Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis

Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease v...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 14; pp. 5777 - 5782
Main Authors Hoffmann, Hans-Heinrich, Kunz, Andrea, Simon, Viviana A, Palese, Peter, Shaw, Megan L
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.04.2011
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication.
AbstractList Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication.
Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication.Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication.
Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at noncytotoxic concentrations it is shown to inhibit the replication of negative-sense RNA viruses (influenza viruses A and B, Newcastle disease virus, and vesicular stomatitis virus), positive-sense RNA viruses (Sindbis virus, hepatitis C virus, West Nile virus, and dengue virus), DNA viruses (vaccinia virus and human adenovirus), and retroviruses (HIV). In contrast to mammalian cells, inhibition of viral replication by A3 is absent in chicken cells, which suggests species-specific activity of A3. Correspondingly, the antiviral activity of A3 can be linked to a cellular protein, dihydroorotate dehydrogenase (DHODH), which is an enzyme in the de novo pyrimidine biosynthesis pathway. Viral replication of both RNA and DNA viruses can be restored in the presence of excess uracil, which promotes pyrimidine salvage, or excess orotic acid, which is the product of DHODH in the de novo pyrimidine biosynthesis pathway. Based on these findings, it is proposed that A3 acts by depleting pyrimidine pools, which are crucial for efficient virus replication. [PUBLICATION ABSTRACT]
Author Hoffmann, Hans-Heinrich
Kunz, Andrea
Palese, Peter
Simon, Viviana A
Shaw, Megan L
Author_xml – sequence: 1
  fullname: Hoffmann, Hans-Heinrich
– sequence: 2
  fullname: Kunz, Andrea
– sequence: 3
  fullname: Simon, Viviana A
– sequence: 4
  fullname: Palese, Peter
– sequence: 5
  fullname: Shaw, Megan L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21436031$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vEzEQxS1URNPCmROw4gKXbWfW3rV9QYKKL6mIA_Rseb3exlFip7YTlP8eRwkJ9FBOPsxvnt_MvDNy4oO3hDxHuEDg9HLpdbpABERGEcQjMkGQWHdMwgmZADS8Fqxhp-QspRkAyFbAE3LaFLwDihPy7UMMeqjT0pocV4tK--zWLup5lac6V85nG0cbbap-uTytBlv5sA7VchPdwg3O26p3IW18ntrk0lPyeNTzZJ_t33Ny8-njz6sv9fX3z1-v3l_Xpm1ZrkXTaW5G3g2UStEPFsexN2ilZVLqhsmeGs6sHSSWsh6gGa2hrBssZ0YIQ8_Ju53uctUv7GCsz8WyWhZTOm5U0E79W_Fuqm7DWlHgggEUgTd7gRjuVjZltXDJ2PlcextWSUlgjLdCdP8lRQdCNJyKQr59kESBXNCOoizo63voLKyiLysreshQCGgL9PLvIQ_T_TleAS53gIkhpWjHA4KgtvFQ23ioYzxKR3uvw7isswvbLbn5A32v9la2heMvQiFTLee8EC92xCzlEA8IQ2xaBs1RYdRB6dvokrr50QB2ACiRc6C_AXPu3Ok
CitedBy_id crossref_primary_10_1016_j_chembiol_2013_02_011
crossref_primary_10_1128_mBio_03472_20
crossref_primary_10_1007_s10593_017_2078_9
crossref_primary_10_1021_acs_jmedchem_9b00091
crossref_primary_10_1038_s44298_024_00031_7
crossref_primary_10_2174_1871520621666210623111744
crossref_primary_10_1371_journal_pone_0094491
crossref_primary_10_1038_s41426_018_0191_1
crossref_primary_10_1128_JVI_01980_15
crossref_primary_10_1002_jhet_4061
crossref_primary_10_1093_nsr_nwad161
crossref_primary_10_2174_0929867329666220610211441
crossref_primary_10_1038_nchembio_2050
crossref_primary_10_1371_journal_pone_0049049
crossref_primary_10_1016_j_chembiol_2020_05_002
crossref_primary_10_1128_jvi_00494_24
crossref_primary_10_1016_j_coviro_2016_09_003
crossref_primary_10_2217_nnm_11_186
crossref_primary_10_1021_jm300630p
crossref_primary_10_1128_AAC_00766_18
crossref_primary_10_3390_metabo12010068
crossref_primary_10_1128_AAC_00383_17
crossref_primary_10_1016_j_copbio_2017_03_010
crossref_primary_10_1007_s40265_015_0401_2
crossref_primary_10_1021_acs_jmedchem_5b00606
crossref_primary_10_3389_fimmu_2024_1432743
crossref_primary_10_3390_v5071824
crossref_primary_10_1371_journal_pone_0082318
crossref_primary_10_1111_ene_14578
crossref_primary_10_1016_j_rechem_2024_101450
crossref_primary_10_3390_ijms24021521
crossref_primary_10_1016_j_antiviral_2017_12_019
crossref_primary_10_1016_j_tips_2014_06_004
crossref_primary_10_1016_j_molstruc_2022_134848
crossref_primary_10_1016_j_antiviral_2019_104667
crossref_primary_10_3851_IMP2105
crossref_primary_10_1016_j_virol_2014_12_006
crossref_primary_10_3390_v12121394
crossref_primary_10_1002_cmdc_202000464
crossref_primary_10_1186_s40199_015_0125_6
crossref_primary_10_3390_v8070179
crossref_primary_10_1128_JVI_00941_17
crossref_primary_10_1016_j_drudis_2019_01_018
crossref_primary_10_1158_1535_7163_MCT_18_0863
crossref_primary_10_1002_ddr_21640
crossref_primary_10_1128_JVI_01258_12
crossref_primary_10_2174_1389201021666200611113734
crossref_primary_10_1016_j_virusres_2023_199248
crossref_primary_10_15252_emmm_201809528
crossref_primary_10_1080_00397911_2023_2287796
crossref_primary_10_1128_JVI_02346_12
crossref_primary_10_1002_slct_202103552
crossref_primary_10_1021_acsinfecdis_9b00416
crossref_primary_10_3390_v10040211
crossref_primary_10_1016_j_bbagen_2023_130378
crossref_primary_10_1038_nrd_2017_33
crossref_primary_10_1128_AAC_00125_11
crossref_primary_10_1016_j_vetmic_2021_109316
crossref_primary_10_1128_JVI_02275_13
crossref_primary_10_1016_j_antiviral_2016_07_019
crossref_primary_10_1371_journal_ppat_1002668
crossref_primary_10_1007_s10875_011_9578_7
crossref_primary_10_1038_nchembio_645
crossref_primary_10_2174_1871520622666220513154744
crossref_primary_10_1016_j_bioorg_2023_107027
crossref_primary_10_1016_j_virusres_2022_198826
crossref_primary_10_1016_j_ejmech_2025_117348
crossref_primary_10_1021_id500022h
crossref_primary_10_1128_msystems_00353_22
crossref_primary_10_1038_s41467_018_03441_3
crossref_primary_10_1016_j_bmcl_2012_09_084
crossref_primary_10_1016_j_jviromet_2016_10_017
crossref_primary_10_1099_vir_0_043406_0
crossref_primary_10_1128_AAC_02700_15
crossref_primary_10_1093_molbev_msac177
crossref_primary_10_1099_jgv_0_000758
crossref_primary_10_1111_eci_13366
crossref_primary_10_1038_s41467_018_06000_y
crossref_primary_10_1165_rcmb_2012_0112OC
crossref_primary_10_1016_j_coviro_2020_07_009
crossref_primary_10_1016_j_antiviral_2013_06_005
crossref_primary_10_1016_j_virol_2015_06_014
crossref_primary_10_1021_acsomega_3c07845
crossref_primary_10_1016_j_antiviral_2018_08_012
crossref_primary_10_1096_fj_201902793RR
crossref_primary_10_3390_microorganisms10081631
crossref_primary_10_3389_fmicb_2023_1266972
crossref_primary_10_3390_v16010035
crossref_primary_10_1021_jm501446r
crossref_primary_10_1016_j_ejmech_2023_116069
crossref_primary_10_1016_j_antiviral_2015_11_006
crossref_primary_10_3390_v15040903
crossref_primary_10_1021_acs_biochem_5b00623
crossref_primary_10_1128_aac_01703_22
crossref_primary_10_4103_jpbs_jpbs_311_22
crossref_primary_10_1002_cbic_202200475
crossref_primary_10_1016_j_antiviral_2013_03_020
crossref_primary_10_3390_microorganisms7090296
crossref_primary_10_1016_j_antiviral_2025_106099
crossref_primary_10_1128_AAC_00888_16
crossref_primary_10_1016_j_antiviral_2018_08_004
crossref_primary_10_1099_jgv_0_001534
crossref_primary_10_1111_tra_12137
crossref_primary_10_1080_21505594_2021_1903198
crossref_primary_10_1128_JVI_01425_13
crossref_primary_10_1155_2018_5906819
crossref_primary_10_1186_s13073_018_0570_1
crossref_primary_10_1051_medsci_2023125
crossref_primary_10_1186_s13567_023_01251_0
crossref_primary_10_1016_j_bioorg_2024_107249
crossref_primary_10_1016_j_ejmech_2019_111681
crossref_primary_10_3389_fmicb_2015_00517
crossref_primary_10_1021_jm300157n
crossref_primary_10_3390_v14050928
crossref_primary_10_1371_journal_ppat_1003297
crossref_primary_10_1016_j_antiviral_2016_11_018
crossref_primary_10_18632_oncotarget_17863
crossref_primary_10_1016_j_coviro_2021_06_004
crossref_primary_10_1016_j_fsi_2016_01_035
crossref_primary_10_18632_oncotarget_19199
crossref_primary_10_1128_CMR_00168_19
crossref_primary_10_1002_med_21401
crossref_primary_10_1016_j_abb_2017_06_019
crossref_primary_10_2217_fmb_11_80
crossref_primary_10_1111_apt_13633
crossref_primary_10_1124_mol_112_082321
crossref_primary_10_1016_j_bbabio_2022_148948
crossref_primary_10_1002_ardp_202200217
crossref_primary_10_1083_jcb_201107058
crossref_primary_10_1128_AAC_01219_12
crossref_primary_10_2174_1573413714666180808163714
crossref_primary_10_3390_genes12060796
crossref_primary_10_3390_ijms23105557
crossref_primary_10_1007_s11030_020_10048_8
crossref_primary_10_1007_s13238_020_00768_w
crossref_primary_10_1177_2040206620976786
crossref_primary_10_1016_j_isci_2022_104293
crossref_primary_10_1016_j_ejmech_2019_111855
crossref_primary_10_3389_fimmu_2021_694300
crossref_primary_10_3390_v12080821
crossref_primary_10_1016_j_vetmic_2021_109186
crossref_primary_10_3390_molecules26071838
crossref_primary_10_1371_journal_ppat_1012782
crossref_primary_10_1371_journal_pone_0111331
crossref_primary_10_1021_acs_biochem_2c00451
crossref_primary_10_1021_acs_jmedchem_1c01711
crossref_primary_10_1051_medsci_20153101019
crossref_primary_10_1016_j_bbrc_2023_08_021
crossref_primary_10_1177_2040206618811416
crossref_primary_10_3390_pathogens8030144
crossref_primary_10_1016_j_virol_2024_110239
crossref_primary_10_1371_journal_ppat_1003678
crossref_primary_10_1016_j_antiviral_2013_07_018
crossref_primary_10_1016_j_antiviral_2019_04_005
crossref_primary_10_1093_bib_bbaa379
crossref_primary_10_1016_j_gene_2016_02_006
crossref_primary_10_1016_j_rechem_2024_101938
crossref_primary_10_1016_j_antiviral_2017_07_016
crossref_primary_10_1016_j_antiviral_2022_105291
crossref_primary_10_1007_s00018_014_1615_2
crossref_primary_10_1128_AAC_00282_16
crossref_primary_10_1016_j_jconrel_2018_02_012
crossref_primary_10_1021_ml300464h
crossref_primary_10_1080_19390211_2021_2006387
crossref_primary_10_1128_JVI_01348_12
crossref_primary_10_1128_JVI_00996_21
crossref_primary_10_1016_j_tips_2011_10_004
crossref_primary_10_1021_jm301848w
crossref_primary_10_1002_ddr_21499
crossref_primary_10_1016_j_apsb_2021_08_017
crossref_primary_10_1021_acs_jmedchem_0c01039
crossref_primary_10_1080_22297928_2019_1699857
crossref_primary_10_3390_ijms24087448
crossref_primary_10_52711_0974_360X_2021_00480
crossref_primary_10_1073_pnas_1415864111
crossref_primary_10_3389_fimmu_2022_1033314
crossref_primary_10_2147_DDDT_S228381
crossref_primary_10_1016_j_ejmech_2024_116442
crossref_primary_10_3390_v8070197
crossref_primary_10_3389_fped_2024_1456250
crossref_primary_10_2217_fvl_12_88
crossref_primary_10_1038_s41598_021_91069_7
crossref_primary_10_1016_j_virol_2020_06_009
crossref_primary_10_1016_j_virusres_2023_199105
crossref_primary_10_1586_eri_12_104
Cites_doi 10.1038/82191
10.1016/S0140-6736(05)67338-2
10.1128/AAC.46.4.977-981.2002
10.1002/hep.22550
10.1073/pnas.0909587107
10.1016/j.antiviral.2004.03.007
10.1073/pnas.0710190105
10.1074/jbc.R400007200
10.1126/science.177.4050.705
10.1038/nature08699
10.1128/AAC.00356-07
10.1097/00007890-200101150-00031
10.1016/j.antiviral.2008.05.008
10.1001/jama.295.8.joc60020
10.1016/S0969-2126(00)00077-0
10.1073/pnas.1010026107
10.1016/S0162-3109(00)00191-0
10.1002/hep.510260719
10.1159/000053979
10.1016/S0079-6603(08)60142-7
10.1128/AAC.32.4.492
10.1007/s10038-007-0129-2
10.1016/j.antiviral.2009.02.198
10.1097/00007890-199909270-00014
10.1016/0006-2952(95)00255-X
10.1073/pnas.70.4.1174
10.1073/pnas.0909603107
10.1128/JVI.79.3.1943-1947.2005
10.1128/AAC.00561-10
10.1021/bi001810q
10.1016/S0006-2952(98)00145-2
10.1128/JVI.01665-08
ContentType Journal Article
Copyright Copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 5, 2011
Copyright_xml – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 5, 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1101143108
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


AGRICOLA
AIDS and Cancer Research Abstracts

Virology and AIDS Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 5782
ExternalDocumentID PMC3078400
2317589231
21436031
10_1073_pnas_1101143108
108_14_5777
41125402
US201600191770
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U01 AI1074539
– fundername: NIAID NIH HHS
  grantid: R21 AI083673
– fundername: NIAID NIH HHS
  grantid: R01 AI089246
– fundername: NIAID NIH HHS
  grantid: R01 AI064001
– fundername: NIAID NIH HHS
  grantid: AI089246
– fundername: NIAID NIH HHS
  grantid: R21AI083673
– fundername: NIAID NIH HHS
  grantid: AI064001-06
– fundername: NIAID NIH HHS
  grantid: U54 AI057158
– fundername: NIAID NIH HHS
  grantid: HHSN272200900032C
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c554t-826a7cf76d3398bde1ffbc1e9e499a249b3c74eed9198bad02fec346de74c88c3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:11:55 EDT 2025
Fri Jul 11 04:44:17 EDT 2025
Fri Jul 11 02:53:21 EDT 2025
Fri Jul 11 03:33:21 EDT 2025
Sat Aug 23 13:12:57 EDT 2025
Wed Feb 19 01:53:51 EST 2025
Thu Apr 24 22:54:28 EDT 2025
Tue Jul 01 00:47:07 EDT 2025
Wed Nov 11 00:29:32 EST 2020
Thu May 29 08:40:51 EDT 2025
Thu Apr 03 09:40:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c554t-826a7cf76d3398bde1ffbc1e9e499a249b3c74eed9198bad02fec346de74c88c3
Notes http://dx.doi.org/10.1073/pnas.1101143108
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Edited by Thomas E. Shenk, Princeton University, Princeton, NJ, and approved February 25, 2011 (received for review February 4, 2011)
Author contributions: H.-H.H., P.P., and M.L.S. designed research; H.-H.H. and A.K. performed research; A.K. and V.A.S. contributed new reagents/analytic tools; H.-H.H., A.K., V.A.S., P.P., and M.L.S. analyzed data; and H.-H.H., V.A.S., and M.L.S. wrote the paper.
1Present address: Institute of Tropical Medicine and International Health, Charité, University Medicine Berlin, Berlin 14050, Germany.
OpenAccessLink https://www.pnas.org/doi/pdf/10.1073/pnas.1101143108
PMID 21436031
PQID 861418805
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_108_14_5777
proquest_miscellaneous_904475886
pubmed_primary_21436031
jstor_primary_41125402
fao_agris_US201600191770
proquest_journals_861418805
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3078400
proquest_miscellaneous_1817836319
crossref_primary_10_1073_pnas_1101143108
crossref_citationtrail_10_1073_pnas_1101143108
proquest_miscellaneous_860882738
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-05
PublicationDateYYYYMMDD 2011-04-05
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
15096496 - J Biol Chem. 2004 Aug 6;279(32):33035-8
15650220 - J Virol. 2005 Feb;79(3):1943-7
2837139 - Antimicrob Agents Chemother. 1988 Apr;32(4):492-7
4197928 - Proc Natl Acad Sci U S A. 1973 Apr;70(4):1174-8
10878294 - Immunopharmacology. 2000 May;47(2-3):273-89
20823220 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17339-44
16456087 - JAMA. 2006 Feb 22;295(8):891-4
18945781 - J Virol. 2009 Jan;83(1):295-303
18585796 - Antiviral Res. 2008 Nov;80(2):124-34
19003912 - Hepatology. 2008 Dec;48(6):1843-50
17384901 - J Hum Genet. 2007;52(5):415-22
19428599 - Antiviral Res. 2009 Jun;82(3):95-102
8650301 - Prog Nucleic Acid Res Mol Biol. 1996;53:1-78
10515382 - Transplantation. 1999 Sep 27;68(6):814-25
18391217 - Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5501-6
15652966 - Antiviral Res. 2005 Jan;65(1):1-12
10673429 - Structure. 2000 Jan 15;8(1):25-33
20027183 - Nature. 2010 Feb 11;463(7282):813-7
11211189 - Transplantation. 2001 Jan 15;71(1):170-4
4340949 - Science. 1972 Aug 25;177(4050):705-6
20080770 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):882-7
20606073 - Antimicrob Agents Chemother. 2010 Sep;54(9):3686-95
11329288 - Biochemistry. 2001 Feb 20;40(7):2194-200
17606691 - Antimicrob Agents Chemother. 2007 Sep;51(9):3168-76
20133606 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3157-62
11897578 - Antimicrob Agents Chemother. 2002 Apr;46(4):977-81
9802339 - Biochem Pharmacol. 1998 Nov 1;56(9):1259-64
10702725 - Intervirology. 1999;42(5-6):412-8
7575649 - Biochem Pharmacol. 1995 Sep 7;50(6):861-7
11100123 - Nat Med. 2000 Dec;6(12):1375-9
9305674 - Hepatology. 1997 Sep;26(3 Suppl 1):108S-111S
16198766 - Lancet. 2005 Oct 1;366(9492):1175-81
References_xml – ident: e_1_3_3_8_2
  doi: 10.1038/82191
– ident: e_1_3_3_2_2
  doi: 10.1016/S0140-6736(05)67338-2
– ident: e_1_3_3_13_2
  doi: 10.1128/AAC.46.4.977-981.2002
– ident: e_1_3_3_31_2
  doi: 10.1002/hep.22550
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.0909587107
– ident: e_1_3_3_19_2
  doi: 10.1016/j.antiviral.2004.03.007
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.0710190105
– ident: e_1_3_3_24_2
  doi: 10.1074/jbc.R400007200
– ident: e_1_3_3_5_2
  doi: 10.1126/science.177.4050.705
– ident: e_1_3_3_28_2
  doi: 10.1038/nature08699
– ident: e_1_3_3_11_2
  doi: 10.1128/AAC.00356-07
– ident: e_1_3_3_16_2
  doi: 10.1097/00007890-200101150-00031
– ident: e_1_3_3_27_2
  doi: 10.1016/j.antiviral.2008.05.008
– ident: e_1_3_3_1_2
  doi: 10.1001/jama.295.8.joc60020
– ident: e_1_3_3_22_2
  doi: 10.1016/S0969-2126(00)00077-0
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.1010026107
– ident: e_1_3_3_26_2
  doi: 10.1016/S0162-3109(00)00191-0
– ident: e_1_3_3_6_2
  doi: 10.1002/hep.510260719
– ident: e_1_3_3_17_2
  doi: 10.1159/000053979
– ident: e_1_3_3_29_2
  doi: 10.1016/S0079-6603(08)60142-7
– ident: e_1_3_3_7_2
  doi: 10.1128/AAC.32.4.492
– ident: e_1_3_3_25_2
  doi: 10.1007/s10038-007-0129-2
– ident: e_1_3_3_12_2
  doi: 10.1016/j.antiviral.2009.02.198
– ident: e_1_3_3_18_2
  doi: 10.1097/00007890-199909270-00014
– ident: e_1_3_3_21_2
  doi: 10.1016/0006-2952(95)00255-X
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.70.4.1174
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.0909603107
– ident: e_1_3_3_10_2
  doi: 10.1128/JVI.79.3.1943-1947.2005
– ident: e_1_3_3_15_2
  doi: 10.1128/AAC.00561-10
– ident: e_1_3_3_20_2
  doi: 10.1021/bi001810q
– ident: e_1_3_3_23_2
  doi: 10.1016/S0006-2952(98)00145-2
– ident: e_1_3_3_32_2
  doi: 10.1128/JVI.01665-08
– reference: 20133606 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3157-62
– reference: 19428599 - Antiviral Res. 2009 Jun;82(3):95-102
– reference: 4340949 - Science. 1972 Aug 25;177(4050):705-6
– reference: 17606691 - Antimicrob Agents Chemother. 2007 Sep;51(9):3168-76
– reference: 18585796 - Antiviral Res. 2008 Nov;80(2):124-34
– reference: 20606073 - Antimicrob Agents Chemother. 2010 Sep;54(9):3686-95
– reference: 20027183 - Nature. 2010 Feb 11;463(7282):813-7
– reference: 10702725 - Intervirology. 1999;42(5-6):412-8
– reference: 11211189 - Transplantation. 2001 Jan 15;71(1):170-4
– reference: 4197928 - Proc Natl Acad Sci U S A. 1973 Apr;70(4):1174-8
– reference: 15096496 - J Biol Chem. 2004 Aug 6;279(32):33035-8
– reference: 9802339 - Biochem Pharmacol. 1998 Nov 1;56(9):1259-64
– reference: 18391217 - Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5501-6
– reference: 19003912 - Hepatology. 2008 Dec;48(6):1843-50
– reference: 20080770 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):882-7
– reference: 11100123 - Nat Med. 2000 Dec;6(12):1375-9
– reference: 7575649 - Biochem Pharmacol. 1995 Sep 7;50(6):861-7
– reference: 17384901 - J Hum Genet. 2007;52(5):415-22
– reference: 20823220 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17339-44
– reference: 15650220 - J Virol. 2005 Feb;79(3):1943-7
– reference: 10673429 - Structure. 2000 Jan 15;8(1):25-33
– reference: 10515382 - Transplantation. 1999 Sep 27;68(6):814-25
– reference: 16456087 - JAMA. 2006 Feb 22;295(8):891-4
– reference: 10878294 - Immunopharmacology. 2000 May;47(2-3):273-89
– reference: 2837139 - Antimicrob Agents Chemother. 1988 Apr;32(4):492-7
– reference: 18945781 - J Virol. 2009 Jan;83(1):295-303
– reference: 9305674 - Hepatology. 1997 Sep;26(3 Suppl 1):108S-111S
– reference: 11897578 - Antimicrob Agents Chemother. 2002 Apr;46(4):977-81
– reference: 16198766 - Lancet. 2005 Oct 1;366(9492):1175-81
– reference: 11329288 - Biochemistry. 2001 Feb 20;40(7):2194-200
– reference: 8650301 - Prog Nucleic Acid Res Mol Biol. 1996;53:1-78
– reference: 15652966 - Antiviral Res. 2005 Jan;65(1):1-12
SSID ssj0009580
Score 2.4644303
Snippet Compound A3 was identified in a high-throughput screen for inhibitors of influenza virus replication. It displays broad-spectrum antiviral activity, and at...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5777
SubjectTerms Animals
Antiviral Agents - pharmacology
antiviral properties
Antivirals
Autoradiography
Avian orthoavulavirus 1
beta-Galactosidase - metabolism
Biological Sciences
Biosynthesis
Carbamates
Cell Line, Tumor
Cell lines
Cell Survival - drug effects
Cells
Chickens
Dengue virus
Deoxyribonucleic acid
DNA
DNA Primers - genetics
Epithelial cells
Hepatitis C virus
Human adenovirus
Human immunodeficiency virus
Humans
Indoles - pharmacology
Influenza virus
Inhibitory concentration 50
Lamivudine
Mammals
Nevirapine
Newcastle disease
Newcastle disease virus
orotic acid
Orthomyxoviridae
Oxadiazoles - pharmacology
Oxidoreductases Acting on CH-CH Group Donors - metabolism
Proteins
Pyrimidines
Pyrimidines - biosynthesis
Pyrimidines - metabolism
Pyrrolidinones
Raltegravir Potassium
Retrovirus
Ribonucleic acid
RNA
Sindbis virus
Species Specificity
Sulfonamides
Time Factors
uracil
Vaccinia virus
Vector-borne diseases
Vero cells
vertebrate viruses
Vesicular stomatitis virus
Vesiculovirus
virus replication
Virus Replication - drug effects
Viruses
Viruses - drug effects
Viruses - growth & development
West Nile virus
Title Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis
URI https://www.jstor.org/stable/41125402
http://www.pnas.org/content/108/14/5777.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21436031
https://www.proquest.com/docview/861418805
https://www.proquest.com/docview/1817836319
https://www.proquest.com/docview/860882738
https://www.proquest.com/docview/904475886
https://pubmed.ncbi.nlm.nih.gov/PMC3078400
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXBBFCgNBWQkDkWrLHk4sXNcIVAEYlWpXdRb5MQOXak4VbOL1P4MfjEzeTjZ0kXAZZVNJpbj-TIPZx6EvOHcV0WQK1f5OXMZgMaVEo4SFWAOrfIj3URbzON0wT6dRWc7Oz9HUUvrVT4tbu7MK_kfrsI54Ctmyf4DZ-2gcAKOgb_wCxyG37_iMfjQUrlNsuQVBhkbbAWBGferc7lqKkFcYTpfl8Gm9MRUP6rJ5TW28lJoXubLqr42YAPWy3psph5btVb3QQTzftdwNuSgdIKhnriT4_nQ0TityvJ713w5BVXopnppQN7anefPa3NjoymtXjgB2DT3fIWnkEZOZtPhA9eFbjtADvHEath7Za4XDZEcf5joWEYHoDdZm1ltZbQnxmBkI5Eb8a4PjO7-ts2MflMNIMuwn7GRNaY-gBsY9oNu1ttmYIGCGQtq_X4ArkcTLJqOCzmLNq2pm2VfLoqH726NvWHp3Ctl1Ye8Yh1dIL3Lp7kdmjuydU4fkYedk0JnLeL2yI42j8lev4j0qKtV_vYJ-bIJQWohSBGCdIAgRQhSpSlCkA4QpGMIPiWLjx9O36du16HDLcAMXbngm0qsaxWrMExErrRflnnh60SDIy3Bs8_DgjPAa-LDZam8oNRFyGKlOSuEKMJ9smsqow8ILVURJrGWpWZAIHmuVc6LyAdaXwUlc8i0X82s6MrXYxeVi6wJo-BhhmuaDcvvkCN7w2VbuWU76QGwJ5PfQK9mi5MAqy56uJHBPYfsNzyzQ_TwgHuaUYahBbjRGaLRIYc9Y7NOWtSZADsYax9GDnltr4Iox-9z0uhqDRMSPuZUgVJ0CN1CI2L0iXkotpMkHhbxFCJ2yLMWTHaSATwvtpV3CN-AmSXAYvObV8zyvCk6D7aAAH3_fNt6HJIHwyv_guwC6PRLsNdX-avmBfoFz9Ls9g
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broad-spectrum+antiviral+that+interferes+with+de+novo+pyrimidine+biosynthesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hoffmann%2C+Hans-Heinrich&rft.au=Kunz%2C+Andrea&rft.au=Simon%2C+Viviana+A.&rft.au=Palese%2C+Peter&rft.date=2011-04-05&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=108&rft.issue=14&rft.spage=5777&rft.epage=5782&rft_id=info:doi/10.1073%2Fpnas.1101143108&rft.externalDocID=41125402
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F14.cover.gif