Critical role of glutamine metabolism in cardiomyocytes under oxidative stress

Metabolic remodeling in cardiomyocytes is deeply associated with the pathogenesis of heart failure (HF). Glutaminolysis is an anaplerotic pathway that incorporates α-ketoglutarate (αKG) derived from glutamine into the tricarboxylic acid (TCA) cycle. It is well known that cancer cells depend on gluta...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 534; pp. 687 - 693
Main Authors Watanabe, Koichi, Nagao, Manabu, Toh, Ryuji, Irino, Yasuhiro, Shinohara, Masakazu, Iino, Takuya, Yoshikawa, Sachiko, Tanaka, Hidekazu, Satomi-Kobayashi, Seimi, Ishida, Tatsuro, Hirata, Ken-ichi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2021
Subjects
Online AccessGet full text
ISSN0006-291X
1090-2104
1090-2104
DOI10.1016/j.bbrc.2020.11.018

Cover

Abstract Metabolic remodeling in cardiomyocytes is deeply associated with the pathogenesis of heart failure (HF). Glutaminolysis is an anaplerotic pathway that incorporates α-ketoglutarate (αKG) derived from glutamine into the tricarboxylic acid (TCA) cycle. It is well known that cancer cells depend on glutamine for their increased energy demand and proliferation; however, the physiological roles of glutamine metabolism in failing hearts remain unclear. To investigate the regulatory mechanisms and biological effects of glutamine metabolism in oxidative stress-induced failing myocardium. The intracellular levels of glutamine, glutamate, and αKG were significantly decreased by H2O2 stimulation in rat neonatal cardiomyocytes (RNCMs). To better understand the metabolic flux in failing myocardium, we performed a stable isotope tracing study and found that glutaminolysis was upregulated in RNCMs under oxidative stress. Consistent with this, the enzymatic activity of glutaminase (Gls), which converts glutamine to glutamate, was augmented in RNCMs treated with H2O2. These findings suggest that glutamine anaplerosis is enhanced in cardiomyocytes under oxidative stress to compensate for the reduction of αKG. Furthermore, the inhibition of Gls reduced cardiac cell viability, ATP production, and glutathione (GSH) synthesis in RNCMs with H2O2 stimulation. Finally, we evaluated the effects of αKG on failing myocardium and observed that dimethyl α-ketoglutarate (DMKG) suppressed oxidative stress-induced cell death likely due to the enhancement of intracellular ATP and GSH levels. Our study demonstrates that under oxidative stress, glutaminolysis is upregulated to compensate for the loss of αKG and its replenishment into the TCA cycle, thereby exerting cardioprotective effects by maintaining ATP and GSH levels. Modulation of glutamine metabolism in failing hearts might provide a new therapeutic strategy for HF. [Display omitted] •Glutaminolysis is upregulated in cardiomyocytes under oxidative stress.•Cardiac glutamine anaplerosis contributes to increased ATP and GSH synthesis.•αKG maintains ATP and GSH levels in cardiomyocytes under oxidative stress.•Cardiac glutaminolysis improves cell viability under oxidative stress.
AbstractList Metabolic remodeling in cardiomyocytes is deeply associated with the pathogenesis of heart failure (HF). Glutaminolysis is an anaplerotic pathway that incorporates α-ketoglutarate (αKG) derived from glutamine into the tricarboxylic acid (TCA) cycle. It is well known that cancer cells depend on glutamine for their increased energy demand and proliferation; however, the physiological roles of glutamine metabolism in failing hearts remain unclear.To investigate the regulatory mechanisms and biological effects of glutamine metabolism in oxidative stress-induced failing myocardium.The intracellular levels of glutamine, glutamate, and αKG were significantly decreased by H₂O₂ stimulation in rat neonatal cardiomyocytes (RNCMs). To better understand the metabolic flux in failing myocardium, we performed a stable isotope tracing study and found that glutaminolysis was upregulated in RNCMs under oxidative stress. Consistent with this, the enzymatic activity of glutaminase (Gls), which converts glutamine to glutamate, was augmented in RNCMs treated with H₂O₂. These findings suggest that glutamine anaplerosis is enhanced in cardiomyocytes under oxidative stress to compensate for the reduction of αKG. Furthermore, the inhibition of Gls reduced cardiac cell viability, ATP production, and glutathione (GSH) synthesis in RNCMs with H₂O₂ stimulation. Finally, we evaluated the effects of αKG on failing myocardium and observed that dimethyl α-ketoglutarate (DMKG) suppressed oxidative stress-induced cell death likely due to the enhancement of intracellular ATP and GSH levels.Our study demonstrates that under oxidative stress, glutaminolysis is upregulated to compensate for the loss of αKG and its replenishment into the TCA cycle, thereby exerting cardioprotective effects by maintaining ATP and GSH levels. Modulation of glutamine metabolism in failing hearts might provide a new therapeutic strategy for HF.
Metabolic remodeling in cardiomyocytes is deeply associated with the pathogenesis of heart failure (HF). Glutaminolysis is an anaplerotic pathway that incorporates α-ketoglutarate (αKG) derived from glutamine into the tricarboxylic acid (TCA) cycle. It is well known that cancer cells depend on glutamine for their increased energy demand and proliferation; however, the physiological roles of glutamine metabolism in failing hearts remain unclear. To investigate the regulatory mechanisms and biological effects of glutamine metabolism in oxidative stress-induced failing myocardium. The intracellular levels of glutamine, glutamate, and αKG were significantly decreased by H2O2 stimulation in rat neonatal cardiomyocytes (RNCMs). To better understand the metabolic flux in failing myocardium, we performed a stable isotope tracing study and found that glutaminolysis was upregulated in RNCMs under oxidative stress. Consistent with this, the enzymatic activity of glutaminase (Gls), which converts glutamine to glutamate, was augmented in RNCMs treated with H2O2. These findings suggest that glutamine anaplerosis is enhanced in cardiomyocytes under oxidative stress to compensate for the reduction of αKG. Furthermore, the inhibition of Gls reduced cardiac cell viability, ATP production, and glutathione (GSH) synthesis in RNCMs with H2O2 stimulation. Finally, we evaluated the effects of αKG on failing myocardium and observed that dimethyl α-ketoglutarate (DMKG) suppressed oxidative stress-induced cell death likely due to the enhancement of intracellular ATP and GSH levels. Our study demonstrates that under oxidative stress, glutaminolysis is upregulated to compensate for the loss of αKG and its replenishment into the TCA cycle, thereby exerting cardioprotective effects by maintaining ATP and GSH levels. Modulation of glutamine metabolism in failing hearts might provide a new therapeutic strategy for HF. [Display omitted] •Glutaminolysis is upregulated in cardiomyocytes under oxidative stress.•Cardiac glutamine anaplerosis contributes to increased ATP and GSH synthesis.•αKG maintains ATP and GSH levels in cardiomyocytes under oxidative stress.•Cardiac glutaminolysis improves cell viability under oxidative stress.
Metabolic remodeling in cardiomyocytes is deeply associated with the pathogenesis of heart failure (HF). Glutaminolysis is an anaplerotic pathway that incorporates α-ketoglutarate (αKG) derived from glutamine into the tricarboxylic acid (TCA) cycle. It is well known that cancer cells depend on glutamine for their increased energy demand and proliferation; however, the physiological roles of glutamine metabolism in failing hearts remain unclear. To investigate the regulatory mechanisms and biological effects of glutamine metabolism in oxidative stress-induced failing myocardium. The intracellular levels of glutamine, glutamate, and αKG were significantly decreased by H O stimulation in rat neonatal cardiomyocytes (RNCMs). To better understand the metabolic flux in failing myocardium, we performed a stable isotope tracing study and found that glutaminolysis was upregulated in RNCMs under oxidative stress. Consistent with this, the enzymatic activity of glutaminase (Gls), which converts glutamine to glutamate, was augmented in RNCMs treated with H O . These findings suggest that glutamine anaplerosis is enhanced in cardiomyocytes under oxidative stress to compensate for the reduction of αKG. Furthermore, the inhibition of Gls reduced cardiac cell viability, ATP production, and glutathione (GSH) synthesis in RNCMs with H O stimulation. Finally, we evaluated the effects of αKG on failing myocardium and observed that dimethyl α-ketoglutarate (DMKG) suppressed oxidative stress-induced cell death likely due to the enhancement of intracellular ATP and GSH levels. Our study demonstrates that under oxidative stress, glutaminolysis is upregulated to compensate for the loss of αKG and its replenishment into the TCA cycle, thereby exerting cardioprotective effects by maintaining ATP and GSH levels. Modulation of glutamine metabolism in failing hearts might provide a new therapeutic strategy for HF.
Metabolic remodeling in cardiomyocytes is deeply associated with the pathogenesis of heart failure (HF). Glutaminolysis is an anaplerotic pathway that incorporates α-ketoglutarate (αKG) derived from glutamine into the tricarboxylic acid (TCA) cycle. It is well known that cancer cells depend on glutamine for their increased energy demand and proliferation; however, the physiological roles of glutamine metabolism in failing hearts remain unclear.BACKGROUNDMetabolic remodeling in cardiomyocytes is deeply associated with the pathogenesis of heart failure (HF). Glutaminolysis is an anaplerotic pathway that incorporates α-ketoglutarate (αKG) derived from glutamine into the tricarboxylic acid (TCA) cycle. It is well known that cancer cells depend on glutamine for their increased energy demand and proliferation; however, the physiological roles of glutamine metabolism in failing hearts remain unclear.To investigate the regulatory mechanisms and biological effects of glutamine metabolism in oxidative stress-induced failing myocardium.OBJECTIVETo investigate the regulatory mechanisms and biological effects of glutamine metabolism in oxidative stress-induced failing myocardium.The intracellular levels of glutamine, glutamate, and αKG were significantly decreased by H2O2 stimulation in rat neonatal cardiomyocytes (RNCMs). To better understand the metabolic flux in failing myocardium, we performed a stable isotope tracing study and found that glutaminolysis was upregulated in RNCMs under oxidative stress. Consistent with this, the enzymatic activity of glutaminase (Gls), which converts glutamine to glutamate, was augmented in RNCMs treated with H2O2. These findings suggest that glutamine anaplerosis is enhanced in cardiomyocytes under oxidative stress to compensate for the reduction of αKG. Furthermore, the inhibition of Gls reduced cardiac cell viability, ATP production, and glutathione (GSH) synthesis in RNCMs with H2O2 stimulation. Finally, we evaluated the effects of αKG on failing myocardium and observed that dimethyl α-ketoglutarate (DMKG) suppressed oxidative stress-induced cell death likely due to the enhancement of intracellular ATP and GSH levels.METHODS AND RESULTSThe intracellular levels of glutamine, glutamate, and αKG were significantly decreased by H2O2 stimulation in rat neonatal cardiomyocytes (RNCMs). To better understand the metabolic flux in failing myocardium, we performed a stable isotope tracing study and found that glutaminolysis was upregulated in RNCMs under oxidative stress. Consistent with this, the enzymatic activity of glutaminase (Gls), which converts glutamine to glutamate, was augmented in RNCMs treated with H2O2. These findings suggest that glutamine anaplerosis is enhanced in cardiomyocytes under oxidative stress to compensate for the reduction of αKG. Furthermore, the inhibition of Gls reduced cardiac cell viability, ATP production, and glutathione (GSH) synthesis in RNCMs with H2O2 stimulation. Finally, we evaluated the effects of αKG on failing myocardium and observed that dimethyl α-ketoglutarate (DMKG) suppressed oxidative stress-induced cell death likely due to the enhancement of intracellular ATP and GSH levels.Our study demonstrates that under oxidative stress, glutaminolysis is upregulated to compensate for the loss of αKG and its replenishment into the TCA cycle, thereby exerting cardioprotective effects by maintaining ATP and GSH levels. Modulation of glutamine metabolism in failing hearts might provide a new therapeutic strategy for HF.CONCLUSIONOur study demonstrates that under oxidative stress, glutaminolysis is upregulated to compensate for the loss of αKG and its replenishment into the TCA cycle, thereby exerting cardioprotective effects by maintaining ATP and GSH levels. Modulation of glutamine metabolism in failing hearts might provide a new therapeutic strategy for HF.
Author Toh, Ryuji
Hirata, Ken-ichi
Yoshikawa, Sachiko
Satomi-Kobayashi, Seimi
Watanabe, Koichi
Nagao, Manabu
Ishida, Tatsuro
Tanaka, Hidekazu
Irino, Yasuhiro
Shinohara, Masakazu
Iino, Takuya
Author_xml – sequence: 1
  givenname: Koichi
  orcidid: 0000-0002-7253-0655
  surname: Watanabe
  fullname: Watanabe, Koichi
  organization: Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
– sequence: 2
  givenname: Manabu
  surname: Nagao
  fullname: Nagao, Manabu
  email: mnagao@med.kobe-u.ac.jp
  organization: Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
– sequence: 3
  givenname: Ryuji
  surname: Toh
  fullname: Toh, Ryuji
  email: rtoh@med.kobe-u.ac.jp
  organization: Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
– sequence: 4
  givenname: Yasuhiro
  surname: Irino
  fullname: Irino, Yasuhiro
  organization: Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
– sequence: 5
  givenname: Masakazu
  surname: Shinohara
  fullname: Shinohara, Masakazu
  organization: Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
– sequence: 6
  givenname: Takuya
  surname: Iino
  fullname: Iino, Takuya
  organization: Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
– sequence: 7
  givenname: Sachiko
  surname: Yoshikawa
  fullname: Yoshikawa, Sachiko
  organization: Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
– sequence: 8
  givenname: Hidekazu
  surname: Tanaka
  fullname: Tanaka, Hidekazu
  organization: Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
– sequence: 9
  givenname: Seimi
  surname: Satomi-Kobayashi
  fullname: Satomi-Kobayashi, Seimi
  organization: Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
– sequence: 10
  givenname: Tatsuro
  orcidid: 0000-0002-1724-0057
  surname: Ishida
  fullname: Ishida, Tatsuro
  organization: Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
– sequence: 11
  givenname: Ken-ichi
  surname: Hirata
  fullname: Hirata, Ken-ichi
  organization: Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33213841$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1rHDEQhkWwic9O_kCKsGWavYyk_RKkCYfzASZubEgnpNFs0LG7ciStyf376DgnRQqnGjE8zyDe95KdLWEhxt5w2HLg3fv91tqIWwGiLPgW-PCCbTgoqAWH5oxtAKCrheLfL9hlSnsAzptOvWQXUgouh4Zv2Ldd9NmjmaoYJqrCWP2Y1mxmv1A1UzY2TD7NlV8qNNH5MB8CHjKlal0cxSr88s5k_0hVypFSesXORzMlev00r9j9p-u73Zf65vbz193Hmxrbtsm1co54q0YEWV79SG3f96Asdp2Vsh0MkO16dMraHrD8FBCbnrCHURrVKnnF3p3uPsTwc6WU9ewT0jSZhcKatGhFI7ngbfN_tOlkiXMQQ0HfPqGrncnph-hnEw_6T1wFECcAY0gp0vgX4aCPnei9Pnaij51oznW5W6ThHwl9LqGFJUfjp-fVDyeVSpaPnqJO6GlBcj4SZu2Cf07_DVx_p2Q
CitedBy_id crossref_primary_10_2147_DDDT_S495659
crossref_primary_10_1016_j_jacbts_2021_05_008
crossref_primary_10_1007_s00210_022_02252_0
crossref_primary_10_2147_JIR_S391859
crossref_primary_10_1590_1678_9199_jvatitd_2022_0080
crossref_primary_10_3389_fcvm_2021_734364
crossref_primary_10_61399_ikcusbfd_1148543
crossref_primary_10_1038_s41598_023_36779_w
crossref_primary_10_1016_j_psj_2024_103621
crossref_primary_10_3389_fcell_2022_1011639
crossref_primary_10_1007_s12028_022_01546_8
crossref_primary_10_1016_j_ecoenv_2022_113888
crossref_primary_10_3389_fcvm_2022_854421
crossref_primary_10_1155_2022_6477778
crossref_primary_10_1007_s40618_023_02294_y
crossref_primary_10_1002_mef2_59
crossref_primary_10_3390_ijms24054724
crossref_primary_10_3390_metabo12111056
crossref_primary_10_1007_s00726_021_03002_x
crossref_primary_10_1016_j_compbiomed_2024_108499
crossref_primary_10_1152_ajpheart_00402_2022
crossref_primary_10_1186_s10020_024_00783_1
crossref_primary_10_1093_jxb_erac062
crossref_primary_10_3389_fphys_2022_831829
crossref_primary_10_3390_ani11113153
crossref_primary_10_1038_s41390_024_03291_4
crossref_primary_10_1152_ajpcell_00272_2024
crossref_primary_10_3390_medicina60050761
crossref_primary_10_1016_j_theriogenology_2022_03_013
crossref_primary_10_1093_cvr_cvae248
crossref_primary_10_1152_ajpheart_00692_2021
crossref_primary_10_1097_MD_0000000000036299
crossref_primary_10_1016_j_yjmcc_2022_08_002
Cites_doi 10.1172/JCI120849
10.1093/bioinformatics/bts127
10.1056/NEJMra021498
10.1038/nm.4464
10.1038/s41467-019-13668-3
10.1161/01.CIR.0000012466.50373.E8
10.1038/nrc.2016.71
10.1161/01.CIR.75.3.533
10.1158/1535-7163.MCT-13-0870
10.1161/CIRCULATIONAHA.115.017545
10.1093/cvr/cvy063
10.1161/CIRCULATIONAHA.115.020226
10.1002/stem.2047
10.1161/01.CIR.99.14.1892
10.1038/nature13264
10.1056/NEJMra063052
10.1152/physrev.00015.2009
10.1007/s11010-019-03656-y
10.1161/CIRCRESAHA.119.315483
10.1161/CIRCULATIONAHA.104.481259
10.1093/nar/gkv047
10.1016/j.phrs.2020.104845
10.1007/s00395-013-0358-9
10.1161/CIRCRESAHA.116.308030
10.1016/j.cmet.2020.08.004
10.1016/j.bcp.2018.08.032
10.1002/jcp.20339
10.1016/j.bbrc.2016.05.097
10.1038/s41467-020-15640-y
10.18632/aging.102045
10.1161/CIRCRESAHA.117.311300
10.1038/s41569-018-0044-6
10.1161/CIRCULATIONAHA.107.702795
10.1016/j.bbrc.2017.11.088
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbrc.2020.11.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 693
ExternalDocumentID 33213841
10_1016_j_bbrc_2020_11_018
S0006291X20320623
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TWZ
WH7
XPP
XSW
ZMT
~02
~G-
.55
.GJ
.HR
1CY
3O-
9M8
AAQXK
AATTM
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
OHT
R2-
SBG
SEW
SSH
UQL
WUQ
X7M
Y6R
ZGI
ZKB
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
EFLBG
7S9
L.6
ID FETCH-LOGICAL-c554t-9dde159fc03dde7fe577709bc66b3358a0eb67cd9bb70c3840cc47ec70f3a9593
IEDL.DBID AIKHN
ISSN 0006-291X
1090-2104
IngestDate Thu Sep 04 17:06:58 EDT 2025
Fri Sep 05 04:21:31 EDT 2025
Wed Feb 19 02:28:48 EST 2025
Tue Jul 01 01:44:15 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
Tue Oct 01 07:16:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords αKG
Oxidative stress
RNCMs
Metabolic remodeling
TCA cycle
Glutaminolysis
α-ketoglutarate
GSH
Glutaminase
HF
Glutathione
Gls
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-9dde159fc03dde7fe577709bc66b3358a0eb67cd9bb70c3840cc47ec70f3a9593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7253-0655
0000-0002-1724-0057
OpenAccessLink https://hdl.handle.net/20.500.14094/90007835
PMID 33213841
PQID 2463101828
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2524312154
proquest_miscellaneous_2463101828
pubmed_primary_33213841
crossref_primary_10_1016_j_bbrc_2020_11_018
crossref_citationtrail_10_1016_j_bbrc_2020_11_018
elsevier_sciencedirect_doi_10_1016_j_bbrc_2020_11_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chin, Fu, Pai (bib29) 2014; 510
Ichihara, Neely, Siehl (bib8) 1980; 239
Dhainaut, Huyghebaert, Monsallier (bib12) 1987; 75
Ashrafian, Frenneaux, Opie (bib13) 2007; 116
Salabei, Lorkiewicz, Holden (bib34) 2015; 33
Jessup, Brozena (bib1) 2003; 348
Tran, May, Li (bib27) 2020; 11
Bedi, Snyder, Brandimarto (bib10) 2016; 133
Takeuchi, Nakayama, Fukusaki (bib20) 2018; 495
Taegtmeyer, McNulty, Young (bib7) 2002; 105
Bertero, Maack (bib6) 2018; 15
Gross, Demo, Dennison (bib23) 2014; 13
Asadi Shahmirzadi, Edgar, Liao (bib32) 2020; 32
Lane, Fan (bib22) 2015; 43
Ritterhoff, Young, Villet (bib28) 2020; 126
Spallotta, Cencioni, Atlante (bib33) 2018; 122
Lubrano, Balzan (bib18) 2020; 464
Curi, Lagranha, Doi (bib16) 2005; 204
Peyton, Liu, Yu (bib25) 2018; 156
Schulte, Fu, Zhao (bib24) 2018; 24
Martinez-Reyes, Chandel (bib31) 2020; 11
Sun, Olson, Gao (bib9) 2016; 133
Zhou, Tian (bib4) 2018; 128
Nickel, Loffler, Maack (bib15) 2013; 108
Sawa, Uematsu, Korenaga (bib36) 2017; 6
Dick, Epelman (bib3) 2016; 119
Millard, Letisse, Sokol (bib21) 2012; 28
Umbarawan, Syamsunarno, Koitabashi (bib26) 2018; 114
Song, Meng, Wang (bib35) 2020; 157
Bartelds, Knoester, Beaufort-Krol (bib11) 1999; 99
Su, Wang, Wu (bib30) 2019; 11
Mancini, Burkhoff (bib2) 2005; 112
Altman, Stine, Dang (bib17) 2016; 16
Lopaschuk, Ussher, Folmes (bib14) 2010; 90
Neubauer (bib5) 2007; 356
Nagao, Toh, Irino (bib19) 2016; 475
Millard (10.1016/j.bbrc.2020.11.018_bib21) 2012; 28
Jessup (10.1016/j.bbrc.2020.11.018_bib1) 2003; 348
Umbarawan (10.1016/j.bbrc.2020.11.018_bib26) 2018; 114
Tran (10.1016/j.bbrc.2020.11.018_bib27) 2020; 11
Bartelds (10.1016/j.bbrc.2020.11.018_bib11) 1999; 99
Nickel (10.1016/j.bbrc.2020.11.018_bib15) 2013; 108
Gross (10.1016/j.bbrc.2020.11.018_bib23) 2014; 13
Ashrafian (10.1016/j.bbrc.2020.11.018_bib13) 2007; 116
Song (10.1016/j.bbrc.2020.11.018_bib35) 2020; 157
Mancini (10.1016/j.bbrc.2020.11.018_bib2) 2005; 112
Lubrano (10.1016/j.bbrc.2020.11.018_bib18) 2020; 464
Taegtmeyer (10.1016/j.bbrc.2020.11.018_bib7) 2002; 105
Lane (10.1016/j.bbrc.2020.11.018_bib22) 2015; 43
Peyton (10.1016/j.bbrc.2020.11.018_bib25) 2018; 156
Chin (10.1016/j.bbrc.2020.11.018_bib29) 2014; 510
Neubauer (10.1016/j.bbrc.2020.11.018_bib5) 2007; 356
Ichihara (10.1016/j.bbrc.2020.11.018_bib8) 1980; 239
Asadi Shahmirzadi (10.1016/j.bbrc.2020.11.018_bib32) 2020; 32
Lopaschuk (10.1016/j.bbrc.2020.11.018_bib14) 2010; 90
Nagao (10.1016/j.bbrc.2020.11.018_bib19) 2016; 475
Ritterhoff (10.1016/j.bbrc.2020.11.018_bib28) 2020; 126
Zhou (10.1016/j.bbrc.2020.11.018_bib4) 2018; 128
Dick (10.1016/j.bbrc.2020.11.018_bib3) 2016; 119
Schulte (10.1016/j.bbrc.2020.11.018_bib24) 2018; 24
Dhainaut (10.1016/j.bbrc.2020.11.018_bib12) 1987; 75
Curi (10.1016/j.bbrc.2020.11.018_bib16) 2005; 204
Sawa (10.1016/j.bbrc.2020.11.018_bib36) 2017; 6
Martinez-Reyes (10.1016/j.bbrc.2020.11.018_bib31) 2020; 11
Bedi (10.1016/j.bbrc.2020.11.018_bib10) 2016; 133
Sun (10.1016/j.bbrc.2020.11.018_bib9) 2016; 133
Salabei (10.1016/j.bbrc.2020.11.018_bib34) 2015; 33
Altman (10.1016/j.bbrc.2020.11.018_bib17) 2016; 16
Takeuchi (10.1016/j.bbrc.2020.11.018_bib20) 2018; 495
Bertero (10.1016/j.bbrc.2020.11.018_bib6) 2018; 15
Spallotta (10.1016/j.bbrc.2020.11.018_bib33) 2018; 122
Su (10.1016/j.bbrc.2020.11.018_bib30) 2019; 11
References_xml – volume: 32
  start-page: 447
  year: 2020
  end-page: 456
  ident: bib32
  article-title: Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice
  publication-title: Cell Metabol.
– volume: 157
  start-page: 104845
  year: 2020
  ident: bib35
  article-title: Mangiferin activates Nrf2 to attenuate cardiac fibrosis via redistributing glutaminolysis-derived glutamate
  publication-title: Pharmacol. Res.
– volume: 475
  start-page: 322
  year: 2016
  end-page: 328
  ident: bib19
  article-title: beta-Hydroxybutyrate elevation as a compensatory response against oxidative stress in cardiomyocytes
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 90
  start-page: 207
  year: 2010
  end-page: 258
  ident: bib14
  article-title: Myocardial fatty acid metabolism in health and disease
  publication-title: Physiol. Rev.
– volume: 13
  start-page: 890
  year: 2014
  end-page: 901
  ident: bib23
  article-title: Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer
  publication-title: Mol. Canc. Therapeut.
– volume: 11
  start-page: 4183
  year: 2019
  end-page: 4197
  ident: bib30
  article-title: Alpha-ketoglutarate extends Drosophila lifespan by inhibiting mTOR and activating AMPK
  publication-title: Aging (Albany NY)
– volume: 122
  start-page: 31
  year: 2018
  end-page: 46
  ident: bib33
  article-title: Stable oxidative cytosine modifications accumulate in cardiac mesenchymal cells from Type2 diabetes patients: rescue by alpha-ketoglutarate and TET-TDG functional reactivation
  publication-title: Circ. Res.
– volume: 6
  year: 2017
  ident: bib36
  article-title: Krebs cycle intermediates protective against oxidative stress by modulating the level of reactive oxygen species in neuronal HT22 cells
  publication-title: Antioxidants (Basel)
– volume: 464
  start-page: 143
  year: 2020
  end-page: 152
  ident: bib18
  article-title: Role of oxidative stress-related biomarkers in heart failure: galectin 3, alpha1-antitrypsin and LOX-1: new therapeutic perspective?
  publication-title: Mol. Cell. Biochem.
– volume: 11
  start-page: 1771
  year: 2020
  ident: bib27
  article-title: Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling
  publication-title: Nat. Commun.
– volume: 126
  start-page: 182
  year: 2020
  end-page: 196
  ident: bib28
  article-title: Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis
  publication-title: Circ. Res.
– volume: 510
  start-page: 397
  year: 2014
  end-page: 401
  ident: bib29
  article-title: The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR
  publication-title: Nature
– volume: 16
  start-page: 619
  year: 2016
  end-page: 634
  ident: bib17
  article-title: From Krebs to clinic: glutamine metabolism to cancer therapy
  publication-title: Nat. Rev. Canc.
– volume: 15
  start-page: 457
  year: 2018
  end-page: 470
  ident: bib6
  article-title: Metabolic remodelling in heart failure
  publication-title: Nat. Rev. Cardiol.
– volume: 11
  start-page: 102
  year: 2020
  ident: bib31
  article-title: Mitochondrial TCA cycle metabolites control physiology and disease
  publication-title: Nat. Commun.
– volume: 356
  start-page: 1140
  year: 2007
  end-page: 1151
  ident: bib5
  article-title: The failing heart--an engine out of fuel
  publication-title: N. Engl. J. Med.
– volume: 99
  start-page: 1892
  year: 1999
  end-page: 1897
  ident: bib11
  article-title: Myocardial lactate metabolism in fetal and newborn lambs
  publication-title: Circulation
– volume: 112
  start-page: 438
  year: 2005
  end-page: 448
  ident: bib2
  article-title: Mechanical device-based methods of managing and treating heart failure
  publication-title: Circulation
– volume: 119
  start-page: 159
  year: 2016
  end-page: 176
  ident: bib3
  article-title: Chronic heart failure and inflammation: what do we really know?
  publication-title: Circ. Res.
– volume: 348
  start-page: 2007
  year: 2003
  end-page: 2018
  ident: bib1
  article-title: Heart failure
  publication-title: N. Engl. J. Med.
– volume: 75
  start-page: 533
  year: 1987
  end-page: 541
  ident: bib12
  article-title: Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock
  publication-title: Circulation
– volume: 495
  start-page: 761
  year: 2018
  end-page: 767
  ident: bib20
  article-title: Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 239
  start-page: E430
  year: 1980
  end-page: E436
  ident: bib8
  article-title: Utilization of leucine by working rat heart
  publication-title: Am. J. Physiol.
– volume: 156
  start-page: 204
  year: 2018
  end-page: 214
  ident: bib25
  article-title: Glutaminase-1 stimulates the proliferation, migration, and survival of human endothelial cells
  publication-title: Biochem. Pharmacol.
– volume: 133
  start-page: 2038
  year: 2016
  end-page: 2049
  ident: bib9
  article-title: Catabolic defect of branched-chain amino acids promotes heart failure
  publication-title: Circulation
– volume: 28
  start-page: 1294
  year: 2012
  end-page: 1296
  ident: bib21
  article-title: IsoCor: correcting MS data in isotope labeling experiments
  publication-title: Bioinformatics
– volume: 43
  start-page: 2466
  year: 2015
  end-page: 2485
  ident: bib22
  article-title: Regulation of mammalian nucleotide metabolism and biosynthesis
  publication-title: Nucleic Acids Res.
– volume: 114
  start-page: 1132
  year: 2018
  end-page: 1144
  ident: bib26
  article-title: Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice
  publication-title: Cardiovasc. Res.
– volume: 116
  start-page: 434
  year: 2007
  end-page: 448
  ident: bib13
  article-title: Metabolic mechanisms in heart failure
  publication-title: Circulation
– volume: 105
  start-page: 1727
  year: 2002
  end-page: 1733
  ident: bib7
  article-title: Adaptation and maladaptation of the heart in diabetes: Part I: general concepts
  publication-title: Circulation
– volume: 24
  start-page: 194
  year: 2018
  end-page: 202
  ident: bib24
  article-title: Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models
  publication-title: Nat. Med.
– volume: 33
  start-page: 2613
  year: 2015
  end-page: 2627
  ident: bib34
  article-title: Glutamine regulates cardiac progenitor cell metabolism and proliferation
  publication-title: Stem Cell.
– volume: 128
  start-page: 3716
  year: 2018
  end-page: 3726
  ident: bib4
  article-title: Mitochondrial dysfunction in pathophysiology of heart failure
  publication-title: J. Clin. Invest.
– volume: 133
  start-page: 706
  year: 2016
  end-page: 716
  ident: bib10
  article-title: Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure
  publication-title: Circulation
– volume: 108
  start-page: 358
  year: 2013
  ident: bib15
  article-title: Myocardial energetics in heart failure
  publication-title: Basic Res. Cardiol.
– volume: 204
  start-page: 392
  year: 2005
  end-page: 401
  ident: bib16
  article-title: Molecular mechanisms of glutamine action
  publication-title: J. Cell. Physiol.
– volume: 128
  start-page: 3716
  year: 2018
  ident: 10.1016/j.bbrc.2020.11.018_bib4
  article-title: Mitochondrial dysfunction in pathophysiology of heart failure
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI120849
– volume: 28
  start-page: 1294
  year: 2012
  ident: 10.1016/j.bbrc.2020.11.018_bib21
  article-title: IsoCor: correcting MS data in isotope labeling experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts127
– volume: 348
  start-page: 2007
  year: 2003
  ident: 10.1016/j.bbrc.2020.11.018_bib1
  article-title: Heart failure
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra021498
– volume: 24
  start-page: 194
  year: 2018
  ident: 10.1016/j.bbrc.2020.11.018_bib24
  article-title: Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models
  publication-title: Nat. Med.
  doi: 10.1038/nm.4464
– volume: 11
  start-page: 102
  year: 2020
  ident: 10.1016/j.bbrc.2020.11.018_bib31
  article-title: Mitochondrial TCA cycle metabolites control physiology and disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13668-3
– volume: 105
  start-page: 1727
  year: 2002
  ident: 10.1016/j.bbrc.2020.11.018_bib7
  article-title: Adaptation and maladaptation of the heart in diabetes: Part I: general concepts
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000012466.50373.E8
– volume: 16
  start-page: 619
  year: 2016
  ident: 10.1016/j.bbrc.2020.11.018_bib17
  article-title: From Krebs to clinic: glutamine metabolism to cancer therapy
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc.2016.71
– volume: 75
  start-page: 533
  year: 1987
  ident: 10.1016/j.bbrc.2020.11.018_bib12
  article-title: Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock
  publication-title: Circulation
  doi: 10.1161/01.CIR.75.3.533
– volume: 13
  start-page: 890
  year: 2014
  ident: 10.1016/j.bbrc.2020.11.018_bib23
  article-title: Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer
  publication-title: Mol. Canc. Therapeut.
  doi: 10.1158/1535-7163.MCT-13-0870
– volume: 133
  start-page: 706
  year: 2016
  ident: 10.1016/j.bbrc.2020.11.018_bib10
  article-title: Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.017545
– volume: 114
  start-page: 1132
  year: 2018
  ident: 10.1016/j.bbrc.2020.11.018_bib26
  article-title: Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvy063
– volume: 133
  start-page: 2038
  year: 2016
  ident: 10.1016/j.bbrc.2020.11.018_bib9
  article-title: Catabolic defect of branched-chain amino acids promotes heart failure
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.020226
– volume: 33
  start-page: 2613
  year: 2015
  ident: 10.1016/j.bbrc.2020.11.018_bib34
  article-title: Glutamine regulates cardiac progenitor cell metabolism and proliferation
  publication-title: Stem Cell.
  doi: 10.1002/stem.2047
– volume: 99
  start-page: 1892
  year: 1999
  ident: 10.1016/j.bbrc.2020.11.018_bib11
  article-title: Myocardial lactate metabolism in fetal and newborn lambs
  publication-title: Circulation
  doi: 10.1161/01.CIR.99.14.1892
– volume: 510
  start-page: 397
  year: 2014
  ident: 10.1016/j.bbrc.2020.11.018_bib29
  article-title: The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR
  publication-title: Nature
  doi: 10.1038/nature13264
– volume: 356
  start-page: 1140
  year: 2007
  ident: 10.1016/j.bbrc.2020.11.018_bib5
  article-title: The failing heart--an engine out of fuel
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra063052
– volume: 6
  year: 2017
  ident: 10.1016/j.bbrc.2020.11.018_bib36
  article-title: Krebs cycle intermediates protective against oxidative stress by modulating the level of reactive oxygen species in neuronal HT22 cells
  publication-title: Antioxidants (Basel)
– volume: 90
  start-page: 207
  year: 2010
  ident: 10.1016/j.bbrc.2020.11.018_bib14
  article-title: Myocardial fatty acid metabolism in health and disease
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00015.2009
– volume: 464
  start-page: 143
  year: 2020
  ident: 10.1016/j.bbrc.2020.11.018_bib18
  article-title: Role of oxidative stress-related biomarkers in heart failure: galectin 3, alpha1-antitrypsin and LOX-1: new therapeutic perspective?
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-019-03656-y
– volume: 126
  start-page: 182
  year: 2020
  ident: 10.1016/j.bbrc.2020.11.018_bib28
  article-title: Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.119.315483
– volume: 112
  start-page: 438
  year: 2005
  ident: 10.1016/j.bbrc.2020.11.018_bib2
  article-title: Mechanical device-based methods of managing and treating heart failure
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.104.481259
– volume: 43
  start-page: 2466
  year: 2015
  ident: 10.1016/j.bbrc.2020.11.018_bib22
  article-title: Regulation of mammalian nucleotide metabolism and biosynthesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv047
– volume: 157
  start-page: 104845
  year: 2020
  ident: 10.1016/j.bbrc.2020.11.018_bib35
  article-title: Mangiferin activates Nrf2 to attenuate cardiac fibrosis via redistributing glutaminolysis-derived glutamate
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2020.104845
– volume: 108
  start-page: 358
  year: 2013
  ident: 10.1016/j.bbrc.2020.11.018_bib15
  article-title: Myocardial energetics in heart failure
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/s00395-013-0358-9
– volume: 119
  start-page: 159
  year: 2016
  ident: 10.1016/j.bbrc.2020.11.018_bib3
  article-title: Chronic heart failure and inflammation: what do we really know?
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.308030
– volume: 32
  start-page: 447
  year: 2020
  ident: 10.1016/j.bbrc.2020.11.018_bib32
  article-title: Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2020.08.004
– volume: 156
  start-page: 204
  year: 2018
  ident: 10.1016/j.bbrc.2020.11.018_bib25
  article-title: Glutaminase-1 stimulates the proliferation, migration, and survival of human endothelial cells
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2018.08.032
– volume: 204
  start-page: 392
  year: 2005
  ident: 10.1016/j.bbrc.2020.11.018_bib16
  article-title: Molecular mechanisms of glutamine action
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.20339
– volume: 239
  start-page: E430
  year: 1980
  ident: 10.1016/j.bbrc.2020.11.018_bib8
  article-title: Utilization of leucine by working rat heart
  publication-title: Am. J. Physiol.
– volume: 475
  start-page: 322
  year: 2016
  ident: 10.1016/j.bbrc.2020.11.018_bib19
  article-title: beta-Hydroxybutyrate elevation as a compensatory response against oxidative stress in cardiomyocytes
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.05.097
– volume: 11
  start-page: 1771
  year: 2020
  ident: 10.1016/j.bbrc.2020.11.018_bib27
  article-title: Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15640-y
– volume: 11
  start-page: 4183
  year: 2019
  ident: 10.1016/j.bbrc.2020.11.018_bib30
  article-title: Alpha-ketoglutarate extends Drosophila lifespan by inhibiting mTOR and activating AMPK
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.102045
– volume: 122
  start-page: 31
  year: 2018
  ident: 10.1016/j.bbrc.2020.11.018_bib33
  article-title: Stable oxidative cytosine modifications accumulate in cardiac mesenchymal cells from Type2 diabetes patients: rescue by alpha-ketoglutarate and TET-TDG functional reactivation
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.311300
– volume: 15
  start-page: 457
  year: 2018
  ident: 10.1016/j.bbrc.2020.11.018_bib6
  article-title: Metabolic remodelling in heart failure
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-018-0044-6
– volume: 116
  start-page: 434
  year: 2007
  ident: 10.1016/j.bbrc.2020.11.018_bib13
  article-title: Metabolic mechanisms in heart failure
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.702795
– volume: 495
  start-page: 761
  year: 2018
  ident: 10.1016/j.bbrc.2020.11.018_bib20
  article-title: Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.11.088
SSID ssj0011469
Score 2.5063803
Snippet Metabolic remodeling in cardiomyocytes is deeply associated with the pathogenesis of heart failure (HF). Glutaminolysis is an anaplerotic pathway that...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 687
SubjectTerms Animals
Animals, Newborn
cardiomyocytes
cell death
Cell Survival
cell viability
Cells, Cultured
Citric Acid Cycle
energy
Energy Metabolism
enzyme activity
glutamic acid
Glutamic Acid - metabolism
Glutaminase
Glutaminase - metabolism
glutamine
Glutamine - metabolism
Glutaminolysis
Glutathione
heart failure
Heart Failure - metabolism
Ketoglutaric Acids - metabolism
Metabolic Networks and Pathways
Metabolic remodeling
metabolism
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
Oxidative Stress
pathogenesis
Rats
stable isotopes
therapeutics
tricarboxylic acid cycle
α-ketoglutarate
Title Critical role of glutamine metabolism in cardiomyocytes under oxidative stress
URI https://dx.doi.org/10.1016/j.bbrc.2020.11.018
https://www.ncbi.nlm.nih.gov/pubmed/33213841
https://www.proquest.com/docview/2463101828
https://www.proquest.com/docview/2524312154
Volume 534
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swED7alLG-jK3d1mxd0WDsZbiVJVuyHtOwkm0sTyvkTViKPDxqu6QpNC_97TvJcmCw5WFvwkgg7s53n6S77wA-ZErSJSLfpMozlmTOWPznnExylTmJ8NsVgcT1-1zMrrOvi3yxB9OhFsanVUbf3_v04K3jl4sozYvbuvY1vlQwlS5CD3CM4vtwwLgS-QgOJl--zebbxwR0BhEFi8QviLUzfZqXMSvPZMi88zinvvfH3-PTv_BniENXz-FZBJBk0u_xBey59giOJy0enpsN-UhCSme4Kz-CJ5fD6Ol0aOx2DPOhvQHxqYWkq8hPNL-yQbxJGrdGq7ip7xpSt8SGZNVm09kNIlLi681WpHuol4EtnPR1Ji_h-urzj-ksiW0VEovYYZ0o9GgIYipLOY5k5XIpJVXGCmE4z4uSOiOkXSpjJLUcT4DWZtJZSSteeh7jVzBqu9adAKlc4Z9uEbUUnniNGoQTVklVSlMKW9AxpIMwtY2c4771xY0ekst-aa8A7RWAhxGNChjDp-2a255xY-fsfNCR_sNuNIaEneveDwrVKH7_SlK2rru_0ywT3NOYsV1zcobAC9FSNobXvTVs98o5S1Ec6Zv_3NlbOGQ-byZc85zCaL26d-8Q-KzNGeyfP6Zn0bx_A4VwABg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BFaKXquXVLaV1pYoLCnhjJ06OsCra8tgTSHuzYq-DgkiClkViL_x2ZpxkpUplD9ysyJasmcnMZ_ubGYDfMlV8gsg3yCMZBtIZi_-cU0GUSqcQfrvEF3G9GsXDG3k-jsYrMOhyYYhW2fr-xqd7b91-OW6lefxQFJTjy-Mw7Y99D3CM4qvwQUZCEa_v6GXB86Cs2xYDxwFNbzNnGpKXMVOqYxiS6zji1Pnj_9HpLfTpo9DZZ_jUwkd20uzwC6y4ahO2Tio8OpdzdsA8odPflG_C-mk32hh0bd22YNQ1N2BELGR1zm7R-LIS0SYr3Qxt4r54LFlRMeupquW8tnPEo4yyzaasfi4mvlY4a7JMtuHm7M_1YBi0TRUCi8hhFqTozxDC5JYLHKncRUopnhobx0aIKMm4M7Gyk9QYxa3A85-1UjmreC4yqmK8A2tVXbmvwHKX0MMtYpaEyq5xg2DCpirNlMlim_Ae9DthattWHKfGF_e6o5bdaVKAJgXgUUSjAnpwuFjz0NTbWDo76nSk_7EajQFh6bpfnUI1ip_eSLLK1U-POpSxoCJm4bI5UYiwC7GS7MFuYw2LvQoR9lEc_W_v3NlP2BheX13qy7-jiz34GBKDxl_4fIe12fTJ7SMEmpkf3sRfAa8QAOM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+role+of+glutamine+metabolism+in+cardiomyocytes+under+oxidative+stress&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Watanabe%2C+Koichi&rft.au=Nagao%2C+Manabu&rft.au=Toh%2C+Ryuji&rft.au=Irino%2C+Yasuhiro&rft.date=2021-01-01&rft.pub=Elsevier+Inc&rft.issn=0006-291X&rft.volume=534&rft.spage=687&rft.epage=693&rft_id=info:doi/10.1016%2Fj.bbrc.2020.11.018&rft.externalDocID=S0006291X20320623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon