Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation?

Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (C...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 171; pp. 671 - 680
Main Authors Menas, Autumn L., Yanamala, Naveena, Farcas, Mariana T., Russo, Maria, Friend, Sherri, Fournier, Philip M., Star, Alexander, Iavicoli, Ivo, Shurin, Galina V., Vogel, Ulla B., Fadeel, Bengt, Beezhold, Donald, Kisin, Elena R., Shvedova, Anna A.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity. [Display omitted] •Biological Responses of NC are orchestrated by their dimensions and morphology.•NCF cytotoxicity may be caused by oxidative stress and not cellular uptake.•Viability and oxidative damage models may not be effective in predicting toxicity.•NC with different morphologies revealed drastic changes in the cytokine profiles.•Exposure to various NC revealed distinct cytotoxic responses and cytokine signatures.
AbstractList Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity.
Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity. [Display omitted] •Biological Responses of NC are orchestrated by their dimensions and morphology.•NCF cytotoxicity may be caused by oxidative stress and not cellular uptake.•Viability and oxidative damage models may not be effective in predicting toxicity.•NC with different morphologies revealed drastic changes in the cytokine profiles.•Exposure to various NC revealed distinct cytotoxic responses and cytokine signatures.
Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity.
Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity.
Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity.Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity.
Author Iavicoli, Ivo
Star, Alexander
Shurin, Galina V.
Shvedova, Anna A.
Kisin, Elena R.
Farcas, Mariana T.
Yanamala, Naveena
Friend, Sherri
Fadeel, Bengt
Menas, Autumn L.
Vogel, Ulla B.
Russo, Maria
Fournier, Philip M.
Beezhold, Donald
AuthorAffiliation 2 Pathology & Physiology Research Branch/NIOSH/CDC, Morgantown, WV
3 Institute of Public Health, Section of Occupational Medicine, Catholic University of the Sacred Heart, Rome, Italy
6 Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
4 Department of Chemistry, University of Pittsburgh, Pittsburgh, PA
1 Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV
5 Department of Public Health, Division of Occupational Medicine, University of Naples Federico II, Naples, Italy
9 Health Effects Laboratory Division/NIOSH/CDC, Morgantown, WV
7 National Research Centre for the Working Environment, Copenhagen, Denmark
8 Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
10 Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV
AuthorAffiliation_xml – name: 10 Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV
– name: 1 Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV
– name: 2 Pathology & Physiology Research Branch/NIOSH/CDC, Morgantown, WV
– name: 6 Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
– name: 8 Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
– name: 3 Institute of Public Health, Section of Occupational Medicine, Catholic University of the Sacred Heart, Rome, Italy
– name: 4 Department of Chemistry, University of Pittsburgh, Pittsburgh, PA
– name: 5 Department of Public Health, Division of Occupational Medicine, University of Naples Federico II, Naples, Italy
– name: 9 Health Effects Laboratory Division/NIOSH/CDC, Morgantown, WV
– name: 7 National Research Centre for the Working Environment, Copenhagen, Denmark
Author_xml – sequence: 1
  givenname: Autumn L.
  surname: Menas
  fullname: Menas, Autumn L.
  organization: Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV, USA
– sequence: 2
  givenname: Naveena
  surname: Yanamala
  fullname: Yanamala, Naveena
  organization: Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV, USA
– sequence: 3
  givenname: Mariana T.
  surname: Farcas
  fullname: Farcas, Mariana T.
  organization: Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV, USA
– sequence: 4
  givenname: Maria
  surname: Russo
  fullname: Russo, Maria
  organization: Institute of Public Health, Section of Occupational Medicine, Catholic University of the Sacred Heart, Rome, Italy
– sequence: 5
  givenname: Sherri
  surname: Friend
  fullname: Friend, Sherri
  organization: Pathology & Physiology Research Branch/NIOSH/CDC, Morgantown, WV, USA
– sequence: 6
  givenname: Philip M.
  surname: Fournier
  fullname: Fournier, Philip M.
  organization: Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 7
  givenname: Alexander
  surname: Star
  fullname: Star, Alexander
  organization: Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 8
  givenname: Ivo
  surname: Iavicoli
  fullname: Iavicoli, Ivo
  organization: Department of Public Health, Division of Occupational Medicine, University of Naples Federico II, Naples, Italy
– sequence: 9
  givenname: Galina V.
  surname: Shurin
  fullname: Shurin, Galina V.
  organization: Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
– sequence: 10
  givenname: Ulla B.
  surname: Vogel
  fullname: Vogel, Ulla B.
  organization: National Research Centre for the Working Environment, Copenhagen, Denmark
– sequence: 11
  givenname: Bengt
  surname: Fadeel
  fullname: Fadeel, Bengt
  organization: Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
– sequence: 12
  givenname: Donald
  surname: Beezhold
  fullname: Beezhold, Donald
  organization: Health Effects Laboratory Division/NIOSH/CDC, Morgantown, WV, USA
– sequence: 13
  givenname: Elena R.
  surname: Kisin
  fullname: Kisin, Elena R.
  organization: Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV, USA
– sequence: 14
  givenname: Anna A.
  surname: Shvedova
  fullname: Shvedova, Anna A.
  email: ats1@cdc.gov
  organization: Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28061425$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:135199837$$DView record from Swedish Publication Index
BookMark eNqNkk9v1DAQxS1URLeFr4DMjUsW_4nTmANVtaIFqRIXOFuOM2G9OHawvQv77XG6S9VyoSdbfr95mvGbM3TigweE3lCypIQ27zZLs4YxpGkNEZasPC0pK5J4hha0vZAVZbI9QQtCalE1gotTdJbShpBCCvkCnbKWNLRmYoHste2idU5HvEvYxH3K2jnrAXvtgwHnti4kwNPWjcHruMcw2bwGZ7XDs4wjpCn4BOk9Xu1zyOG3NTbvcYjY-sHpcdTZBn_5Ej0ftEvw6nieo2_XH7-uPlW3X24-r65uKyNEnSspupZxIaHtOtOA5gMxphGDAc4MNLxjXQ9M9JIMjM0zNLTnlMLFIOQgiOHnqDr4pl8wbTs1RTuWvlXQVh2ffpQbqFpKWZPCfzjwRRmhN-Bz1O5R2WPF27X6HnZK1ELyhheDt0eDGH5uIWU12jR_jfYQtkmx8u81a3gr_4vSVpSACOF1QV8_bOu-n7_RFUAeABNDShGGe4QSNa-J2qgHa6LmNVGUFWmuvfyntkR2F1OZ0LonOawODlCi3FmIKhkL3kBvI5is-mCf4PIHaonl_Q
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2021_09_055
crossref_primary_10_1080_1547691X_2017_1414339
crossref_primary_10_1016_j_ijbiomac_2024_130900
crossref_primary_10_1016_j_ijbiomac_2023_126007
crossref_primary_10_1002_smll_202102545
crossref_primary_10_1021_acs_chemrev_7b00627
crossref_primary_10_1080_08958378_2020_1770901
crossref_primary_10_1007_s10570_022_04977_w
crossref_primary_10_1186_s13287_019_1394_7
crossref_primary_10_1016_j_foodchem_2022_133653
crossref_primary_10_1016_j_cocis_2021_101512
crossref_primary_10_1016_j_envint_2017_03_001
crossref_primary_10_3389_fimmu_2023_1111123
crossref_primary_10_1007_s10570_020_03176_9
crossref_primary_10_1039_D3EN00135K
crossref_primary_10_1080_17435390_2018_1472312
crossref_primary_10_3390_bioengineering10080986
crossref_primary_10_3390_pharmaceutics13081125
crossref_primary_10_1080_02786826_2019_1652725
crossref_primary_10_2174_2212798410666190715153715
crossref_primary_10_1016_j_ijbiomac_2020_10_033
crossref_primary_10_1007_s10570_023_05532_x
crossref_primary_10_2174_0115701794273511231212072414
crossref_primary_10_1007_s10570_023_05537_6
crossref_primary_10_1016_j_ijbiomac_2024_134015
crossref_primary_10_1016_j_carbpol_2024_122479
crossref_primary_10_1021_acsnano_8b03074
crossref_primary_10_1002_smll_201901642
crossref_primary_10_1016_j_scitotenv_2023_165952
crossref_primary_10_1016_j_carbpol_2018_07_088
crossref_primary_10_1016_j_chemosphere_2020_126170
crossref_primary_10_1021_acs_biomac_3c00710
crossref_primary_10_1021_acssuschemeng_9b05317
crossref_primary_10_1039_D2GC01669A
crossref_primary_10_1016_j_impact_2020_100269
crossref_primary_10_1016_j_jclepro_2019_119669
crossref_primary_10_3390_nano11020389
crossref_primary_10_1016_j_carbpol_2018_08_056
crossref_primary_10_3390_nano14131082
crossref_primary_10_1016_j_scitotenv_2018_08_402
crossref_primary_10_3390_nano12091432
crossref_primary_10_1016_j_tiv_2018_12_009
crossref_primary_10_1007_s10570_024_06238_4
crossref_primary_10_2903_sp_efsa_2023_EN_8258
crossref_primary_10_1186_s12989_022_00460_3
crossref_primary_10_3390_nano9020164
crossref_primary_10_1021_acs_chemrestox_0c00051
crossref_primary_10_1080_08958378_2021_1884320
crossref_primary_10_1016_j_carbpol_2021_117984
crossref_primary_10_1002_jat_4390
crossref_primary_10_1016_j_carbpol_2023_120603
crossref_primary_10_3390_ma16124447
crossref_primary_10_1002_adma_202000717
crossref_primary_10_1039_D1EN00233C
crossref_primary_10_1016_j_impact_2020_100216
crossref_primary_10_1016_j_tifs_2019_09_013
crossref_primary_10_1080_17435390_2020_1814440
crossref_primary_10_3390_nano9030337
crossref_primary_10_1016_j_fbio_2021_101285
crossref_primary_10_1002_jat_3564
crossref_primary_10_1515_ntrev_2021_0053
crossref_primary_10_3390_jox12020009
crossref_primary_10_1021_acsabm_2c00638
crossref_primary_10_47470_0016_9900_2023_102_2_181_190
crossref_primary_10_1016_j_biomaterials_2019_02_025
crossref_primary_10_1007_s43994_023_00045_6
crossref_primary_10_1016_j_susmat_2024_e01010
crossref_primary_10_1039_C9EN00184K
crossref_primary_10_3389_fimmu_2018_01157
crossref_primary_10_1021_acs_biomac_3c00975
crossref_primary_10_3390_nano14090768
crossref_primary_10_1016_j_carbpol_2020_116704
crossref_primary_10_1146_annurev_food_061920_123242
crossref_primary_10_1515_znc_2021_0080
crossref_primary_10_3390_molecules28041774
crossref_primary_10_1016_j_cis_2023_102970
crossref_primary_10_1016_j_ijbiomac_2024_131809
crossref_primary_10_3389_fbioe_2023_1160460
crossref_primary_10_1016_j_carbpol_2020_117315
Cites_doi 10.1186/1556-276X-7-192
10.1088/0957-4484/24/7/075103
10.1089/ind.2014.0024
10.1186/s12989-016-0140-x
10.3183/npprj-2014-29-01-p004-005
10.4049/jimmunol.1200689
10.1186/1743-8977-10-53
10.4049/jimmunol.1100972
10.1189/jlb.1110624
10.1007/s00204-012-0858-7
10.1016/j.addr.2011.09.001
10.1021/bm200865j
10.1016/j.taap.2011.02.001
10.1111/j.1365-3083.2010.02404.x
10.1152/ajplung.00167.2013
10.1126/science.335.6072.1122
10.1021/acs.biomac.5b00055
10.1021/acs.chemrestox.5b00271
10.1016/j.jaci.2005.07.011
10.1371/journal.pone.0127174
10.2174/1568026615666150506150109
10.1021/sc500153k
10.1002/(SICI)1099-1263(200001/02)20:1<49::AID-JAT627>3.0.CO;2-L
10.1093/toxsci/kfm018
10.1038/nature05746
10.1007/s10570-013-0019-z
10.1002/cjce.20554
10.1016/j.addr.2009.03.010
10.1039/c0cs00108b
10.1002/em.21913
ContentType Journal Article
Copyright 2016
Published by Elsevier Ltd.
Copyright_xml – notice: 2016
– notice: Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1016/j.chemosphere.2016.12.105
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 680
ExternalDocumentID oai_swepub_ki_se_499940
PMC5459363
28061425
10_1016_j_chemosphere_2016_12_105
S0045653516318379
Genre Journal Article
GrantInformation_xml – fundername: NIOSH CDC HHS
  grantid: R01 OH008282
– fundername: Intramural CDC HHS
  grantid: CC999999
– fundername: NIEHS NIH HHS
  grantid: R01 ES019304
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EFKBS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
5PM
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c554t-95b82359e8bbc6ea3f0cc65fce32ce63b2bde25d90f22142561d311e7f59f50c3
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Mon Aug 25 03:40:24 EDT 2025
Thu Aug 21 18:16:58 EDT 2025
Fri Jul 11 12:21:56 EDT 2025
Sun Aug 24 03:54:41 EDT 2025
Mon Jul 21 06:02:30 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Tue Aug 05 12:00:36 EDT 2025
Fri Feb 23 02:24:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Oxidative stress
Nanocellulose
Lung epithelial cells
Cytoxicity
Cytokine production
Language English
License Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-95b82359e8bbc6ea3f0cc65fce32ce63b2bde25d90f22142561d311e7f59f50c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors have contributed equally
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id:135199837
PMID 28061425
PQID 1856590034
PQPubID 23479
PageCount 10
ParticipantIDs swepub_primary_oai_swepub_ki_se_499940
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5459363
proquest_miscellaneous_2000426389
proquest_miscellaneous_1856590034
pubmed_primary_28061425
crossref_primary_10_1016_j_chemosphere_2016_12_105
crossref_citationtrail_10_1016_j_chemosphere_2016_12_105
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2016_12_105
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pereira, Raposo, Brayner, Teixeira, Oliveira, Quintao, Camargo, Mattoso, Brandao (bib31) 2013; 24
Österberg, Cranston (bib27) 2014; 29
Clift, Foster, Vanhecke, Studer, Wick, Gehr, Rothen-Rutishauser, Weder (bib5) 2011; 12
Ni, Zeng, Wu, Cheng, Luo, Wang, Zeng, Chen (bib25) 2012; 22
Endes, Mueller, Kinnear, Vanhecke, Foster, Petri-Fink, Weder, Clift, Rothen-Rutishauser (bib10) 2015; 16
Erdely, Dahm, Chen, Zeidler-Erdely, Fernback, Birch, Evans, Kashon, Deddens, Hulderman, Bilgesu, Battelli, Schwegler-Berry, Leonard, McKinney, Frazer, Antonini, Porter, Castranova, Schubauer-Berigan (bib11) 2013; 10
NIOSH (bib26) 2010
Elsaesser, Howard (bib8) 2012; 64
Iavicoli, Leso, Ricciardi, Hodson, Hoover (bib16) 2014; 1378
Shvedova, Yanamala, Kisin, Tkach, Murray, Hubbs, Chirila, Keohavong, Sycheva, Kagan, Castranova (bib38) 2014; 306
Cullen, Searl, Miller, Davis, Jones (bib6) 2000; 20
Murray, Kisin, Tkach, Yanamala, Mercer, Young, Fadeel, Kagan, Shvedova (bib24) 2012; 910
Chinga-Carrasco, Syverud (bib4) 2012; 7
Landsiedel, Fabian, Ma-Hock, van Ravenzwaay, Wohlleben, Wiench, Oesch (bib22) 2012; 86
Braakhuis, Oomen, Cassee (bib2) 2016
Ivask, Titma, Visnapuu, Vija, Kakinen, Sihtmae, Pokhrel, Madler, Heinlaan, Kisand, Shimmo, Kahru (bib17) 2015; 15
Aillon, Xie, El-Gendy, Berkland, Forrest (bib1) 2009; 61
Kogiso, Nishiyama, Shinohara, Nakamura, Mizoguchi, Misawa, Guinet, Nouri-Shirazi, Dorey, Henriksen, Shibata (bib21) 2011; 90
RCoreTeam (bib33) 2014
Yanamala, Farcas, Hatfield, Kisin, Kagan, Geraci, Shvedova (bib41) 2014; 2
de Lima, Oliveira Feitosa, Rodrigues Maruyama, Abreu Barga, Yamawaki, Vieira, Teixeira, Correa, Caparelli Mattoso, Fernandes Fraceto (bib7) 2012
Moon, Martini, Nairn, Simonsen, Youngblood (bib23) 2011; 40
Pascual, Peters (bib28) 2005; 116
Endes, Schmid, Kinnear, Mueller, Camarero-Espinosa, Vanhecke, Foster, Petri-Fink, Rothen-Rutishauser, Weder, Clift (bib9) 2014; 1140
Hong, Lee, Kim, Sohn, Kim (bib15) 2010; 72
Kisin, Murray, Sargent, Lowry, Chirila, Siegrist, Schwegler-Berry, Leonard, Castranova, Fadeel, Kagan, Shvedova (bib19) 2011; 252
Knudsen, Kofoed, Espersen, Hojgaard, Winther, Willemoes, Wedin, Nuopponen, Vilske, Aimonen, Weydahl, Alenius, Norppa, Wolff, Wallin, Vogel (bib20) 2015; 28
Gandhi, Vliagoftis (bib13) 2015; 6147
Shvedova, Kisin, Yanamala, Farcas, Menas, Williams, Fournier, Reynolds, Gutkin, Star, Reiner, Halappanavar, Kagan (bib39) 2016; 13
Hanif, Ahmed, Shin, Kim, Um (bib14) 2014
Farcal, Torres Andon, Di Cristo, Rotoli, Bussolati, Bergamaschi, Mech, Hartmann, Rasmussen, Riego-Sintes, Ponti, Kinsner-Ovaskainen, Rossi, Oomen, Bos, Chen, Bai, Chen, Rocks, Fulton, Ross, Hutchison, Tran, Mues, Ossig, Schnekenburger, Campagnolo, Vecchione, Pietroiusti, Fadeel (bib12) 2015; 10
Catalan, Ilves, Jarventaus, Hannukainen, Kontturi, Vanhala, Alenius, Savolainen, Norppa (bib3) 2015; 56
Reese, Liang, Tager, Luster, Van Rooijen, Voehringer, Locksley (bib34) 2007; 447
Roy, Wuthrich, Klein (bib36) 2012; 189
Perkel (bib32) 2012; 335
Peng, Dhar, Liu, Tam (bib29) 2011; 89
Peng, Gardner, Han, Kiziltas, Cai, Tshabalala (bib30) 2013; 20
Van Dyken, Garcia, Porter, Huang, Quinlan, Blanc, Corry, Locksley (bib40) 2011; 187
Roman (bib35) 2015; 11
Kalia, Dufresne, Cherian, Kaith, Averous, Njuguna, Nassiopoulos (bib18) 2011; 201135
Sayes, Reed, Warheit (bib37) 2007; 97
NIOSH (10.1016/j.chemosphere.2016.12.105_bib26) 2010
Knudsen (10.1016/j.chemosphere.2016.12.105_bib20) 2015; 28
Peng (10.1016/j.chemosphere.2016.12.105_bib29) 2011; 89
Ni (10.1016/j.chemosphere.2016.12.105_bib25) 2012; 22
Chinga-Carrasco (10.1016/j.chemosphere.2016.12.105_bib4) 2012; 7
de Lima (10.1016/j.chemosphere.2016.12.105_bib7) 2012
Elsaesser (10.1016/j.chemosphere.2016.12.105_bib8) 2012; 64
Braakhuis (10.1016/j.chemosphere.2016.12.105_bib2) 2016
Pereira (10.1016/j.chemosphere.2016.12.105_bib31) 2013; 24
Kisin (10.1016/j.chemosphere.2016.12.105_bib19) 2011; 252
Reese (10.1016/j.chemosphere.2016.12.105_bib34) 2007; 447
Ivask (10.1016/j.chemosphere.2016.12.105_bib17) 2015; 15
Kalia (10.1016/j.chemosphere.2016.12.105_bib18) 2011; 201135
Pascual (10.1016/j.chemosphere.2016.12.105_bib28) 2005; 116
Clift (10.1016/j.chemosphere.2016.12.105_bib5) 2011; 12
Gandhi (10.1016/j.chemosphere.2016.12.105_bib13) 2015; 6147
Landsiedel (10.1016/j.chemosphere.2016.12.105_bib22) 2012; 86
Shvedova (10.1016/j.chemosphere.2016.12.105_bib38) 2014; 306
Moon (10.1016/j.chemosphere.2016.12.105_bib23) 2011; 40
Österberg (10.1016/j.chemosphere.2016.12.105_bib27) 2014; 29
Sayes (10.1016/j.chemosphere.2016.12.105_bib37) 2007; 97
Perkel (10.1016/j.chemosphere.2016.12.105_bib32) 2012; 335
Hanif (10.1016/j.chemosphere.2016.12.105_bib14) 2014
Catalan (10.1016/j.chemosphere.2016.12.105_bib3) 2015; 56
Peng (10.1016/j.chemosphere.2016.12.105_bib30) 2013; 20
RCoreTeam (10.1016/j.chemosphere.2016.12.105_bib33) 2014
Murray (10.1016/j.chemosphere.2016.12.105_bib24) 2012; 910
Yanamala (10.1016/j.chemosphere.2016.12.105_bib41) 2014; 2
Roy (10.1016/j.chemosphere.2016.12.105_bib36) 2012; 189
Cullen (10.1016/j.chemosphere.2016.12.105_bib6) 2000; 20
Endes (10.1016/j.chemosphere.2016.12.105_bib10) 2015; 16
Hong (10.1016/j.chemosphere.2016.12.105_bib15) 2010; 72
Roman (10.1016/j.chemosphere.2016.12.105_bib35) 2015; 11
Endes (10.1016/j.chemosphere.2016.12.105_bib9) 2014; 1140
Erdely (10.1016/j.chemosphere.2016.12.105_bib11) 2013; 10
Farcal (10.1016/j.chemosphere.2016.12.105_bib12) 2015; 10
Kogiso (10.1016/j.chemosphere.2016.12.105_bib21) 2011; 90
Shvedova (10.1016/j.chemosphere.2016.12.105_bib39) 2016; 13
Van Dyken (10.1016/j.chemosphere.2016.12.105_bib40) 2011; 187
Aillon (10.1016/j.chemosphere.2016.12.105_bib1) 2009; 61
Iavicoli (10.1016/j.chemosphere.2016.12.105_bib16) 2014; 1378
References_xml – volume: 306
  start-page: L170
  year: 2014
  end-page: L182
  ident: bib38
  article-title: Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons
  publication-title: Am. J. Physiol. Lung Cell Mol. Physiol.
– volume: 7
  year: 2012
  ident: bib4
  article-title: On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers
  publication-title: Nanoscale Res. Lett.
– start-page: 73555
  year: 2012
  end-page: 73565
  ident: bib7
  article-title: Evaluation of the genotoxicity of cellulose nanofibers
  publication-title: Int. J. Nanomedicine
– volume: 90
  start-page: 167
  year: 2011
  end-page: 176
  ident: bib21
  article-title: Chitin particles induce size-dependent but carbohydrate-independent innate eosinophilia
  publication-title: J. Leukoc. Biol.
– volume: 910
  year: 2012
  ident: bib24
  article-title: Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos
  publication-title: Part Fibre Toxicol.
– year: 2010
  ident: bib26
  article-title: Current Intelligence Bulletin: Occupational Exposure to Carbon Nanotubes and Nanofibers
– volume: 10
  start-page: e0127174
  year: 2015
  ident: bib12
  article-title: Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy
  publication-title: PLoS One
– volume: 1140
  year: 2014
  ident: bib9
  article-title: An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles
  publication-title: Part Fibre Toxicol.
– start-page: 2993
  year: 2016
  end-page: 2997
  ident: bib2
  article-title: Grouping nanomaterials to predict their potential to induce pulmonary inflammation
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 1378
  year: 2014
  ident: bib16
  article-title: Opportunities and challenges of nanotechnology in the green economy
  publication-title: Environ. Health
– volume: 64
  start-page: 129
  year: 2012
  end-page: 137
  ident: bib8
  article-title: Toxicology of nanoparticles
  publication-title: Adv. Drug Deliv. Rev.
– volume: 20
  start-page: 49
  year: 2000
  end-page: 60
  ident: bib6
  article-title: Pulmonary and intraperitoneal inflammation induced by cellulose fibres
  publication-title: J. Appl. Toxicol.
– volume: 20
  start-page: 2379
  year: 2013
  end-page: 2392
  ident: bib30
  article-title: Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity
  publication-title: Cellulose
– volume: 86
  start-page: 1021
  year: 2012
  end-page: 1060
  ident: bib22
  article-title: Toxico-/biokinetics of nanomaterials
  publication-title: Arch. Toxicol.
– volume: 89
  start-page: 1191
  year: 2011
  end-page: 1206
  ident: bib29
  article-title: Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective
  publication-title: Can. J. Chem. Eng.
– volume: 6147
  year: 2015
  ident: bib13
  article-title: Airway epithelium interactions with aeroallergens: role of secreted cytokines and chemokines in innate immunity
  publication-title: Front. Immunol.
– volume: 13
  start-page: 28
  year: 2016
  ident: bib39
  article-title: Gender differences in murine pulmonary responses elicited by cellulose nanocrystals
  publication-title: Part Fibre Toxicol.
– volume: 252
  start-page: 1
  year: 2011
  end-page: 10
  ident: bib19
  article-title: Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos?
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 201135
  year: 2011
  ident: bib18
  article-title: Cellulose-based bio- and nanocomposites: a review
  publication-title: Int. J. Polym. Sci.
– volume: 2
  start-page: 1691
  year: 2014
  end-page: 1698
  ident: bib41
  article-title: In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future
  publication-title: ACS Sustain Chem. Eng.
– start-page: 119162
  year: 2014
  end-page: 119165
  ident: bib14
  article-title: Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma
  publication-title: Colloids Surf. B Biointerfaces
– volume: 28
  start-page: 1627
  year: 2015
  end-page: 1635
  ident: bib20
  article-title: Visualization of nanofibrillar cellulose in biological tissues using a biotinylated carbohydrate binding module of beta-1,4-glycanase
  publication-title: Chem. Res. Toxicol.
– volume: 116
  start-page: 477
  year: 2005
  end-page: 486
  ident: bib28
  article-title: Airway remodeling contributes to the progressive loss of lung function in asthma: an overview
  publication-title: J. Allergy Clin. Immunol.
– volume: 97
  start-page: 163
  year: 2007
  end-page: 180
  ident: bib37
  article-title: Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles
  publication-title: Toxicol. Sci.
– volume: 72
  start-page: 15
  year: 2010
  end-page: 21
  ident: bib15
  article-title: Chitinase induce the release of IL-8 in human airway epithelial cells, via Ca2+-dependent PKC and ERK pathways
  publication-title: Scand. J. Immunol.
– volume: 187
  start-page: 2261
  year: 2011
  end-page: 2267
  ident: bib40
  article-title: Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration
  publication-title: J. Immunol.
– volume: 61
  start-page: 457
  year: 2009
  end-page: 466
  ident: bib1
  article-title: Effects of nanomaterial physicochemical properties on in vivo toxicity
  publication-title: Adv. Drug Deliv. Rev.
– volume: 16
  start-page: 1267
  year: 2015
  end-page: 1275
  ident: bib10
  article-title: Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro
  publication-title: Biomacromolecules
– volume: 40
  start-page: 3941
  year: 2011
  end-page: 3994
  ident: bib23
  article-title: Cellulose nanomaterials review: structure, properties and nanocomposites
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 53
  year: 2013
  ident: bib11
  article-title: Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology
  publication-title: Part Fibre Toxicol.
– volume: 29
  year: 2014
  ident: bib27
  article-title: Special issue on nanocellulose
  publication-title: Nordic Pulp Pap. Res. J.
– volume: 22
  start-page: 121
  year: 2012
  end-page: 127
  ident: bib25
  article-title: Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation
  publication-title: Biomed. Mater Eng.
– volume: 56
  start-page: 171
  year: 2015
  end-page: 182
  ident: bib3
  article-title: Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro
  publication-title: Environ. Mol. Mutagen
– volume: 12
  start-page: 3666
  year: 2011
  end-page: 3673
  ident: bib5
  article-title: Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture
  publication-title: Biomacromolecules
– volume: 24
  start-page: 075103
  year: 2013
  ident: bib31
  article-title: Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers
  publication-title: Nanotechnology
– volume: 447
  start-page: 92
  year: 2007
  end-page: 96
  ident: bib34
  article-title: Chitin induces accumulation in tissue of innate immune cells associated with allergy
  publication-title: Nature
– volume: 189
  start-page: 2545
  year: 2012
  end-page: 2552
  ident: bib36
  article-title: Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung
  publication-title: J. Immunol.
– volume: 11
  start-page: 25
  year: 2015
  end-page: 33
  ident: bib35
  article-title: Toxicity of cellulose nanocrystals: a review
  publication-title: Ind. Biotechnol.
– volume: 15
  start-page: 1914
  year: 2015
  end-page: 1929
  ident: bib17
  article-title: Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro
  publication-title: Curr. Top. Med. Chem.
– volume: 335
  start-page: 1122
  year: 2012
  end-page: 1125
  ident: bib32
  article-title: Life science technologies: animal-free toxicology: sometimes, in vitro is better
  publication-title: Science
– year: 2014
  ident: bib33
  article-title: R: A Language and Environment for Statistical Computing
– volume: 7
  year: 2012
  ident: 10.1016/j.chemosphere.2016.12.105_bib4
  article-title: On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-7-192
– volume: 24
  start-page: 075103
  issue: 7
  year: 2013
  ident: 10.1016/j.chemosphere.2016.12.105_bib31
  article-title: Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/7/075103
– volume: 11
  start-page: 25
  issue: 1
  year: 2015
  ident: 10.1016/j.chemosphere.2016.12.105_bib35
  article-title: Toxicity of cellulose nanocrystals: a review
  publication-title: Ind. Biotechnol.
  doi: 10.1089/ind.2014.0024
– volume: 13
  start-page: 28
  issue: 1
  year: 2016
  ident: 10.1016/j.chemosphere.2016.12.105_bib39
  article-title: Gender differences in murine pulmonary responses elicited by cellulose nanocrystals
  publication-title: Part Fibre Toxicol.
  doi: 10.1186/s12989-016-0140-x
– volume: 29
  issue: 1
  year: 2014
  ident: 10.1016/j.chemosphere.2016.12.105_bib27
  article-title: Special issue on nanocellulose
  publication-title: Nordic Pulp Pap. Res. J.
  doi: 10.3183/npprj-2014-29-01-p004-005
– start-page: 2993
  year: 2016
  ident: 10.1016/j.chemosphere.2016.12.105_bib2
  article-title: Grouping nanomaterials to predict their potential to induce pulmonary inflammation
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 22
  start-page: 121
  issue: 1–3
  year: 2012
  ident: 10.1016/j.chemosphere.2016.12.105_bib25
  article-title: Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation
  publication-title: Biomed. Mater Eng.
– volume: 189
  start-page: 2545
  issue: 5
  year: 2012
  ident: 10.1016/j.chemosphere.2016.12.105_bib36
  article-title: Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1200689
– volume: 10
  start-page: 53
  issue: 1
  year: 2013
  ident: 10.1016/j.chemosphere.2016.12.105_bib11
  article-title: Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology
  publication-title: Part Fibre Toxicol.
  doi: 10.1186/1743-8977-10-53
– volume: 187
  start-page: 2261
  issue: 5
  year: 2011
  ident: 10.1016/j.chemosphere.2016.12.105_bib40
  article-title: Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1100972
– volume: 910
  year: 2012
  ident: 10.1016/j.chemosphere.2016.12.105_bib24
  article-title: Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos
  publication-title: Part Fibre Toxicol.
– volume: 90
  start-page: 167
  issue: 1
  year: 2011
  ident: 10.1016/j.chemosphere.2016.12.105_bib21
  article-title: Chitin particles induce size-dependent but carbohydrate-independent innate eosinophilia
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.1110624
– year: 2014
  ident: 10.1016/j.chemosphere.2016.12.105_bib33
– volume: 86
  start-page: 1021
  issue: 7
  year: 2012
  ident: 10.1016/j.chemosphere.2016.12.105_bib22
  article-title: Toxico-/biokinetics of nanomaterials
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-012-0858-7
– volume: 64
  start-page: 129
  issue: 2
  year: 2012
  ident: 10.1016/j.chemosphere.2016.12.105_bib8
  article-title: Toxicology of nanoparticles
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.09.001
– volume: 1378
  year: 2014
  ident: 10.1016/j.chemosphere.2016.12.105_bib16
  article-title: Opportunities and challenges of nanotechnology in the green economy
  publication-title: Environ. Health
– volume: 12
  start-page: 3666
  issue: 10
  year: 2011
  ident: 10.1016/j.chemosphere.2016.12.105_bib5
  article-title: Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture
  publication-title: Biomacromolecules
  doi: 10.1021/bm200865j
– volume: 252
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.chemosphere.2016.12.105_bib19
  article-title: Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos?
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2011.02.001
– volume: 72
  start-page: 15
  issue: 1
  year: 2010
  ident: 10.1016/j.chemosphere.2016.12.105_bib15
  article-title: Chitinase induce the release of IL-8 in human airway epithelial cells, via Ca2+-dependent PKC and ERK pathways
  publication-title: Scand. J. Immunol.
  doi: 10.1111/j.1365-3083.2010.02404.x
– year: 2010
  ident: 10.1016/j.chemosphere.2016.12.105_bib26
– volume: 306
  start-page: L170
  issue: 2
  year: 2014
  ident: 10.1016/j.chemosphere.2016.12.105_bib38
  article-title: Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons
  publication-title: Am. J. Physiol. Lung Cell Mol. Physiol.
  doi: 10.1152/ajplung.00167.2013
– volume: 335
  start-page: 1122
  issue: 6072
  year: 2012
  ident: 10.1016/j.chemosphere.2016.12.105_bib32
  article-title: Life science technologies: animal-free toxicology: sometimes, in vitro is better
  publication-title: Science
  doi: 10.1126/science.335.6072.1122
– volume: 16
  start-page: 1267
  issue: 4
  year: 2015
  ident: 10.1016/j.chemosphere.2016.12.105_bib10
  article-title: Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00055
– volume: 6147
  year: 2015
  ident: 10.1016/j.chemosphere.2016.12.105_bib13
  article-title: Airway epithelium interactions with aeroallergens: role of secreted cytokines and chemokines in innate immunity
  publication-title: Front. Immunol.
– volume: 201135
  year: 2011
  ident: 10.1016/j.chemosphere.2016.12.105_bib18
  article-title: Cellulose-based bio- and nanocomposites: a review
  publication-title: Int. J. Polym. Sci.
– volume: 28
  start-page: 1627
  issue: 8
  year: 2015
  ident: 10.1016/j.chemosphere.2016.12.105_bib20
  article-title: Visualization of nanofibrillar cellulose in biological tissues using a biotinylated carbohydrate binding module of beta-1,4-glycanase
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.5b00271
– volume: 116
  start-page: 477
  issue: 3
  year: 2005
  ident: 10.1016/j.chemosphere.2016.12.105_bib28
  article-title: Airway remodeling contributes to the progressive loss of lung function in asthma: an overview
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2005.07.011
– volume: 10
  start-page: e0127174
  issue: 5
  year: 2015
  ident: 10.1016/j.chemosphere.2016.12.105_bib12
  article-title: Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0127174
– volume: 15
  start-page: 1914
  issue: 18
  year: 2015
  ident: 10.1016/j.chemosphere.2016.12.105_bib17
  article-title: Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026615666150506150109
– start-page: 73555
  year: 2012
  ident: 10.1016/j.chemosphere.2016.12.105_bib7
  article-title: Evaluation of the genotoxicity of cellulose nanofibers
  publication-title: Int. J. Nanomedicine
– volume: 1140
  year: 2014
  ident: 10.1016/j.chemosphere.2016.12.105_bib9
  article-title: An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles
  publication-title: Part Fibre Toxicol.
– volume: 2
  start-page: 1691
  issue: 7
  year: 2014
  ident: 10.1016/j.chemosphere.2016.12.105_bib41
  article-title: In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future
  publication-title: ACS Sustain Chem. Eng.
  doi: 10.1021/sc500153k
– volume: 20
  start-page: 49
  issue: 1
  year: 2000
  ident: 10.1016/j.chemosphere.2016.12.105_bib6
  article-title: Pulmonary and intraperitoneal inflammation induced by cellulose fibres
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/(SICI)1099-1263(200001/02)20:1<49::AID-JAT627>3.0.CO;2-L
– start-page: 119162
  year: 2014
  ident: 10.1016/j.chemosphere.2016.12.105_bib14
  article-title: Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma
  publication-title: Colloids Surf. B Biointerfaces
– volume: 97
  start-page: 163
  issue: 1
  year: 2007
  ident: 10.1016/j.chemosphere.2016.12.105_bib37
  article-title: Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfm018
– volume: 447
  start-page: 92
  issue: 7140
  year: 2007
  ident: 10.1016/j.chemosphere.2016.12.105_bib34
  article-title: Chitin induces accumulation in tissue of innate immune cells associated with allergy
  publication-title: Nature
  doi: 10.1038/nature05746
– volume: 20
  start-page: 2379
  issue: 5
  year: 2013
  ident: 10.1016/j.chemosphere.2016.12.105_bib30
  article-title: Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity
  publication-title: Cellulose
  doi: 10.1007/s10570-013-0019-z
– volume: 89
  start-page: 1191
  issue: 5
  year: 2011
  ident: 10.1016/j.chemosphere.2016.12.105_bib29
  article-title: Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.20554
– volume: 61
  start-page: 457
  issue: 6
  year: 2009
  ident: 10.1016/j.chemosphere.2016.12.105_bib1
  article-title: Effects of nanomaterial physicochemical properties on in vivo toxicity
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2009.03.010
– volume: 40
  start-page: 3941
  issue: 7
  year: 2011
  ident: 10.1016/j.chemosphere.2016.12.105_bib23
  article-title: Cellulose nanomaterials review: structure, properties and nanocomposites
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00108b
– volume: 56
  start-page: 171
  issue: 2
  year: 2015
  ident: 10.1016/j.chemosphere.2016.12.105_bib3
  article-title: Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro
  publication-title: Environ. Mol. Mutagen
  doi: 10.1002/em.21913
SSID ssj0001659
Score 2.5125341
Snippet Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 671
SubjectTerms A549 Cells
carbon
Cell Survival - drug effects
cellulose
Cellulose - toxicity
chemokines
chitin
cluster analysis
Cytokine production
Cytokines - metabolism
cytotoxicity
Cytoxicity
epithelial cells
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Humans
immunomodulators
inflammation
Inflammation - metabolism
Lung - cytology
Lung epithelial cells
Nanocellulose
nanocrystals
nanofibers
Nanofibers - toxicity
Nanoparticles - toxicity
Oxidative stress
physicochemical properties
secretion
staining
stress response
Title Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation?
URI https://dx.doi.org/10.1016/j.chemosphere.2016.12.105
https://www.ncbi.nlm.nih.gov/pubmed/28061425
https://www.proquest.com/docview/1856590034
https://www.proquest.com/docview/2000426389
https://pubmed.ncbi.nlm.nih.gov/PMC5459363
http://kipublications.ki.se/Default.aspx?queryparsed=id:135199837
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD4sK15eRNfbeFmyIL7VbZMmTUWQZdhhVNwnF_YttGmK1bEd2o44L_52z-ll1rIKC76VJoH0nC_J1_ac7wC8TIUOtXSpp7VUJKqtPB1HmecnSeQ7dDlXlDv86Uwtz8MPF_JiD-ZjLgyFVQ57f7-nd7v1cOd4sObxuigox5fYiJDIKBCXESXxhWFEKH_96zLMI1Cyp8Ch9Kj3LTi6jPFCu3yvGsrfJ8XMQNGXwYAq2f39jLrKQa-GUk4ER7tDanEP7g7skp30D3Af9lx5ALfnY1G3A7h52qlUbx9AsaBgfwRBzX40zNZbpImkz-1YmZQVfc_frKrGsfVmhUhN6i1za8rfWCFgGTWzug-vdc0bNt-2VVv9LCxyelbVDGGLSOuzIt89hPPF6ef50hvqLngWyUXrxTLVXMjY6TS1yiUi961VMrdOcOuUSHmaOS6z2M85KbYhBctEELgol3EufSsewX5Zle4J4HRCXPSJtSkl1EmbREhA8Q0lx_4ZbrYz0KOljR1Eyak2xsqM0WdfzR9OMuQkE3BskjPgu6HrXpnjOoPeju40E5gZPEGuM_xohIBBx5Gxk9JVm8Yg7VFUgFWE_-5DWVGkj6_jGTzuYbObOf3gJlPOIJoAateBZMCnLWXxpZMDRw4cC4WmfNVDbzJkuPUNr5yht9vQf_p_NngGdzhRmy4O7znst_XGvUBi1qaH3co7hBsn7z8uz34D5mA-Cw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB7qFa0vRavWs1W3IL6FJtnsJhFBytHjatt7aqFvS7LZYPSaHElOvP_emfw4G6pQ8C1kdyCZ-bL7JZn5BuBDzAMvECa2gkBIEtWWVhD6iWVHkW8bDLkrqXb4ci5n197XG3GzBZO-FobSKru1v13Tm9W6O3PcefN4mWVU40tshAtkFIhLP3wE26ROJUawfXJ2PptvFmRHipYFe8Iigydw9CfNC11zW1RUwk-imY6kj4MONbP7-zZ1n4bez6YcaI42-9T0Gex2BJOdtPfwHLZMvgc7k76v2x48Pm2EqtcvIJtSvj_ioGQ_K6bLNTJFkug2LI_ygj7prxZFZdhytUCwRuWamSWVcCwQs4yGWdlm2JrqE5us66IufmUaaT0rSobIRbC1hZFfXsL19PRqMrO61guWRn5RW6GIA5eL0ARxrKWJeGprLUWqDXe1kTx248S4Ignt1CXRNmRhCXcc46ciTIWt-SsY5UVuXgNejofPfaR1TDV1Qkc-clB8SUlxfoLr7RiC3tNKd7rk1B5jofoEtO_qTpAUBUk5Lg6JMbgb02UrzvEQo899ONUAaQo3kYeYH_UQUBg4cnaUm2JVKWQ-knqwcu_fc6gwiiTyg3AM-y1sNldO_7jJlWPwB4DaTCAl8OFInn1rFMGRBodcois_ttAbmHSnfuCRUfSC69lv_s8H72FndnV5oS7O5ucH8NQlptOk5R3CqC5X5i3ytDp-1z2HvwGaAkC8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibrillar+vs+Crystalline+Nanocellulose+Pulmonary+Epithelial+Cell+Responses%3A+Cytotoxicity+or+Inflammation%3F&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Menas%2C+Autumn+L.&rft.au=Yanamala%2C+Naveena&rft.au=Farcas%2C+Mariana+T.&rft.au=Russo%2C+Maria&rft.date=2017-03-01&rft.issn=0045-6535&rft.eissn=1879-1298&rft.volume=171&rft.spage=671&rft.epage=680&rft_id=info:doi/10.1016%2Fj.chemosphere.2016.12.105&rft_id=info%3Apmid%2F28061425&rft.externalDocID=PMC5459363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon