– volume: 44
  start-page: 3
  year: 2017
  end-page: 6
  ident: bib22
  article-title: Characteristics and processing of Pol IV-dependent transcripts in Arabidopsis
  publication-title: J. Genet. Genomics
– volume: 5
  year: 2016
  ident: bib4
  article-title: Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin
  publication-title: Elife
– volume: 27
  start-page: 581
  year: 2001
  end-page: 590
  ident: bib46
  article-title: Construct design for efficient, effective and high-throughput gene silencing in plants
  publication-title: Plant J.
– volume: 133
  start-page: 462
  year: 2003
  end-page: 469
  ident: bib8
  article-title: A gateway cloning vector set for high-throughput functional analysis of genes in planta
  publication-title: Plant Physiol.
– volume: 4
  start-page: 181
  year: 2018
  end-page: 188
  ident: bib33
  article-title: RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis
  publication-title: Nat. Plants
– volume: 9
  start-page: R137
  year: 2008
  ident: bib49
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
– volume: 45
  start-page: e41
  year: 2017
  ident: bib36
  article-title: Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes
  publication-title: Nucleic Acids Res.
– volume: 2
  start-page: 741
  year: 1990
  end-page: 753
  ident: bib17
  article-title: Function of the apetala-1 gene during Arabidopsis floral development
  publication-title: Plant Cell
– volume: 25
  start-page: 137
  year: 2011
  end-page: 152
  ident: bib41
  article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo
  publication-title: Genes Dev.
– volume: 12
  start-page: e1005998
  year: 2016
  ident: bib13
  article-title: Arabidopsis AtMORC4 and AtMORC7 Form Nuclear Bodies and Repress a Large Number of Protein-Coding Genes
  publication-title: PLoS Genet.
– volume: 10
  start-page: R25
  year: 2009
  ident: bib23
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
– volume: 14
  start-page: 801
  year: 2004
  end-page: 805
  ident: bib21
  article-title: Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation
  publication-title: Curr. Biol.
– volume: 20
  start-page: 951
  year: 2010
  end-page: 956
  ident: bib25
  article-title: A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis
  publication-title: Curr. Biol.
– volume: 152
  start-page: 352
  year: 2013
  end-page: 364
  ident: bib44
  article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome
  publication-title: Cell
– volume: 112
  start-page: 917
  year: 2015
  end-page: 922
  ident: bib5
  article-title: Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: e1002195
  year: 2011
  ident: bib26
  article-title: SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV
  publication-title: PLoS Genet.
– volume: 111
  start-page: 7474
  year: 2014
  end-page: 7479
  ident: bib39
  article-title: Transcriptional gene silencing by Arabidopsis microrchidia homologues involves the formation of heteromers
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  ident: bib2
  article-title: HTSeq--a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
– volume: 38
  start-page: 721
  year: 2006
  end-page: 725
  ident: bib16
  article-title: Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning
  publication-title: Nat. Genet.
– volume: 21
  start-page: 2539
  year: 2007
  end-page: 2544
  ident: bib9
  article-title: Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components
  publication-title: Genes Dev.
– volume: 4
  start-page: e1000280
  year: 2008
  ident: bib19
  article-title: SRA-domain proteins required for DRM2-mediated de novo DNA methylation
  publication-title: PLoS Genet.
– volume: 38
  start-page: 576
  year: 2010
  end-page: 589
  ident: bib15
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
– volume: 498
  start-page: 385
  year: 2013
  end-page: 389
  ident: bib27
  article-title: Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1
  publication-title: Nature
– volume: 25
  start-page: 1105
  year: 2009
  end-page: 1111
  ident: bib45
  article-title: TopHat: discovering splice junctions with RNA-Seq
  publication-title: Bioinformatics
– volume: 22
  start-page: 933
  year: 2012
  end-page: 938
  ident: bib34
  article-title: Involvement of a GHKL ATPase in RNA-directed DNA methylation in Arabidopsis thaliana
  publication-title: Curr. Biol.
– volume: 157
  start-page: 1050
  year: 2014
  end-page: 1060
  ident: bib51
  article-title: Molecular mechanism of action of plant DRM de novo DNA methyltransferases
  publication-title: Cell
– volume: 12
  start-page: e1006026
  year: 2016
  ident: bib32
  article-title: Two Components of the RNA-Directed DNA Methylation Pathway Associate with MORC6 and Silence Loci Targeted by MORC6 in Arabidopsis
  publication-title: PLoS Genet.
– volume: 4
  year: 2015
  ident: bib3
  article-title: Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis
  publication-title: Elife
– volume: 115
  start-page: E2125
  year: 2018
  end-page: E2134
  ident: bib10
  article-title: Targeted DNA demethylation of the
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 507
  start-page: 124
  year: 2014
  end-page: 128
  ident: bib20
  article-title: SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation
  publication-title: Nature
– volume: 22
  start-page: 321
  year: 2010
  end-page: 334
  ident: bib14
  article-title: The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci
  publication-title: Plant Cell
– volume: 31
  start-page: 166
  year: 2015
  ident: 10.1016/j.cell.2019.01.029_bib2
  article-title: HTSeq--a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 19
  start-page: 870
  year: 2012
  ident: 10.1016/j.cell.2019.01.029_bib50
  article-title: DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2354
– volume: 9
  start-page: R137
  year: 2008
  ident: 10.1016/j.cell.2019.01.029_bib49
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 4
  year: 2015
  ident: 10.1016/j.cell.2019.01.029_bib3
  article-title: Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis
  publication-title: Elife
  doi: 10.7554/eLife.09591
– volume: 163
  start-page: 445
  year: 2015
  ident: 10.1016/j.cell.2019.01.029_bib48
  article-title: A One Precursor One siRNA Model for Pol IV-Dependent siRNA Biogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.032
– volume: 2
  start-page: 741
  year: 1990
  ident: 10.1016/j.cell.2019.01.029_bib17
  article-title: Function of the apetala-1 gene during Arabidopsis floral development
  publication-title: Plant Cell
  doi: 10.1105/tpc.2.8.741
– volume: 2
  start-page: 16163
  year: 2016
  ident: 10.1016/j.cell.2019.01.029_bib7
  article-title: Non-canonical RNA-directed DNA methylation
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2016.163
– volume: 5
  year: 2016
  ident: 10.1016/j.cell.2019.01.029_bib4
  article-title: Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin
  publication-title: Elife
  doi: 10.7554/eLife.19092
– volume: 12
  start-page: e1006026
  year: 2016
  ident: 10.1016/j.cell.2019.01.029_bib32
  article-title: Two Components of the RNA-Directed DNA Methylation Pathway Associate with MORC6 and Silence Loci Targeted by MORC6 in Arabidopsis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006026
– volume: 20
  start-page: 553
  year: 2018
  ident: 10.1016/j.cell.2019.01.029_bib40
  article-title: TFAP2C regulates transcription in human naive pluripotency by opening enhancers
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0089-0
– volume: 45
  start-page: e41
  year: 2017
  ident: 10.1016/j.cell.2019.01.029_bib36
  article-title: Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1179
– volume: 12
  start-page: e1005998
  year: 2016
  ident: 10.1016/j.cell.2019.01.029_bib13
  article-title: Arabidopsis AtMORC4 and AtMORC7 Form Nuclear Bodies and Repress a Large Number of Protein-Coding Genes
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005998
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.cell.2019.01.029_bib35
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 44
  start-page: 3
  year: 2017
  ident: 10.1016/j.cell.2019.01.029_bib22
  article-title: Characteristics and processing of Pol IV-dependent transcripts in Arabidopsis
  publication-title: J. Genet. Genomics
  doi: 10.1016/j.jgg.2016.10.009
– volume: 46
  start-page: e114
  year: 2018
  ident: 10.1016/j.cell.2019.01.029_bib6
  article-title: DMRcaller: a versatile R/Bioconductor package for detection and visualization of differentially methylated regions in CpG and non-CpG contexts
  publication-title: Nucleic Acids Res.
– volume: 126
  start-page: 93
  year: 2006
  ident: 10.1016/j.cell.2019.01.029_bib28
  article-title: An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana
  publication-title: Cell
  doi: 10.1016/j.cell.2006.05.032
– volume: 4
  start-page: 181
  year: 2018
  ident: 10.1016/j.cell.2019.01.029_bib33
  article-title: RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis
  publication-title: Nat. Plants
  doi: 10.1038/s41477-017-0100-y
– volume: 22
  start-page: 933
  year: 2012
  ident: 10.1016/j.cell.2019.01.029_bib34
  article-title: Involvement of a GHKL ATPase in RNA-directed DNA methylation in Arabidopsis thaliana
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.03.061
– volume: 21
  start-page: 2539
  year: 2007
  ident: 10.1016/j.cell.2019.01.029_bib9
  article-title: Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components
  publication-title: Genes Dev.
  doi: 10.1101/gad.451207
– volume: 38
  start-page: 576
  year: 2010
  ident: 10.1016/j.cell.2019.01.029_bib15
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 10
  start-page: e1003948
  year: 2014
  ident: 10.1016/j.cell.2019.01.029_bib31
  article-title: The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003948
– volume: 152
  start-page: 352
  year: 2013
  ident: 10.1016/j.cell.2019.01.029_bib44
  article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.054
– volume: 25
  start-page: 1105
  year: 2009
  ident: 10.1016/j.cell.2019.01.029_bib45
  article-title: TopHat: discovering splice junctions with RNA-Seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 9
  start-page: 1156
  year: 2016
  ident: 10.1016/j.cell.2019.01.029_bib18
  article-title: SUVH2 and SUVH9 Couple Two Essential Steps for Transcriptional Gene Silencing in Arabidopsis
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2016.05.006
– volume: 22
  start-page: 321
  year: 2010
  ident: 10.1016/j.cell.2019.01.029_bib14
  article-title: The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.072199
– volume: 111
  start-page: 7474
  year: 2014
  ident: 10.1016/j.cell.2019.01.029_bib39
  article-title: Transcriptional gene silencing by Arabidopsis microrchidia homologues involves the formation of heteromers
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1406611111
– volume: 38
  start-page: 721
  year: 2006
  ident: 10.1016/j.cell.2019.01.029_bib16
  article-title: Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning
  publication-title: Nat. Genet.
  doi: 10.1038/ng1804
– volume: 14
  start-page: 801
  year: 2004
  ident: 10.1016/j.cell.2019.01.029_bib21
  article-title: Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.04.037
– volume: 115
  start-page: E2125
  year: 2018
  ident: 10.1016/j.cell.2019.01.029_bib10
  article-title: Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1716945115
– volume: 10
  start-page: 232
  year: 2009
  ident: 10.1016/j.cell.2019.01.029_bib47
  article-title: BSMAP: whole genome bisulfite sequence MAPping program
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-232
– volume: 10
  start-page: R25
  year: 2009
  ident: 10.1016/j.cell.2019.01.029_bib23
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 25
  start-page: 137
  year: 2011
  ident: 10.1016/j.cell.2019.01.029_bib41
  article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo
  publication-title: Genes Dev.
  doi: 10.1101/gad.1980311
– volume: 133
  start-page: 462
  year: 2003
  ident: 10.1016/j.cell.2019.01.029_bib8
  article-title: A gateway cloning vector set for high-throughput functional analysis of genes in planta
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.027979
– volume: 112
  start-page: 917
  year: 2015
  ident: 10.1016/j.cell.2019.01.029_bib5
  article-title: Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1413053112
– volume: 507
  start-page: 124
  year: 2014
  ident: 10.1016/j.cell.2019.01.029_bib20
  article-title: SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation
  publication-title: Nature
  doi: 10.1038/nature12931
– volume: 4
  start-page: e1000280
  year: 2008
  ident: 10.1016/j.cell.2019.01.029_bib19
  article-title: SRA-domain proteins required for DRM2-mediated de novo DNA methylation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000280
– volume: 50
  start-page: 865
  year: 2018
  ident: 10.1016/j.cell.2019.01.029_bib52
  article-title: Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0115-y
– volume: 7
  start-page: e1002195
  year: 2011
  ident: 10.1016/j.cell.2019.01.029_bib26
  article-title: SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002195
– volume: 15
  start-page: 284
  year: 2014
  ident: 10.1016/j.cell.2019.01.029_bib42
  article-title: ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-284
– volume: 25
  start-page: 2078
  year: 2009
  ident: 10.1016/j.cell.2019.01.029_bib29
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 27
  start-page: 581
  year: 2001
  ident: 10.1016/j.cell.2019.01.029_bib46
  article-title: Construct design for efficient, effective and high-throughput gene silencing in plants
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2001.01105.x
– volume: 66
  start-page: 243
  year: 2015
  ident: 10.1016/j.cell.2019.01.029_bib37
  article-title: RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043014-114633
– volume: 11
  start-page: 204
  year: 2010
  ident: 10.1016/j.cell.2019.01.029_bib24
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2719
– volume: 25
  start-page: 235
  year: 2015
  ident: 10.1016/j.cell.2019.01.029_bib30
  article-title: Detection of Pol IV/RDR2-dependent transcripts at the genomic scale in Arabidopsis reveals features and regulation of siRNA biogenesis
  publication-title: Genome Res.
  doi: 10.1101/gr.182238.114
– volume: 6
  start-page: 791
  year: 2000
  ident: 10.1016/j.cell.2019.01.029_bib43
  article-title: The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(05)00090-0
– volume: 465
  start-page: 106
  year: 2010
  ident: 10.1016/j.cell.2019.01.029_bib11
  article-title: An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation
  publication-title: Nature
  doi: 10.1038/nature09025
– volume: 11
  start-page: R106
  year: 2010
  ident: 10.1016/j.cell.2019.01.029_bib1
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
– volume: 157
  start-page: 1050
  year: 2014
  ident: 10.1016/j.cell.2019.01.029_bib51
  article-title: Molecular mechanism of action of plant DRM de novo DNA methyltransferases
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.056
– volume: 336
  start-page: 1448
  year: 2012
  ident: 10.1016/j.cell.2019.01.029_bib38
  article-title: MORC family ATPases required for heterochromatin condensation and gene silencing
  publication-title: Science
  doi: 10.1126/science.1221472
– volume: 6
  start-page: 344
  year: 2011
  ident: 10.1016/j.cell.2019.01.029_bib12
  article-title: Identification of genes required for de novo DNA methylation in Arabidopsis
  publication-title: Epigenetics
  doi: 10.4161/epi.6.3.14242
– volume: 498
  start-page: 385
  year: 2013
  ident: 10.1016/j.cell.2019.01.029_bib27
  article-title: Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1
  publication-title: Nature
  doi: 10.1038/nature12178
– volume: 20
  start-page: 951
  year: 2010
  ident: 10.1016/j.cell.2019.01.029_bib25
  article-title: A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.03.062
SSID ssj0008555
Score 2.5813394
Snippet The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1068
SubjectTerms Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
biogenesis
cytosine
Cytosine - metabolism
DNA - metabolism
DNA methylation
DNA Methylation - genetics
DNA Methylation - physiology
DNA-directed RNA polymerase
DNA-Directed RNA Polymerases - genetics
DNA-Directed RNA Polymerases - metabolism
epigenetics
gene expression
Gene Expression Regulation, Plant - genetics
genes
mutants
proteins
RNA Polymerase II - metabolism
RNA, Plant - genetics
RNA, Small Interfering - metabolism
small interfering RNA
zinc finger motif
Title Co-targeting RNA Polymerases IV and V Promotes Efficient De Novo DNA Methylation in Arabidopsis
URI https://dx.doi.org/10.1016/j.cell.2019.01.029
https://www.ncbi.nlm.nih.gov/pubmed/30739798
https://www.proquest.com/docview/2185557586
https://www.proquest.com/docview/2253254167
https://pubmed.ncbi.nlm.nih.gov/PMC6386582
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA8iHNyL6N2pq-eRA9-kuG3SfDzqqngHLiIq-xbyVaws7WJXwf_-Jk273Crug29tMyHpZDIzCb-ZQeiwsC4XnLCEC2oSynWaaG5tklkhmGNDrXWL8h2zyzv6d5JP1tCoj4UJsMpO90ed3mrr7stxx83jWVmGGF-ZCQYWUZLwGDJ-EiraIL7J6UIbizyPVQwk7Hyg7gJnIsYrXI4HeJeMqTvlR8bpvfP5FkP5n1G62EQbnTeJT-KEt9Car76hL7G-5Ot3pEZ1EqHeYKDwzfgEX9fT13AN1fgG_7nHunL4Hl-3kDz4ct7mk4Ch8JnH4_qlxmfQ58rDYkbIHC4rGEyb0tWzpmx-oLuL89vRZdJVVEgsuA3zRIM9J9bI3HlCh4RbD7bJFNzxgkoBzg7nzjDhvC-Y8FIXQ1q43EjNZcEzw8g2Wq_qyu8izAnYP5f5zGtDpRfSgmdpGaEhAT4cywYo7VmpbJduPFS9mKoeV_aoAvtVYL8apgrYP0BHiz6zmGxjJXXer5BaEhkF1mBlv9_9cirYS6FZV75-bhS4OyAtcIJiK2iynMChOmV8gHaiCCzmGvSl5FIMEF8SjgVByOW93FKVD21ObxZqr4ps75P_tI--hrc21j79idbnT8_-ALylufnVbod_TXkSOg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SlNJeSt_dPlXorZisLVuPY7pJ2G2TJZQk7E3oZeIS7CXeBPLvO7LspdvSPfRmpBGSR6OZkfhmBuBzaV0hOGUJF7lJcq7TRHNrk8wKwRwba607lO-cTc_zb4tisQOTIRYmwCp73R91eqet-5a9npt7y6oKMb4yEwwtoqThk96D--gN8FC_Ybb4ulbHoihiGQOJRx_J-8iZCPIKr-MB3yVj7k75L-v0t_f5J4jyN6t09AQe9-4k2Y8rfgo7vn4GD2KBybvnoCZNErHeaKHIj_k-OW2u7sI7VOtbMrsgunbkgpx2mDxsOewSSuBU5MCTeXPbkAMcc-JxNyNmjlQ1TqZN5ZplW7Uv4Pzo8GwyTfqSColFv2GVaDTo1BpZOE_zMeXWo3EyJXe8zKVAb4dzZ5hw3pdMeKnLcV66wkjNZckzw-hL2K2b2r8GwikaQJf5zGuTSy-kRdfSMpqHDPh4LxtBOrBS2T7feCh7caUGYNlPFdivAvvVOFXI_hF8WY9ZxmwbW6mLYYfUhswoNAdbx30atlPhYQrduvbNTavQ30FpwSsU20KTFRRv1SnjI3gVRWC91qAwJZdiBHxDONYEIZn3Zk9dXXZJvVkoviqyN__5Tx_h4fTs5Fgdz-bf38Kj0NMF3qfvYHd1fePfo-u0Mh-6o_ELEw8VWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-targeting+RNA+Polymerases+IV+and+V+Promotes+Efficient+De+Novo+DNA+Methylation+in+Arabidopsis&rft.jtitle=Cell&rft.au=Gallego-Bartolom%C3%A9%2C+Javier&rft.au=Liu%2C+Wanlu&rft.au=Kuo%2C+Peggy+Hsuanyu&rft.au=Feng%2C+Suhua&rft.date=2019-02-21&rft.eissn=1097-4172&rft.volume=176&rft.issue=5&rft.spage=1068&rft_id=info:doi/10.1016%2Fj.cell.2019.01.029&rft_id=info%3Apmid%2F30739798&rft.externalDocID=30739798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon