BerryPortraits: Phenotyping Of Ripening Traits in cranberry (Vaccinium macrocarpon Ait.) with YOLOv8

BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-develope...

Full description

Saved in:
Bibliographic Details
Published inPlant methods Vol. 20; no. 1; p. 172
Main Authors Loarca, Jenyne, Wiesner-Hanks, Tyr, Lopez-Moreno, Hector, Maule, Andrew F., Liou, Michael, Torres-Meraz, Maria Alejandra, Diaz-Garcia, Luis, Johnson-Cicalese, Jennifer, Neyhart, Jeffrey, Polashock, James, Sideli, Gina M., Strock, Christopher F., Beil, Craig T., Sheehan, Moira J., Iorizzo, Massimo, Atucha, Amaya, Zalapa, Juan
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 13.11.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations ( Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.
AbstractList Abstract BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.
BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations ( Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.
BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.
BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines. Keywords: Computer vision, Digital phenotyping, Image-based phenotyping, Image segmentation, Plant breeding, Pomology, Fruit quality
BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.
BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.
ArticleNumber 172
Audience Academic
Author Sideli, Gina M.
Iorizzo, Massimo
Lopez-Moreno, Hector
Torres-Meraz, Maria Alejandra
Diaz-Garcia, Luis
Liou, Michael
Neyhart, Jeffrey
Strock, Christopher F.
Loarca, Jenyne
Atucha, Amaya
Beil, Craig T.
Sheehan, Moira J.
Maule, Andrew F.
Johnson-Cicalese, Jennifer
Zalapa, Juan
Wiesner-Hanks, Tyr
Polashock, James
Author_xml – sequence: 1
  givenname: Jenyne
  orcidid: 0000-0002-3661-3795
  surname: Loarca
  fullname: Loarca, Jenyne
– sequence: 2
  givenname: Tyr
  orcidid: 0000-0002-3280-5749
  surname: Wiesner-Hanks
  fullname: Wiesner-Hanks, Tyr
– sequence: 3
  givenname: Hector
  orcidid: 0009-0002-3223-447X
  surname: Lopez-Moreno
  fullname: Lopez-Moreno, Hector
– sequence: 4
  givenname: Andrew F.
  orcidid: 0000-0002-3187-1461
  surname: Maule
  fullname: Maule, Andrew F.
– sequence: 5
  givenname: Michael
  orcidid: 0000-0002-0035-957X
  surname: Liou
  fullname: Liou, Michael
– sequence: 6
  givenname: Maria Alejandra
  surname: Torres-Meraz
  fullname: Torres-Meraz, Maria Alejandra
– sequence: 7
  givenname: Luis
  orcidid: 0000-0002-3984-5516
  surname: Diaz-Garcia
  fullname: Diaz-Garcia, Luis
– sequence: 8
  givenname: Jennifer
  surname: Johnson-Cicalese
  fullname: Johnson-Cicalese, Jennifer
– sequence: 9
  givenname: Jeffrey
  orcidid: 0000-0002-1991-5310
  surname: Neyhart
  fullname: Neyhart, Jeffrey
– sequence: 10
  givenname: James
  surname: Polashock
  fullname: Polashock, James
– sequence: 11
  givenname: Gina M.
  orcidid: 0000-0003-1056-1496
  surname: Sideli
  fullname: Sideli, Gina M.
– sequence: 12
  givenname: Christopher F.
  orcidid: 0000-0003-1432-8130
  surname: Strock
  fullname: Strock, Christopher F.
– sequence: 13
  givenname: Craig T.
  orcidid: 0000-0002-1756-9987
  surname: Beil
  fullname: Beil, Craig T.
– sequence: 14
  givenname: Moira J.
  orcidid: 0000-0002-3400-2165
  surname: Sheehan
  fullname: Sheehan, Moira J.
– sequence: 15
  givenname: Massimo
  orcidid: 0000-0002-0032-8247
  surname: Iorizzo
  fullname: Iorizzo, Massimo
– sequence: 16
  givenname: Amaya
  orcidid: 0000-0002-8921-5096
  surname: Atucha
  fullname: Atucha, Amaya
– sequence: 17
  givenname: Juan
  orcidid: 0000-0001-8840-3565
  surname: Zalapa
  fullname: Zalapa, Juan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39538304$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhleoiH7AH-CAVuLSHjZ41vauzaUKFR-RIqUqBYmTNev1Jq6ydrA3hfx7nKRUjcQB-WBr5pnXmpn3NDty3pksew1kBCCqdxEoIXVBSlYQKAUv4Fl2AjWrCiYAjp68j7PTGO8IYVDS6kV2TCWnghJ2krUfTAibax-GgHaI7_PrhXF-2Kysm-ezLr-xK-O279tdPrcu1wFds63Kz7-j1tbZdZ_3qIPXGFbe5WM7jC7yX3ZY5D9m09m9eJk973AZzauH-yz79unj7dWXYjr7PLkaTwvNORsKCVgyzSrsasFRtAQRqNRIMLUoRUob3RLRCiOENIJiJQTvmmbXfMuBnmWTvW7r8U6tgu0xbJRHq3YBH-YKw2D10iheiYp3gJxIzZqmlpzThgHUlLMaNU1al3ut1brpTauNSxNaHogeZpxdqLm_VwC8KinlSeH8QSH4n2sTB9XbqM1yic74dVQUOAMhGaX_gZZClIRImdC3e3SOqQ3rOp9-11tcjQVwKXldsUSN_kGl05re6mSjzqb4QcHFQUFiBvN7mOM6RjX5enPIvnk6mseZ_HVVAso9kDwRYzDdIwJEba2r9tZVaa9qtz0F9A_JIt0Y
Cites_doi 10.1109/MTTW56973.2022.9942550
10.3389/fpls.2018.01703
10.3389/fpls.2023.1182819
10.1109/ICCV51070.2023.00371
10.1109/ACCESS.2019.2933062
10.3390/agronomy12010085
10.1016/j.profoo.2011.09.065
10.1016/j.plantsci.2020.110415
10.3390/plants12102061
10.1016/j.compag.2023.108051
10.3732/ajb.1700044
10.3389/fpls.2021.690031
10.21105/joss.01686
10.1186/s13007-024-01196-1
10.3390/d14080608
10.1038/s41438-021-00605-z
10.17660/ActaHortic.2023.1381.14
10.1270/jsbbs.19106
10.3389/fpls.2020.00370
10.4238/gmr18646
10.1080/10408390802145377
10.1007/s00438-018-1464-z
10.3390/agronomy11081599
10.3390/rs11040410
10.1186/s13007-024-01206-2
10.3389/fpls.2023.1257707
10.2135/cropsci2013.08.0579
10.3389/fpls.2021.633310
10.1016/S0300-483X(00)00210-9
10.1371/journal.pone.0160439
10.1071/FP12019
10.1186/s13007-023-01125-8
10.5073/vitis.2021.60.1-10
10.1016/j.scienta.2017.03.005
10.3389/fpls.2024.1294570
10.1016/j.plantsci.2004.06.001
10.3389/fpls.2023.1155722/full
10.12791/KSBEC.2024.33.1.063
10.1016/j.compag.2014.05.015
10.1016/j.compag.2018.02.021
10.1016/j.compag.2018.11.012
10.1021/jf011062r
10.1007/s11042-023-16570-9
10.1016/j.foodcont.2013.02.025
10.1002/9781119616801.ch8
10.21273/JASHS.110.3.431
10.1016/j.tplants.2011.09.005
10.7717/peerj.5461
10.1186/s13007-017-0243-x
10.1007/s10681-022-02992-3
10.34133/2021/9812910
10.3389/fpls.2018.01310
10.3390/plants12142647
10.1016/j.plantsci.2017.06.004
10.1038/s41438-020-0323-3
10.3389/fpls.2024.1294570/full
10.17660/ActaHortic.2002.574.32
10.3389/fpls.2020.571299/full
10.1159/000296306
10.1007/978-1-4020-6907-9_4
10.21273/HORTSCI13219-18
10.3892/ijo.2015.2931
10.1017/S1479262119000248
10.1002/ppj2.20029
10.1038/s41438-020-0337-x
10.1002/ppp3.10275
10.3390/horticulturae9040479
10.1098/rstb.2000.0773
10.3390/plants13101385
10.1007/s11032-015-0367-5
10.3390/su11154112
10.1371/journal.pone.0222451
10.1007/978-3-031-72751-1_1
ContentType Journal Article
Copyright 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
COPYRIGHT 2024 BioMed Central Ltd.
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024
Copyright_xml – notice: 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024
DBID AAYXX
CITATION
NPM
ISR
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13007-024-01285-1
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA

CrossRef
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1746-4811
EndPage 172
ExternalDocumentID oai_doaj_org_article_56865f1a509c4bb79553b41173547ac3
PMC11562335
A815995764
39538304
10_1186_s13007_024_01285_1
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Institute of Food and Agriculture
  grantid: 2022-67012-37202
– fundername: U.S. Department of Agriculture
  grantid: 8062-21000-052-003-A
– fundername: U.S. Department of Agriculture
  grantid: USDA, 8062-21000-052-002-A
– fundername: U.S. Department of Agriculture,United States
  grantid: 8062-21000-043-004-A
– fundername: Vaccinium Coordinated Agriculture Project (VacCAP)
  grantid: 2019-51181-30015
GroupedDBID 0R~
123
29O
2WC
2XV
5VS
7X2
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ECGQY
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGH
IGS
ISR
ITC
KQ8
LK8
M0K
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
XSB
~8M
NPM
PQGLB
PMFND
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c554t-91a24c46af785a8d0aa139ca0a0249891aecd08d8e889e83a6885fbb01285d513
IEDL.DBID M48
ISSN 1746-4811
IngestDate Wed Aug 27 01:31:46 EDT 2025
Thu Aug 21 18:30:16 EDT 2025
Fri Jul 11 17:31:27 EDT 2025
Fri Jul 11 04:35:22 EDT 2025
Tue Jun 17 22:01:50 EDT 2025
Tue Jun 10 21:01:34 EDT 2025
Fri Jun 27 05:28:20 EDT 2025
Mon Jul 21 05:55:30 EDT 2025
Tue Jul 01 02:35:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Digital phenotyping
Computer vision
Image segmentation
Plant breeding
Pomology
Image-based phenotyping
Fruit quality
Language English
License 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-91a24c46af785a8d0aa139ca0a0249891aecd08d8e889e83a6885fbb01285d513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3187-1461
0000-0001-8840-3565
0000-0003-1056-1496
0000-0002-1991-5310
0000-0002-3400-2165
0000-0002-3661-3795
0000-0002-0035-957X
0000-0002-8921-5096
0000-0002-3280-5749
0000-0002-3984-5516
0009-0002-3223-447X
0000-0003-1432-8130
0000-0002-1756-9987
0000-0002-0032-8247
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13007-024-01285-1
PMID 39538304
PQID 3128820099
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_56865f1a509c4bb79553b41173547ac3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11562335
proquest_miscellaneous_3154189433
proquest_miscellaneous_3128820099
gale_infotracmisc_A815995764
gale_infotracacademiconefile_A815995764
gale_incontextgauss_ISR_A815995764
pubmed_primary_39538304
crossref_primary_10_1186_s13007_024_01285_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-13
PublicationDateYYYYMMDD 2024-11-13
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-13
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Plant methods
PublicationTitleAlternate Plant Methods
PublicationYear 2024
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References S Matiacevich (1285_CR50) 2013; 2013
S Nagamatsu (1285_CR45) 2021; 71
H Lopez-Moreno (1285_CR12) 2023; 9
M Junior (1285_CR36) 2020
KMF James (1285_CR31) 2022; 4
1285_CR66
A Hayashi (1285_CR48) 2017; 16
AF Maule (1285_CR58) 2024
1285_CR67
1285_CR68
1285_CR69
L Diaz-Garcia (1285_CR10) 2018; 6
C Kim (1285_CR33) 2023
1285_CR21
AM Abebe (1285_CR30) 2023; 12
IL Goldman (1285_CR2) 2023; 14
G Van Der Heijden (1285_CR19) 2012; 39
M Afonso (1285_CR18) 2020
B Schlautman (1285_CR61) 2015; 35
H Koo (1285_CR78) 2010; 44
KW Owens (1285_CR11) 1985; 110
L Diaz-Garcia (1285_CR13) 2019; 14
MF Mengist (1285_CR55) 2021; 8
BC Regan (1285_CR1) 2001; 356
X Ni (1285_CR23) 2020; 7
Y Wang (1285_CR84) 2015; 46
R Core Team (1285_CR72) 2021
MJ Feldmann (1285_CR37) 2022; 5
B Li (1285_CR47) 2020; 7
LM Dang (1285_CR16) 2023; 12
TM Chizk (1285_CR42) 2023; 14
S Matiacevich (1285_CR51) 2011; 1
JF Hancock (1285_CR75) 2008
H Wickham (1285_CR73) 2019; 4
MF Mengist (1285_CR54) 2020; 11
LM Zingaretti (1285_CR44) 2021
RK Gallardo (1285_CR77) 2018; 53
S Arya (1285_CR15) 2022; 218
B Schlautman (1285_CR62) 2017; 219
(1285_CR7) 2012
SH Brainard (1285_CR34) 2021; 12
RT Furbank (1285_CR3) 2011; 16
(1285_CR74) 2007
N Vorsa (1285_CR76) 2002; 574
N Vorsa (1285_CR9) 2019
D Bagchi (1285_CR80) 2000; 148
P Bouillon (1285_CR38) 2024; 20
AF Maule (1285_CR65) 2024; 15
A Aquino (1285_CR25) 2018; 148
B Schlautman (1285_CR57) 2020; 295
Y Ampatzidis (1285_CR20) 2019; 11
L Diaz-Garcia (1285_CR64) 2021; 12
N Morales (1285_CR59) 2022; 12
M Ariza-Sentís (1285_CR26) 2023; 211
E Pappas (1285_CR81) 2009; 49
B Wang (1285_CR6) 2024; 13
B Xiao (1285_CR40) 2024; 83
B Basile (1285_CR5) 2022; 14
H Fonteijn (1285_CR17) 2021; 11
H Li (1285_CR22) 2014; 106
1285_CR39
S Strautiņa (1285_CR43) 2023; 1381
JQ He (1285_CR46) 2017; 13
P Barré (1285_CR53) 2019; 156
G Covarrubias-Pazaran (1285_CR63) 2018; 9
TW Rife (1285_CR60) 2014; 54
R Manco (1285_CR4) 2019; 11
SD Turner (1285_CR35) 2018; 9
GA Leiva-Valenzuela (1285_CR49) 2013; 33
L Diaz-Garcia (1285_CR41) 2016; 11
S Reinert (1285_CR56) 2019; 17
IO Vvedenskaya (1285_CR82) 2004; 167
B Daviet (1285_CR27) 2023; 19
1285_CR32
T Haucke (1285_CR28) 2021
1285_CR70
1285_CR71
S Yoon (1285_CR29) 2024; 33
B Park (1285_CR52) 2022; 12
RA Moyer (1285_CR79) 2002; 50
MA Gehan (1285_CR14) 2017; 104
Y Wang (1285_CR83) 2017; 262
S Gonzalez (1285_CR24) 2019; 7
L Diaz-Garcia (1285_CR8) 2018; 293
39773656 - Plant Methods. 2025 Jan 7;21(1):3. doi: 10.1186/s13007-025-01323-6.
References_xml – ident: 1285_CR21
  doi: 10.1109/MTTW56973.2022.9942550
– volume: 9
  start-page: 1703
  year: 2018
  ident: 1285_CR35
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01703
– volume: 14
  start-page: 1182819
  year: 2023
  ident: 1285_CR42
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2023.1182819
– ident: 1285_CR70
  doi: 10.1109/ICCV51070.2023.00371
– volume-title: Color: an introduction to practice and principles
  year: 2012
  ident: 1285_CR7
– volume: 2013
  issue: 1
  year: 2013
  ident: 1285_CR50
  publication-title: Int J Food Sci
– volume: 7
  start-page: 105776
  year: 2019
  ident: 1285_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933062
– volume: 12
  start-page: 85
  issue: 1
  year: 2022
  ident: 1285_CR52
  publication-title: Agronomy
  doi: 10.3390/agronomy12010085
– volume: 1
  start-page: 421
  year: 2011
  ident: 1285_CR51
  publication-title: Procedia Food Science
  doi: 10.1016/j.profoo.2011.09.065
– volume: 295
  year: 2020
  ident: 1285_CR57
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2020.110415
– volume: 12
  start-page: 2061
  issue: 10
  year: 2023
  ident: 1285_CR30
  publication-title: Plants
  doi: 10.3390/plants12102061
– volume: 211
  year: 2023
  ident: 1285_CR26
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2023.108051
– volume: 104
  start-page: 505
  issue: 4
  year: 2017
  ident: 1285_CR14
  publication-title: Am J Bot
  doi: 10.3732/ajb.1700044
– volume: 12
  year: 2021
  ident: 1285_CR34
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.690031
– volume: 4
  start-page: 1686
  issue: 43
  year: 2019
  ident: 1285_CR73
  publication-title: J Open Sour Softw
  doi: 10.21105/joss.01686
– volume: 20
  start-page: 71
  issue: 1
  year: 2024
  ident: 1285_CR38
  publication-title: Plant Methods
  doi: 10.1186/s13007-024-01196-1
– volume: 14
  start-page: 608
  issue: 8
  year: 2022
  ident: 1285_CR5
  publication-title: Diversity
  doi: 10.3390/d14080608
– volume: 8
  start-page: 169
  issue: 1
  year: 2021
  ident: 1285_CR55
  publication-title: Hortic Res
  doi: 10.1038/s41438-021-00605-z
– volume: 1381
  start-page: 101
  year: 2023
  ident: 1285_CR43
  publication-title: Acta Hortic
  doi: 10.17660/ActaHortic.2023.1381.14
– volume: 71
  start-page: 167
  issue: 2
  year: 2021
  ident: 1285_CR45
  publication-title: Breed Sci
  doi: 10.1270/jsbbs.19106
– volume: 11
  start-page: 370
  year: 2020
  ident: 1285_CR54
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.00370
– year: 2020
  ident: 1285_CR36
  publication-title: Genet Mol Res
  doi: 10.4238/gmr18646
– ident: 1285_CR71
– volume: 49
  start-page: 741
  issue: 9
  year: 2009
  ident: 1285_CR81
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408390802145377
– volume: 293
  start-page: 1379
  issue: 6
  year: 2018
  ident: 1285_CR8
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-018-1464-z
– volume: 11
  start-page: 1599
  issue: 8
  year: 2021
  ident: 1285_CR17
  publication-title: Agronomy
  doi: 10.3390/agronomy11081599
– volume: 11
  start-page: 410
  issue: 4
  year: 2019
  ident: 1285_CR20
  publication-title: Remote Sensing
  doi: 10.3390/rs11040410
– ident: 1285_CR39
  doi: 10.1186/s13007-024-01206-2
– volume: 14
  start-page: 1257707
  year: 2023
  ident: 1285_CR2
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2023.1257707
– volume: 54
  start-page: 1624
  issue: 4
  year: 2014
  ident: 1285_CR60
  publication-title: Crop Sci
  doi: 10.2135/cropsci2013.08.0579
– volume: 12
  year: 2021
  ident: 1285_CR64
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.633310
– volume: 148
  start-page: 187
  issue: 2
  year: 2000
  ident: 1285_CR80
  publication-title: Toxicology
  doi: 10.1016/S0300-483X(00)00210-9
– volume: 11
  issue: 8
  year: 2016
  ident: 1285_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0160439
– volume: 39
  start-page: 870
  issue: 11
  year: 2012
  ident: 1285_CR19
  publication-title: Functional Plant Biol
  doi: 10.1071/FP12019
– volume: 19
  start-page: 146
  issue: 1
  year: 2023
  ident: 1285_CR27
  publication-title: Plant Methods
  doi: 10.1186/s13007-023-01125-8
– year: 2021
  ident: 1285_CR28
  publication-title: VITIS J Grapevine Res
  doi: 10.5073/vitis.2021.60.1-10
– volume: 219
  start-page: 280
  year: 2017
  ident: 1285_CR62
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2017.03.005
– volume: 15
  start-page: 1294570
  year: 2024
  ident: 1285_CR65
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2024.1294570
– volume: 167
  start-page: 1043
  issue: 5
  year: 2004
  ident: 1285_CR82
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2004.06.001
– year: 2023
  ident: 1285_CR33
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2023.1155722/full
– volume: 33
  start-page: 63
  issue: 1
  year: 2024
  ident: 1285_CR29
  publication-title: J Bio-Env Con
  doi: 10.12791/KSBEC.2024.33.1.063
– volume: 106
  start-page: 91
  year: 2014
  ident: 1285_CR22
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2014.05.015
– volume: 148
  start-page: 19
  year: 2018
  ident: 1285_CR25
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.02.021
– ident: 1285_CR68
– volume: 156
  start-page: 263
  year: 2019
  ident: 1285_CR53
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.11.012
– volume: 12
  start-page: 078
  issue: 7
  year: 2022
  ident: 1285_CR59
  publication-title: G3 Genes Genomes Genet
– volume-title: Colorimetry: understanding the CIE system
  year: 2007
  ident: 1285_CR74
– volume: 50
  start-page: 519
  issue: 3
  year: 2002
  ident: 1285_CR79
  publication-title: J Agric Food Chem
  doi: 10.1021/jf011062r
– volume: 83
  start-page: 28039
  issue: 9
  year: 2024
  ident: 1285_CR40
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-16570-9
– volume: 33
  start-page: 166
  issue: 1
  year: 2013
  ident: 1285_CR49
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2013.02.025
– start-page: 279
  volume-title: Plant breeding reviews
  year: 2019
  ident: 1285_CR9
  doi: 10.1002/9781119616801.ch8
– volume: 110
  start-page: 431
  issue: 3
  year: 1985
  ident: 1285_CR11
  publication-title: J Amer Soc Hort Sci
  doi: 10.21273/JASHS.110.3.431
– volume: 16
  start-page: 635
  issue: 12
  year: 2011
  ident: 1285_CR3
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2011.09.005
– volume: 6
  year: 2018
  ident: 1285_CR10
  publication-title: PeerJ
  doi: 10.7717/peerj.5461
– volume: 13
  start-page: 93
  issue: 1
  year: 2017
  ident: 1285_CR46
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0243-x
– ident: 1285_CR32
– volume: 218
  start-page: 47
  issue: 4
  year: 2022
  ident: 1285_CR15
  publication-title: Euphytica
  doi: 10.1007/s10681-022-02992-3
– year: 2021
  ident: 1285_CR44
  publication-title: Plant Phenomics
  doi: 10.34133/2021/9812910
– volume: 9
  start-page: 1310
  year: 2018
  ident: 1285_CR63
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01310
– volume: 12
  start-page: 2647
  issue: 14
  year: 2023
  ident: 1285_CR16
  publication-title: Plants
  doi: 10.3390/plants12142647
– volume: 262
  start-page: 91
  year: 2017
  ident: 1285_CR83
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2017.06.004
– ident: 1285_CR69
– volume: 7
  start-page: 110
  issue: 1
  year: 2020
  ident: 1285_CR23
  publication-title: Hortic Res
  doi: 10.1038/s41438-020-0323-3
– year: 2024
  ident: 1285_CR58
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2024.1294570/full
– volume: 574
  start-page: 215
  year: 2002
  ident: 1285_CR76
  publication-title: Acta Hortic
  doi: 10.17660/ActaHortic.2002.574.32
– year: 2020
  ident: 1285_CR18
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.571299/full
– volume: 44
  start-page: 116
  issue: 2
  year: 2010
  ident: 1285_CR78
  publication-title: Caries Res
  doi: 10.1159/000296306
– start-page: 115
  volume-title: Temperate fruit crop breeding
  year: 2008
  ident: 1285_CR75
  doi: 10.1007/978-1-4020-6907-9_4
– volume-title: R: a language and environment for statistical computing [computer software]
  year: 2021
  ident: 1285_CR72
– volume: 53
  start-page: 1467
  issue: 10
  year: 2018
  ident: 1285_CR77
  publication-title: Horts
  doi: 10.21273/HORTSCI13219-18
– volume: 46
  start-page: 1924
  issue: 5
  year: 2015
  ident: 1285_CR84
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2015.2931
– volume: 17
  start-page: 427
  issue: 5
  year: 2019
  ident: 1285_CR56
  publication-title: Plant Genet Resour
  doi: 10.1017/S1479262119000248
– volume: 5
  issue: 1
  year: 2022
  ident: 1285_CR37
  publication-title: Plant Phenome J
  doi: 10.1002/ppj2.20029
– volume: 7
  start-page: 115
  issue: 1
  year: 2020
  ident: 1285_CR47
  publication-title: Hortic Res
  doi: 10.1038/s41438-020-0337-x
– volume: 4
  start-page: 432
  issue: 5
  year: 2022
  ident: 1285_CR31
  publication-title: Plants People Planet
  doi: 10.1002/ppp3.10275
– volume: 9
  start-page: 479
  issue: 4
  year: 2023
  ident: 1285_CR12
  publication-title: Horticulturae
  doi: 10.3390/horticulturae9040479
– volume: 16
  start-page: 446
  issue: Suppl 1
  year: 2017
  ident: 1285_CR48
  publication-title: Hort J
– volume: 356
  start-page: 229
  issue: 1407
  year: 2001
  ident: 1285_CR1
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2000.0773
– volume: 13
  start-page: 1385
  issue: 10
  year: 2024
  ident: 1285_CR6
  publication-title: Plants
  doi: 10.3390/plants13101385
– volume: 35
  start-page: 177
  issue: 8
  year: 2015
  ident: 1285_CR61
  publication-title: Mol Breeding
  doi: 10.1007/s11032-015-0367-5
– ident: 1285_CR66
– volume: 11
  start-page: 4112
  issue: 15
  year: 2019
  ident: 1285_CR4
  publication-title: Sustainability
  doi: 10.3390/su11154112
– volume: 14
  issue: 9
  year: 2019
  ident: 1285_CR13
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0222451
– ident: 1285_CR67
  doi: 10.1007/978-3-031-72751-1_1
– reference: 39773656 - Plant Methods. 2025 Jan 7;21(1):3. doi: 10.1186/s13007-025-01323-6.
SSID ssj0041236
Score 2.379636
Snippet BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts...
BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts...
Abstract BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 172
SubjectTerms Analysis
blueberries
color
color vision
computer software
Computer vision
Cranberries
Digital phenotyping
fruit quality
Genetic aspects
grapes
Growth
horticulture
image analysis
Image processing
Image segmentation
Image-based phenotyping
Machine vision
morphometry
Phenotype
Plant breeding
Plant genetics
plant pathology
Plant physiology
Pomology
Python (Programming language)
Software
Vaccinium macrocarpon
Vaccinium vitis-idaea
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMXBOW1pSCDkACh0Hj9yCy3XURVELCotKicLNtxaA5Nqk0Waf89M8lutRESXLhmJok9Y3s-2-PPjD3PU-Vi8CopINWJ8qATH4RPClWMTchCYbqrEz5_Mcdn6uO5Pt-66otywnp64N5wh9qA0YVwGNiC8j6baC29EiKTWmUudDyfGPM2k6l-DFbEKbI5IgPmsKFNmyzBeJTQgKwTMQhDHVv_n2PyVlAaJkxuRaCj2-zWGjryaV_kO-xGrPbY7qxGeLe6y_JZXCxWlBi6cGXbvOVfL2JVtys6D8XnBT8pryKtgfDTTs7LigeMU57e4i-_uxDKqlxe8kuHJaZdmbri07J984rTUi3_Mf80_wX32NnR-9N3x8n6CoUkIE5ocShzYxWUcUUG2kGeOoeQL7jUEVUgoDiGPIUcIsAkgnQGQBfed1bKtZD32U5VV_Eh4_iCyxUIIXVUOWSIYwwgejTO4aQtiBF7vbGoveqZMmw3wwBje_tb_ITtvmxRe0ZGv9YkluvuAfrern1v_-X7EXtGLrPEY1FRosxPt2wa--HbiZ2CICq1zKgRe7FWKmr0QHDrcwdYK6K-GmgeDDSxo4WB-OmmZVgSUXZaFetlYyXWCWibafI3Ha0Ekd1jqR_0rem68nKCYUem-AcYtLOBdYaSqrzouMAR0COAlXr_f9jzEbs5pj5CWY7ygO20i2V8jJir9U-67vUbkjglIA
  priority: 102
  providerName: Directory of Open Access Journals
Title BerryPortraits: Phenotyping Of Ripening Traits in cranberry (Vaccinium macrocarpon Ait.) with YOLOv8
URI https://www.ncbi.nlm.nih.gov/pubmed/39538304
https://www.proquest.com/docview/3128820099
https://www.proquest.com/docview/3154189433
https://pubmed.ncbi.nlm.nih.gov/PMC11562335
https://doaj.org/article/56865f1a509c4bb79553b41173547ac3
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGxgMviG8KozIICRDKSOqPuEgItWjTQGydyjYVXizHcbZILIEkRfS_585Nq0VMiJcoyl2c-OLz_RyffybkeRpy42zCg0yFIuCJEkFioyTIeDaQNraZ9FsnHBzK_RP-aSZmG2S13VFrwPrKoR3uJ3VSfd_5_XPxHhz-nXd4Jd_UOCUTBxBtAuxuRQCjoS2ITDE66gFfzypwZBpZLpCUAVdRtFpEc2UZnUDl-fz_7rUvha1uSuWlGLV3i9xswSUdLVvDbbLhijvk-rgEALi4S9Kxq6oFpo5WJm_qt_To3BVls8AVU3SS0WkONcfzYy-neUEtRLIE76IvT421eZHPL-iFgTfGeZuyoKO82XlF8Wcu_Tr5PPml7pGTvd3jD_tBu8lCYAFJNNDZmQG3XJosVsKoNDQGQKE1oUEyQQViZ9NQpcopNXSKGamUyJLEWykVEbtPNouycA8JhRtMinZlwvFUxYB0pAJ8KY2BYZ2NeuT1yqL6x5JLQ_sxiJJ6aX8NRWhfsgbtMRp9rYk82P5CWZ3p1q20kEqKLDIAeyxPkngoBEt4FMVM8NhY1iPP8JNpZLooMJXmzMzrWn_8MtUjFSHZWix5j7xolbISvoA17coEqBWSY3U0tzua4Iq2I366ahkaRZi_VrhyXmsGdVI4ETX8l47gEdLhw1s_WLamdeXZEAITC-EJqtPOOtbpSor83LOFA-QHiMvEo_948GNyY4AugGmObJtsNtXcPQHQ1SR9ci2exX2yNd49PJr2_a-LvvcuOE7H3_4AGOUpjA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BerryPortraits%3A+Phenotyping+Of+Ripening+Traits+in+cranberry+%28Vaccinium+macrocarpon+Ait.%29+with+YOLOv8&rft.jtitle=Plant+methods&rft.au=Loarca%2C+Jenyne&rft.au=Wiesner-Hanks%2C+Tyr&rft.au=Lopez-Moreno%2C+Hector&rft.au=Maule%2C+Andrew+F.&rft.date=2024-11-13&rft.issn=1746-4811&rft.eissn=1746-4811&rft.volume=20+p.172-&rft.spage=172&rft.epage=172&rft_id=info:doi/10.1186%2Fs13007-024-01285-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-4811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-4811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-4811&client=summon