Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis
Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease v...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 14; pp. 5777 - 5782 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
05.04.2011
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication. |
---|---|
AbstractList | Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication. Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication.Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication. Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication. [PUBLICATION ABSTRACT] |
Author | Hoffmann, Hans-Heinrich Kunz, Andrea Palese, Peter Simon, Viviana A Shaw, Megan L |
Author_xml | – sequence: 1 fullname: Hoffmann, Hans-Heinrich – sequence: 2 fullname: Kunz, Andrea – sequence: 3 fullname: Simon, Viviana A – sequence: 4 fullname: Palese, Peter – sequence: 5 fullname: Shaw, Megan L |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21436031$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1vEzEQxS1URNPCmROw4gKXbWfW3rV9QYKKL6mIA_Rseb3exlFip7YTlP8eRwkJ9FBOPsxvnt_MvDNy4oO3hDxHuEDg9HLpdbpABERGEcQjMkGQWHdMwgmZADS8Fqxhp-QspRkAyFbAE3LaFLwDihPy7UMMeqjT0pocV4tK--zWLup5lac6V85nG0cbbap-uTytBlv5sA7VchPdwg3O26p3IW18ntrk0lPyeNTzZJ_t33Ny8-njz6sv9fX3z1-v3l_Xpm1ZrkXTaW5G3g2UStEPFsexN2ilZVLqhsmeGs6sHSSWsh6gGa2hrBssZ0YIQ8_Ju53uctUv7GCsz8WyWhZTOm5U0E79W_Fuqm7DWlHgggEUgTd7gRjuVjZltXDJ2PlcextWSUlgjLdCdP8lRQdCNJyKQr59kESBXNCOoizo63voLKyiLysreshQCGgL9PLvIQ_T_TleAS53gIkhpWjHA4KgtvFQ23ioYzxKR3uvw7isswvbLbn5A32v9la2heMvQiFTLee8EC92xCzlEA8IQ2xaBs1RYdRB6dvokrr50QB2ACiRc6C_AXPu3Ok |
CitedBy_id | crossref_primary_10_1016_j_chembiol_2013_02_011 crossref_primary_10_1128_mBio_03472_20 crossref_primary_10_1007_s10593_017_2078_9 crossref_primary_10_1021_acs_jmedchem_9b00091 crossref_primary_10_1038_s44298_024_00031_7 crossref_primary_10_2174_1871520621666210623111744 crossref_primary_10_1371_journal_pone_0094491 crossref_primary_10_1038_s41426_018_0191_1 crossref_primary_10_1128_JVI_01980_15 crossref_primary_10_1002_jhet_4061 crossref_primary_10_1093_nsr_nwad161 crossref_primary_10_2174_0929867329666220610211441 crossref_primary_10_1038_nchembio_2050 crossref_primary_10_1371_journal_pone_0049049 crossref_primary_10_1016_j_chembiol_2020_05_002 crossref_primary_10_1128_jvi_00494_24 crossref_primary_10_1016_j_coviro_2016_09_003 crossref_primary_10_2217_nnm_11_186 crossref_primary_10_1021_jm300630p crossref_primary_10_1128_AAC_00766_18 crossref_primary_10_3390_metabo12010068 crossref_primary_10_1128_AAC_00383_17 crossref_primary_10_1016_j_copbio_2017_03_010 crossref_primary_10_1007_s40265_015_0401_2 crossref_primary_10_1021_acs_jmedchem_5b00606 crossref_primary_10_3389_fimmu_2024_1432743 crossref_primary_10_3390_v5071824 crossref_primary_10_1371_journal_pone_0082318 crossref_primary_10_1111_ene_14578 crossref_primary_10_1016_j_rechem_2024_101450 crossref_primary_10_3390_ijms24021521 crossref_primary_10_1016_j_antiviral_2017_12_019 crossref_primary_10_1016_j_tips_2014_06_004 crossref_primary_10_1016_j_molstruc_2022_134848 crossref_primary_10_1016_j_antiviral_2019_104667 crossref_primary_10_3851_IMP2105 crossref_primary_10_1016_j_virol_2014_12_006 crossref_primary_10_3390_v12121394 crossref_primary_10_1002_cmdc_202000464 crossref_primary_10_1186_s40199_015_0125_6 crossref_primary_10_3390_v8070179 crossref_primary_10_1128_JVI_00941_17 crossref_primary_10_1016_j_drudis_2019_01_018 crossref_primary_10_1158_1535_7163_MCT_18_0863 crossref_primary_10_1002_ddr_21640 crossref_primary_10_1128_JVI_01258_12 crossref_primary_10_2174_1389201021666200611113734 crossref_primary_10_1016_j_virusres_2023_199248 crossref_primary_10_15252_emmm_201809528 crossref_primary_10_1080_00397911_2023_2287796 crossref_primary_10_1128_JVI_02346_12 crossref_primary_10_1002_slct_202103552 crossref_primary_10_1021_acsinfecdis_9b00416 crossref_primary_10_3390_v10040211 crossref_primary_10_1016_j_bbagen_2023_130378 crossref_primary_10_1038_nrd_2017_33 crossref_primary_10_1128_AAC_00125_11 crossref_primary_10_1016_j_vetmic_2021_109316 crossref_primary_10_1128_JVI_02275_13 crossref_primary_10_1016_j_antiviral_2016_07_019 crossref_primary_10_1371_journal_ppat_1002668 crossref_primary_10_1007_s10875_011_9578_7 crossref_primary_10_1038_nchembio_645 crossref_primary_10_2174_1871520622666220513154744 crossref_primary_10_1016_j_bioorg_2023_107027 crossref_primary_10_1016_j_virusres_2022_198826 crossref_primary_10_1016_j_ejmech_2025_117348 crossref_primary_10_1021_id500022h crossref_primary_10_1128_msystems_00353_22 crossref_primary_10_1038_s41467_018_03441_3 crossref_primary_10_1016_j_bmcl_2012_09_084 crossref_primary_10_1016_j_jviromet_2016_10_017 crossref_primary_10_1099_vir_0_043406_0 crossref_primary_10_1128_AAC_02700_15 crossref_primary_10_1093_molbev_msac177 crossref_primary_10_1099_jgv_0_000758 crossref_primary_10_1111_eci_13366 crossref_primary_10_1038_s41467_018_06000_y crossref_primary_10_1165_rcmb_2012_0112OC crossref_primary_10_1016_j_coviro_2020_07_009 crossref_primary_10_1016_j_antiviral_2013_06_005 crossref_primary_10_1016_j_virol_2015_06_014 crossref_primary_10_1021_acsomega_3c07845 crossref_primary_10_1016_j_antiviral_2018_08_012 crossref_primary_10_1096_fj_201902793RR crossref_primary_10_3390_microorganisms10081631 crossref_primary_10_3389_fmicb_2023_1266972 crossref_primary_10_3390_v16010035 crossref_primary_10_1021_jm501446r crossref_primary_10_1016_j_ejmech_2023_116069 crossref_primary_10_1016_j_antiviral_2015_11_006 crossref_primary_10_3390_v15040903 crossref_primary_10_1021_acs_biochem_5b00623 crossref_primary_10_1128_aac_01703_22 crossref_primary_10_4103_jpbs_jpbs_311_22 crossref_primary_10_1002_cbic_202200475 crossref_primary_10_1016_j_antiviral_2013_03_020 crossref_primary_10_3390_microorganisms7090296 crossref_primary_10_1016_j_antiviral_2025_106099 crossref_primary_10_1128_AAC_00888_16 crossref_primary_10_1016_j_antiviral_2018_08_004 crossref_primary_10_1099_jgv_0_001534 crossref_primary_10_1111_tra_12137 crossref_primary_10_1080_21505594_2021_1903198 crossref_primary_10_1128_JVI_01425_13 crossref_primary_10_1155_2018_5906819 crossref_primary_10_1186_s13073_018_0570_1 crossref_primary_10_1051_medsci_2023125 crossref_primary_10_1186_s13567_023_01251_0 crossref_primary_10_1016_j_bioorg_2024_107249 crossref_primary_10_1016_j_ejmech_2019_111681 crossref_primary_10_3389_fmicb_2015_00517 crossref_primary_10_1021_jm300157n crossref_primary_10_3390_v14050928 crossref_primary_10_1371_journal_ppat_1003297 crossref_primary_10_1016_j_antiviral_2016_11_018 crossref_primary_10_18632_oncotarget_17863 crossref_primary_10_1016_j_coviro_2021_06_004 crossref_primary_10_1016_j_fsi_2016_01_035 crossref_primary_10_18632_oncotarget_19199 crossref_primary_10_1128_CMR_00168_19 crossref_primary_10_1002_med_21401 crossref_primary_10_1016_j_abb_2017_06_019 crossref_primary_10_2217_fmb_11_80 crossref_primary_10_1111_apt_13633 crossref_primary_10_1124_mol_112_082321 crossref_primary_10_1016_j_bbabio_2022_148948 crossref_primary_10_1002_ardp_202200217 crossref_primary_10_1083_jcb_201107058 crossref_primary_10_1128_AAC_01219_12 crossref_primary_10_2174_1573413714666180808163714 crossref_primary_10_3390_genes12060796 crossref_primary_10_3390_ijms23105557 crossref_primary_10_1007_s11030_020_10048_8 crossref_primary_10_1007_s13238_020_00768_w crossref_primary_10_1177_2040206620976786 crossref_primary_10_1016_j_isci_2022_104293 crossref_primary_10_1016_j_ejmech_2019_111855 crossref_primary_10_3389_fimmu_2021_694300 crossref_primary_10_3390_v12080821 crossref_primary_10_1016_j_vetmic_2021_109186 crossref_primary_10_3390_molecules26071838 crossref_primary_10_1371_journal_ppat_1012782 crossref_primary_10_1371_journal_pone_0111331 crossref_primary_10_1021_acs_biochem_2c00451 crossref_primary_10_1021_acs_jmedchem_1c01711 crossref_primary_10_1051_medsci_20153101019 crossref_primary_10_1016_j_bbrc_2023_08_021 crossref_primary_10_1177_2040206618811416 crossref_primary_10_3390_pathogens8030144 crossref_primary_10_1016_j_virol_2024_110239 crossref_primary_10_1371_journal_ppat_1003678 crossref_primary_10_1016_j_antiviral_2013_07_018 crossref_primary_10_1016_j_antiviral_2019_04_005 crossref_primary_10_1093_bib_bbaa379 crossref_primary_10_1016_j_gene_2016_02_006 crossref_primary_10_1016_j_rechem_2024_101938 crossref_primary_10_1016_j_antiviral_2017_07_016 crossref_primary_10_1016_j_antiviral_2022_105291 crossref_primary_10_1007_s00018_014_1615_2 crossref_primary_10_1128_AAC_00282_16 crossref_primary_10_1016_j_jconrel_2018_02_012 crossref_primary_10_1021_ml300464h crossref_primary_10_1080_19390211_2021_2006387 crossref_primary_10_1128_JVI_01348_12 crossref_primary_10_1128_JVI_00996_21 crossref_primary_10_1016_j_tips_2011_10_004 crossref_primary_10_1021_jm301848w crossref_primary_10_1002_ddr_21499 crossref_primary_10_1016_j_apsb_2021_08_017 crossref_primary_10_1021_acs_jmedchem_0c01039 crossref_primary_10_1080_22297928_2019_1699857 crossref_primary_10_3390_ijms24087448 crossref_primary_10_52711_0974_360X_2021_00480 crossref_primary_10_1073_pnas_1415864111 crossref_primary_10_3389_fimmu_2022_1033314 crossref_primary_10_2147_DDDT_S228381 crossref_primary_10_1016_j_ejmech_2024_116442 crossref_primary_10_3390_v8070197 crossref_primary_10_3389_fped_2024_1456250 crossref_primary_10_2217_fvl_12_88 crossref_primary_10_1038_s41598_021_91069_7 crossref_primary_10_1016_j_virol_2020_06_009 crossref_primary_10_1016_j_virusres_2023_199105 crossref_primary_10_1586_eri_12_104 |
Cites_doi | 10.1038/82191 10.1016/S0140-6736(05)67338-2 10.1128/AAC.46.4.977-981.2002 10.1002/hep.22550 10.1073/pnas.0909587107 10.1016/j.antiviral.2004.03.007 10.1073/pnas.0710190105 10.1074/jbc.R400007200 10.1126/science.177.4050.705 10.1038/nature08699 10.1128/AAC.00356-07 10.1097/00007890-200101150-00031 10.1016/j.antiviral.2008.05.008 10.1001/jama.295.8.joc60020 10.1016/S0969-2126(00)00077-0 10.1073/pnas.1010026107 10.1016/S0162-3109(00)00191-0 10.1002/hep.510260719 10.1159/000053979 10.1016/S0079-6603(08)60142-7 10.1128/AAC.32.4.492 10.1007/s10038-007-0129-2 10.1016/j.antiviral.2009.02.198 10.1097/00007890-199909270-00014 10.1016/0006-2952(95)00255-X 10.1073/pnas.70.4.1174 10.1073/pnas.0909603107 10.1128/JVI.79.3.1943-1947.2005 10.1128/AAC.00561-10 10.1021/bi001810q 10.1016/S0006-2952(98)00145-2 10.1128/JVI.01665-08 |
ContentType | Journal Article |
Copyright | Copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Apr 5, 2011 |
Copyright_xml | – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Apr 5, 2011 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1101143108 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA AIDS and Cancer Research Abstracts Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 5782 |
ExternalDocumentID | PMC3078400 2317589231 21436031 10_1073_pnas_1101143108 108_14_5777 41125402 US201600191770 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U01 AI1074539 – fundername: NIAID NIH HHS grantid: R21 AI083673 – fundername: NIAID NIH HHS grantid: R01 AI089246 – fundername: NIAID NIH HHS grantid: R01 AI064001 – fundername: NIAID NIH HHS grantid: AI089246 – fundername: NIAID NIH HHS grantid: R21AI083673 – fundername: NIAID NIH HHS grantid: AI064001-06 – fundername: NIAID NIH HHS grantid: U54 AI057158 – fundername: NIAID NIH HHS grantid: HHSN272200900032C |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c554t-826a7cf76d3398bde1ffbc1e9e499a249b3c74eed9198bad02fec346de74c88c3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:11:55 EDT 2025 Fri Jul 11 04:44:17 EDT 2025 Fri Jul 11 02:53:21 EDT 2025 Fri Jul 11 03:33:21 EDT 2025 Sat Aug 23 13:12:57 EDT 2025 Wed Feb 19 01:53:51 EST 2025 Thu Apr 24 22:54:28 EDT 2025 Tue Jul 01 00:47:07 EDT 2025 Wed Nov 11 00:29:32 EST 2020 Thu May 29 08:40:51 EDT 2025 Thu Apr 03 09:40:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c554t-826a7cf76d3398bde1ffbc1e9e499a249b3c74eed9198bad02fec346de74c88c3 |
Notes | http://dx.doi.org/10.1073/pnas.1101143108 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Edited by Thomas E. Shenk, Princeton University, Princeton, NJ, and approved February 25, 2011 (received for review February 4, 2011) Author contributions: H.-H.H., P.P., and M.L.S. designed research; H.-H.H. and A.K. performed research; A.K. and V.A.S. contributed new reagents/analytic tools; H.-H.H., A.K., V.A.S., P.P., and M.L.S. analyzed data; and H.-H.H., V.A.S., and M.L.S. wrote the paper. 1Present address: Institute of Tropical Medicine and International Health, Charité, University Medicine Berlin, Berlin 14050, Germany. |
OpenAccessLink | https://www.pnas.org/doi/pdf/10.1073/pnas.1101143108 |
PMID | 21436031 |
PQID | 861418805 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_108_14_5777 proquest_miscellaneous_904475886 pubmed_primary_21436031 jstor_primary_41125402 fao_agris_US201600191770 proquest_journals_861418805 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3078400 proquest_miscellaneous_1817836319 crossref_primary_10_1073_pnas_1101143108 crossref_citationtrail_10_1073_pnas_1101143108 proquest_miscellaneous_860882738 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-04-05 |
PublicationDateYYYYMMDD | 2011-04-05 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 15096496 - J Biol Chem. 2004 Aug 6;279(32):33035-8 15650220 - J Virol. 2005 Feb;79(3):1943-7 2837139 - Antimicrob Agents Chemother. 1988 Apr;32(4):492-7 4197928 - Proc Natl Acad Sci U S A. 1973 Apr;70(4):1174-8 10878294 - Immunopharmacology. 2000 May;47(2-3):273-89 20823220 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17339-44 16456087 - JAMA. 2006 Feb 22;295(8):891-4 18945781 - J Virol. 2009 Jan;83(1):295-303 18585796 - Antiviral Res. 2008 Nov;80(2):124-34 19003912 - Hepatology. 2008 Dec;48(6):1843-50 17384901 - J Hum Genet. 2007;52(5):415-22 19428599 - Antiviral Res. 2009 Jun;82(3):95-102 8650301 - Prog Nucleic Acid Res Mol Biol. 1996;53:1-78 10515382 - Transplantation. 1999 Sep 27;68(6):814-25 18391217 - Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5501-6 15652966 - Antiviral Res. 2005 Jan;65(1):1-12 10673429 - Structure. 2000 Jan 15;8(1):25-33 20027183 - Nature. 2010 Feb 11;463(7282):813-7 11211189 - Transplantation. 2001 Jan 15;71(1):170-4 4340949 - Science. 1972 Aug 25;177(4050):705-6 20080770 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):882-7 20606073 - Antimicrob Agents Chemother. 2010 Sep;54(9):3686-95 11329288 - Biochemistry. 2001 Feb 20;40(7):2194-200 17606691 - Antimicrob Agents Chemother. 2007 Sep;51(9):3168-76 20133606 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3157-62 11897578 - Antimicrob Agents Chemother. 2002 Apr;46(4):977-81 9802339 - Biochem Pharmacol. 1998 Nov 1;56(9):1259-64 10702725 - Intervirology. 1999;42(5-6):412-8 7575649 - Biochem Pharmacol. 1995 Sep 7;50(6):861-7 11100123 - Nat Med. 2000 Dec;6(12):1375-9 9305674 - Hepatology. 1997 Sep;26(3 Suppl 1):108S-111S 16198766 - Lancet. 2005 Oct 1;366(9492):1175-81 |
References_xml | – ident: e_1_3_3_8_2 doi: 10.1038/82191 – ident: e_1_3_3_2_2 doi: 10.1016/S0140-6736(05)67338-2 – ident: e_1_3_3_13_2 doi: 10.1128/AAC.46.4.977-981.2002 – ident: e_1_3_3_31_2 doi: 10.1002/hep.22550 – ident: e_1_3_3_3_2 doi: 10.1073/pnas.0909587107 – ident: e_1_3_3_19_2 doi: 10.1016/j.antiviral.2004.03.007 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.0710190105 – ident: e_1_3_3_24_2 doi: 10.1074/jbc.R400007200 – ident: e_1_3_3_5_2 doi: 10.1126/science.177.4050.705 – ident: e_1_3_3_28_2 doi: 10.1038/nature08699 – ident: e_1_3_3_11_2 doi: 10.1128/AAC.00356-07 – ident: e_1_3_3_16_2 doi: 10.1097/00007890-200101150-00031 – ident: e_1_3_3_27_2 doi: 10.1016/j.antiviral.2008.05.008 – ident: e_1_3_3_1_2 doi: 10.1001/jama.295.8.joc60020 – ident: e_1_3_3_22_2 doi: 10.1016/S0969-2126(00)00077-0 – ident: e_1_3_3_4_2 doi: 10.1073/pnas.1010026107 – ident: e_1_3_3_26_2 doi: 10.1016/S0162-3109(00)00191-0 – ident: e_1_3_3_6_2 doi: 10.1002/hep.510260719 – ident: e_1_3_3_17_2 doi: 10.1159/000053979 – ident: e_1_3_3_29_2 doi: 10.1016/S0079-6603(08)60142-7 – ident: e_1_3_3_7_2 doi: 10.1128/AAC.32.4.492 – ident: e_1_3_3_25_2 doi: 10.1007/s10038-007-0129-2 – ident: e_1_3_3_12_2 doi: 10.1016/j.antiviral.2009.02.198 – ident: e_1_3_3_18_2 doi: 10.1097/00007890-199909270-00014 – ident: e_1_3_3_21_2 doi: 10.1016/0006-2952(95)00255-X – ident: e_1_3_3_9_2 doi: 10.1073/pnas.70.4.1174 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.0909603107 – ident: e_1_3_3_10_2 doi: 10.1128/JVI.79.3.1943-1947.2005 – ident: e_1_3_3_15_2 doi: 10.1128/AAC.00561-10 – ident: e_1_3_3_20_2 doi: 10.1021/bi001810q – ident: e_1_3_3_23_2 doi: 10.1016/S0006-2952(98)00145-2 – ident: e_1_3_3_32_2 doi: 10.1128/JVI.01665-08 – reference: 20133606 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3157-62 – reference: 19428599 - Antiviral Res. 2009 Jun;82(3):95-102 – reference: 4340949 - Science. 1972 Aug 25;177(4050):705-6 – reference: 17606691 - Antimicrob Agents Chemother. 2007 Sep;51(9):3168-76 – reference: 18585796 - Antiviral Res. 2008 Nov;80(2):124-34 – reference: 20606073 - Antimicrob Agents Chemother. 2010 Sep;54(9):3686-95 – reference: 20027183 - Nature. 2010 Feb 11;463(7282):813-7 – reference: 10702725 - Intervirology. 1999;42(5-6):412-8 – reference: 11211189 - Transplantation. 2001 Jan 15;71(1):170-4 – reference: 4197928 - Proc Natl Acad Sci U S A. 1973 Apr;70(4):1174-8 – reference: 15096496 - J Biol Chem. 2004 Aug 6;279(32):33035-8 – reference: 9802339 - Biochem Pharmacol. 1998 Nov 1;56(9):1259-64 – reference: 18391217 - Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5501-6 – reference: 19003912 - Hepatology. 2008 Dec;48(6):1843-50 – reference: 20080770 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):882-7 – reference: 11100123 - Nat Med. 2000 Dec;6(12):1375-9 – reference: 7575649 - Biochem Pharmacol. 1995 Sep 7;50(6):861-7 – reference: 17384901 - J Hum Genet. 2007;52(5):415-22 – reference: 20823220 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17339-44 – reference: 15650220 - J Virol. 2005 Feb;79(3):1943-7 – reference: 10673429 - Structure. 2000 Jan 15;8(1):25-33 – reference: 10515382 - Transplantation. 1999 Sep 27;68(6):814-25 – reference: 16456087 - JAMA. 2006 Feb 22;295(8):891-4 – reference: 10878294 - Immunopharmacology. 2000 May;47(2-3):273-89 – reference: 2837139 - Antimicrob Agents Chemother. 1988 Apr;32(4):492-7 – reference: 18945781 - J Virol. 2009 Jan;83(1):295-303 – reference: 9305674 - Hepatology. 1997 Sep;26(3 Suppl 1):108S-111S – reference: 11897578 - Antimicrob Agents Chemother. 2002 Apr;46(4):977-81 – reference: 16198766 - Lancet. 2005 Oct 1;366(9492):1175-81 – reference: 11329288 - Biochemistry. 2001 Feb 20;40(7):2194-200 – reference: 8650301 - Prog Nucleic Acid Res Mol Biol. 1996;53:1-78 – reference: 15652966 - Antiviral Res. 2005 Jan;65(1):1-12 |
SSID | ssj0009580 |
Score | 2.4644303 |
Snippet | Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5777 |
SubjectTerms | Animals Antiviral Agents - pharmacology antiviral properties Antivirals Autoradiography Avian orthoavulavirus 1 beta-Galactosidase - metabolism Biological Sciences Biosynthesis Carbamates Cell Line, Tumor Cell lines Cell Survival - drug effects Cells Chickens Dengue virus Deoxyribonucleic acid DNA DNA Primers - genetics Epithelial cells Hepatitis C virus Human adenovirus Human immunodeficiency virus Humans Indoles - pharmacology Influenza virus Inhibitory concentration 50 Lamivudine Mammals Nevirapine Newcastle disease Newcastle disease virus orotic acid Orthomyxoviridae Oxadiazoles - pharmacology Oxidoreductases Acting on CH-CH Group Donors - metabolism Proteins Pyrimidines Pyrimidines - biosynthesis Pyrimidines - metabolism Pyrrolidinones Raltegravir Potassium Retrovirus Ribonucleic acid RNA Sindbis virus Species Specificity Sulfonamides Time Factors uracil Vaccinia virus Vector-borne diseases Vero cells vertebrate viruses Vesicular stomatitis virus Vesiculovirus virus replication Virus Replication - drug effects Viruses Viruses - drug effects Viruses - growth & development West Nile virus |
Title | Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis |
URI | https://www.jstor.org/stable/41125402 http://www.pnas.org/content/108/14/5777.abstract https://www.ncbi.nlm.nih.gov/pubmed/21436031 https://www.proquest.com/docview/861418805 https://www.proquest.com/docview/1817836319 https://www.proquest.com/docview/860882738 https://www.proquest.com/docview/904475886 https://pubmed.ncbi.nlm.nih.gov/PMC3078400 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXBBFCgNBWQkDkWrLHk4sXNcIVAEYlWpXdRb5MQOXak4VbOL1P4MfjEzeTjZ0kXAZZVNJpbj-TIPZx6EvOHcV0WQK1f5OXMZgMaVEo4SFWAOrfIj3URbzON0wT6dRWc7Oz9HUUvrVT4tbu7MK_kfrsI54Ctmyf4DZ-2gcAKOgb_wCxyG37_iMfjQUrlNsuQVBhkbbAWBGferc7lqKkFcYTpfl8Gm9MRUP6rJ5TW28lJoXubLqr42YAPWy3psph5btVb3QQTzftdwNuSgdIKhnriT4_nQ0TityvJ713w5BVXopnppQN7anefPa3NjoymtXjgB2DT3fIWnkEZOZtPhA9eFbjtADvHEath7Za4XDZEcf5joWEYHoDdZm1ltZbQnxmBkI5Eb8a4PjO7-ts2MflMNIMuwn7GRNaY-gBsY9oNu1ttmYIGCGQtq_X4ArkcTLJqOCzmLNq2pm2VfLoqH726NvWHp3Ctl1Ye8Yh1dIL3Lp7kdmjuydU4fkYedk0JnLeL2yI42j8lev4j0qKtV_vYJ-bIJQWohSBGCdIAgRQhSpSlCkA4QpGMIPiWLjx9O36du16HDLcAMXbngm0qsaxWrMExErrRflnnh60SDIy3Bs8_DgjPAa-LDZam8oNRFyGKlOSuEKMJ9smsqow8ILVURJrGWpWZAIHmuVc6LyAdaXwUlc8i0X82s6MrXYxeVi6wJo-BhhmuaDcvvkCN7w2VbuWU76QGwJ5PfQK9mi5MAqy56uJHBPYfsNzyzQ_TwgHuaUYahBbjRGaLRIYc9Y7NOWtSZADsYax9GDnltr4Iox-9z0uhqDRMSPuZUgVJ0CN1CI2L0iXkotpMkHhbxFCJ2yLMWTHaSATwvtpV3CN-AmSXAYvObV8zyvCk6D7aAAH3_fNt6HJIHwyv_guwC6PRLsNdX-avmBfoFz9Ls9g |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broad-spectrum+antiviral+that+interferes+with+de+novo+pyrimidine+biosynthesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hoffmann%2C+Hans-Heinrich&rft.au=Kunz%2C+Andrea&rft.au=Simon%2C+Viviana+A.&rft.au=Palese%2C+Peter&rft.date=2011-04-05&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=108&rft.issue=14&rft.spage=5777&rft.epage=5782&rft_id=info:doi/10.1073%2Fpnas.1101143108&rft.externalDocID=41125402 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif |