Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation?
Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (C...
Saved in:
Published in | Chemosphere (Oxford) Vol. 171; pp. 671 - 680 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity.
[Display omitted]
•Biological Responses of NC are orchestrated by their dimensions and morphology.•NCF cytotoxicity may be caused by oxidative stress and not cellular uptake.•Viability and oxidative damage models may not be effective in predicting toxicity.•NC with different morphologies revealed drastic changes in the cytokine profiles.•Exposure to various NC revealed distinct cytotoxic responses and cytokine signatures. |
---|---|
AbstractList | Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity. Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity. [Display omitted] •Biological Responses of NC are orchestrated by their dimensions and morphology.•NCF cytotoxicity may be caused by oxidative stress and not cellular uptake.•Viability and oxidative damage models may not be effective in predicting toxicity.•NC with different morphologies revealed drastic changes in the cytokine profiles.•Exposure to various NC revealed distinct cytotoxic responses and cytokine signatures. Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity. Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity. Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity.Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity. |
Author | Iavicoli, Ivo Star, Alexander Shurin, Galina V. Shvedova, Anna A. Kisin, Elena R. Farcas, Mariana T. Yanamala, Naveena Friend, Sherri Fadeel, Bengt Menas, Autumn L. Vogel, Ulla B. Russo, Maria Fournier, Philip M. Beezhold, Donald |
AuthorAffiliation | 2 Pathology & Physiology Research Branch/NIOSH/CDC, Morgantown, WV 3 Institute of Public Health, Section of Occupational Medicine, Catholic University of the Sacred Heart, Rome, Italy 6 Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 4 Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 1 Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV 5 Department of Public Health, Division of Occupational Medicine, University of Naples Federico II, Naples, Italy 9 Health Effects Laboratory Division/NIOSH/CDC, Morgantown, WV 7 National Research Centre for the Working Environment, Copenhagen, Denmark 8 Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden 10 Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV |
AuthorAffiliation_xml | – name: 10 Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV – name: 1 Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV – name: 2 Pathology & Physiology Research Branch/NIOSH/CDC, Morgantown, WV – name: 6 Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA – name: 8 Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden – name: 3 Institute of Public Health, Section of Occupational Medicine, Catholic University of the Sacred Heart, Rome, Italy – name: 4 Department of Chemistry, University of Pittsburgh, Pittsburgh, PA – name: 5 Department of Public Health, Division of Occupational Medicine, University of Naples Federico II, Naples, Italy – name: 9 Health Effects Laboratory Division/NIOSH/CDC, Morgantown, WV – name: 7 National Research Centre for the Working Environment, Copenhagen, Denmark |
Author_xml | – sequence: 1 givenname: Autumn L. surname: Menas fullname: Menas, Autumn L. organization: Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV, USA – sequence: 2 givenname: Naveena surname: Yanamala fullname: Yanamala, Naveena organization: Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV, USA – sequence: 3 givenname: Mariana T. surname: Farcas fullname: Farcas, Mariana T. organization: Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV, USA – sequence: 4 givenname: Maria surname: Russo fullname: Russo, Maria organization: Institute of Public Health, Section of Occupational Medicine, Catholic University of the Sacred Heart, Rome, Italy – sequence: 5 givenname: Sherri surname: Friend fullname: Friend, Sherri organization: Pathology & Physiology Research Branch/NIOSH/CDC, Morgantown, WV, USA – sequence: 6 givenname: Philip M. surname: Fournier fullname: Fournier, Philip M. organization: Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 7 givenname: Alexander surname: Star fullname: Star, Alexander organization: Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 8 givenname: Ivo surname: Iavicoli fullname: Iavicoli, Ivo organization: Department of Public Health, Division of Occupational Medicine, University of Naples Federico II, Naples, Italy – sequence: 9 givenname: Galina V. surname: Shurin fullname: Shurin, Galina V. organization: Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA – sequence: 10 givenname: Ulla B. surname: Vogel fullname: Vogel, Ulla B. organization: National Research Centre for the Working Environment, Copenhagen, Denmark – sequence: 11 givenname: Bengt surname: Fadeel fullname: Fadeel, Bengt organization: Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden – sequence: 12 givenname: Donald surname: Beezhold fullname: Beezhold, Donald organization: Health Effects Laboratory Division/NIOSH/CDC, Morgantown, WV, USA – sequence: 13 givenname: Elena R. surname: Kisin fullname: Kisin, Elena R. organization: Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV, USA – sequence: 14 givenname: Anna A. surname: Shvedova fullname: Shvedova, Anna A. email: ats1@cdc.gov organization: Exposure Assessment Branch/NIOSH/CDC, Morgantown, WV, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28061425$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:135199837$$DView record from Swedish Publication Index |
BookMark | eNqNkk9v1DAQxS1URLeFr4DMjUsW_4nTmANVtaIFqRIXOFuOM2G9OHawvQv77XG6S9VyoSdbfr95mvGbM3TigweE3lCypIQ27zZLs4YxpGkNEZasPC0pK5J4hha0vZAVZbI9QQtCalE1gotTdJbShpBCCvkCnbKWNLRmYoHste2idU5HvEvYxH3K2jnrAXvtgwHnti4kwNPWjcHruMcw2bwGZ7XDs4wjpCn4BOk9Xu1zyOG3NTbvcYjY-sHpcdTZBn_5Ej0ftEvw6nieo2_XH7-uPlW3X24-r65uKyNEnSspupZxIaHtOtOA5gMxphGDAc4MNLxjXQ9M9JIMjM0zNLTnlMLFIOQgiOHnqDr4pl8wbTs1RTuWvlXQVh2ffpQbqFpKWZPCfzjwRRmhN-Bz1O5R2WPF27X6HnZK1ELyhheDt0eDGH5uIWU12jR_jfYQtkmx8u81a3gr_4vSVpSACOF1QV8_bOu-n7_RFUAeABNDShGGe4QSNa-J2qgHa6LmNVGUFWmuvfyntkR2F1OZ0LonOawODlCi3FmIKhkL3kBvI5is-mCf4PIHaonl_Q |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2021_09_055 crossref_primary_10_1080_1547691X_2017_1414339 crossref_primary_10_1016_j_ijbiomac_2024_130900 crossref_primary_10_1016_j_ijbiomac_2023_126007 crossref_primary_10_1002_smll_202102545 crossref_primary_10_1021_acs_chemrev_7b00627 crossref_primary_10_1080_08958378_2020_1770901 crossref_primary_10_1007_s10570_022_04977_w crossref_primary_10_1186_s13287_019_1394_7 crossref_primary_10_1016_j_foodchem_2022_133653 crossref_primary_10_1016_j_cocis_2021_101512 crossref_primary_10_1016_j_envint_2017_03_001 crossref_primary_10_3389_fimmu_2023_1111123 crossref_primary_10_1007_s10570_020_03176_9 crossref_primary_10_1039_D3EN00135K crossref_primary_10_1080_17435390_2018_1472312 crossref_primary_10_3390_bioengineering10080986 crossref_primary_10_3390_pharmaceutics13081125 crossref_primary_10_1080_02786826_2019_1652725 crossref_primary_10_2174_2212798410666190715153715 crossref_primary_10_1016_j_ijbiomac_2020_10_033 crossref_primary_10_1007_s10570_023_05532_x crossref_primary_10_2174_0115701794273511231212072414 crossref_primary_10_1007_s10570_023_05537_6 crossref_primary_10_1016_j_ijbiomac_2024_134015 crossref_primary_10_1016_j_carbpol_2024_122479 crossref_primary_10_1021_acsnano_8b03074 crossref_primary_10_1002_smll_201901642 crossref_primary_10_1016_j_scitotenv_2023_165952 crossref_primary_10_1016_j_carbpol_2018_07_088 crossref_primary_10_1016_j_chemosphere_2020_126170 crossref_primary_10_1021_acs_biomac_3c00710 crossref_primary_10_1021_acssuschemeng_9b05317 crossref_primary_10_1039_D2GC01669A crossref_primary_10_1016_j_impact_2020_100269 crossref_primary_10_1016_j_jclepro_2019_119669 crossref_primary_10_3390_nano11020389 crossref_primary_10_1016_j_carbpol_2018_08_056 crossref_primary_10_3390_nano14131082 crossref_primary_10_1016_j_scitotenv_2018_08_402 crossref_primary_10_3390_nano12091432 crossref_primary_10_1016_j_tiv_2018_12_009 crossref_primary_10_1007_s10570_024_06238_4 crossref_primary_10_2903_sp_efsa_2023_EN_8258 crossref_primary_10_1186_s12989_022_00460_3 crossref_primary_10_3390_nano9020164 crossref_primary_10_1021_acs_chemrestox_0c00051 crossref_primary_10_1080_08958378_2021_1884320 crossref_primary_10_1016_j_carbpol_2021_117984 crossref_primary_10_1002_jat_4390 crossref_primary_10_1016_j_carbpol_2023_120603 crossref_primary_10_3390_ma16124447 crossref_primary_10_1002_adma_202000717 crossref_primary_10_1039_D1EN00233C crossref_primary_10_1016_j_impact_2020_100216 crossref_primary_10_1016_j_tifs_2019_09_013 crossref_primary_10_1080_17435390_2020_1814440 crossref_primary_10_3390_nano9030337 crossref_primary_10_1016_j_fbio_2021_101285 crossref_primary_10_1002_jat_3564 crossref_primary_10_1515_ntrev_2021_0053 crossref_primary_10_3390_jox12020009 crossref_primary_10_1021_acsabm_2c00638 crossref_primary_10_47470_0016_9900_2023_102_2_181_190 crossref_primary_10_1016_j_biomaterials_2019_02_025 crossref_primary_10_1007_s43994_023_00045_6 crossref_primary_10_1016_j_susmat_2024_e01010 crossref_primary_10_1039_C9EN00184K crossref_primary_10_3389_fimmu_2018_01157 crossref_primary_10_1021_acs_biomac_3c00975 crossref_primary_10_3390_nano14090768 crossref_primary_10_1016_j_carbpol_2020_116704 crossref_primary_10_1146_annurev_food_061920_123242 crossref_primary_10_1515_znc_2021_0080 crossref_primary_10_3390_molecules28041774 crossref_primary_10_1016_j_cis_2023_102970 crossref_primary_10_1016_j_ijbiomac_2024_131809 crossref_primary_10_3389_fbioe_2023_1160460 crossref_primary_10_1016_j_carbpol_2020_117315 |
Cites_doi | 10.1186/1556-276X-7-192 10.1088/0957-4484/24/7/075103 10.1089/ind.2014.0024 10.1186/s12989-016-0140-x 10.3183/npprj-2014-29-01-p004-005 10.4049/jimmunol.1200689 10.1186/1743-8977-10-53 10.4049/jimmunol.1100972 10.1189/jlb.1110624 10.1007/s00204-012-0858-7 10.1016/j.addr.2011.09.001 10.1021/bm200865j 10.1016/j.taap.2011.02.001 10.1111/j.1365-3083.2010.02404.x 10.1152/ajplung.00167.2013 10.1126/science.335.6072.1122 10.1021/acs.biomac.5b00055 10.1021/acs.chemrestox.5b00271 10.1016/j.jaci.2005.07.011 10.1371/journal.pone.0127174 10.2174/1568026615666150506150109 10.1021/sc500153k 10.1002/(SICI)1099-1263(200001/02)20:1<49::AID-JAT627>3.0.CO;2-L 10.1093/toxsci/kfm018 10.1038/nature05746 10.1007/s10570-013-0019-z 10.1002/cjce.20554 10.1016/j.addr.2009.03.010 10.1039/c0cs00108b 10.1002/em.21913 |
ContentType | Journal Article |
Copyright | 2016 Published by Elsevier Ltd. |
Copyright_xml | – notice: 2016 – notice: Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM ADTPV AOWAS D8T ZZAVC |
DOI | 10.1016/j.chemosphere.2016.12.105 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 680 |
ExternalDocumentID | oai_swepub_ki_se_499940 PMC5459363 28061425 10_1016_j_chemosphere_2016_12_105 S0045653516318379 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIOSH CDC HHS grantid: R01 OH008282 – fundername: Intramural CDC HHS grantid: CC999999 – fundername: NIEHS NIH HHS grantid: R01 ES019304 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EFKBS CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 5PM ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c554t-95b82359e8bbc6ea3f0cc65fce32ce63b2bde25d90f22142561d311e7f59f50c3 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Mon Aug 25 03:40:24 EDT 2025 Thu Aug 21 18:16:58 EDT 2025 Fri Jul 11 12:21:56 EDT 2025 Sun Aug 24 03:54:41 EDT 2025 Mon Jul 21 06:02:30 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Tue Aug 05 12:00:36 EDT 2025 Fri Feb 23 02:24:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidative stress Nanocellulose Lung epithelial cells Cytoxicity Cytokine production |
Language | English |
License | Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-95b82359e8bbc6ea3f0cc65fce32ce63b2bde25d90f22142561d311e7f59f50c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors have contributed equally |
OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:135199837 |
PMID | 28061425 |
PQID | 1856590034 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_499940 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5459363 proquest_miscellaneous_2000426389 proquest_miscellaneous_1856590034 pubmed_primary_28061425 crossref_primary_10_1016_j_chemosphere_2016_12_105 crossref_citationtrail_10_1016_j_chemosphere_2016_12_105 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2016_12_105 |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Pereira, Raposo, Brayner, Teixeira, Oliveira, Quintao, Camargo, Mattoso, Brandao (bib31) 2013; 24 Österberg, Cranston (bib27) 2014; 29 Clift, Foster, Vanhecke, Studer, Wick, Gehr, Rothen-Rutishauser, Weder (bib5) 2011; 12 Ni, Zeng, Wu, Cheng, Luo, Wang, Zeng, Chen (bib25) 2012; 22 Endes, Mueller, Kinnear, Vanhecke, Foster, Petri-Fink, Weder, Clift, Rothen-Rutishauser (bib10) 2015; 16 Erdely, Dahm, Chen, Zeidler-Erdely, Fernback, Birch, Evans, Kashon, Deddens, Hulderman, Bilgesu, Battelli, Schwegler-Berry, Leonard, McKinney, Frazer, Antonini, Porter, Castranova, Schubauer-Berigan (bib11) 2013; 10 NIOSH (bib26) 2010 Elsaesser, Howard (bib8) 2012; 64 Iavicoli, Leso, Ricciardi, Hodson, Hoover (bib16) 2014; 1378 Shvedova, Yanamala, Kisin, Tkach, Murray, Hubbs, Chirila, Keohavong, Sycheva, Kagan, Castranova (bib38) 2014; 306 Cullen, Searl, Miller, Davis, Jones (bib6) 2000; 20 Murray, Kisin, Tkach, Yanamala, Mercer, Young, Fadeel, Kagan, Shvedova (bib24) 2012; 910 Chinga-Carrasco, Syverud (bib4) 2012; 7 Landsiedel, Fabian, Ma-Hock, van Ravenzwaay, Wohlleben, Wiench, Oesch (bib22) 2012; 86 Braakhuis, Oomen, Cassee (bib2) 2016 Ivask, Titma, Visnapuu, Vija, Kakinen, Sihtmae, Pokhrel, Madler, Heinlaan, Kisand, Shimmo, Kahru (bib17) 2015; 15 Aillon, Xie, El-Gendy, Berkland, Forrest (bib1) 2009; 61 Kogiso, Nishiyama, Shinohara, Nakamura, Mizoguchi, Misawa, Guinet, Nouri-Shirazi, Dorey, Henriksen, Shibata (bib21) 2011; 90 RCoreTeam (bib33) 2014 Yanamala, Farcas, Hatfield, Kisin, Kagan, Geraci, Shvedova (bib41) 2014; 2 de Lima, Oliveira Feitosa, Rodrigues Maruyama, Abreu Barga, Yamawaki, Vieira, Teixeira, Correa, Caparelli Mattoso, Fernandes Fraceto (bib7) 2012 Moon, Martini, Nairn, Simonsen, Youngblood (bib23) 2011; 40 Pascual, Peters (bib28) 2005; 116 Endes, Schmid, Kinnear, Mueller, Camarero-Espinosa, Vanhecke, Foster, Petri-Fink, Rothen-Rutishauser, Weder, Clift (bib9) 2014; 1140 Hong, Lee, Kim, Sohn, Kim (bib15) 2010; 72 Kisin, Murray, Sargent, Lowry, Chirila, Siegrist, Schwegler-Berry, Leonard, Castranova, Fadeel, Kagan, Shvedova (bib19) 2011; 252 Knudsen, Kofoed, Espersen, Hojgaard, Winther, Willemoes, Wedin, Nuopponen, Vilske, Aimonen, Weydahl, Alenius, Norppa, Wolff, Wallin, Vogel (bib20) 2015; 28 Gandhi, Vliagoftis (bib13) 2015; 6147 Shvedova, Kisin, Yanamala, Farcas, Menas, Williams, Fournier, Reynolds, Gutkin, Star, Reiner, Halappanavar, Kagan (bib39) 2016; 13 Hanif, Ahmed, Shin, Kim, Um (bib14) 2014 Farcal, Torres Andon, Di Cristo, Rotoli, Bussolati, Bergamaschi, Mech, Hartmann, Rasmussen, Riego-Sintes, Ponti, Kinsner-Ovaskainen, Rossi, Oomen, Bos, Chen, Bai, Chen, Rocks, Fulton, Ross, Hutchison, Tran, Mues, Ossig, Schnekenburger, Campagnolo, Vecchione, Pietroiusti, Fadeel (bib12) 2015; 10 Catalan, Ilves, Jarventaus, Hannukainen, Kontturi, Vanhala, Alenius, Savolainen, Norppa (bib3) 2015; 56 Reese, Liang, Tager, Luster, Van Rooijen, Voehringer, Locksley (bib34) 2007; 447 Roy, Wuthrich, Klein (bib36) 2012; 189 Perkel (bib32) 2012; 335 Peng, Dhar, Liu, Tam (bib29) 2011; 89 Peng, Gardner, Han, Kiziltas, Cai, Tshabalala (bib30) 2013; 20 Van Dyken, Garcia, Porter, Huang, Quinlan, Blanc, Corry, Locksley (bib40) 2011; 187 Roman (bib35) 2015; 11 Kalia, Dufresne, Cherian, Kaith, Averous, Njuguna, Nassiopoulos (bib18) 2011; 201135 Sayes, Reed, Warheit (bib37) 2007; 97 NIOSH (10.1016/j.chemosphere.2016.12.105_bib26) 2010 Knudsen (10.1016/j.chemosphere.2016.12.105_bib20) 2015; 28 Peng (10.1016/j.chemosphere.2016.12.105_bib29) 2011; 89 Ni (10.1016/j.chemosphere.2016.12.105_bib25) 2012; 22 Chinga-Carrasco (10.1016/j.chemosphere.2016.12.105_bib4) 2012; 7 de Lima (10.1016/j.chemosphere.2016.12.105_bib7) 2012 Elsaesser (10.1016/j.chemosphere.2016.12.105_bib8) 2012; 64 Braakhuis (10.1016/j.chemosphere.2016.12.105_bib2) 2016 Pereira (10.1016/j.chemosphere.2016.12.105_bib31) 2013; 24 Kisin (10.1016/j.chemosphere.2016.12.105_bib19) 2011; 252 Reese (10.1016/j.chemosphere.2016.12.105_bib34) 2007; 447 Ivask (10.1016/j.chemosphere.2016.12.105_bib17) 2015; 15 Kalia (10.1016/j.chemosphere.2016.12.105_bib18) 2011; 201135 Pascual (10.1016/j.chemosphere.2016.12.105_bib28) 2005; 116 Clift (10.1016/j.chemosphere.2016.12.105_bib5) 2011; 12 Gandhi (10.1016/j.chemosphere.2016.12.105_bib13) 2015; 6147 Landsiedel (10.1016/j.chemosphere.2016.12.105_bib22) 2012; 86 Shvedova (10.1016/j.chemosphere.2016.12.105_bib38) 2014; 306 Moon (10.1016/j.chemosphere.2016.12.105_bib23) 2011; 40 Österberg (10.1016/j.chemosphere.2016.12.105_bib27) 2014; 29 Sayes (10.1016/j.chemosphere.2016.12.105_bib37) 2007; 97 Perkel (10.1016/j.chemosphere.2016.12.105_bib32) 2012; 335 Hanif (10.1016/j.chemosphere.2016.12.105_bib14) 2014 Catalan (10.1016/j.chemosphere.2016.12.105_bib3) 2015; 56 Peng (10.1016/j.chemosphere.2016.12.105_bib30) 2013; 20 RCoreTeam (10.1016/j.chemosphere.2016.12.105_bib33) 2014 Murray (10.1016/j.chemosphere.2016.12.105_bib24) 2012; 910 Yanamala (10.1016/j.chemosphere.2016.12.105_bib41) 2014; 2 Roy (10.1016/j.chemosphere.2016.12.105_bib36) 2012; 189 Cullen (10.1016/j.chemosphere.2016.12.105_bib6) 2000; 20 Endes (10.1016/j.chemosphere.2016.12.105_bib10) 2015; 16 Hong (10.1016/j.chemosphere.2016.12.105_bib15) 2010; 72 Roman (10.1016/j.chemosphere.2016.12.105_bib35) 2015; 11 Endes (10.1016/j.chemosphere.2016.12.105_bib9) 2014; 1140 Erdely (10.1016/j.chemosphere.2016.12.105_bib11) 2013; 10 Farcal (10.1016/j.chemosphere.2016.12.105_bib12) 2015; 10 Kogiso (10.1016/j.chemosphere.2016.12.105_bib21) 2011; 90 Shvedova (10.1016/j.chemosphere.2016.12.105_bib39) 2016; 13 Van Dyken (10.1016/j.chemosphere.2016.12.105_bib40) 2011; 187 Aillon (10.1016/j.chemosphere.2016.12.105_bib1) 2009; 61 Iavicoli (10.1016/j.chemosphere.2016.12.105_bib16) 2014; 1378 |
References_xml | – volume: 306 start-page: L170 year: 2014 end-page: L182 ident: bib38 article-title: Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons publication-title: Am. J. Physiol. Lung Cell Mol. Physiol. – volume: 7 year: 2012 ident: bib4 article-title: On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers publication-title: Nanoscale Res. Lett. – start-page: 73555 year: 2012 end-page: 73565 ident: bib7 article-title: Evaluation of the genotoxicity of cellulose nanofibers publication-title: Int. J. Nanomedicine – volume: 90 start-page: 167 year: 2011 end-page: 176 ident: bib21 article-title: Chitin particles induce size-dependent but carbohydrate-independent innate eosinophilia publication-title: J. Leukoc. Biol. – volume: 910 year: 2012 ident: bib24 article-title: Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos publication-title: Part Fibre Toxicol. – year: 2010 ident: bib26 article-title: Current Intelligence Bulletin: Occupational Exposure to Carbon Nanotubes and Nanofibers – volume: 10 start-page: e0127174 year: 2015 ident: bib12 article-title: Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy publication-title: PLoS One – volume: 1140 year: 2014 ident: bib9 article-title: An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles publication-title: Part Fibre Toxicol. – start-page: 2993 year: 2016 end-page: 2997 ident: bib2 article-title: Grouping nanomaterials to predict their potential to induce pulmonary inflammation publication-title: Toxicol. Appl. Pharmacol. – volume: 1378 year: 2014 ident: bib16 article-title: Opportunities and challenges of nanotechnology in the green economy publication-title: Environ. Health – volume: 64 start-page: 129 year: 2012 end-page: 137 ident: bib8 article-title: Toxicology of nanoparticles publication-title: Adv. Drug Deliv. Rev. – volume: 20 start-page: 49 year: 2000 end-page: 60 ident: bib6 article-title: Pulmonary and intraperitoneal inflammation induced by cellulose fibres publication-title: J. Appl. Toxicol. – volume: 20 start-page: 2379 year: 2013 end-page: 2392 ident: bib30 article-title: Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity publication-title: Cellulose – volume: 86 start-page: 1021 year: 2012 end-page: 1060 ident: bib22 article-title: Toxico-/biokinetics of nanomaterials publication-title: Arch. Toxicol. – volume: 89 start-page: 1191 year: 2011 end-page: 1206 ident: bib29 article-title: Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective publication-title: Can. J. Chem. Eng. – volume: 6147 year: 2015 ident: bib13 article-title: Airway epithelium interactions with aeroallergens: role of secreted cytokines and chemokines in innate immunity publication-title: Front. Immunol. – volume: 13 start-page: 28 year: 2016 ident: bib39 article-title: Gender differences in murine pulmonary responses elicited by cellulose nanocrystals publication-title: Part Fibre Toxicol. – volume: 252 start-page: 1 year: 2011 end-page: 10 ident: bib19 article-title: Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? publication-title: Toxicol. Appl. Pharmacol. – volume: 201135 year: 2011 ident: bib18 article-title: Cellulose-based bio- and nanocomposites: a review publication-title: Int. J. Polym. Sci. – volume: 2 start-page: 1691 year: 2014 end-page: 1698 ident: bib41 article-title: In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future publication-title: ACS Sustain Chem. Eng. – start-page: 119162 year: 2014 end-page: 119165 ident: bib14 article-title: Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma publication-title: Colloids Surf. B Biointerfaces – volume: 28 start-page: 1627 year: 2015 end-page: 1635 ident: bib20 article-title: Visualization of nanofibrillar cellulose in biological tissues using a biotinylated carbohydrate binding module of beta-1,4-glycanase publication-title: Chem. Res. Toxicol. – volume: 116 start-page: 477 year: 2005 end-page: 486 ident: bib28 article-title: Airway remodeling contributes to the progressive loss of lung function in asthma: an overview publication-title: J. Allergy Clin. Immunol. – volume: 97 start-page: 163 year: 2007 end-page: 180 ident: bib37 article-title: Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles publication-title: Toxicol. Sci. – volume: 72 start-page: 15 year: 2010 end-page: 21 ident: bib15 article-title: Chitinase induce the release of IL-8 in human airway epithelial cells, via Ca2+-dependent PKC and ERK pathways publication-title: Scand. J. Immunol. – volume: 187 start-page: 2261 year: 2011 end-page: 2267 ident: bib40 article-title: Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration publication-title: J. Immunol. – volume: 61 start-page: 457 year: 2009 end-page: 466 ident: bib1 article-title: Effects of nanomaterial physicochemical properties on in vivo toxicity publication-title: Adv. Drug Deliv. Rev. – volume: 16 start-page: 1267 year: 2015 end-page: 1275 ident: bib10 article-title: Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro publication-title: Biomacromolecules – volume: 40 start-page: 3941 year: 2011 end-page: 3994 ident: bib23 article-title: Cellulose nanomaterials review: structure, properties and nanocomposites publication-title: Chem. Soc. Rev. – volume: 10 start-page: 53 year: 2013 ident: bib11 article-title: Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology publication-title: Part Fibre Toxicol. – volume: 29 year: 2014 ident: bib27 article-title: Special issue on nanocellulose publication-title: Nordic Pulp Pap. Res. J. – volume: 22 start-page: 121 year: 2012 end-page: 127 ident: bib25 article-title: Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation publication-title: Biomed. Mater Eng. – volume: 56 start-page: 171 year: 2015 end-page: 182 ident: bib3 article-title: Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro publication-title: Environ. Mol. Mutagen – volume: 12 start-page: 3666 year: 2011 end-page: 3673 ident: bib5 article-title: Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture publication-title: Biomacromolecules – volume: 24 start-page: 075103 year: 2013 ident: bib31 article-title: Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers publication-title: Nanotechnology – volume: 447 start-page: 92 year: 2007 end-page: 96 ident: bib34 article-title: Chitin induces accumulation in tissue of innate immune cells associated with allergy publication-title: Nature – volume: 189 start-page: 2545 year: 2012 end-page: 2552 ident: bib36 article-title: Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung publication-title: J. Immunol. – volume: 11 start-page: 25 year: 2015 end-page: 33 ident: bib35 article-title: Toxicity of cellulose nanocrystals: a review publication-title: Ind. Biotechnol. – volume: 15 start-page: 1914 year: 2015 end-page: 1929 ident: bib17 article-title: Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro publication-title: Curr. Top. Med. Chem. – volume: 335 start-page: 1122 year: 2012 end-page: 1125 ident: bib32 article-title: Life science technologies: animal-free toxicology: sometimes, in vitro is better publication-title: Science – year: 2014 ident: bib33 article-title: R: A Language and Environment for Statistical Computing – volume: 7 year: 2012 ident: 10.1016/j.chemosphere.2016.12.105_bib4 article-title: On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-7-192 – volume: 24 start-page: 075103 issue: 7 year: 2013 ident: 10.1016/j.chemosphere.2016.12.105_bib31 article-title: Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers publication-title: Nanotechnology doi: 10.1088/0957-4484/24/7/075103 – volume: 11 start-page: 25 issue: 1 year: 2015 ident: 10.1016/j.chemosphere.2016.12.105_bib35 article-title: Toxicity of cellulose nanocrystals: a review publication-title: Ind. Biotechnol. doi: 10.1089/ind.2014.0024 – volume: 13 start-page: 28 issue: 1 year: 2016 ident: 10.1016/j.chemosphere.2016.12.105_bib39 article-title: Gender differences in murine pulmonary responses elicited by cellulose nanocrystals publication-title: Part Fibre Toxicol. doi: 10.1186/s12989-016-0140-x – volume: 29 issue: 1 year: 2014 ident: 10.1016/j.chemosphere.2016.12.105_bib27 article-title: Special issue on nanocellulose publication-title: Nordic Pulp Pap. Res. J. doi: 10.3183/npprj-2014-29-01-p004-005 – start-page: 2993 year: 2016 ident: 10.1016/j.chemosphere.2016.12.105_bib2 article-title: Grouping nanomaterials to predict their potential to induce pulmonary inflammation publication-title: Toxicol. Appl. Pharmacol. – volume: 22 start-page: 121 issue: 1–3 year: 2012 ident: 10.1016/j.chemosphere.2016.12.105_bib25 article-title: Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation publication-title: Biomed. Mater Eng. – volume: 189 start-page: 2545 issue: 5 year: 2012 ident: 10.1016/j.chemosphere.2016.12.105_bib36 article-title: Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung publication-title: J. Immunol. doi: 10.4049/jimmunol.1200689 – volume: 10 start-page: 53 issue: 1 year: 2013 ident: 10.1016/j.chemosphere.2016.12.105_bib11 article-title: Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology publication-title: Part Fibre Toxicol. doi: 10.1186/1743-8977-10-53 – volume: 187 start-page: 2261 issue: 5 year: 2011 ident: 10.1016/j.chemosphere.2016.12.105_bib40 article-title: Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration publication-title: J. Immunol. doi: 10.4049/jimmunol.1100972 – volume: 910 year: 2012 ident: 10.1016/j.chemosphere.2016.12.105_bib24 article-title: Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos publication-title: Part Fibre Toxicol. – volume: 90 start-page: 167 issue: 1 year: 2011 ident: 10.1016/j.chemosphere.2016.12.105_bib21 article-title: Chitin particles induce size-dependent but carbohydrate-independent innate eosinophilia publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1110624 – year: 2014 ident: 10.1016/j.chemosphere.2016.12.105_bib33 – volume: 86 start-page: 1021 issue: 7 year: 2012 ident: 10.1016/j.chemosphere.2016.12.105_bib22 article-title: Toxico-/biokinetics of nanomaterials publication-title: Arch. Toxicol. doi: 10.1007/s00204-012-0858-7 – volume: 64 start-page: 129 issue: 2 year: 2012 ident: 10.1016/j.chemosphere.2016.12.105_bib8 article-title: Toxicology of nanoparticles publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.09.001 – volume: 1378 year: 2014 ident: 10.1016/j.chemosphere.2016.12.105_bib16 article-title: Opportunities and challenges of nanotechnology in the green economy publication-title: Environ. Health – volume: 12 start-page: 3666 issue: 10 year: 2011 ident: 10.1016/j.chemosphere.2016.12.105_bib5 article-title: Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture publication-title: Biomacromolecules doi: 10.1021/bm200865j – volume: 252 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.chemosphere.2016.12.105_bib19 article-title: Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2011.02.001 – volume: 72 start-page: 15 issue: 1 year: 2010 ident: 10.1016/j.chemosphere.2016.12.105_bib15 article-title: Chitinase induce the release of IL-8 in human airway epithelial cells, via Ca2+-dependent PKC and ERK pathways publication-title: Scand. J. Immunol. doi: 10.1111/j.1365-3083.2010.02404.x – year: 2010 ident: 10.1016/j.chemosphere.2016.12.105_bib26 – volume: 306 start-page: L170 issue: 2 year: 2014 ident: 10.1016/j.chemosphere.2016.12.105_bib38 article-title: Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons publication-title: Am. J. Physiol. Lung Cell Mol. Physiol. doi: 10.1152/ajplung.00167.2013 – volume: 335 start-page: 1122 issue: 6072 year: 2012 ident: 10.1016/j.chemosphere.2016.12.105_bib32 article-title: Life science technologies: animal-free toxicology: sometimes, in vitro is better publication-title: Science doi: 10.1126/science.335.6072.1122 – volume: 16 start-page: 1267 issue: 4 year: 2015 ident: 10.1016/j.chemosphere.2016.12.105_bib10 article-title: Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00055 – volume: 6147 year: 2015 ident: 10.1016/j.chemosphere.2016.12.105_bib13 article-title: Airway epithelium interactions with aeroallergens: role of secreted cytokines and chemokines in innate immunity publication-title: Front. Immunol. – volume: 201135 year: 2011 ident: 10.1016/j.chemosphere.2016.12.105_bib18 article-title: Cellulose-based bio- and nanocomposites: a review publication-title: Int. J. Polym. Sci. – volume: 28 start-page: 1627 issue: 8 year: 2015 ident: 10.1016/j.chemosphere.2016.12.105_bib20 article-title: Visualization of nanofibrillar cellulose in biological tissues using a biotinylated carbohydrate binding module of beta-1,4-glycanase publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.5b00271 – volume: 116 start-page: 477 issue: 3 year: 2005 ident: 10.1016/j.chemosphere.2016.12.105_bib28 article-title: Airway remodeling contributes to the progressive loss of lung function in asthma: an overview publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2005.07.011 – volume: 10 start-page: e0127174 issue: 5 year: 2015 ident: 10.1016/j.chemosphere.2016.12.105_bib12 article-title: Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy publication-title: PLoS One doi: 10.1371/journal.pone.0127174 – volume: 15 start-page: 1914 issue: 18 year: 2015 ident: 10.1016/j.chemosphere.2016.12.105_bib17 article-title: Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026615666150506150109 – start-page: 73555 year: 2012 ident: 10.1016/j.chemosphere.2016.12.105_bib7 article-title: Evaluation of the genotoxicity of cellulose nanofibers publication-title: Int. J. Nanomedicine – volume: 1140 year: 2014 ident: 10.1016/j.chemosphere.2016.12.105_bib9 article-title: An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles publication-title: Part Fibre Toxicol. – volume: 2 start-page: 1691 issue: 7 year: 2014 ident: 10.1016/j.chemosphere.2016.12.105_bib41 article-title: In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future publication-title: ACS Sustain Chem. Eng. doi: 10.1021/sc500153k – volume: 20 start-page: 49 issue: 1 year: 2000 ident: 10.1016/j.chemosphere.2016.12.105_bib6 article-title: Pulmonary and intraperitoneal inflammation induced by cellulose fibres publication-title: J. Appl. Toxicol. doi: 10.1002/(SICI)1099-1263(200001/02)20:1<49::AID-JAT627>3.0.CO;2-L – start-page: 119162 year: 2014 ident: 10.1016/j.chemosphere.2016.12.105_bib14 article-title: Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma publication-title: Colloids Surf. B Biointerfaces – volume: 97 start-page: 163 issue: 1 year: 2007 ident: 10.1016/j.chemosphere.2016.12.105_bib37 article-title: Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfm018 – volume: 447 start-page: 92 issue: 7140 year: 2007 ident: 10.1016/j.chemosphere.2016.12.105_bib34 article-title: Chitin induces accumulation in tissue of innate immune cells associated with allergy publication-title: Nature doi: 10.1038/nature05746 – volume: 20 start-page: 2379 issue: 5 year: 2013 ident: 10.1016/j.chemosphere.2016.12.105_bib30 article-title: Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity publication-title: Cellulose doi: 10.1007/s10570-013-0019-z – volume: 89 start-page: 1191 issue: 5 year: 2011 ident: 10.1016/j.chemosphere.2016.12.105_bib29 article-title: Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.20554 – volume: 61 start-page: 457 issue: 6 year: 2009 ident: 10.1016/j.chemosphere.2016.12.105_bib1 article-title: Effects of nanomaterial physicochemical properties on in vivo toxicity publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.03.010 – volume: 40 start-page: 3941 issue: 7 year: 2011 ident: 10.1016/j.chemosphere.2016.12.105_bib23 article-title: Cellulose nanomaterials review: structure, properties and nanocomposites publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00108b – volume: 56 start-page: 171 issue: 2 year: 2015 ident: 10.1016/j.chemosphere.2016.12.105_bib3 article-title: Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro publication-title: Environ. Mol. Mutagen doi: 10.1002/em.21913 |
SSID | ssj0001659 |
Score | 2.5125341 |
Snippet | Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a... |
SourceID | swepub pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 671 |
SubjectTerms | A549 Cells carbon Cell Survival - drug effects cellulose Cellulose - toxicity chemokines chitin cluster analysis Cytokine production Cytokines - metabolism cytotoxicity Cytoxicity epithelial cells Epithelial Cells - drug effects Epithelial Cells - metabolism Humans immunomodulators inflammation Inflammation - metabolism Lung - cytology Lung epithelial cells Nanocellulose nanocrystals nanofibers Nanofibers - toxicity Nanoparticles - toxicity Oxidative stress physicochemical properties secretion staining stress response |
Title | Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation? |
URI | https://dx.doi.org/10.1016/j.chemosphere.2016.12.105 https://www.ncbi.nlm.nih.gov/pubmed/28061425 https://www.proquest.com/docview/1856590034 https://www.proquest.com/docview/2000426389 https://pubmed.ncbi.nlm.nih.gov/PMC5459363 http://kipublications.ki.se/Default.aspx?queryparsed=id:135199837 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD4sK15eRNfbeFmyIL7VbZMmTUWQZdhhVNwnF_YttGmK1bEd2o44L_52z-ll1rIKC76VJoH0nC_J1_ac7wC8TIUOtXSpp7VUJKqtPB1HmecnSeQ7dDlXlDv86Uwtz8MPF_JiD-ZjLgyFVQ57f7-nd7v1cOd4sObxuigox5fYiJDIKBCXESXxhWFEKH_96zLMI1Cyp8Ch9Kj3LTi6jPFCu3yvGsrfJ8XMQNGXwYAq2f39jLrKQa-GUk4ER7tDanEP7g7skp30D3Af9lx5ALfnY1G3A7h52qlUbx9AsaBgfwRBzX40zNZbpImkz-1YmZQVfc_frKrGsfVmhUhN6i1za8rfWCFgGTWzug-vdc0bNt-2VVv9LCxyelbVDGGLSOuzIt89hPPF6ef50hvqLngWyUXrxTLVXMjY6TS1yiUi961VMrdOcOuUSHmaOS6z2M85KbYhBctEELgol3EufSsewX5Zle4J4HRCXPSJtSkl1EmbREhA8Q0lx_4ZbrYz0KOljR1Eyak2xsqM0WdfzR9OMuQkE3BskjPgu6HrXpnjOoPeju40E5gZPEGuM_xohIBBx5Gxk9JVm8Yg7VFUgFWE_-5DWVGkj6_jGTzuYbObOf3gJlPOIJoAateBZMCnLWXxpZMDRw4cC4WmfNVDbzJkuPUNr5yht9vQf_p_NngGdzhRmy4O7znst_XGvUBi1qaH3co7hBsn7z8uz34D5mA-Cw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB7qFa0vRavWs1W3IL6FJtnsJhFBytHjatt7aqFvS7LZYPSaHElOvP_emfw4G6pQ8C1kdyCZ-bL7JZn5BuBDzAMvECa2gkBIEtWWVhD6iWVHkW8bDLkrqXb4ci5n197XG3GzBZO-FobSKru1v13Tm9W6O3PcefN4mWVU40tshAtkFIhLP3wE26ROJUawfXJ2PptvFmRHipYFe8Iigydw9CfNC11zW1RUwk-imY6kj4MONbP7-zZ1n4bez6YcaI42-9T0Gex2BJOdtPfwHLZMvgc7k76v2x48Pm2EqtcvIJtSvj_ioGQ_K6bLNTJFkug2LI_ygj7prxZFZdhytUCwRuWamSWVcCwQs4yGWdlm2JrqE5us66IufmUaaT0rSobIRbC1hZFfXsL19PRqMrO61guWRn5RW6GIA5eL0ARxrKWJeGprLUWqDXe1kTx248S4Ignt1CXRNmRhCXcc46ciTIWt-SsY5UVuXgNejofPfaR1TDV1Qkc-clB8SUlxfoLr7RiC3tNKd7rk1B5jofoEtO_qTpAUBUk5Lg6JMbgb02UrzvEQo899ONUAaQo3kYeYH_UQUBg4cnaUm2JVKWQ-knqwcu_fc6gwiiTyg3AM-y1sNldO_7jJlWPwB4DaTCAl8OFInn1rFMGRBodcois_ttAbmHSnfuCRUfSC69lv_s8H72FndnV5oS7O5ucH8NQlptOk5R3CqC5X5i3ytDp-1z2HvwGaAkC8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fibrillar+vs+Crystalline+Nanocellulose+Pulmonary+Epithelial+Cell+Responses%3A+Cytotoxicity+or+Inflammation%3F&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Menas%2C+Autumn+L.&rft.au=Yanamala%2C+Naveena&rft.au=Farcas%2C+Mariana+T.&rft.au=Russo%2C+Maria&rft.date=2017-03-01&rft.issn=0045-6535&rft.eissn=1879-1298&rft.volume=171&rft.spage=671&rft.epage=680&rft_id=info:doi/10.1016%2Fj.chemosphere.2016.12.105&rft_id=info%3Apmid%2F28061425&rft.externalDocID=PMC5459363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |