Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination

During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or i...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 185; no. 6; pp. 1025 - 1040.e14
Main Authors Röltgen, Katharina, Nielsen, Sandra C.A., Silva, Oscar, Younes, Sheren F., Zaslavsky, Maxim, Costales, Cristina, Yang, Fan, Wirz, Oliver F., Solis, Daniel, Hoh, Ramona A., Wang, Aihui, Arunachalam, Prabhu S., Colburg, Deana, Zhao, Shuchun, Haraguchi, Emily, Lee, Alexandra S., Shah, Mihir M., Manohar, Monali, Chang, Iris, Gao, Fei, Mallajosyula, Vamsee, Li, Chunfeng, Liu, James, Shoura, Massa J., Sindher, Sayantani B., Parsons, Ella, Dashdorj, Naranjargal J., Dashdorj, Naranbaatar D., Monroe, Robert, Serrano, Geidy E., Beach, Thomas G., Chinthrajah, R. Sharon, Charville, Gregory W., Wilbur, James L., Wohlstadter, Jacob N., Davis, Mark M., Pulendran, Bali, Troxell, Megan L., Sigal, George B., Natkunam, Yasodha, Pinsky, Benjamin A., Nadeau, Kari C., Boyd, Scott D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.03.2022
The Authors. Published by Elsevier Inc
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2022.01.018

Cover

Loading…
Abstract During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination. [Display omitted] •Vaccination confers broader IgG binding of variant RBDs than SARS-CoV-2 infection•Imprinting from initial antigen exposures alters IgG responses to viral variants•Histology of mRNA vaccinee lymph nodes shows abundant GCs•Vaccine spike antigen and mRNA persist for weeks in lymph node GCs Human antibody responses to SARS-CoV-2 differ between vaccination and infection, with mRNA vaccination inducing more productive lymph node GC responses and several vaccine types stimulating IgG antibodies capable of recognizing a broader range of viral variants.
AbstractList During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.
During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination. Human antibody responses to SARS-CoV-2 differ between vaccination and infection, with mRNA vaccination inducing more productive lymph node GC responses and several vaccine types stimulating IgG antibodies capable of recognizing a broader range of viral variants.
During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.
During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.
During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination. [Display omitted] •Vaccination confers broader IgG binding of variant RBDs than SARS-CoV-2 infection•Imprinting from initial antigen exposures alters IgG responses to viral variants•Histology of mRNA vaccinee lymph nodes shows abundant GCs•Vaccine spike antigen and mRNA persist for weeks in lymph node GCs Human antibody responses to SARS-CoV-2 differ between vaccination and infection, with mRNA vaccination inducing more productive lymph node GC responses and several vaccine types stimulating IgG antibodies capable of recognizing a broader range of viral variants.
Author Wilbur, James L.
Wang, Aihui
Haraguchi, Emily
Arunachalam, Prabhu S.
Charville, Gregory W.
Zhao, Shuchun
Liu, James
Monroe, Robert
Wirz, Oliver F.
Boyd, Scott D.
Mallajosyula, Vamsee
Hoh, Ramona A.
Serrano, Geidy E.
Shah, Mihir M.
Pinsky, Benjamin A.
Nadeau, Kari C.
Dashdorj, Naranbaatar D.
Costales, Cristina
Dashdorj, Naranjargal J.
Silva, Oscar
Colburg, Deana
Chang, Iris
Sindher, Sayantani B.
Zaslavsky, Maxim
Solis, Daniel
Wohlstadter, Jacob N.
Röltgen, Katharina
Younes, Sheren F.
Manohar, Monali
Pulendran, Bali
Troxell, Megan L.
Gao, Fei
Li, Chunfeng
Lee, Alexandra S.
Shoura, Massa J.
Chinthrajah, R. Sharon
Yang, Fan
Parsons, Ella
Nielsen, Sandra C.A.
Beach, Thomas G.
Sigal, George B.
Natkunam, Yasodha
Davis, Mark M.
Author_xml – sequence: 1
  givenname: Katharina
  surname: Röltgen
  fullname: Röltgen, Katharina
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 2
  givenname: Sandra C.A.
  surname: Nielsen
  fullname: Nielsen, Sandra C.A.
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 3
  givenname: Oscar
  surname: Silva
  fullname: Silva, Oscar
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 4
  givenname: Sheren F.
  surname: Younes
  fullname: Younes, Sheren F.
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 5
  givenname: Maxim
  surname: Zaslavsky
  fullname: Zaslavsky, Maxim
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 6
  givenname: Cristina
  surname: Costales
  fullname: Costales, Cristina
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 7
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 8
  givenname: Oliver F.
  surname: Wirz
  fullname: Wirz, Oliver F.
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 9
  givenname: Daniel
  surname: Solis
  fullname: Solis, Daniel
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 10
  givenname: Ramona A.
  surname: Hoh
  fullname: Hoh, Ramona A.
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 11
  givenname: Aihui
  surname: Wang
  fullname: Wang, Aihui
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 12
  givenname: Prabhu S.
  surname: Arunachalam
  fullname: Arunachalam, Prabhu S.
  organization: Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
– sequence: 13
  givenname: Deana
  surname: Colburg
  fullname: Colburg, Deana
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 14
  givenname: Shuchun
  surname: Zhao
  fullname: Zhao, Shuchun
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 15
  givenname: Emily
  surname: Haraguchi
  fullname: Haraguchi, Emily
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 16
  givenname: Alexandra S.
  surname: Lee
  fullname: Lee, Alexandra S.
  organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
– sequence: 17
  givenname: Mihir M.
  surname: Shah
  fullname: Shah, Mihir M.
  organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
– sequence: 18
  givenname: Monali
  surname: Manohar
  fullname: Manohar, Monali
  organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
– sequence: 19
  givenname: Iris
  surname: Chang
  fullname: Chang, Iris
  organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
– sequence: 20
  givenname: Fei
  surname: Gao
  fullname: Gao, Fei
  organization: Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
– sequence: 21
  givenname: Vamsee
  surname: Mallajosyula
  fullname: Mallajosyula, Vamsee
  organization: Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
– sequence: 22
  givenname: Chunfeng
  surname: Li
  fullname: Li, Chunfeng
  organization: Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
– sequence: 23
  givenname: James
  surname: Liu
  fullname: Liu, James
  organization: Stanford Health Library, Stanford, CA, USA
– sequence: 24
  givenname: Massa J.
  surname: Shoura
  fullname: Shoura, Massa J.
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 25
  givenname: Sayantani B.
  surname: Sindher
  fullname: Sindher, Sayantani B.
  organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
– sequence: 26
  givenname: Ella
  surname: Parsons
  fullname: Parsons, Ella
  organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
– sequence: 27
  givenname: Naranjargal J.
  surname: Dashdorj
  fullname: Dashdorj, Naranjargal J.
  organization: Onom Foundation, Ulaanbaatar 17013, Mongolia
– sequence: 28
  givenname: Naranbaatar D.
  surname: Dashdorj
  fullname: Dashdorj, Naranbaatar D.
  organization: Onom Foundation, Ulaanbaatar 17013, Mongolia
– sequence: 29
  givenname: Robert
  surname: Monroe
  fullname: Monroe, Robert
  organization: Advanced Cell Diagnostics, Newark, CA, USA
– sequence: 30
  givenname: Geidy E.
  surname: Serrano
  fullname: Serrano, Geidy E.
  organization: Banner Sun Health Research Institute, Sun City, AZ, USA
– sequence: 31
  givenname: Thomas G.
  surname: Beach
  fullname: Beach, Thomas G.
  organization: Banner Sun Health Research Institute, Sun City, AZ, USA
– sequence: 32
  givenname: R. Sharon
  surname: Chinthrajah
  fullname: Chinthrajah, R. Sharon
  organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
– sequence: 33
  givenname: Gregory W.
  surname: Charville
  fullname: Charville, Gregory W.
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 34
  givenname: James L.
  surname: Wilbur
  fullname: Wilbur, James L.
  organization: Meso Scale Diagnostics LLC, Rockville, MD, USA
– sequence: 35
  givenname: Jacob N.
  surname: Wohlstadter
  fullname: Wohlstadter, Jacob N.
  organization: Meso Scale Diagnostics LLC, Rockville, MD, USA
– sequence: 36
  givenname: Mark M.
  surname: Davis
  fullname: Davis, Mark M.
  organization: Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
– sequence: 37
  givenname: Bali
  surname: Pulendran
  fullname: Pulendran, Bali
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 38
  givenname: Megan L.
  surname: Troxell
  fullname: Troxell, Megan L.
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 39
  givenname: George B.
  surname: Sigal
  fullname: Sigal, George B.
  organization: Meso Scale Diagnostics LLC, Rockville, MD, USA
– sequence: 40
  givenname: Yasodha
  surname: Natkunam
  fullname: Natkunam, Yasodha
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 41
  givenname: Benjamin A.
  surname: Pinsky
  fullname: Pinsky, Benjamin A.
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
– sequence: 42
  givenname: Kari C.
  surname: Nadeau
  fullname: Nadeau, Kari C.
  organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA
– sequence: 43
  givenname: Scott D.
  orcidid: 0000-0003-0963-044X
  surname: Boyd
  fullname: Boyd, Scott D.
  email: publications_scott_boyd@stanford.edu
  organization: Department of Pathology, Stanford University, Stanford, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35148837$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7Lb6B7yQXHrRWU8y-RoQoSx-FAqCVW9DNpPZzTKTrMnMQi_872a6ragXRTgQkrzPm5Nzzhk6CTE4hF4SWBIg4s1uaV3fLylQugRSQj1BCwKNrBiR9AQtABpaKSHZKTrLeQcAinP-DJ3WnDClarlAP6-GYQoO-2GffBh92FzgdXKmHbc4dvhgkjdhxMnZuAl-9DFcYBNavHFp8MH02LowulQEeR9DLkYBb6fBBHxz-eWmWsXvFS1nnbMze4cejLUFnffP0dPO9Nm9uF_P0bcP77-uPlXXnz9erS6vK8s5GytpbSMJE6Asb9tagloDdFRyJY1pjJCciLXinawbRlm7NsAayZq25QyKoKvP0buj735aD66dc06m1-XLg0m3Ohqv_74Jfqs38aCVVEIAKQav7w1S_DG5POrB57n6Jrg4ZU1FqacA0fD_kFJFG8WBFemrP9P6nc9De4pAHQU2xZyT67T1413lSpa-1wT0PAl6p-cH9DwJGkgJVVD6D_rg_ij09gi50oyDd0ln612wrvVlAkbdRv8Y_gtCI82t
CitedBy_id crossref_primary_10_1016_j_ebiom_2024_105428
crossref_primary_10_1039_D3BM01841E
crossref_primary_10_3389_fimmu_2023_1123158
crossref_primary_10_4049_jimmunol_2300315
crossref_primary_10_3390_ijms25189814
crossref_primary_10_1038_s41590_024_01951_5
crossref_primary_10_3390_ijerph192013669
crossref_primary_10_3390_vaccines11040875
crossref_primary_10_3389_fimmu_2023_1259879
crossref_primary_10_7759_cureus_50703
crossref_primary_10_1038_s41385_022_00569_w
crossref_primary_10_1093_infdis_jiae371
crossref_primary_10_3390_vaccines12101089
crossref_primary_10_1002_jmv_29151
crossref_primary_10_3390_biomedicines10071538
crossref_primary_10_1038_s41467_023_37417_9
crossref_primary_10_1038_s41422_023_00781_8
crossref_primary_10_1126_sciimmunol_ade2798
crossref_primary_10_1016_j_cell_2022_04_009
crossref_primary_10_1371_journal_ppat_1011545
crossref_primary_10_1016_j_jinf_2025_106473
crossref_primary_10_1038_s41392_023_01422_7
crossref_primary_10_1172_jci_insight_175401
crossref_primary_10_1038_s41541_023_00742_7
crossref_primary_10_1111_irv_13357
crossref_primary_10_1038_s41598_024_51149_w
crossref_primary_10_1093_nsr_nwae196
crossref_primary_10_35825_2587_5728_2024_8_3_205_231
crossref_primary_10_1371_journal_pone_0299215
crossref_primary_10_3390_vaccines11030607
crossref_primary_10_1016_j_coi_2023_102332
crossref_primary_10_3390_vaccines10101576
crossref_primary_10_1126_sciadv_adh0761
crossref_primary_10_3389_fimmu_2022_914167
crossref_primary_10_1038_s41467_024_47451_w
crossref_primary_10_1016_j_cellimm_2023_104689
crossref_primary_10_1016_j_jaip_2023_05_005
crossref_primary_10_3390_vaccines11101578
crossref_primary_10_1038_s41467_025_57446_w
crossref_primary_10_1172_JCI162192
crossref_primary_10_20411_pai_v8i1_572
crossref_primary_10_3390_jcm11144164
crossref_primary_10_1093_cei_uxad044
crossref_primary_10_3389_fimmu_2023_1309997
crossref_primary_10_1038_s41541_024_00856_6
crossref_primary_10_3390_microorganisms11051308
crossref_primary_10_1136_bmj_2022_074404
crossref_primary_10_1186_s12951_024_02972_w
crossref_primary_10_1016_j_ijid_2024_107300
crossref_primary_10_1128_msphere_00812_23
crossref_primary_10_3390_cancers15164017
crossref_primary_10_1016_j_ebiom_2023_104743
crossref_primary_10_1038_s41541_024_00893_1
crossref_primary_10_1016_j_omtn_2025_102489
crossref_primary_10_3390_v15102079
crossref_primary_10_1080_21645515_2024_2384192
crossref_primary_10_1007_s11357_024_01215_y
crossref_primary_10_3390_vaccines12040377
crossref_primary_10_1038_s41541_024_00806_2
crossref_primary_10_1080_14712598_2022_2137402
crossref_primary_10_3390_biomedicines11082287
crossref_primary_10_1016_j_molmed_2022_07_009
crossref_primary_10_1016_j_molmed_2022_07_008
crossref_primary_10_3390_jpm12060995
crossref_primary_10_3390_ijms231810374
crossref_primary_10_1080_08916934_2023_2259123
crossref_primary_10_1016_j_xcrm_2024_101668
crossref_primary_10_37349_ei_2024_00140
crossref_primary_10_1016_j_cell_2022_05_014
crossref_primary_10_1038_s41598_023_40103_x
crossref_primary_10_1038_s41467_024_51973_8
crossref_primary_10_1186_s40001_024_02240_5
crossref_primary_10_1371_journal_ppat_1012724
crossref_primary_10_3389_fimmu_2022_916686
crossref_primary_10_1038_s41467_022_31888_y
crossref_primary_10_29328_journal_jatr_1001023
crossref_primary_10_3389_fimmu_2023_1285203
crossref_primary_10_1093_cid_ciac652
crossref_primary_10_1016_j_chom_2024_04_006
crossref_primary_10_1016_j_it_2023_01_005
crossref_primary_10_1002_jmv_28419
crossref_primary_10_3390_pathogens12020169
crossref_primary_10_3389_fimmu_2024_1336906
crossref_primary_10_1038_s41573_023_00859_3
crossref_primary_10_1146_annurev_pathmechdis_031521_042754
crossref_primary_10_1038_s41541_024_00815_1
crossref_primary_10_1038_s41392_024_01807_2
crossref_primary_10_3390_vaccines12050459
crossref_primary_10_1073_pnas_2313672121
crossref_primary_10_1016_j_jaci_2025_01_003
crossref_primary_10_1038_s41586_024_08511_9
crossref_primary_10_1080_14760584_2023_2232851
crossref_primary_10_1080_22221751_2022_2130101
crossref_primary_10_3390_ijms241310514
crossref_primary_10_1177_01926233241278298
crossref_primary_10_3390_vaccines10101651
crossref_primary_10_4049_jimmunol_2300500
crossref_primary_10_3389_fimmu_2024_1504935
crossref_primary_10_1021_acsnano_2c12584
crossref_primary_10_1038_s41564_023_01505_9
crossref_primary_10_3390_j6020017
crossref_primary_10_3389_fimmu_2022_940705
crossref_primary_10_3389_fimmu_2022_979188
crossref_primary_10_1080_14760584_2022_2077196
crossref_primary_10_1080_15476286_2024_2333123
crossref_primary_10_1111_imcb_12635
crossref_primary_10_7554_eLife_87431
crossref_primary_10_1007_s40656_022_00548_1
crossref_primary_10_1016_j_xcrm_2022_100834
crossref_primary_10_3390_biomedicines12112530
crossref_primary_10_1186_s12879_024_09670_w
crossref_primary_10_3390_vaccines10081208
crossref_primary_10_1002_jgm_3733
crossref_primary_10_1016_j_envres_2023_116823
crossref_primary_10_1016_j_immuni_2022_10_014
crossref_primary_10_1111_all_16089
crossref_primary_10_3390_vaccines12121358
crossref_primary_10_3389_fimmu_2022_902260
crossref_primary_10_1016_j_cell_2022_02_018
crossref_primary_10_37349_ei_2022_00074
crossref_primary_10_3390_v15020303
crossref_primary_10_1038_s41467_022_34439_7
crossref_primary_10_1016_j_bj_2023_100666
crossref_primary_10_1111_aji_13934
crossref_primary_10_3390_vaccines11030537
crossref_primary_10_1016_j_mehy_2023_111015
crossref_primary_10_1016_j_chom_2023_07_004
crossref_primary_10_1016_j_ebiom_2023_104788
crossref_primary_10_7554_eLife_87431_3
crossref_primary_10_1089_vim_2022_0117
crossref_primary_10_1016_j_jinf_2024_106317
crossref_primary_10_1016_j_coi_2022_102214
crossref_primary_10_1016_j_omtm_2022_10_001
crossref_primary_10_1038_s41590_024_02010_9
crossref_primary_10_3390_v16091480
crossref_primary_10_1016_j_fct_2022_113008
crossref_primary_10_7759_cureus_57860
crossref_primary_10_1038_s41467_023_39267_x
crossref_primary_10_1084_jem_20240289
crossref_primary_10_1038_s41541_022_00586_7
crossref_primary_10_3390_vaccines12121418
crossref_primary_10_3389_fimmu_2024_1442556
crossref_primary_10_1016_j_it_2022_02_009
crossref_primary_10_1016_j_clim_2025_110429
crossref_primary_10_1038_s41467_023_41880_9
crossref_primary_10_7554_eLife_86014
crossref_primary_10_1016_j_matt_2025_102006
crossref_primary_10_1128_msphere_00758_23
crossref_primary_10_1016_j_ebiom_2022_104294
crossref_primary_10_1016_j_celrep_2024_114567
crossref_primary_10_2174_2666796704666230804103419
crossref_primary_10_1016_j_ebiom_2023_104574
crossref_primary_10_1016_j_xcrm_2024_101851
crossref_primary_10_1038_s41573_024_01042_y
crossref_primary_10_1016_j_prp_2023_154497
crossref_primary_10_3389_fpubh_2023_1146059
crossref_primary_10_3390_vaccines11121792
crossref_primary_10_1038_s41467_023_38127_y
crossref_primary_10_1002_eji_202250022
crossref_primary_10_3390_biomedicines12010059
crossref_primary_10_3390_pathogens12020233
crossref_primary_10_1093_infdis_jiac483
crossref_primary_10_1038_s41586_023_06025_4
crossref_primary_10_1126_science_adk0582
crossref_primary_10_3389_fped_2023_1297177
crossref_primary_10_7759_cureus_32548
crossref_primary_10_1128_jvi_01694_22
crossref_primary_10_3390_vaccines11010012
crossref_primary_10_1016_j_immuni_2022_07_020
crossref_primary_10_1016_j_intimp_2022_109650
crossref_primary_10_3390_v15081778
crossref_primary_10_1016_j_eclinm_2022_101655
crossref_primary_10_22625_2072_6732_2022_14_5_35_40
crossref_primary_10_1016_j_isci_2023_106256
crossref_primary_10_1038_s41586_024_07539_1
crossref_primary_10_3389_fimmu_2024_1293793
crossref_primary_10_3390_biomedicines11020451
crossref_primary_10_1016_j_jinf_2024_106246
crossref_primary_10_3389_fimmu_2023_1165769
crossref_primary_10_3390_ijms231810881
crossref_primary_10_1080_14760584_2024_2333952
crossref_primary_10_1080_21645515_2023_2282803
crossref_primary_10_1186_s12879_024_09644_y
crossref_primary_10_1126_scitranslmed_adm8451
crossref_primary_10_1038_s41565_024_01679_1
crossref_primary_10_1002_mco2_167
crossref_primary_10_1016_j_isci_2023_106260
crossref_primary_10_3390_jcm11216272
crossref_primary_10_1186_s12302_024_00966_x
crossref_primary_10_1038_s41541_022_00575_w
crossref_primary_10_25259_SNI_377_2022
crossref_primary_10_1007_s00392_022_02129_5
crossref_primary_10_1146_annurev_immunol_101721_061120
crossref_primary_10_3390_ijerph19106110
crossref_primary_10_1093_jnen_nlac056
crossref_primary_10_1210_clinem_dgad501
crossref_primary_10_3390_ijms232315067
crossref_primary_10_1021_acsinfecdis_3c00483
crossref_primary_10_1111_imr_13089
crossref_primary_10_7759_cureus_52876
crossref_primary_10_3389_fbioe_2024_1371596
crossref_primary_10_2478_aite_2024_0016
crossref_primary_10_3390_v14071517
crossref_primary_10_1016_j_celrep_2022_111496
crossref_primary_10_1038_s41421_023_00609_0
crossref_primary_10_3389_fimmu_2023_1266370
crossref_primary_10_4103_ijph_ijph_848_22
crossref_primary_10_7759_cureus_32361
crossref_primary_10_3389_fcimb_2024_1381877
crossref_primary_10_1126_sciimmunol_abq2427
crossref_primary_10_2139_ssrn_4173451
crossref_primary_10_1093_infdis_jiad366
crossref_primary_10_1038_s41392_025_02132_y
crossref_primary_10_1038_s41541_022_00479_9
crossref_primary_10_1016_j_amjoto_2023_103970
crossref_primary_10_1002_ctm2_923
crossref_primary_10_1111_imr_13112
crossref_primary_10_1016_j_ebiom_2024_105185
crossref_primary_10_1038_s41467_022_32188_1
crossref_primary_10_1093_immhor_vlae011
crossref_primary_10_1111_all_16231
crossref_primary_10_1136_bmjph_2023_000282
crossref_primary_10_1021_acssensors_3c00393
crossref_primary_10_1186_s12879_024_09948_z
crossref_primary_10_1038_s41392_023_01650_x
crossref_primary_10_1172_jci_insight_163471
crossref_primary_10_3389_fimmu_2022_933347
crossref_primary_10_1128_jvi_01990_24
crossref_primary_10_1016_j_immuni_2023_03_005
crossref_primary_10_1016_j_xcrm_2023_100971
crossref_primary_10_1016_j_celrep_2023_113665
crossref_primary_10_1128_jvi_01285_24
crossref_primary_10_1016_j_labinv_2024_102180
crossref_primary_10_4110_in_2024_24_e28
crossref_primary_10_1016_j_chom_2022_10_011
crossref_primary_10_1016_j_ebiom_2023_104833
crossref_primary_10_1038_s41467_024_50774_3
crossref_primary_10_26508_lsa_202302529
crossref_primary_10_3390_vaccines12060679
crossref_primary_10_3390_covid4090097
crossref_primary_10_1038_s41467_023_40195_z
crossref_primary_10_3390_diagnostics12071555
crossref_primary_10_1038_s41423_023_01095_w
crossref_primary_10_2139_ssrn_4132330
crossref_primary_10_1016_j_molmed_2022_04_007
crossref_primary_10_1038_s41598_022_17057_7
crossref_primary_10_1038_s41467_024_51046_w
crossref_primary_10_1016_j_immuni_2024_10_003
crossref_primary_10_3389_fimmu_2022_1032574
crossref_primary_10_1002_jmv_28163
crossref_primary_10_1016_j_immuni_2022_05_004
crossref_primary_10_3389_fimmu_2024_1445653
crossref_primary_10_1016_j_immuni_2022_05_005
crossref_primary_10_1186_s12951_025_03200_9
crossref_primary_10_1016_j_ijid_2024_107198
crossref_primary_10_1016_j_vaccine_2024_126184
crossref_primary_10_3892_mmr_2024_13272
crossref_primary_10_1016_j_ebiom_2024_105415
crossref_primary_10_3389_fimmu_2022_1045529
crossref_primary_10_3389_fimmu_2023_1104124
crossref_primary_10_1016_j_ebiom_2022_104408
crossref_primary_10_1002_cti2_1434
crossref_primary_10_3390_vaccines12111281
crossref_primary_10_1126_sciimmunol_adk5845
crossref_primary_10_1038_s41577_022_00725_0
crossref_primary_10_3390_ijms232415480
crossref_primary_10_3389_fimmu_2023_1167214
crossref_primary_10_47570_joci_2024_004
crossref_primary_10_1016_j_jacbts_2022_08_005
crossref_primary_10_1080_22221751_2024_2387447
crossref_primary_10_3389_fimmu_2022_1031254
Cites_doi 10.2807/1560-7917.ES.2020.25.3.2000045
10.1093/clinchem/hvaa213
10.1084/jem.20171450
10.1038/s41579-021-00573-0
10.3389/fimmu.2017.01539
10.1016/j.bbrc.2020.10.012
10.1093/infdis/165.5.913
10.1016/j.cell.2021.12.033
10.1016/j.chom.2021.02.020
10.1038/s41596-021-00556-8
10.1038/s41598-017-17204-5
10.1038/s41586-021-03738-2
10.1073/pnas.1920321117
10.1016/j.chom.2021.11.004
10.1056/NEJMoa2034577
10.1016/j.cell.2020.08.025
10.1111/neup.12189
10.1016/j.cell.2018.07.010
10.1056/NEJMoa2035389
10.1038/s41591-021-01527-y
10.1056/NEJMc2113468
10.1056/NEJMc2112981
10.1016/j.immuni.2020.11.006
10.1038/s41591-020-0897-1
10.1016/j.cell.2019.04.012
10.1016/j.cell.2021.12.032
10.1128/JCM.00859-21
10.1016/j.vaccine.2021.05.063
10.1038/s41379-021-00800-2
10.1016/j.jcv.2020.104383
10.1126/sciimmunol.abe0240
10.1038/s41590-020-00814-z
10.1056/NEJMoa2101544
10.1056/NEJM199302043280501
10.1016/j.chom.2021.06.009
10.1007/s00292-021-00945-6
10.1016/j.chom.2021.02.003
10.1038/s41551-019-0378-3
10.1126/science.abm3425
10.1038/s41586-021-03791-x
10.1016/j.immuni.2020.11.009
10.1016/j.cell.2022.01.027
10.1016/j.jviromet.2014.02.031
10.4049/jimmunol.1801149
10.1126/scitranslmed.abi9915
10.1016/j.cell.2020.07.005
10.1038/s41591-021-01540-1
10.1126/science.aag1322
10.1056/NEJMoa2114583
10.1016/S0140-6736(20)32661-1
10.1016/j.jim.2020.112746
10.1038/s41591-021-01377-8
10.1089/vim.2019.0207
10.1056/NEJMoa2027906
10.1016/j.it.2021.09.001
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2022.01.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 1040.e14
ExternalDocumentID PMC8786601
35148837
10_1016_j_cell_2022_01_018
S0092867422000769
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30 AG072980
– fundername: NIAID NIH HHS
  grantid: P01 AI153559
– fundername: NIAID NIH HHS
  grantid: R01 AI130398
– fundername: NIAID NIH HHS
  grantid: R01 AI127877
– fundername: NCI NIH HHS
  grantid: U54 CA260517
– fundername: NIAID NIH HHS
  grantid: U19 AI167903
– fundername: NIA NIH HHS
  grantid: P30 AG019610
– fundername: NIAID NIH HHS
  grantid: U19 AI057229
– fundername: NIAID NIH HHS
  grantid: HHSN272201700013C
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YZZ
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAIKJ
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
RIG
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
EFKBS
ID FETCH-LOGICAL-c554t-7cc9714608c5dd3708b00f27587aa9a67516b85f739424dba049749dd540aa9f3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:08:53 EDT 2025
Fri Jul 11 16:19:47 EDT 2025
Fri Jul 11 08:14:35 EDT 2025
Thu Apr 03 06:57:22 EDT 2025
Tue Jul 01 02:17:10 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Sun Apr 06 06:54:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords SARS-CoV-2 variants of concern
BNT162b2
BBIBP-CorV
imprinting
Gam-COVID-Vac
Astra Zeneca
Delta variant
ChAdOx1-S
COVID-19
Sinopharm
vaccine
SARS-CoV-2
endemic coronaviruses
Sputnik V
mRNA-1273
lymph node germinal center
Moderna
antibodies
BioNTech-Pfizer
autopsy
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-7cc9714608c5dd3708b00f27587aa9a67516b85f739424dba049749dd540aa9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
ORCID 0000-0003-0963-044X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867422000769
PMID 35148837
PQID 2628298504
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8786601
proquest_miscellaneous_2648860695
proquest_miscellaneous_2628298504
pubmed_primary_35148837
crossref_citationtrail_10_1016_j_cell_2022_01_018
crossref_primary_10_1016_j_cell_2022_01_018
elsevier_sciencedirect_doi_10_1016_j_cell_2022_01_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-17
PublicationDateYYYYMMDD 2022-03-17
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2022
Publisher Elsevier Inc
The Authors. Published by Elsevier Inc
Publisher_xml – name: Elsevier Inc
– name: The Authors. Published by Elsevier Inc
References Chu, Montefiori, Huang, Nestorova, Chang, Carfi, Edwards, Oestreicher, Legault, Girard (bib9) 2021
Pardi, Hogan, Naradikian, Parkhouse, Cain, Jones, Moody, Verkerke, Myles, Willis (bib45) 2018; 215
Greaney, Loes, Crawford, Starr, Malone, Chu, Bloom (bib24) 2021; 29
Cloutier, Allard, Bean, Hornick, Charville (bib11) 2021; 34
Dashdorj, Dashdorj, Mishra, Danzig, Briese, Lipkin, Mishra (bib13) 2021
Wu, Choi, Koch, Ma, Hill, Nunna, Huang, Oestreicher, Colpitts, Bennett (bib58) 2021
Plante, Mitchell, Plante, Debbink, Weaver, Menachery (bib46) 2021; 29
Cirelli, Carnathan, Nogal, Martin, Rodriguez, Upadhyay, Enemuo, Gebru, Choe, Viviano (bib10) 2019; 177
Röltgen, Boyd (bib48) 2021; 29
Gilbert, Montefiori, McDermott, Fong, Benkeser, Deng, Zhou, Houchens, Martins, Jayashankar (bib21) 2022; 375
Goltsev, Samusik, Kennedy-Darling, Bhate, Hale, Vazquez, Black, Nolan (bib22) 2018; 174
Miles, Balden, Magpantay, Wei, Leiblein, Hofheinz, Toedter, Stiehm, Bryson (bib42) 1993; 328
Levin, Lustig, Cohen, Fluss, Indenbaum, Amit, Doolman, Asraf, Mendelson, Ziv (bib37) 2021
Bankhead, Loughrey, Fernández, Dombrowski, McArt, Dunne, McQuaid, Gray, Murray, Coleman (bib4) 2017; 7
Hogan, Sahoo, Huang, Garamani, Stevens, Zehnder, Pinsky (bib29) 2020; 127
Keehner, Horton, Binkin, Laurent, SEARCH Alliance, Pride, Longhurst, Abeles, Torriani (bib32) 2021; 385
Wheatley, Fox, Tan, Juno, Davenport, Subbarao, Kent (bib56) 2021; 42
Baden, El Sahly, Essink, Kotloff, Frey, Novak, Diemert, Spector, Rouphael, Creech (bib3) 2021; 384
Beach, Adler, Sue, Serrano, Shill, Walker, Lue, Roher, Dugger, Maarouf (bib5) 2015; 35
Lima, Nogueira, Filippis, Nunes, Sousa, Silva, Santos (bib38) 2014; 204
Earle, Ambrosino, Fiore-Gartland, Goldblatt, Gilbert, Siber, Dull, Plotkin (bib15) 2021; 39
Feng, Diao, Wang, Wang, Wang, Tan, Liu, Wang, Liu, Liu (bib19) 2020
Garcia-Beltran, Denis, Hoelzemer, Lam, Nitido, Sheehan, Berrios, Ofoman, Chang, Hauser (bib20) 2021; 185
Greaney, Loes, Gentles, Crawford, Starr, Malone, Chu, Bloom (bib25) 2021; 13
Israel, Shenhar, Green, Merzon, Golan-Cohen, Schäffer, Ruppin, Vinker, Magen (bib30) 2022; 10, 64
Feng, Phillips, White, Sayal, Aley, Bibi, Dold, Fuskova, Gilbert, Hirsch (bib18) 2021; 27
Kaneko, Kuo, Boucau, Farmer, Allard-Chamard, Mahajan, Piechocka-Trocha, Lefteri, Osborn, Bals (bib31) 2020; 183
Sadoff, Gray, Vandebosch, Cárdenas, Shukarev, Grinsztejn, Goepfert, Truyers, Fennema, Spiessens (bib50) 2021; 384
Havenar-Daughton, Newton, Zare, Reiss, Schwan, Suh, Hasteh, Levi, Crotty (bib43) 2020; 479
Lindgren, Ols, Liang, Thompson, Lin, Hellgren, Bahl, John, Yuzhakov, Hassett (bib39) 2017; 8
Woodruff, Ramonell, Nguyen, Cashman, Saini, Haddad, Ley, Kyu, Howell, Ozturk (bib57) 2020; 21
Lederer, Castaño, Gómez Atria, Oguin, Wang, Manzoni, Muramatsu, Hogan, Amanat, Cherubin (bib35) 2020; 53
Röltgen, Powell, Wirz, Stevens, Hogan, Najeeb, Hunter, Wang, Sahoo, Huang (bib49) 2020; 5
Ogata, Maley, Wu, Gilboa, Norman, Lazarovits, Mao, Newton, Chang, Nguyen (bib44) 2020; 66
Polack, Thomas, Kitchin, Absalon, Gurtman, Lockhart, Perez, Pérez Marc, Moreira, Zerbini (bib47) 2020; 383
Hoffmann, Krüger, Schulz, Cossmann, Rocha, Kempf, Nehlmeier, Graichen, Moldenhauer, Winkler (bib28) 2021; 185
Lederer, Bettini, Parvathaneni, Painter, Agarwal, Lundgreen, Weirick, Muralidharan, Castano, Goel (bib36) 2022
Arevalo, Sage, Bolton, Eilola, Jones, Kormuth, Nturibi, Balmaseda, Gordon, Lakdawala (bib1) 2020; 117
Zhang, Stacey, Mullarkey, Miller (bib60) 2019; 202
Voysey, Clemens, Madhi, Weckx, Folegatti, Aley, Angus, Baillie, Barnabas, Bhorat (bib53) 2021; 397
Choi, Koch, Wu, Chu, Ma, Hill, Nunna, Huang, Oestreicher, Colpitts (bib8) 2021; 27
Haslbauer, Matter, Stalder, Tzankov (bib27) 2021; 42
Gostic, Ambrose, Worobey, Lloyd-Smith (bib23) 2016; 354
Lam, Smith, Baumgarth (bib34) 2020; 33
Wang, Miller, Verghese, Sibai, Solis, Mfuh, Jiang, Iwai, Mar, Huang (bib55) 2021; 59
Black, Phillips, Hickey, Kennedy-Darling, Venkataraaman, Samusik, Goltsev, Schürch, Nolan (bib6) 2021; 16
Lindsay, Bhosle, Zurla, Beyersdorf, Rogers, Vanover, Xiao, Araínga, Shirreff, Pitard (bib40) 2019; 3
Corman, Landt, Kaiser, Molenkamp, Meijer, Chu, Bleicker, Brünink, Schneider, Schmidt (bib12) 2020; 25
Bollinger, Kline, Francis, Moss, Bartlett, Quinn (bib7) 1992; 165
Khoury, Cromer, Reynaldi, Schlub, Wheatley, Juno, Subbarao, Kent, Triccas, Davenport (bib33) 2021; 27
Falsey, Frenck, Walsh, Kitchin, Absalon, Gurtman, Lockhart, Bailey, Swanson, Xu (bib17) 2021; 385
Long, Liu, Deng, Wu, Deng, Chen, Liao, Qiu, Lin, Cai (bib41) 2020; 26
Arunachalam, Scott, Hagan, Li, Feng, Wimmers, Grigoryan, Trisal, Edara, Lai (bib2) 2021; 596
Dashdorj, Wirz, Röltgen, Haraguchi, Buzzanco, Sibai, Wang, Miller, Solis, Sahoo (bib14) 2021; 29
Harvey, Carabelli, Jackson, Gupta, Thomson, Harrison, Ludden, Reeve, Rambaut (bib26) 2021; 19
Yuan, Liu, Wu, Wilson (bib59) 2021; 538
Turner, O’Halloran, Kalaidina, Kim, Schmitz, Zhou, Lei, Thapa, Chen, Case (bib52) 2021; 596
Elsner, Shlomchik (bib16) 2020; 53
Walsh, Frenck, Falsey, Kitchin, Absalon, Gurtman, Lockhart, Neuzil, Mulligan, Bailey (bib54) 2020; 383
Schürch, Bhate, Barlow, Phillips, Noti, Zlobec, Chu, Black, Demeter, McIlwain (bib51) 2020; 182
Earle (10.1016/j.cell.2022.01.018_bib15) 2021; 39
Lederer (10.1016/j.cell.2022.01.018_bib35) 2020; 53
Hogan (10.1016/j.cell.2022.01.018_bib29) 2020; 127
Lindgren (10.1016/j.cell.2022.01.018_bib39) 2017; 8
Röltgen (10.1016/j.cell.2022.01.018_bib48) 2021; 29
Turner (10.1016/j.cell.2022.01.018_bib52) 2021; 596
Arevalo (10.1016/j.cell.2022.01.018_bib1) 2020; 117
Cloutier (10.1016/j.cell.2022.01.018_bib11) 2021; 34
Haslbauer (10.1016/j.cell.2022.01.018_bib27) 2021; 42
Bankhead (10.1016/j.cell.2022.01.018_bib4) 2017; 7
Elsner (10.1016/j.cell.2022.01.018_bib16) 2020; 53
Lindsay (10.1016/j.cell.2022.01.018_bib40) 2019; 3
Khoury (10.1016/j.cell.2022.01.018_bib33) 2021; 27
Lam (10.1016/j.cell.2022.01.018_bib34) 2020; 33
Hoffmann (10.1016/j.cell.2022.01.018_bib28) 2021; 185
Lederer (10.1016/j.cell.2022.01.018_bib36) 2022
Röltgen (10.1016/j.cell.2022.01.018_bib49) 2020; 5
Greaney (10.1016/j.cell.2022.01.018_bib25) 2021; 13
Yuan (10.1016/j.cell.2022.01.018_bib59) 2021; 538
Greaney (10.1016/j.cell.2022.01.018_bib24) 2021; 29
Sadoff (10.1016/j.cell.2022.01.018_bib50) 2021; 384
Cirelli (10.1016/j.cell.2022.01.018_bib10) 2019; 177
Garcia-Beltran (10.1016/j.cell.2022.01.018_bib20) 2021; 185
Gostic (10.1016/j.cell.2022.01.018_bib23) 2016; 354
Miles (10.1016/j.cell.2022.01.018_bib42) 1993; 328
Dashdorj (10.1016/j.cell.2022.01.018_bib13) 2021
Pardi (10.1016/j.cell.2022.01.018_bib45) 2018; 215
Goltsev (10.1016/j.cell.2022.01.018_bib22) 2018; 174
Baden (10.1016/j.cell.2022.01.018_bib3) 2021; 384
Wu (10.1016/j.cell.2022.01.018_bib58) 2021
Walsh (10.1016/j.cell.2022.01.018_bib54) 2020; 383
Black (10.1016/j.cell.2022.01.018_bib6) 2021; 16
Falsey (10.1016/j.cell.2022.01.018_bib17) 2021; 385
Lima (10.1016/j.cell.2022.01.018_bib38) 2014; 204
Beach (10.1016/j.cell.2022.01.018_bib5) 2015; 35
Israel (10.1016/j.cell.2022.01.018_bib30) 2022; 10, 64
Plante (10.1016/j.cell.2022.01.018_bib46) 2021; 29
Levin (10.1016/j.cell.2022.01.018_bib37) 2021
Ogata (10.1016/j.cell.2022.01.018_bib44) 2020; 66
Zhang (10.1016/j.cell.2022.01.018_bib60) 2019; 202
Polack (10.1016/j.cell.2022.01.018_bib47) 2020; 383
Choi (10.1016/j.cell.2022.01.018_bib8) 2021; 27
Harvey (10.1016/j.cell.2022.01.018_bib26) 2021; 19
Arunachalam (10.1016/j.cell.2022.01.018_bib2) 2021; 596
Kaneko (10.1016/j.cell.2022.01.018_bib31) 2020; 183
Bollinger (10.1016/j.cell.2022.01.018_bib7) 1992; 165
Woodruff (10.1016/j.cell.2022.01.018_bib57) 2020; 21
Gilbert (10.1016/j.cell.2022.01.018_bib21) 2022; 375
Wheatley (10.1016/j.cell.2022.01.018_bib56) 2021; 42
Long (10.1016/j.cell.2022.01.018_bib41) 2020; 26
Chu (10.1016/j.cell.2022.01.018_bib9) 2021
Schürch (10.1016/j.cell.2022.01.018_bib51) 2020; 182
Wang (10.1016/j.cell.2022.01.018_bib55) 2021; 59
Dashdorj (10.1016/j.cell.2022.01.018_bib14) 2021; 29
Voysey (10.1016/j.cell.2022.01.018_bib53) 2021; 397
Corman (10.1016/j.cell.2022.01.018_bib12) 2020; 25
Feng (10.1016/j.cell.2022.01.018_bib18) 2021; 27
Feng (10.1016/j.cell.2022.01.018_bib19) 2020
Havenar-Daughton (10.1016/j.cell.2022.01.018_bib43) 2020; 479
Keehner (10.1016/j.cell.2022.01.018_bib32) 2021; 385
35272935 - Trends Immunol. 2022 Apr;43(4):271-273
References_xml – volume: 34
  start-page: 1521
  year: 2021
  end-page: 1529
  ident: bib11
  article-title: PDGFB RNA in situ hybridization for the diagnosis of dermatofibrosarcoma protuberans
  publication-title: Mod. Pathol.
– volume: 35
  start-page: 354
  year: 2015
  end-page: 389
  ident: bib5
  article-title: Arizona study of aging and neurodegenerative disorders and brain and body donation program
  publication-title: Neuropathology
– volume: 375
  start-page: 43
  year: 2022
  end-page: 50
  ident: bib21
  article-title: Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial
  publication-title: Science
– volume: 10, 64
  year: 2022
  ident: bib30
  article-title: Large-scale study of antibody titer decay following BNT162b2 mRNA vaccine or SARS-CoV-2 infection
  publication-title: Vaccines
– volume: 183
  start-page: 143
  year: 2020
  end-page: 157.e13
  ident: bib31
  article-title: Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19
  publication-title: Cell
– volume: 177
  start-page: 1153
  year: 2019
  end-page: 1171.e28
  ident: bib10
  article-title: Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance
  publication-title: Cell
– volume: 25
  year: 2020
  ident: bib12
  article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
  publication-title: Euro Surveill.
– volume: 29
  start-page: 508
  year: 2021
  end-page: 515
  ident: bib46
  article-title: The variant gambit: COVID-19’s next move
  publication-title: Cell Host Microbe
– volume: 27
  start-page: 2025
  year: 2021
  end-page: 2031
  ident: bib8
  article-title: Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis
  publication-title: Nat. Med.
– volume: 127
  start-page: 104383
  year: 2020
  ident: bib29
  article-title: Comparison of the Panther Fusion and a laboratory-developed test targeting the envelope gene for detection of SARS-CoV-2
  publication-title: J. Clin. Virol.
– volume: 596
  start-page: 410
  year: 2021
  end-page: 416
  ident: bib2
  article-title: Systems vaccinology of the BNT162b2 mRNA vaccine in humans
  publication-title: Nature
– year: 2021
  ident: bib37
  article-title: Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: bib58
  article-title: Preliminary analysis of safety and immunogenicity of a SARS-CoV-2 variant vaccine booster
  publication-title: MedRxiv
– volume: 174
  start-page: 968
  year: 2018
  end-page: 981.e15
  ident: bib22
  article-title: Deep profiling of mouse splenic architecture with CODEX multiplexed imaging
  publication-title: Cell
– volume: 204
  start-page: 105
  year: 2014
  end-page: 108
  ident: bib38
  article-title: A simple heat dissociation method increases significantly the ELISA detection sensitivity of the nonstructural-1 glycoprotein in patients infected with DENV type-4
  publication-title: J. Virol. Methods
– volume: 42
  start-page: 956
  year: 2021
  end-page: 959
  ident: bib56
  article-title: Immune imprinting and SARS-CoV-2 vaccine design
  publication-title: Trends Immunol.
– volume: 385
  start-page: 1627
  year: 2021
  end-page: 1629
  ident: bib17
  article-title: SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3
  publication-title: N. Engl. J. Med.
– volume: 215
  start-page: 1571
  year: 2018
  end-page: 1588
  ident: bib45
  article-title: Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses
  publication-title: J. Exp. Med.
– volume: 53
  start-page: 1136
  year: 2020
  end-page: 1150
  ident: bib16
  article-title: Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity
  publication-title: Immunity
– volume: 26
  start-page: 845
  year: 2020
  end-page: 848
  ident: bib41
  article-title: Antibody responses to SARS-CoV-2 in patients with COVID-19
  publication-title: Nat. Med.
– volume: 33
  start-page: 294
  year: 2020
  end-page: 306
  ident: bib34
  article-title: B cell activation and response regulation during viral infections
  publication-title: Viral Immunol.
– volume: 59
  start-page: e0085921
  year: 2021
  ident: bib55
  article-title: Multiplex SARS-CoV-2 genotyping reverse transcriptase PCR for population-level variant screening and epidemiologic surveillance
  publication-title: J. Clin. Microbiol.
– volume: 5
  start-page: eabe0240
  year: 2020
  ident: bib49
  article-title: Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome
  publication-title: Sci. Immunol.
– volume: 538
  start-page: 192
  year: 2021
  end-page: 203
  ident: bib59
  article-title: Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 596
  start-page: 109
  year: 2021
  end-page: 113
  ident: bib52
  article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses
  publication-title: Nature
– volume: 185
  start-page: 457
  year: 2021
  end-page: 466
  ident: bib20
  article-title: mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant
  publication-title: Cell
– volume: 29
  start-page: 463
  year: 2021
  end-page: 476.e6
  ident: bib24
  article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies
  publication-title: Cell Host Microbe
– volume: 328
  start-page: 297
  year: 1993
  end-page: 302
  ident: bib42
  article-title: Rapid serologic testing with immune-complex-dissociated HIV p24 antigen for early detection of HIV infection in neonates. Southern California Pediatric AIDS Consortium
  publication-title: N. Engl. J. Med.
– volume: 27
  start-page: 1205
  year: 2021
  end-page: 1211
  ident: bib33
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat. Med.
– volume: 53
  start-page: 1281
  year: 2020
  end-page: 1295.e5
  ident: bib35
  article-title: SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation
  publication-title: Immunity
– volume: 383
  start-page: 2439
  year: 2020
  end-page: 2450
  ident: bib54
  article-title: Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates
  publication-title: N. Engl. J. Med.
– volume: 39
  start-page: 4423
  year: 2021
  end-page: 4428
  ident: bib15
  article-title: Evidence for antibody as a protective correlate for COVID-19 vaccines
  publication-title: Vaccine
– volume: 29
  start-page: 1063
  year: 2021
  end-page: 1075
  ident: bib48
  article-title: Antibody and B cell responses to SARS-CoV-2 infection and vaccination
  publication-title: Cell Host Microbe
– volume: 185
  start-page: 447
  year: 2021
  end-page: 456
  ident: bib28
  article-title: The Omicron variant is highly resistant against antibody-mediated neutralization – implications for control of the COVID-19 pandemic
  publication-title: Cell
– volume: 182
  start-page: 1341
  year: 2020
  end-page: 1359.e19
  ident: bib51
  article-title: Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front
  publication-title: Cell
– volume: 66
  start-page: 1562
  year: 2020
  end-page: 1572
  ident: bib44
  article-title: Ultra-sensitive serial profiling of SARS-CoV-2 antigens and antibodies in plasma to understand disease progression in COVID-19 patients with severe disease
  publication-title: Clin. Chem.
– year: 2021
  ident: bib9
  article-title: Immune memory response after a booster injection of mRNA-1273 for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
  publication-title: MedRxiv
– volume: 354
  start-page: 722
  year: 2016
  end-page: 726
  ident: bib23
  article-title: Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting
  publication-title: Science
– volume: 13
  start-page: eabi9915
  year: 2021
  ident: bib25
  article-title: Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection
  publication-title: Sci. Transl. Med.
– volume: 479
  year: 2020
  ident: bib43
  article-title: Normal human lymph node T follicular helper cells and germinal center B cells accessed via fine needle aspirations.
  publication-title: J. Immunol. Methods
– volume: 3
  start-page: 371
  year: 2019
  end-page: 380
  ident: bib40
  article-title: Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging
  publication-title: Nat. Biomed. Eng.
– year: 2021
  ident: bib13
  article-title: Molecular and serological investigation of the 2021 COVID-19 case surge in Mongolian vaccinees
  publication-title: MedRxiv
– volume: 397
  start-page: 99
  year: 2021
  end-page: 111
  ident: bib53
  article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
  publication-title: Lancet
– volume: 117
  start-page: 17221
  year: 2020
  end-page: 17227
  ident: bib1
  article-title: Original antigenic sin priming of influenza virus hemagglutinin stalk antibodies
  publication-title: PNAS
– year: 2020
  ident: bib19
  article-title: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes
  publication-title: MedRxiv
– volume: 7
  start-page: 16878
  year: 2017
  ident: bib4
  article-title: QuPath: open source software for digital pathology image analysis
  publication-title: Sci. Rep.
– volume: 19
  start-page: 409
  year: 2021
  end-page: 424
  ident: bib26
  article-title: SARS-CoV-2 variants, spike mutations and immune escape
  publication-title: Nat. Rev. Microbiol.
– volume: 21
  start-page: 1506
  year: 2020
  end-page: 1516
  ident: bib57
  article-title: Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19
  publication-title: Nat. Immunol.
– volume: 384
  start-page: 2187
  year: 2021
  end-page: 2201
  ident: bib50
  article-title: Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19
  publication-title: N. Engl. J. Med.
– volume: 42
  start-page: 89
  year: 2021
  end-page: 97
  ident: bib27
  article-title: Histomorphological patterns of regional lymph nodes in COVID-19 lungs
  publication-title: Pathologe
– volume: 16
  start-page: 3802
  year: 2021
  end-page: 3835
  ident: bib6
  article-title: CODEX multiplexed tissue imaging with DNA-conjugated antibodies
  publication-title: Nat. Protoc.
– volume: 383
  start-page: 2603
  year: 2020
  end-page: 2615
  ident: bib47
  article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine
  publication-title: N. Engl. J. Med.
– volume: 384
  start-page: 403
  year: 2021
  end-page: 416
  ident: bib3
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N. Engl. J. Med.
– year: 2022
  ident: bib36
  article-title: Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals
  publication-title: Cell
– volume: 385
  start-page: 1330
  year: 2021
  end-page: 1332
  ident: bib32
  article-title: Resurgence of SARS-CoV-2 infection in a highly vaccinated health system workforce
  publication-title: N. Engl. J. Med.
– volume: 8
  start-page: 1539
  year: 2017
  ident: bib39
  article-title: Induction of robust B cell responses after influenza mRNA vaccination is accompanied by circulating hemagglutinin-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells
  publication-title: Front. Immunol.
– volume: 202
  start-page: 335
  year: 2019
  end-page: 340
  ident: bib60
  article-title: Original antigenic sin: how first exposure shapes lifelong anti–influenza virus immune responses
  publication-title: J. Immunol.
– volume: 165
  start-page: 913
  year: 1992
  end-page: 916
  ident: bib7
  article-title: Acid dissociation increases the sensitivity of p24 antigen detection for the evaluation of antiviral therapy and disease progression in asymptomatic human immunodeficiency virus-infected persons
  publication-title: J. Infect. Dis.
– volume: 27
  start-page: 2032
  year: 2021
  end-page: 2040
  ident: bib18
  article-title: Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection
  publication-title: Nat. Med.
– volume: 29
  start-page: 1738
  year: 2021
  end-page: 1743.e4
  ident: bib14
  article-title: Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia
  publication-title: Cell Host Microbe
– volume: 25
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib12
  article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
  publication-title: Euro Surveill.
  doi: 10.2807/1560-7917.ES.2020.25.3.2000045
– volume: 66
  start-page: 1562
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib44
  article-title: Ultra-sensitive serial profiling of SARS-CoV-2 antigens and antibodies in plasma to understand disease progression in COVID-19 patients with severe disease
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/hvaa213
– volume: 215
  start-page: 1571
  year: 2018
  ident: 10.1016/j.cell.2022.01.018_bib45
  article-title: Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20171450
– volume: 19
  start-page: 409
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib26
  article-title: SARS-CoV-2 variants, spike mutations and immune escape
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-021-00573-0
– volume: 8
  start-page: 1539
  year: 2017
  ident: 10.1016/j.cell.2022.01.018_bib39
  article-title: Induction of robust B cell responses after influenza mRNA vaccination is accompanied by circulating hemagglutinin-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.01539
– volume: 538
  start-page: 192
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib59
  article-title: Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.10.012
– volume: 165
  start-page: 913
  year: 1992
  ident: 10.1016/j.cell.2022.01.018_bib7
  article-title: Acid dissociation increases the sensitivity of p24 antigen detection for the evaluation of antiviral therapy and disease progression in asymptomatic human immunodeficiency virus-infected persons
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/165.5.913
– volume: 185
  start-page: 457
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib20
  article-title: mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant
  publication-title: Cell
  doi: 10.1016/j.cell.2021.12.033
– volume: 29
  start-page: 508
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib46
  article-title: The variant gambit: COVID-19’s next move
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.02.020
– volume: 16
  start-page: 3802
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib6
  article-title: CODEX multiplexed tissue imaging with DNA-conjugated antibodies
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-021-00556-8
– volume: 7
  start-page: 16878
  year: 2017
  ident: 10.1016/j.cell.2022.01.018_bib4
  article-title: QuPath: open source software for digital pathology image analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17204-5
– year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib9
  article-title: Immune memory response after a booster injection of mRNA-1273 for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
  publication-title: MedRxiv
– volume: 596
  start-page: 109
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib52
  article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses
  publication-title: Nature
  doi: 10.1038/s41586-021-03738-2
– volume: 117
  start-page: 17221
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib1
  article-title: Original antigenic sin priming of influenza virus hemagglutinin stalk antibodies
  publication-title: PNAS
  doi: 10.1073/pnas.1920321117
– volume: 29
  start-page: 1738
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib14
  article-title: Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.11.004
– volume: 383
  start-page: 2603
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib47
  article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– volume: 183
  start-page: 143
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib31
  article-title: Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.025
– volume: 35
  start-page: 354
  year: 2015
  ident: 10.1016/j.cell.2022.01.018_bib5
  article-title: Arizona study of aging and neurodegenerative disorders and brain and body donation program
  publication-title: Neuropathology
  doi: 10.1111/neup.12189
– volume: 174
  start-page: 968
  year: 2018
  ident: 10.1016/j.cell.2022.01.018_bib22
  article-title: Deep profiling of mouse splenic architecture with CODEX multiplexed imaging
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.010
– year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib19
  article-title: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes
  publication-title: MedRxiv
– volume: 384
  start-page: 403
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib3
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035389
– volume: 27
  start-page: 2025
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib8
  article-title: Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01527-y
– volume: 385
  start-page: 1627
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib17
  article-title: SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2113468
– volume: 385
  start-page: 1330
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib32
  article-title: Resurgence of SARS-CoV-2 infection in a highly vaccinated health system workforce
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2112981
– volume: 53
  start-page: 1136
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib16
  article-title: Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.11.006
– volume: 26
  start-page: 845
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib41
  article-title: Antibody responses to SARS-CoV-2 in patients with COVID-19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0897-1
– volume: 177
  start-page: 1153
  year: 2019
  ident: 10.1016/j.cell.2022.01.018_bib10
  article-title: Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance
  publication-title: Cell
  doi: 10.1016/j.cell.2019.04.012
– volume: 185
  start-page: 447
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib28
  article-title: The Omicron variant is highly resistant against antibody-mediated neutralization – implications for control of the COVID-19 pandemic
  publication-title: Cell
  doi: 10.1016/j.cell.2021.12.032
– volume: 59
  start-page: e0085921
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib55
  article-title: Multiplex SARS-CoV-2 genotyping reverse transcriptase PCR for population-level variant screening and epidemiologic surveillance
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00859-21
– volume: 39
  start-page: 4423
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib15
  article-title: Evidence for antibody as a protective correlate for COVID-19 vaccines
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.05.063
– volume: 34
  start-page: 1521
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib11
  article-title: PDGFB RNA in situ hybridization for the diagnosis of dermatofibrosarcoma protuberans
  publication-title: Mod. Pathol.
  doi: 10.1038/s41379-021-00800-2
– volume: 127
  start-page: 104383
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib29
  article-title: Comparison of the Panther Fusion and a laboratory-developed test targeting the envelope gene for detection of SARS-CoV-2
  publication-title: J. Clin. Virol.
  doi: 10.1016/j.jcv.2020.104383
– volume: 5
  start-page: eabe0240
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib49
  article-title: Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abe0240
– year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib13
  article-title: Molecular and serological investigation of the 2021 COVID-19 case surge in Mongolian vaccinees
  publication-title: MedRxiv
– volume: 21
  start-page: 1506
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib57
  article-title: Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-00814-z
– volume: 384
  start-page: 2187
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib50
  article-title: Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2101544
– volume: 328
  start-page: 297
  year: 1993
  ident: 10.1016/j.cell.2022.01.018_bib42
  article-title: Rapid serologic testing with immune-complex-dissociated HIV p24 antigen for early detection of HIV infection in neonates. Southern California Pediatric AIDS Consortium
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199302043280501
– volume: 29
  start-page: 1063
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib48
  article-title: Antibody and B cell responses to SARS-CoV-2 infection and vaccination
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.06.009
– volume: 42
  start-page: 89
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib27
  article-title: Histomorphological patterns of regional lymph nodes in COVID-19 lungs
  publication-title: Pathologe
  doi: 10.1007/s00292-021-00945-6
– year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib58
  article-title: Preliminary analysis of safety and immunogenicity of a SARS-CoV-2 variant vaccine booster
  publication-title: MedRxiv
– volume: 29
  start-page: 463
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib24
  article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.02.003
– volume: 3
  start-page: 371
  year: 2019
  ident: 10.1016/j.cell.2022.01.018_bib40
  article-title: Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0378-3
– volume: 375
  start-page: 43
  year: 2022
  ident: 10.1016/j.cell.2022.01.018_bib21
  article-title: Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial
  publication-title: Science
  doi: 10.1126/science.abm3425
– volume: 596
  start-page: 410
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib2
  article-title: Systems vaccinology of the BNT162b2 mRNA vaccine in humans
  publication-title: Nature
  doi: 10.1038/s41586-021-03791-x
– volume: 53
  start-page: 1281
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib35
  article-title: SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.11.009
– year: 2022
  ident: 10.1016/j.cell.2022.01.018_bib36
  article-title: Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals
  publication-title: Cell
  doi: 10.1016/j.cell.2022.01.027
– volume: 204
  start-page: 105
  year: 2014
  ident: 10.1016/j.cell.2022.01.018_bib38
  article-title: A simple heat dissociation method increases significantly the ELISA detection sensitivity of the nonstructural-1 glycoprotein in patients infected with DENV type-4
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2014.02.031
– volume: 202
  start-page: 335
  year: 2019
  ident: 10.1016/j.cell.2022.01.018_bib60
  article-title: Original antigenic sin: how first exposure shapes lifelong anti–influenza virus immune responses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1801149
– volume: 10, 64
  year: 2022
  ident: 10.1016/j.cell.2022.01.018_bib30
  article-title: Large-scale study of antibody titer decay following BNT162b2 mRNA vaccine or SARS-CoV-2 infection
  publication-title: Vaccines
– volume: 13
  start-page: eabi9915
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib25
  article-title: Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abi9915
– volume: 182
  start-page: 1341
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib51
  article-title: Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.005
– volume: 27
  start-page: 2032
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib18
  article-title: Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01540-1
– volume: 354
  start-page: 722
  year: 2016
  ident: 10.1016/j.cell.2022.01.018_bib23
  article-title: Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting
  publication-title: Science
  doi: 10.1126/science.aag1322
– year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib37
  article-title: Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2114583
– volume: 397
  start-page: 99
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib53
  article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)32661-1
– volume: 479
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib43
  article-title: Normal human lymph node T follicular helper cells and germinal center B cells accessed via fine needle aspirations.
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2020.112746
– volume: 27
  start-page: 1205
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib33
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01377-8
– volume: 33
  start-page: 294
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib34
  article-title: B cell activation and response regulation during viral infections
  publication-title: Viral Immunol.
  doi: 10.1089/vim.2019.0207
– volume: 383
  start-page: 2439
  year: 2020
  ident: 10.1016/j.cell.2022.01.018_bib54
  article-title: Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2027906
– volume: 42
  start-page: 956
  year: 2021
  ident: 10.1016/j.cell.2022.01.018_bib56
  article-title: Immune imprinting and SARS-CoV-2 vaccine design
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2021.09.001
– reference: 35272935 - Trends Immunol. 2022 Apr;43(4):271-273
SSID ssj0008555
Score 2.7083344
Snippet During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1025
SubjectTerms Adenoviridae
antibodies
Antibodies, Viral
antibody specificity
antigens
Antigens, Viral
Astra Zeneca
autopsy
BBIBP-CorV
BioNTech-Pfizer
BNT162 Vaccine
BNT162b2
ChAdOx1-S
COVID-19
COVID-19 - prevention & control
Delta variant
endemic coronaviruses
Gam-COVID-Vac
Germinal Center
histology
Humans
imprinting
lymph
lymph node germinal center
lymph nodes
Moderna
mRNA-1273
pandemic
SARS-CoV-2
SARS-CoV-2 - genetics
SARS-CoV-2 variants of concern
Severe acute respiratory syndrome coronavirus 2
Sinopharm
Spike Glycoprotein, Coronavirus
Sputnik V
Vaccination
vaccine
vaccines
Title Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination
URI https://dx.doi.org/10.1016/j.cell.2022.01.018
https://www.ncbi.nlm.nih.gov/pubmed/35148837
https://www.proquest.com/docview/2628298504
https://www.proquest.com/docview/2648860695
https://pubmed.ncbi.nlm.nih.gov/PMC8786601
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEG-WR2UkbjRq4viVY1lRFSQ4UIr2Zjm2Q1MVpyrbShz478zYScQC2gNSLonHeXg84xnnmxlCXrU8tF44V7SVtAXnHkSqc4jM8VZa1VkuMFD4w0d5fMrfr8RqhyynWBiEVY66P-v0pK3HKwfjaB5c9j3G-DZMS3DtWPqfhEF8NdcpiG_1ZtbGWohcxaAByQfqMXAmY7xwcxx8RMZS6k4s_PHvxelv4_NPDOVvi9LRXXJntCbpYX7he2QnxPvkVq4v-eMB-fkOoz8C7b_h9h0CnPcpuMDWr8_o0NEb8JNhYOkMIhriPrXR068ZIXNB8bHhCggSkBZuFGkq6kdPDj-dFMvhS8HoBOeKqeuNda7PO4wPyenR28_L42Kst1A4MCrWhXKuUaA5S-2E97UqNchkx8CjUNY2FlyLSrZadKpuOOO-teBdKN54D1YfEHT1I7IbhxieEKpDraUuu1qBwWXrElje6UpZ5mWQwqoFqaaBNm5MRo41MS7MhDo7N8gcg8wxZQWHXpDXc5_LnIpjK7WY-Gc2JpSBtWJrv5cTsw1IGjbbGIbr74ZJ_OusRcm30YBCBJ-wEQvyOE-Q-V0xZkLrGr5dbUydmQAzfW-2xP4sZfzWSkvwnJ_-5zc9I7fxDKFzlXpOdtdX1-EF2FLrdg9XMrGXROYXMRMe_w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s3yNBI3GjVx_MqxrKh2oe2BtmhvlmMnbVDrVO22Egf-OzNxErGA9oCUUzxOHI9nPON8M0PI-5JXpRfOJWUmbcK5B5GqHSJzvJVW1ZYLDBTeP5CzY_55IRYbZDrEwiCsstf9Uad32rq_s93P5vZF02CMb8G0BNeOdf-TilvkNlgDEpf2fPFxVMdaiFjGoADRB_I-ciaCvPB0HJxExrrcnVj549-709_W558gyt92pd0H5H5vTtKdOOKHZKMKj8idWGDyx2Pyc47hHxVtzvH8DhHOWxR8YOuXp7St6Q04yjCzdEQRtWGL2uDpSYTInFF8bXUJBB2SFh4UaFfVjx7ufD1Mpu23hNEBzxW6rjfWuSYeMT4hx7ufjqazpC-4kDiwKpaJcq5QoDpT7YT3uUo1CGXNwKVQ1hYWfItMllrUKi8447604F4oXngPZh8Q1PlTshnaUD0nVFe5ljqtcwUWl81T4HmtM2WZl5UUVk1INky0cX02ciyKcWYG2Nl3g8wxyByTZnDpCfkw9rmIuTjWUouBf2ZlRRnYLNb2ezcw24CoYbMNVXt9ZZjE385apHwdDWhEcAoLMSHP4gIZx4pBE1rn8O1qZemMBJjqe7UlNKddym-ttATX-cV_ftNbcnd2tL9n9uYHX16Se9iCOLpMvSKby8vr6jUYVsvyTSc4vwDvwiFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+imprinting%2C+breadth+of+variant+recognition%2C+and+germinal+center+response+in+human+SARS-CoV-2+infection+and+vaccination&rft.jtitle=Cell&rft.au=R%C3%B6ltgen%2C+Katharina&rft.au=Nielsen%2C+Sandra+C+A&rft.au=Silva%2C+Oscar&rft.au=Younes%2C+Sheren+F&rft.date=2022-03-17&rft.eissn=1097-4172&rft.volume=185&rft.issue=6&rft.spage=1025&rft_id=info:doi/10.1016%2Fj.cell.2022.01.018&rft_id=info%3Apmid%2F35148837&rft.externalDocID=35148837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon