Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination
During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or i...
Saved in:
Published in | Cell Vol. 185; no. 6; pp. 1025 - 1040.e14 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.03.2022
The Authors. Published by Elsevier Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0092-8674 1097-4172 1097-4172 |
DOI | 10.1016/j.cell.2022.01.018 |
Cover
Loading…
Abstract | During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.
[Display omitted]
•Vaccination confers broader IgG binding of variant RBDs than SARS-CoV-2 infection•Imprinting from initial antigen exposures alters IgG responses to viral variants•Histology of mRNA vaccinee lymph nodes shows abundant GCs•Vaccine spike antigen and mRNA persist for weeks in lymph node GCs
Human antibody responses to SARS-CoV-2 differ between vaccination and infection, with mRNA vaccination inducing more productive lymph node GC responses and several vaccine types stimulating IgG antibodies capable of recognizing a broader range of viral variants. |
---|---|
AbstractList | During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination. During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination. Human antibody responses to SARS-CoV-2 differ between vaccination and infection, with mRNA vaccination inducing more productive lymph node GC responses and several vaccine types stimulating IgG antibodies capable of recognizing a broader range of viral variants. During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination. During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination. During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination. [Display omitted] •Vaccination confers broader IgG binding of variant RBDs than SARS-CoV-2 infection•Imprinting from initial antigen exposures alters IgG responses to viral variants•Histology of mRNA vaccinee lymph nodes shows abundant GCs•Vaccine spike antigen and mRNA persist for weeks in lymph node GCs Human antibody responses to SARS-CoV-2 differ between vaccination and infection, with mRNA vaccination inducing more productive lymph node GC responses and several vaccine types stimulating IgG antibodies capable of recognizing a broader range of viral variants. |
Author | Wilbur, James L. Wang, Aihui Haraguchi, Emily Arunachalam, Prabhu S. Charville, Gregory W. Zhao, Shuchun Liu, James Monroe, Robert Wirz, Oliver F. Boyd, Scott D. Mallajosyula, Vamsee Hoh, Ramona A. Serrano, Geidy E. Shah, Mihir M. Pinsky, Benjamin A. Nadeau, Kari C. Dashdorj, Naranbaatar D. Costales, Cristina Dashdorj, Naranjargal J. Silva, Oscar Colburg, Deana Chang, Iris Sindher, Sayantani B. Zaslavsky, Maxim Solis, Daniel Wohlstadter, Jacob N. Röltgen, Katharina Younes, Sheren F. Manohar, Monali Pulendran, Bali Troxell, Megan L. Gao, Fei Li, Chunfeng Lee, Alexandra S. Shoura, Massa J. Chinthrajah, R. Sharon Yang, Fan Parsons, Ella Nielsen, Sandra C.A. Beach, Thomas G. Sigal, George B. Natkunam, Yasodha Davis, Mark M. |
Author_xml | – sequence: 1 givenname: Katharina surname: Röltgen fullname: Röltgen, Katharina organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 2 givenname: Sandra C.A. surname: Nielsen fullname: Nielsen, Sandra C.A. organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 3 givenname: Oscar surname: Silva fullname: Silva, Oscar organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 4 givenname: Sheren F. surname: Younes fullname: Younes, Sheren F. organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 5 givenname: Maxim surname: Zaslavsky fullname: Zaslavsky, Maxim organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 6 givenname: Cristina surname: Costales fullname: Costales, Cristina organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 7 givenname: Fan surname: Yang fullname: Yang, Fan organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 8 givenname: Oliver F. surname: Wirz fullname: Wirz, Oliver F. organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 9 givenname: Daniel surname: Solis fullname: Solis, Daniel organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 10 givenname: Ramona A. surname: Hoh fullname: Hoh, Ramona A. organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 11 givenname: Aihui surname: Wang fullname: Wang, Aihui organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 12 givenname: Prabhu S. surname: Arunachalam fullname: Arunachalam, Prabhu S. organization: Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA – sequence: 13 givenname: Deana surname: Colburg fullname: Colburg, Deana organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 14 givenname: Shuchun surname: Zhao fullname: Zhao, Shuchun organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 15 givenname: Emily surname: Haraguchi fullname: Haraguchi, Emily organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 16 givenname: Alexandra S. surname: Lee fullname: Lee, Alexandra S. organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA – sequence: 17 givenname: Mihir M. surname: Shah fullname: Shah, Mihir M. organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA – sequence: 18 givenname: Monali surname: Manohar fullname: Manohar, Monali organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA – sequence: 19 givenname: Iris surname: Chang fullname: Chang, Iris organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA – sequence: 20 givenname: Fei surname: Gao fullname: Gao, Fei organization: Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA – sequence: 21 givenname: Vamsee surname: Mallajosyula fullname: Mallajosyula, Vamsee organization: Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA – sequence: 22 givenname: Chunfeng surname: Li fullname: Li, Chunfeng organization: Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA – sequence: 23 givenname: James surname: Liu fullname: Liu, James organization: Stanford Health Library, Stanford, CA, USA – sequence: 24 givenname: Massa J. surname: Shoura fullname: Shoura, Massa J. organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 25 givenname: Sayantani B. surname: Sindher fullname: Sindher, Sayantani B. organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA – sequence: 26 givenname: Ella surname: Parsons fullname: Parsons, Ella organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA – sequence: 27 givenname: Naranjargal J. surname: Dashdorj fullname: Dashdorj, Naranjargal J. organization: Onom Foundation, Ulaanbaatar 17013, Mongolia – sequence: 28 givenname: Naranbaatar D. surname: Dashdorj fullname: Dashdorj, Naranbaatar D. organization: Onom Foundation, Ulaanbaatar 17013, Mongolia – sequence: 29 givenname: Robert surname: Monroe fullname: Monroe, Robert organization: Advanced Cell Diagnostics, Newark, CA, USA – sequence: 30 givenname: Geidy E. surname: Serrano fullname: Serrano, Geidy E. organization: Banner Sun Health Research Institute, Sun City, AZ, USA – sequence: 31 givenname: Thomas G. surname: Beach fullname: Beach, Thomas G. organization: Banner Sun Health Research Institute, Sun City, AZ, USA – sequence: 32 givenname: R. Sharon surname: Chinthrajah fullname: Chinthrajah, R. Sharon organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA – sequence: 33 givenname: Gregory W. surname: Charville fullname: Charville, Gregory W. organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 34 givenname: James L. surname: Wilbur fullname: Wilbur, James L. organization: Meso Scale Diagnostics LLC, Rockville, MD, USA – sequence: 35 givenname: Jacob N. surname: Wohlstadter fullname: Wohlstadter, Jacob N. organization: Meso Scale Diagnostics LLC, Rockville, MD, USA – sequence: 36 givenname: Mark M. surname: Davis fullname: Davis, Mark M. organization: Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA – sequence: 37 givenname: Bali surname: Pulendran fullname: Pulendran, Bali organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 38 givenname: Megan L. surname: Troxell fullname: Troxell, Megan L. organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 39 givenname: George B. surname: Sigal fullname: Sigal, George B. organization: Meso Scale Diagnostics LLC, Rockville, MD, USA – sequence: 40 givenname: Yasodha surname: Natkunam fullname: Natkunam, Yasodha organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 41 givenname: Benjamin A. surname: Pinsky fullname: Pinsky, Benjamin A. organization: Department of Pathology, Stanford University, Stanford, CA, USA – sequence: 42 givenname: Kari C. surname: Nadeau fullname: Nadeau, Kari C. organization: Sean N. Parker Center for Allergy & Asthma Research, Stanford University, Stanford, CA, USA – sequence: 43 givenname: Scott D. orcidid: 0000-0003-0963-044X surname: Boyd fullname: Boyd, Scott D. email: publications_scott_boyd@stanford.edu organization: Department of Pathology, Stanford University, Stanford, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35148837$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhoNU7Lb6B7yQXHrRWU8y-RoQoSx-FAqCVW9DNpPZzTKTrMnMQi_872a6ragXRTgQkrzPm5Nzzhk6CTE4hF4SWBIg4s1uaV3fLylQugRSQj1BCwKNrBiR9AQtABpaKSHZKTrLeQcAinP-DJ3WnDClarlAP6-GYQoO-2GffBh92FzgdXKmHbc4dvhgkjdhxMnZuAl-9DFcYBNavHFp8MH02LowulQEeR9DLkYBb6fBBHxz-eWmWsXvFS1nnbMze4cejLUFnffP0dPO9Nm9uF_P0bcP77-uPlXXnz9erS6vK8s5GytpbSMJE6Asb9tagloDdFRyJY1pjJCciLXinawbRlm7NsAayZq25QyKoKvP0buj735aD66dc06m1-XLg0m3Ohqv_74Jfqs38aCVVEIAKQav7w1S_DG5POrB57n6Jrg4ZU1FqacA0fD_kFJFG8WBFemrP9P6nc9De4pAHQU2xZyT67T1413lSpa-1wT0PAl6p-cH9DwJGkgJVVD6D_rg_ij09gi50oyDd0ln612wrvVlAkbdRv8Y_gtCI82t |
CitedBy_id | crossref_primary_10_1016_j_ebiom_2024_105428 crossref_primary_10_1039_D3BM01841E crossref_primary_10_3389_fimmu_2023_1123158 crossref_primary_10_4049_jimmunol_2300315 crossref_primary_10_3390_ijms25189814 crossref_primary_10_1038_s41590_024_01951_5 crossref_primary_10_3390_ijerph192013669 crossref_primary_10_3390_vaccines11040875 crossref_primary_10_3389_fimmu_2023_1259879 crossref_primary_10_7759_cureus_50703 crossref_primary_10_1038_s41385_022_00569_w crossref_primary_10_1093_infdis_jiae371 crossref_primary_10_3390_vaccines12101089 crossref_primary_10_1002_jmv_29151 crossref_primary_10_3390_biomedicines10071538 crossref_primary_10_1038_s41467_023_37417_9 crossref_primary_10_1038_s41422_023_00781_8 crossref_primary_10_1126_sciimmunol_ade2798 crossref_primary_10_1016_j_cell_2022_04_009 crossref_primary_10_1371_journal_ppat_1011545 crossref_primary_10_1016_j_jinf_2025_106473 crossref_primary_10_1038_s41392_023_01422_7 crossref_primary_10_1172_jci_insight_175401 crossref_primary_10_1038_s41541_023_00742_7 crossref_primary_10_1111_irv_13357 crossref_primary_10_1038_s41598_024_51149_w crossref_primary_10_1093_nsr_nwae196 crossref_primary_10_35825_2587_5728_2024_8_3_205_231 crossref_primary_10_1371_journal_pone_0299215 crossref_primary_10_3390_vaccines11030607 crossref_primary_10_1016_j_coi_2023_102332 crossref_primary_10_3390_vaccines10101576 crossref_primary_10_1126_sciadv_adh0761 crossref_primary_10_3389_fimmu_2022_914167 crossref_primary_10_1038_s41467_024_47451_w crossref_primary_10_1016_j_cellimm_2023_104689 crossref_primary_10_1016_j_jaip_2023_05_005 crossref_primary_10_3390_vaccines11101578 crossref_primary_10_1038_s41467_025_57446_w crossref_primary_10_1172_JCI162192 crossref_primary_10_20411_pai_v8i1_572 crossref_primary_10_3390_jcm11144164 crossref_primary_10_1093_cei_uxad044 crossref_primary_10_3389_fimmu_2023_1309997 crossref_primary_10_1038_s41541_024_00856_6 crossref_primary_10_3390_microorganisms11051308 crossref_primary_10_1136_bmj_2022_074404 crossref_primary_10_1186_s12951_024_02972_w crossref_primary_10_1016_j_ijid_2024_107300 crossref_primary_10_1128_msphere_00812_23 crossref_primary_10_3390_cancers15164017 crossref_primary_10_1016_j_ebiom_2023_104743 crossref_primary_10_1038_s41541_024_00893_1 crossref_primary_10_1016_j_omtn_2025_102489 crossref_primary_10_3390_v15102079 crossref_primary_10_1080_21645515_2024_2384192 crossref_primary_10_1007_s11357_024_01215_y crossref_primary_10_3390_vaccines12040377 crossref_primary_10_1038_s41541_024_00806_2 crossref_primary_10_1080_14712598_2022_2137402 crossref_primary_10_3390_biomedicines11082287 crossref_primary_10_1016_j_molmed_2022_07_009 crossref_primary_10_1016_j_molmed_2022_07_008 crossref_primary_10_3390_jpm12060995 crossref_primary_10_3390_ijms231810374 crossref_primary_10_1080_08916934_2023_2259123 crossref_primary_10_1016_j_xcrm_2024_101668 crossref_primary_10_37349_ei_2024_00140 crossref_primary_10_1016_j_cell_2022_05_014 crossref_primary_10_1038_s41598_023_40103_x crossref_primary_10_1038_s41467_024_51973_8 crossref_primary_10_1186_s40001_024_02240_5 crossref_primary_10_1371_journal_ppat_1012724 crossref_primary_10_3389_fimmu_2022_916686 crossref_primary_10_1038_s41467_022_31888_y crossref_primary_10_29328_journal_jatr_1001023 crossref_primary_10_3389_fimmu_2023_1285203 crossref_primary_10_1093_cid_ciac652 crossref_primary_10_1016_j_chom_2024_04_006 crossref_primary_10_1016_j_it_2023_01_005 crossref_primary_10_1002_jmv_28419 crossref_primary_10_3390_pathogens12020169 crossref_primary_10_3389_fimmu_2024_1336906 crossref_primary_10_1038_s41573_023_00859_3 crossref_primary_10_1146_annurev_pathmechdis_031521_042754 crossref_primary_10_1038_s41541_024_00815_1 crossref_primary_10_1038_s41392_024_01807_2 crossref_primary_10_3390_vaccines12050459 crossref_primary_10_1073_pnas_2313672121 crossref_primary_10_1016_j_jaci_2025_01_003 crossref_primary_10_1038_s41586_024_08511_9 crossref_primary_10_1080_14760584_2023_2232851 crossref_primary_10_1080_22221751_2022_2130101 crossref_primary_10_3390_ijms241310514 crossref_primary_10_1177_01926233241278298 crossref_primary_10_3390_vaccines10101651 crossref_primary_10_4049_jimmunol_2300500 crossref_primary_10_3389_fimmu_2024_1504935 crossref_primary_10_1021_acsnano_2c12584 crossref_primary_10_1038_s41564_023_01505_9 crossref_primary_10_3390_j6020017 crossref_primary_10_3389_fimmu_2022_940705 crossref_primary_10_3389_fimmu_2022_979188 crossref_primary_10_1080_14760584_2022_2077196 crossref_primary_10_1080_15476286_2024_2333123 crossref_primary_10_1111_imcb_12635 crossref_primary_10_7554_eLife_87431 crossref_primary_10_1007_s40656_022_00548_1 crossref_primary_10_1016_j_xcrm_2022_100834 crossref_primary_10_3390_biomedicines12112530 crossref_primary_10_1186_s12879_024_09670_w crossref_primary_10_3390_vaccines10081208 crossref_primary_10_1002_jgm_3733 crossref_primary_10_1016_j_envres_2023_116823 crossref_primary_10_1016_j_immuni_2022_10_014 crossref_primary_10_1111_all_16089 crossref_primary_10_3390_vaccines12121358 crossref_primary_10_3389_fimmu_2022_902260 crossref_primary_10_1016_j_cell_2022_02_018 crossref_primary_10_37349_ei_2022_00074 crossref_primary_10_3390_v15020303 crossref_primary_10_1038_s41467_022_34439_7 crossref_primary_10_1016_j_bj_2023_100666 crossref_primary_10_1111_aji_13934 crossref_primary_10_3390_vaccines11030537 crossref_primary_10_1016_j_mehy_2023_111015 crossref_primary_10_1016_j_chom_2023_07_004 crossref_primary_10_1016_j_ebiom_2023_104788 crossref_primary_10_7554_eLife_87431_3 crossref_primary_10_1089_vim_2022_0117 crossref_primary_10_1016_j_jinf_2024_106317 crossref_primary_10_1016_j_coi_2022_102214 crossref_primary_10_1016_j_omtm_2022_10_001 crossref_primary_10_1038_s41590_024_02010_9 crossref_primary_10_3390_v16091480 crossref_primary_10_1016_j_fct_2022_113008 crossref_primary_10_7759_cureus_57860 crossref_primary_10_1038_s41467_023_39267_x crossref_primary_10_1084_jem_20240289 crossref_primary_10_1038_s41541_022_00586_7 crossref_primary_10_3390_vaccines12121418 crossref_primary_10_3389_fimmu_2024_1442556 crossref_primary_10_1016_j_it_2022_02_009 crossref_primary_10_1016_j_clim_2025_110429 crossref_primary_10_1038_s41467_023_41880_9 crossref_primary_10_7554_eLife_86014 crossref_primary_10_1016_j_matt_2025_102006 crossref_primary_10_1128_msphere_00758_23 crossref_primary_10_1016_j_ebiom_2022_104294 crossref_primary_10_1016_j_celrep_2024_114567 crossref_primary_10_2174_2666796704666230804103419 crossref_primary_10_1016_j_ebiom_2023_104574 crossref_primary_10_1016_j_xcrm_2024_101851 crossref_primary_10_1038_s41573_024_01042_y crossref_primary_10_1016_j_prp_2023_154497 crossref_primary_10_3389_fpubh_2023_1146059 crossref_primary_10_3390_vaccines11121792 crossref_primary_10_1038_s41467_023_38127_y crossref_primary_10_1002_eji_202250022 crossref_primary_10_3390_biomedicines12010059 crossref_primary_10_3390_pathogens12020233 crossref_primary_10_1093_infdis_jiac483 crossref_primary_10_1038_s41586_023_06025_4 crossref_primary_10_1126_science_adk0582 crossref_primary_10_3389_fped_2023_1297177 crossref_primary_10_7759_cureus_32548 crossref_primary_10_1128_jvi_01694_22 crossref_primary_10_3390_vaccines11010012 crossref_primary_10_1016_j_immuni_2022_07_020 crossref_primary_10_1016_j_intimp_2022_109650 crossref_primary_10_3390_v15081778 crossref_primary_10_1016_j_eclinm_2022_101655 crossref_primary_10_22625_2072_6732_2022_14_5_35_40 crossref_primary_10_1016_j_isci_2023_106256 crossref_primary_10_1038_s41586_024_07539_1 crossref_primary_10_3389_fimmu_2024_1293793 crossref_primary_10_3390_biomedicines11020451 crossref_primary_10_1016_j_jinf_2024_106246 crossref_primary_10_3389_fimmu_2023_1165769 crossref_primary_10_3390_ijms231810881 crossref_primary_10_1080_14760584_2024_2333952 crossref_primary_10_1080_21645515_2023_2282803 crossref_primary_10_1186_s12879_024_09644_y crossref_primary_10_1126_scitranslmed_adm8451 crossref_primary_10_1038_s41565_024_01679_1 crossref_primary_10_1002_mco2_167 crossref_primary_10_1016_j_isci_2023_106260 crossref_primary_10_3390_jcm11216272 crossref_primary_10_1186_s12302_024_00966_x crossref_primary_10_1038_s41541_022_00575_w crossref_primary_10_25259_SNI_377_2022 crossref_primary_10_1007_s00392_022_02129_5 crossref_primary_10_1146_annurev_immunol_101721_061120 crossref_primary_10_3390_ijerph19106110 crossref_primary_10_1093_jnen_nlac056 crossref_primary_10_1210_clinem_dgad501 crossref_primary_10_3390_ijms232315067 crossref_primary_10_1021_acsinfecdis_3c00483 crossref_primary_10_1111_imr_13089 crossref_primary_10_7759_cureus_52876 crossref_primary_10_3389_fbioe_2024_1371596 crossref_primary_10_2478_aite_2024_0016 crossref_primary_10_3390_v14071517 crossref_primary_10_1016_j_celrep_2022_111496 crossref_primary_10_1038_s41421_023_00609_0 crossref_primary_10_3389_fimmu_2023_1266370 crossref_primary_10_4103_ijph_ijph_848_22 crossref_primary_10_7759_cureus_32361 crossref_primary_10_3389_fcimb_2024_1381877 crossref_primary_10_1126_sciimmunol_abq2427 crossref_primary_10_2139_ssrn_4173451 crossref_primary_10_1093_infdis_jiad366 crossref_primary_10_1038_s41392_025_02132_y crossref_primary_10_1038_s41541_022_00479_9 crossref_primary_10_1016_j_amjoto_2023_103970 crossref_primary_10_1002_ctm2_923 crossref_primary_10_1111_imr_13112 crossref_primary_10_1016_j_ebiom_2024_105185 crossref_primary_10_1038_s41467_022_32188_1 crossref_primary_10_1093_immhor_vlae011 crossref_primary_10_1111_all_16231 crossref_primary_10_1136_bmjph_2023_000282 crossref_primary_10_1021_acssensors_3c00393 crossref_primary_10_1186_s12879_024_09948_z crossref_primary_10_1038_s41392_023_01650_x crossref_primary_10_1172_jci_insight_163471 crossref_primary_10_3389_fimmu_2022_933347 crossref_primary_10_1128_jvi_01990_24 crossref_primary_10_1016_j_immuni_2023_03_005 crossref_primary_10_1016_j_xcrm_2023_100971 crossref_primary_10_1016_j_celrep_2023_113665 crossref_primary_10_1128_jvi_01285_24 crossref_primary_10_1016_j_labinv_2024_102180 crossref_primary_10_4110_in_2024_24_e28 crossref_primary_10_1016_j_chom_2022_10_011 crossref_primary_10_1016_j_ebiom_2023_104833 crossref_primary_10_1038_s41467_024_50774_3 crossref_primary_10_26508_lsa_202302529 crossref_primary_10_3390_vaccines12060679 crossref_primary_10_3390_covid4090097 crossref_primary_10_1038_s41467_023_40195_z crossref_primary_10_3390_diagnostics12071555 crossref_primary_10_1038_s41423_023_01095_w crossref_primary_10_2139_ssrn_4132330 crossref_primary_10_1016_j_molmed_2022_04_007 crossref_primary_10_1038_s41598_022_17057_7 crossref_primary_10_1038_s41467_024_51046_w crossref_primary_10_1016_j_immuni_2024_10_003 crossref_primary_10_3389_fimmu_2022_1032574 crossref_primary_10_1002_jmv_28163 crossref_primary_10_1016_j_immuni_2022_05_004 crossref_primary_10_3389_fimmu_2024_1445653 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_1186_s12951_025_03200_9 crossref_primary_10_1016_j_ijid_2024_107198 crossref_primary_10_1016_j_vaccine_2024_126184 crossref_primary_10_3892_mmr_2024_13272 crossref_primary_10_1016_j_ebiom_2024_105415 crossref_primary_10_3389_fimmu_2022_1045529 crossref_primary_10_3389_fimmu_2023_1104124 crossref_primary_10_1016_j_ebiom_2022_104408 crossref_primary_10_1002_cti2_1434 crossref_primary_10_3390_vaccines12111281 crossref_primary_10_1126_sciimmunol_adk5845 crossref_primary_10_1038_s41577_022_00725_0 crossref_primary_10_3390_ijms232415480 crossref_primary_10_3389_fimmu_2023_1167214 crossref_primary_10_47570_joci_2024_004 crossref_primary_10_1016_j_jacbts_2022_08_005 crossref_primary_10_1080_22221751_2024_2387447 crossref_primary_10_3389_fimmu_2022_1031254 |
Cites_doi | 10.2807/1560-7917.ES.2020.25.3.2000045 10.1093/clinchem/hvaa213 10.1084/jem.20171450 10.1038/s41579-021-00573-0 10.3389/fimmu.2017.01539 10.1016/j.bbrc.2020.10.012 10.1093/infdis/165.5.913 10.1016/j.cell.2021.12.033 10.1016/j.chom.2021.02.020 10.1038/s41596-021-00556-8 10.1038/s41598-017-17204-5 10.1038/s41586-021-03738-2 10.1073/pnas.1920321117 10.1016/j.chom.2021.11.004 10.1056/NEJMoa2034577 10.1016/j.cell.2020.08.025 10.1111/neup.12189 10.1016/j.cell.2018.07.010 10.1056/NEJMoa2035389 10.1038/s41591-021-01527-y 10.1056/NEJMc2113468 10.1056/NEJMc2112981 10.1016/j.immuni.2020.11.006 10.1038/s41591-020-0897-1 10.1016/j.cell.2019.04.012 10.1016/j.cell.2021.12.032 10.1128/JCM.00859-21 10.1016/j.vaccine.2021.05.063 10.1038/s41379-021-00800-2 10.1016/j.jcv.2020.104383 10.1126/sciimmunol.abe0240 10.1038/s41590-020-00814-z 10.1056/NEJMoa2101544 10.1056/NEJM199302043280501 10.1016/j.chom.2021.06.009 10.1007/s00292-021-00945-6 10.1016/j.chom.2021.02.003 10.1038/s41551-019-0378-3 10.1126/science.abm3425 10.1038/s41586-021-03791-x 10.1016/j.immuni.2020.11.009 10.1016/j.cell.2022.01.027 10.1016/j.jviromet.2014.02.031 10.4049/jimmunol.1801149 10.1126/scitranslmed.abi9915 10.1016/j.cell.2020.07.005 10.1038/s41591-021-01540-1 10.1126/science.aag1322 10.1056/NEJMoa2114583 10.1016/S0140-6736(20)32661-1 10.1016/j.jim.2020.112746 10.1038/s41591-021-01377-8 10.1089/vim.2019.0207 10.1056/NEJMoa2027906 10.1016/j.it.2021.09.001 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2022.01.018 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 1040.e14 |
ExternalDocumentID | PMC8786601 35148837 10_1016_j_cell_2022_01_018 S0092867422000769 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG072980 – fundername: NIAID NIH HHS grantid: P01 AI153559 – fundername: NIAID NIH HHS grantid: R01 AI130398 – fundername: NIAID NIH HHS grantid: R01 AI127877 – fundername: NCI NIH HHS grantid: U54 CA260517 – fundername: NIAID NIH HHS grantid: U19 AI167903 – fundername: NIA NIH HHS grantid: P30 AG019610 – fundername: NIAID NIH HHS grantid: U19 AI057229 – fundername: NIAID NIH HHS grantid: HHSN272201700013C |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABCQX ABJNI ABMAC ABOCM ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT WH7 YZZ ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAIKJ AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKBMS AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c554t-7cc9714608c5dd3708b00f27587aa9a67516b85f739424dba049749dd540aa9f3 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 18:08:53 EDT 2025 Fri Jul 11 16:19:47 EDT 2025 Fri Jul 11 08:14:35 EDT 2025 Thu Apr 03 06:57:22 EDT 2025 Tue Jul 01 02:17:10 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Sun Apr 06 06:54:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | SARS-CoV-2 variants of concern BNT162b2 BBIBP-CorV imprinting Gam-COVID-Vac Astra Zeneca Delta variant ChAdOx1-S COVID-19 Sinopharm vaccine SARS-CoV-2 endemic coronaviruses Sputnik V mRNA-1273 lymph node germinal center Moderna antibodies BioNTech-Pfizer autopsy |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-7cc9714608c5dd3708b00f27587aa9a67516b85f739424dba049749dd540aa9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
ORCID | 0000-0003-0963-044X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867422000769 |
PMID | 35148837 |
PQID | 2628298504 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8786601 proquest_miscellaneous_2648860695 proquest_miscellaneous_2628298504 pubmed_primary_35148837 crossref_citationtrail_10_1016_j_cell_2022_01_018 crossref_primary_10_1016_j_cell_2022_01_018 elsevier_sciencedirect_doi_10_1016_j_cell_2022_01_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-17 |
PublicationDateYYYYMMDD | 2022-03-17 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2022 |
Publisher | Elsevier Inc The Authors. Published by Elsevier Inc |
Publisher_xml | – name: Elsevier Inc – name: The Authors. Published by Elsevier Inc |
References | Chu, Montefiori, Huang, Nestorova, Chang, Carfi, Edwards, Oestreicher, Legault, Girard (bib9) 2021 Pardi, Hogan, Naradikian, Parkhouse, Cain, Jones, Moody, Verkerke, Myles, Willis (bib45) 2018; 215 Greaney, Loes, Crawford, Starr, Malone, Chu, Bloom (bib24) 2021; 29 Cloutier, Allard, Bean, Hornick, Charville (bib11) 2021; 34 Dashdorj, Dashdorj, Mishra, Danzig, Briese, Lipkin, Mishra (bib13) 2021 Wu, Choi, Koch, Ma, Hill, Nunna, Huang, Oestreicher, Colpitts, Bennett (bib58) 2021 Plante, Mitchell, Plante, Debbink, Weaver, Menachery (bib46) 2021; 29 Cirelli, Carnathan, Nogal, Martin, Rodriguez, Upadhyay, Enemuo, Gebru, Choe, Viviano (bib10) 2019; 177 Röltgen, Boyd (bib48) 2021; 29 Gilbert, Montefiori, McDermott, Fong, Benkeser, Deng, Zhou, Houchens, Martins, Jayashankar (bib21) 2022; 375 Goltsev, Samusik, Kennedy-Darling, Bhate, Hale, Vazquez, Black, Nolan (bib22) 2018; 174 Miles, Balden, Magpantay, Wei, Leiblein, Hofheinz, Toedter, Stiehm, Bryson (bib42) 1993; 328 Levin, Lustig, Cohen, Fluss, Indenbaum, Amit, Doolman, Asraf, Mendelson, Ziv (bib37) 2021 Bankhead, Loughrey, Fernández, Dombrowski, McArt, Dunne, McQuaid, Gray, Murray, Coleman (bib4) 2017; 7 Hogan, Sahoo, Huang, Garamani, Stevens, Zehnder, Pinsky (bib29) 2020; 127 Keehner, Horton, Binkin, Laurent, SEARCH Alliance, Pride, Longhurst, Abeles, Torriani (bib32) 2021; 385 Wheatley, Fox, Tan, Juno, Davenport, Subbarao, Kent (bib56) 2021; 42 Baden, El Sahly, Essink, Kotloff, Frey, Novak, Diemert, Spector, Rouphael, Creech (bib3) 2021; 384 Beach, Adler, Sue, Serrano, Shill, Walker, Lue, Roher, Dugger, Maarouf (bib5) 2015; 35 Lima, Nogueira, Filippis, Nunes, Sousa, Silva, Santos (bib38) 2014; 204 Earle, Ambrosino, Fiore-Gartland, Goldblatt, Gilbert, Siber, Dull, Plotkin (bib15) 2021; 39 Feng, Diao, Wang, Wang, Wang, Tan, Liu, Wang, Liu, Liu (bib19) 2020 Garcia-Beltran, Denis, Hoelzemer, Lam, Nitido, Sheehan, Berrios, Ofoman, Chang, Hauser (bib20) 2021; 185 Greaney, Loes, Gentles, Crawford, Starr, Malone, Chu, Bloom (bib25) 2021; 13 Israel, Shenhar, Green, Merzon, Golan-Cohen, Schäffer, Ruppin, Vinker, Magen (bib30) 2022; 10, 64 Feng, Phillips, White, Sayal, Aley, Bibi, Dold, Fuskova, Gilbert, Hirsch (bib18) 2021; 27 Kaneko, Kuo, Boucau, Farmer, Allard-Chamard, Mahajan, Piechocka-Trocha, Lefteri, Osborn, Bals (bib31) 2020; 183 Sadoff, Gray, Vandebosch, Cárdenas, Shukarev, Grinsztejn, Goepfert, Truyers, Fennema, Spiessens (bib50) 2021; 384 Havenar-Daughton, Newton, Zare, Reiss, Schwan, Suh, Hasteh, Levi, Crotty (bib43) 2020; 479 Lindgren, Ols, Liang, Thompson, Lin, Hellgren, Bahl, John, Yuzhakov, Hassett (bib39) 2017; 8 Woodruff, Ramonell, Nguyen, Cashman, Saini, Haddad, Ley, Kyu, Howell, Ozturk (bib57) 2020; 21 Lederer, Castaño, Gómez Atria, Oguin, Wang, Manzoni, Muramatsu, Hogan, Amanat, Cherubin (bib35) 2020; 53 Röltgen, Powell, Wirz, Stevens, Hogan, Najeeb, Hunter, Wang, Sahoo, Huang (bib49) 2020; 5 Ogata, Maley, Wu, Gilboa, Norman, Lazarovits, Mao, Newton, Chang, Nguyen (bib44) 2020; 66 Polack, Thomas, Kitchin, Absalon, Gurtman, Lockhart, Perez, Pérez Marc, Moreira, Zerbini (bib47) 2020; 383 Hoffmann, Krüger, Schulz, Cossmann, Rocha, Kempf, Nehlmeier, Graichen, Moldenhauer, Winkler (bib28) 2021; 185 Lederer, Bettini, Parvathaneni, Painter, Agarwal, Lundgreen, Weirick, Muralidharan, Castano, Goel (bib36) 2022 Arevalo, Sage, Bolton, Eilola, Jones, Kormuth, Nturibi, Balmaseda, Gordon, Lakdawala (bib1) 2020; 117 Zhang, Stacey, Mullarkey, Miller (bib60) 2019; 202 Voysey, Clemens, Madhi, Weckx, Folegatti, Aley, Angus, Baillie, Barnabas, Bhorat (bib53) 2021; 397 Choi, Koch, Wu, Chu, Ma, Hill, Nunna, Huang, Oestreicher, Colpitts (bib8) 2021; 27 Haslbauer, Matter, Stalder, Tzankov (bib27) 2021; 42 Gostic, Ambrose, Worobey, Lloyd-Smith (bib23) 2016; 354 Lam, Smith, Baumgarth (bib34) 2020; 33 Wang, Miller, Verghese, Sibai, Solis, Mfuh, Jiang, Iwai, Mar, Huang (bib55) 2021; 59 Black, Phillips, Hickey, Kennedy-Darling, Venkataraaman, Samusik, Goltsev, Schürch, Nolan (bib6) 2021; 16 Lindsay, Bhosle, Zurla, Beyersdorf, Rogers, Vanover, Xiao, Araínga, Shirreff, Pitard (bib40) 2019; 3 Corman, Landt, Kaiser, Molenkamp, Meijer, Chu, Bleicker, Brünink, Schneider, Schmidt (bib12) 2020; 25 Bollinger, Kline, Francis, Moss, Bartlett, Quinn (bib7) 1992; 165 Khoury, Cromer, Reynaldi, Schlub, Wheatley, Juno, Subbarao, Kent, Triccas, Davenport (bib33) 2021; 27 Falsey, Frenck, Walsh, Kitchin, Absalon, Gurtman, Lockhart, Bailey, Swanson, Xu (bib17) 2021; 385 Long, Liu, Deng, Wu, Deng, Chen, Liao, Qiu, Lin, Cai (bib41) 2020; 26 Arunachalam, Scott, Hagan, Li, Feng, Wimmers, Grigoryan, Trisal, Edara, Lai (bib2) 2021; 596 Dashdorj, Wirz, Röltgen, Haraguchi, Buzzanco, Sibai, Wang, Miller, Solis, Sahoo (bib14) 2021; 29 Harvey, Carabelli, Jackson, Gupta, Thomson, Harrison, Ludden, Reeve, Rambaut (bib26) 2021; 19 Yuan, Liu, Wu, Wilson (bib59) 2021; 538 Turner, O’Halloran, Kalaidina, Kim, Schmitz, Zhou, Lei, Thapa, Chen, Case (bib52) 2021; 596 Elsner, Shlomchik (bib16) 2020; 53 Walsh, Frenck, Falsey, Kitchin, Absalon, Gurtman, Lockhart, Neuzil, Mulligan, Bailey (bib54) 2020; 383 Schürch, Bhate, Barlow, Phillips, Noti, Zlobec, Chu, Black, Demeter, McIlwain (bib51) 2020; 182 Earle (10.1016/j.cell.2022.01.018_bib15) 2021; 39 Lederer (10.1016/j.cell.2022.01.018_bib35) 2020; 53 Hogan (10.1016/j.cell.2022.01.018_bib29) 2020; 127 Lindgren (10.1016/j.cell.2022.01.018_bib39) 2017; 8 Röltgen (10.1016/j.cell.2022.01.018_bib48) 2021; 29 Turner (10.1016/j.cell.2022.01.018_bib52) 2021; 596 Arevalo (10.1016/j.cell.2022.01.018_bib1) 2020; 117 Cloutier (10.1016/j.cell.2022.01.018_bib11) 2021; 34 Haslbauer (10.1016/j.cell.2022.01.018_bib27) 2021; 42 Bankhead (10.1016/j.cell.2022.01.018_bib4) 2017; 7 Elsner (10.1016/j.cell.2022.01.018_bib16) 2020; 53 Lindsay (10.1016/j.cell.2022.01.018_bib40) 2019; 3 Khoury (10.1016/j.cell.2022.01.018_bib33) 2021; 27 Lam (10.1016/j.cell.2022.01.018_bib34) 2020; 33 Hoffmann (10.1016/j.cell.2022.01.018_bib28) 2021; 185 Lederer (10.1016/j.cell.2022.01.018_bib36) 2022 Röltgen (10.1016/j.cell.2022.01.018_bib49) 2020; 5 Greaney (10.1016/j.cell.2022.01.018_bib25) 2021; 13 Yuan (10.1016/j.cell.2022.01.018_bib59) 2021; 538 Greaney (10.1016/j.cell.2022.01.018_bib24) 2021; 29 Sadoff (10.1016/j.cell.2022.01.018_bib50) 2021; 384 Cirelli (10.1016/j.cell.2022.01.018_bib10) 2019; 177 Garcia-Beltran (10.1016/j.cell.2022.01.018_bib20) 2021; 185 Gostic (10.1016/j.cell.2022.01.018_bib23) 2016; 354 Miles (10.1016/j.cell.2022.01.018_bib42) 1993; 328 Dashdorj (10.1016/j.cell.2022.01.018_bib13) 2021 Pardi (10.1016/j.cell.2022.01.018_bib45) 2018; 215 Goltsev (10.1016/j.cell.2022.01.018_bib22) 2018; 174 Baden (10.1016/j.cell.2022.01.018_bib3) 2021; 384 Wu (10.1016/j.cell.2022.01.018_bib58) 2021 Walsh (10.1016/j.cell.2022.01.018_bib54) 2020; 383 Black (10.1016/j.cell.2022.01.018_bib6) 2021; 16 Falsey (10.1016/j.cell.2022.01.018_bib17) 2021; 385 Lima (10.1016/j.cell.2022.01.018_bib38) 2014; 204 Beach (10.1016/j.cell.2022.01.018_bib5) 2015; 35 Israel (10.1016/j.cell.2022.01.018_bib30) 2022; 10, 64 Plante (10.1016/j.cell.2022.01.018_bib46) 2021; 29 Levin (10.1016/j.cell.2022.01.018_bib37) 2021 Ogata (10.1016/j.cell.2022.01.018_bib44) 2020; 66 Zhang (10.1016/j.cell.2022.01.018_bib60) 2019; 202 Polack (10.1016/j.cell.2022.01.018_bib47) 2020; 383 Choi (10.1016/j.cell.2022.01.018_bib8) 2021; 27 Harvey (10.1016/j.cell.2022.01.018_bib26) 2021; 19 Arunachalam (10.1016/j.cell.2022.01.018_bib2) 2021; 596 Kaneko (10.1016/j.cell.2022.01.018_bib31) 2020; 183 Bollinger (10.1016/j.cell.2022.01.018_bib7) 1992; 165 Woodruff (10.1016/j.cell.2022.01.018_bib57) 2020; 21 Gilbert (10.1016/j.cell.2022.01.018_bib21) 2022; 375 Wheatley (10.1016/j.cell.2022.01.018_bib56) 2021; 42 Long (10.1016/j.cell.2022.01.018_bib41) 2020; 26 Chu (10.1016/j.cell.2022.01.018_bib9) 2021 Schürch (10.1016/j.cell.2022.01.018_bib51) 2020; 182 Wang (10.1016/j.cell.2022.01.018_bib55) 2021; 59 Dashdorj (10.1016/j.cell.2022.01.018_bib14) 2021; 29 Voysey (10.1016/j.cell.2022.01.018_bib53) 2021; 397 Corman (10.1016/j.cell.2022.01.018_bib12) 2020; 25 Feng (10.1016/j.cell.2022.01.018_bib18) 2021; 27 Feng (10.1016/j.cell.2022.01.018_bib19) 2020 Havenar-Daughton (10.1016/j.cell.2022.01.018_bib43) 2020; 479 Keehner (10.1016/j.cell.2022.01.018_bib32) 2021; 385 35272935 - Trends Immunol. 2022 Apr;43(4):271-273 |
References_xml | – volume: 34 start-page: 1521 year: 2021 end-page: 1529 ident: bib11 article-title: PDGFB RNA in situ hybridization for the diagnosis of dermatofibrosarcoma protuberans publication-title: Mod. Pathol. – volume: 35 start-page: 354 year: 2015 end-page: 389 ident: bib5 article-title: Arizona study of aging and neurodegenerative disorders and brain and body donation program publication-title: Neuropathology – volume: 375 start-page: 43 year: 2022 end-page: 50 ident: bib21 article-title: Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial publication-title: Science – volume: 10, 64 year: 2022 ident: bib30 article-title: Large-scale study of antibody titer decay following BNT162b2 mRNA vaccine or SARS-CoV-2 infection publication-title: Vaccines – volume: 183 start-page: 143 year: 2020 end-page: 157.e13 ident: bib31 article-title: Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19 publication-title: Cell – volume: 177 start-page: 1153 year: 2019 end-page: 1171.e28 ident: bib10 article-title: Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance publication-title: Cell – volume: 25 year: 2020 ident: bib12 article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR publication-title: Euro Surveill. – volume: 29 start-page: 508 year: 2021 end-page: 515 ident: bib46 article-title: The variant gambit: COVID-19’s next move publication-title: Cell Host Microbe – volume: 27 start-page: 2025 year: 2021 end-page: 2031 ident: bib8 article-title: Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis publication-title: Nat. Med. – volume: 127 start-page: 104383 year: 2020 ident: bib29 article-title: Comparison of the Panther Fusion and a laboratory-developed test targeting the envelope gene for detection of SARS-CoV-2 publication-title: J. Clin. Virol. – volume: 596 start-page: 410 year: 2021 end-page: 416 ident: bib2 article-title: Systems vaccinology of the BNT162b2 mRNA vaccine in humans publication-title: Nature – year: 2021 ident: bib37 article-title: Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months publication-title: N. Engl. J. Med. – year: 2021 ident: bib58 article-title: Preliminary analysis of safety and immunogenicity of a SARS-CoV-2 variant vaccine booster publication-title: MedRxiv – volume: 174 start-page: 968 year: 2018 end-page: 981.e15 ident: bib22 article-title: Deep profiling of mouse splenic architecture with CODEX multiplexed imaging publication-title: Cell – volume: 204 start-page: 105 year: 2014 end-page: 108 ident: bib38 article-title: A simple heat dissociation method increases significantly the ELISA detection sensitivity of the nonstructural-1 glycoprotein in patients infected with DENV type-4 publication-title: J. Virol. Methods – volume: 42 start-page: 956 year: 2021 end-page: 959 ident: bib56 article-title: Immune imprinting and SARS-CoV-2 vaccine design publication-title: Trends Immunol. – volume: 385 start-page: 1627 year: 2021 end-page: 1629 ident: bib17 article-title: SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3 publication-title: N. Engl. J. Med. – volume: 215 start-page: 1571 year: 2018 end-page: 1588 ident: bib45 article-title: Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses publication-title: J. Exp. Med. – volume: 53 start-page: 1136 year: 2020 end-page: 1150 ident: bib16 article-title: Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity publication-title: Immunity – volume: 26 start-page: 845 year: 2020 end-page: 848 ident: bib41 article-title: Antibody responses to SARS-CoV-2 in patients with COVID-19 publication-title: Nat. Med. – volume: 33 start-page: 294 year: 2020 end-page: 306 ident: bib34 article-title: B cell activation and response regulation during viral infections publication-title: Viral Immunol. – volume: 59 start-page: e0085921 year: 2021 ident: bib55 article-title: Multiplex SARS-CoV-2 genotyping reverse transcriptase PCR for population-level variant screening and epidemiologic surveillance publication-title: J. Clin. Microbiol. – volume: 5 start-page: eabe0240 year: 2020 ident: bib49 article-title: Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome publication-title: Sci. Immunol. – volume: 538 start-page: 192 year: 2021 end-page: 203 ident: bib59 article-title: Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies publication-title: Biochem. Biophys. Res. Commun. – volume: 596 start-page: 109 year: 2021 end-page: 113 ident: bib52 article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses publication-title: Nature – volume: 185 start-page: 457 year: 2021 end-page: 466 ident: bib20 article-title: mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant publication-title: Cell – volume: 29 start-page: 463 year: 2021 end-page: 476.e6 ident: bib24 article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies publication-title: Cell Host Microbe – volume: 328 start-page: 297 year: 1993 end-page: 302 ident: bib42 article-title: Rapid serologic testing with immune-complex-dissociated HIV p24 antigen for early detection of HIV infection in neonates. Southern California Pediatric AIDS Consortium publication-title: N. Engl. J. Med. – volume: 27 start-page: 1205 year: 2021 end-page: 1211 ident: bib33 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection publication-title: Nat. Med. – volume: 53 start-page: 1281 year: 2020 end-page: 1295.e5 ident: bib35 article-title: SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation publication-title: Immunity – volume: 383 start-page: 2439 year: 2020 end-page: 2450 ident: bib54 article-title: Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates publication-title: N. Engl. J. Med. – volume: 39 start-page: 4423 year: 2021 end-page: 4428 ident: bib15 article-title: Evidence for antibody as a protective correlate for COVID-19 vaccines publication-title: Vaccine – volume: 29 start-page: 1063 year: 2021 end-page: 1075 ident: bib48 article-title: Antibody and B cell responses to SARS-CoV-2 infection and vaccination publication-title: Cell Host Microbe – volume: 185 start-page: 447 year: 2021 end-page: 456 ident: bib28 article-title: The Omicron variant is highly resistant against antibody-mediated neutralization – implications for control of the COVID-19 pandemic publication-title: Cell – volume: 182 start-page: 1341 year: 2020 end-page: 1359.e19 ident: bib51 article-title: Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front publication-title: Cell – volume: 66 start-page: 1562 year: 2020 end-page: 1572 ident: bib44 article-title: Ultra-sensitive serial profiling of SARS-CoV-2 antigens and antibodies in plasma to understand disease progression in COVID-19 patients with severe disease publication-title: Clin. Chem. – year: 2021 ident: bib9 article-title: Immune memory response after a booster injection of mRNA-1273 for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) publication-title: MedRxiv – volume: 354 start-page: 722 year: 2016 end-page: 726 ident: bib23 article-title: Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting publication-title: Science – volume: 13 start-page: eabi9915 year: 2021 ident: bib25 article-title: Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection publication-title: Sci. Transl. Med. – volume: 479 year: 2020 ident: bib43 article-title: Normal human lymph node T follicular helper cells and germinal center B cells accessed via fine needle aspirations. publication-title: J. Immunol. Methods – volume: 3 start-page: 371 year: 2019 end-page: 380 ident: bib40 article-title: Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging publication-title: Nat. Biomed. Eng. – year: 2021 ident: bib13 article-title: Molecular and serological investigation of the 2021 COVID-19 case surge in Mongolian vaccinees publication-title: MedRxiv – volume: 397 start-page: 99 year: 2021 end-page: 111 ident: bib53 article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK publication-title: Lancet – volume: 117 start-page: 17221 year: 2020 end-page: 17227 ident: bib1 article-title: Original antigenic sin priming of influenza virus hemagglutinin stalk antibodies publication-title: PNAS – year: 2020 ident: bib19 article-title: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes publication-title: MedRxiv – volume: 7 start-page: 16878 year: 2017 ident: bib4 article-title: QuPath: open source software for digital pathology image analysis publication-title: Sci. Rep. – volume: 19 start-page: 409 year: 2021 end-page: 424 ident: bib26 article-title: SARS-CoV-2 variants, spike mutations and immune escape publication-title: Nat. Rev. Microbiol. – volume: 21 start-page: 1506 year: 2020 end-page: 1516 ident: bib57 article-title: Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19 publication-title: Nat. Immunol. – volume: 384 start-page: 2187 year: 2021 end-page: 2201 ident: bib50 article-title: Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19 publication-title: N. Engl. J. Med. – volume: 42 start-page: 89 year: 2021 end-page: 97 ident: bib27 article-title: Histomorphological patterns of regional lymph nodes in COVID-19 lungs publication-title: Pathologe – volume: 16 start-page: 3802 year: 2021 end-page: 3835 ident: bib6 article-title: CODEX multiplexed tissue imaging with DNA-conjugated antibodies publication-title: Nat. Protoc. – volume: 383 start-page: 2603 year: 2020 end-page: 2615 ident: bib47 article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine publication-title: N. Engl. J. Med. – volume: 384 start-page: 403 year: 2021 end-page: 416 ident: bib3 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N. Engl. J. Med. – year: 2022 ident: bib36 article-title: Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals publication-title: Cell – volume: 385 start-page: 1330 year: 2021 end-page: 1332 ident: bib32 article-title: Resurgence of SARS-CoV-2 infection in a highly vaccinated health system workforce publication-title: N. Engl. J. Med. – volume: 8 start-page: 1539 year: 2017 ident: bib39 article-title: Induction of robust B cell responses after influenza mRNA vaccination is accompanied by circulating hemagglutinin-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells publication-title: Front. Immunol. – volume: 202 start-page: 335 year: 2019 end-page: 340 ident: bib60 article-title: Original antigenic sin: how first exposure shapes lifelong anti–influenza virus immune responses publication-title: J. Immunol. – volume: 165 start-page: 913 year: 1992 end-page: 916 ident: bib7 article-title: Acid dissociation increases the sensitivity of p24 antigen detection for the evaluation of antiviral therapy and disease progression in asymptomatic human immunodeficiency virus-infected persons publication-title: J. Infect. Dis. – volume: 27 start-page: 2032 year: 2021 end-page: 2040 ident: bib18 article-title: Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection publication-title: Nat. Med. – volume: 29 start-page: 1738 year: 2021 end-page: 1743.e4 ident: bib14 article-title: Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia publication-title: Cell Host Microbe – volume: 25 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib12 article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR publication-title: Euro Surveill. doi: 10.2807/1560-7917.ES.2020.25.3.2000045 – volume: 66 start-page: 1562 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib44 article-title: Ultra-sensitive serial profiling of SARS-CoV-2 antigens and antibodies in plasma to understand disease progression in COVID-19 patients with severe disease publication-title: Clin. Chem. doi: 10.1093/clinchem/hvaa213 – volume: 215 start-page: 1571 year: 2018 ident: 10.1016/j.cell.2022.01.018_bib45 article-title: Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses publication-title: J. Exp. Med. doi: 10.1084/jem.20171450 – volume: 19 start-page: 409 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib26 article-title: SARS-CoV-2 variants, spike mutations and immune escape publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-021-00573-0 – volume: 8 start-page: 1539 year: 2017 ident: 10.1016/j.cell.2022.01.018_bib39 article-title: Induction of robust B cell responses after influenza mRNA vaccination is accompanied by circulating hemagglutinin-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01539 – volume: 538 start-page: 192 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib59 article-title: Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.10.012 – volume: 165 start-page: 913 year: 1992 ident: 10.1016/j.cell.2022.01.018_bib7 article-title: Acid dissociation increases the sensitivity of p24 antigen detection for the evaluation of antiviral therapy and disease progression in asymptomatic human immunodeficiency virus-infected persons publication-title: J. Infect. Dis. doi: 10.1093/infdis/165.5.913 – volume: 185 start-page: 457 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib20 article-title: mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant publication-title: Cell doi: 10.1016/j.cell.2021.12.033 – volume: 29 start-page: 508 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib46 article-title: The variant gambit: COVID-19’s next move publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.02.020 – volume: 16 start-page: 3802 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib6 article-title: CODEX multiplexed tissue imaging with DNA-conjugated antibodies publication-title: Nat. Protoc. doi: 10.1038/s41596-021-00556-8 – volume: 7 start-page: 16878 year: 2017 ident: 10.1016/j.cell.2022.01.018_bib4 article-title: QuPath: open source software for digital pathology image analysis publication-title: Sci. Rep. doi: 10.1038/s41598-017-17204-5 – year: 2021 ident: 10.1016/j.cell.2022.01.018_bib9 article-title: Immune memory response after a booster injection of mRNA-1273 for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) publication-title: MedRxiv – volume: 596 start-page: 109 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib52 article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses publication-title: Nature doi: 10.1038/s41586-021-03738-2 – volume: 117 start-page: 17221 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib1 article-title: Original antigenic sin priming of influenza virus hemagglutinin stalk antibodies publication-title: PNAS doi: 10.1073/pnas.1920321117 – volume: 29 start-page: 1738 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib14 article-title: Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.11.004 – volume: 383 start-page: 2603 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib47 article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 183 start-page: 143 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib31 article-title: Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.08.025 – volume: 35 start-page: 354 year: 2015 ident: 10.1016/j.cell.2022.01.018_bib5 article-title: Arizona study of aging and neurodegenerative disorders and brain and body donation program publication-title: Neuropathology doi: 10.1111/neup.12189 – volume: 174 start-page: 968 year: 2018 ident: 10.1016/j.cell.2022.01.018_bib22 article-title: Deep profiling of mouse splenic architecture with CODEX multiplexed imaging publication-title: Cell doi: 10.1016/j.cell.2018.07.010 – year: 2020 ident: 10.1016/j.cell.2022.01.018_bib19 article-title: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes publication-title: MedRxiv – volume: 384 start-page: 403 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib3 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – volume: 27 start-page: 2025 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib8 article-title: Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis publication-title: Nat. Med. doi: 10.1038/s41591-021-01527-y – volume: 385 start-page: 1627 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib17 article-title: SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2113468 – volume: 385 start-page: 1330 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib32 article-title: Resurgence of SARS-CoV-2 infection in a highly vaccinated health system workforce publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2112981 – volume: 53 start-page: 1136 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib16 article-title: Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity publication-title: Immunity doi: 10.1016/j.immuni.2020.11.006 – volume: 26 start-page: 845 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib41 article-title: Antibody responses to SARS-CoV-2 in patients with COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-020-0897-1 – volume: 177 start-page: 1153 year: 2019 ident: 10.1016/j.cell.2022.01.018_bib10 article-title: Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance publication-title: Cell doi: 10.1016/j.cell.2019.04.012 – volume: 185 start-page: 447 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib28 article-title: The Omicron variant is highly resistant against antibody-mediated neutralization – implications for control of the COVID-19 pandemic publication-title: Cell doi: 10.1016/j.cell.2021.12.032 – volume: 59 start-page: e0085921 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib55 article-title: Multiplex SARS-CoV-2 genotyping reverse transcriptase PCR for population-level variant screening and epidemiologic surveillance publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00859-21 – volume: 39 start-page: 4423 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib15 article-title: Evidence for antibody as a protective correlate for COVID-19 vaccines publication-title: Vaccine doi: 10.1016/j.vaccine.2021.05.063 – volume: 34 start-page: 1521 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib11 article-title: PDGFB RNA in situ hybridization for the diagnosis of dermatofibrosarcoma protuberans publication-title: Mod. Pathol. doi: 10.1038/s41379-021-00800-2 – volume: 127 start-page: 104383 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib29 article-title: Comparison of the Panther Fusion and a laboratory-developed test targeting the envelope gene for detection of SARS-CoV-2 publication-title: J. Clin. Virol. doi: 10.1016/j.jcv.2020.104383 – volume: 5 start-page: eabe0240 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib49 article-title: Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abe0240 – year: 2021 ident: 10.1016/j.cell.2022.01.018_bib13 article-title: Molecular and serological investigation of the 2021 COVID-19 case surge in Mongolian vaccinees publication-title: MedRxiv – volume: 21 start-page: 1506 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib57 article-title: Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19 publication-title: Nat. Immunol. doi: 10.1038/s41590-020-00814-z – volume: 384 start-page: 2187 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib50 article-title: Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2101544 – volume: 328 start-page: 297 year: 1993 ident: 10.1016/j.cell.2022.01.018_bib42 article-title: Rapid serologic testing with immune-complex-dissociated HIV p24 antigen for early detection of HIV infection in neonates. Southern California Pediatric AIDS Consortium publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199302043280501 – volume: 29 start-page: 1063 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib48 article-title: Antibody and B cell responses to SARS-CoV-2 infection and vaccination publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.06.009 – volume: 42 start-page: 89 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib27 article-title: Histomorphological patterns of regional lymph nodes in COVID-19 lungs publication-title: Pathologe doi: 10.1007/s00292-021-00945-6 – year: 2021 ident: 10.1016/j.cell.2022.01.018_bib58 article-title: Preliminary analysis of safety and immunogenicity of a SARS-CoV-2 variant vaccine booster publication-title: MedRxiv – volume: 29 start-page: 463 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib24 article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.02.003 – volume: 3 start-page: 371 year: 2019 ident: 10.1016/j.cell.2022.01.018_bib40 article-title: Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0378-3 – volume: 375 start-page: 43 year: 2022 ident: 10.1016/j.cell.2022.01.018_bib21 article-title: Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial publication-title: Science doi: 10.1126/science.abm3425 – volume: 596 start-page: 410 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib2 article-title: Systems vaccinology of the BNT162b2 mRNA vaccine in humans publication-title: Nature doi: 10.1038/s41586-021-03791-x – volume: 53 start-page: 1281 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib35 article-title: SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation publication-title: Immunity doi: 10.1016/j.immuni.2020.11.009 – year: 2022 ident: 10.1016/j.cell.2022.01.018_bib36 article-title: Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals publication-title: Cell doi: 10.1016/j.cell.2022.01.027 – volume: 204 start-page: 105 year: 2014 ident: 10.1016/j.cell.2022.01.018_bib38 article-title: A simple heat dissociation method increases significantly the ELISA detection sensitivity of the nonstructural-1 glycoprotein in patients infected with DENV type-4 publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2014.02.031 – volume: 202 start-page: 335 year: 2019 ident: 10.1016/j.cell.2022.01.018_bib60 article-title: Original antigenic sin: how first exposure shapes lifelong anti–influenza virus immune responses publication-title: J. Immunol. doi: 10.4049/jimmunol.1801149 – volume: 10, 64 year: 2022 ident: 10.1016/j.cell.2022.01.018_bib30 article-title: Large-scale study of antibody titer decay following BNT162b2 mRNA vaccine or SARS-CoV-2 infection publication-title: Vaccines – volume: 13 start-page: eabi9915 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib25 article-title: Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abi9915 – volume: 182 start-page: 1341 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib51 article-title: Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front publication-title: Cell doi: 10.1016/j.cell.2020.07.005 – volume: 27 start-page: 2032 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib18 article-title: Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection publication-title: Nat. Med. doi: 10.1038/s41591-021-01540-1 – volume: 354 start-page: 722 year: 2016 ident: 10.1016/j.cell.2022.01.018_bib23 article-title: Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting publication-title: Science doi: 10.1126/science.aag1322 – year: 2021 ident: 10.1016/j.cell.2022.01.018_bib37 article-title: Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2114583 – volume: 397 start-page: 99 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib53 article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK publication-title: Lancet doi: 10.1016/S0140-6736(20)32661-1 – volume: 479 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib43 article-title: Normal human lymph node T follicular helper cells and germinal center B cells accessed via fine needle aspirations. publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2020.112746 – volume: 27 start-page: 1205 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib33 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection publication-title: Nat. Med. doi: 10.1038/s41591-021-01377-8 – volume: 33 start-page: 294 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib34 article-title: B cell activation and response regulation during viral infections publication-title: Viral Immunol. doi: 10.1089/vim.2019.0207 – volume: 383 start-page: 2439 year: 2020 ident: 10.1016/j.cell.2022.01.018_bib54 article-title: Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2027906 – volume: 42 start-page: 956 year: 2021 ident: 10.1016/j.cell.2022.01.018_bib56 article-title: Immune imprinting and SARS-CoV-2 vaccine design publication-title: Trends Immunol. doi: 10.1016/j.it.2021.09.001 – reference: 35272935 - Trends Immunol. 2022 Apr;43(4):271-273 |
SSID | ssj0008555 |
Score | 2.7083344 |
Snippet | During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1025 |
SubjectTerms | Adenoviridae antibodies Antibodies, Viral antibody specificity antigens Antigens, Viral Astra Zeneca autopsy BBIBP-CorV BioNTech-Pfizer BNT162 Vaccine BNT162b2 ChAdOx1-S COVID-19 COVID-19 - prevention & control Delta variant endemic coronaviruses Gam-COVID-Vac Germinal Center histology Humans imprinting lymph lymph node germinal center lymph nodes Moderna mRNA-1273 pandemic SARS-CoV-2 SARS-CoV-2 - genetics SARS-CoV-2 variants of concern Severe acute respiratory syndrome coronavirus 2 Sinopharm Spike Glycoprotein, Coronavirus Sputnik V Vaccination vaccine vaccines |
Title | Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination |
URI | https://dx.doi.org/10.1016/j.cell.2022.01.018 https://www.ncbi.nlm.nih.gov/pubmed/35148837 https://www.proquest.com/docview/2628298504 https://www.proquest.com/docview/2648860695 https://pubmed.ncbi.nlm.nih.gov/PMC8786601 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEG-WR2UkbjRq4viVY1lRFSQ4UIr2Zjm2Q1MVpyrbShz478zYScQC2gNSLonHeXg84xnnmxlCXrU8tF44V7SVtAXnHkSqc4jM8VZa1VkuMFD4w0d5fMrfr8RqhyynWBiEVY66P-v0pK3HKwfjaB5c9j3G-DZMS3DtWPqfhEF8NdcpiG_1ZtbGWohcxaAByQfqMXAmY7xwcxx8RMZS6k4s_PHvxelv4_NPDOVvi9LRXXJntCbpYX7he2QnxPvkVq4v-eMB-fkOoz8C7b_h9h0CnPcpuMDWr8_o0NEb8JNhYOkMIhriPrXR068ZIXNB8bHhCggSkBZuFGkq6kdPDj-dFMvhS8HoBOeKqeuNda7PO4wPyenR28_L42Kst1A4MCrWhXKuUaA5S-2E97UqNchkx8CjUNY2FlyLSrZadKpuOOO-teBdKN54D1YfEHT1I7IbhxieEKpDraUuu1qBwWXrElje6UpZ5mWQwqoFqaaBNm5MRo41MS7MhDo7N8gcg8wxZQWHXpDXc5_LnIpjK7WY-Gc2JpSBtWJrv5cTsw1IGjbbGIbr74ZJ_OusRcm30YBCBJ-wEQvyOE-Q-V0xZkLrGr5dbUydmQAzfW-2xP4sZfzWSkvwnJ_-5zc9I7fxDKFzlXpOdtdX1-EF2FLrdg9XMrGXROYXMRMe_w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s3yNBI3GjVx_MqxrKh2oe2BtmhvlmMnbVDrVO22Egf-OzNxErGA9oCUUzxOHI9nPON8M0PI-5JXpRfOJWUmbcK5B5GqHSJzvJVW1ZYLDBTeP5CzY_55IRYbZDrEwiCsstf9Uad32rq_s93P5vZF02CMb8G0BNeOdf-TilvkNlgDEpf2fPFxVMdaiFjGoADRB_I-ciaCvPB0HJxExrrcnVj549-709_W558gyt92pd0H5H5vTtKdOOKHZKMKj8idWGDyx2Pyc47hHxVtzvH8DhHOWxR8YOuXp7St6Q04yjCzdEQRtWGL2uDpSYTInFF8bXUJBB2SFh4UaFfVjx7ufD1Mpu23hNEBzxW6rjfWuSYeMT4hx7ufjqazpC-4kDiwKpaJcq5QoDpT7YT3uUo1CGXNwKVQ1hYWfItMllrUKi8447604F4oXngPZh8Q1PlTshnaUD0nVFe5ljqtcwUWl81T4HmtM2WZl5UUVk1INky0cX02ciyKcWYG2Nl3g8wxyByTZnDpCfkw9rmIuTjWUouBf2ZlRRnYLNb2ezcw24CoYbMNVXt9ZZjE385apHwdDWhEcAoLMSHP4gIZx4pBE1rn8O1qZemMBJjqe7UlNKddym-ttATX-cV_ftNbcnd2tL9n9uYHX16Se9iCOLpMvSKby8vr6jUYVsvyTSc4vwDvwiFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+imprinting%2C+breadth+of+variant+recognition%2C+and+germinal+center+response+in+human+SARS-CoV-2+infection+and+vaccination&rft.jtitle=Cell&rft.au=R%C3%B6ltgen%2C+Katharina&rft.au=Nielsen%2C+Sandra+C+A&rft.au=Silva%2C+Oscar&rft.au=Younes%2C+Sheren+F&rft.date=2022-03-17&rft.eissn=1097-4172&rft.volume=185&rft.issue=6&rft.spage=1025&rft_id=info:doi/10.1016%2Fj.cell.2022.01.018&rft_id=info%3Apmid%2F35148837&rft.externalDocID=35148837 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |