Posttranscriptional control mediates cell type-specific localization of catalase A during Aspergillus nidulans development

Two differentially regulated catalase genes have been identified in the fungus Aspergillus nidulans. The catA gene belongs to a class whose transcripts are specifically induced during asexual sporulation (conidiation) and encodes a catalase accumulated in conidia. Using a developmental mutant affect...

Full description

Saved in:
Bibliographic Details
Published inJournal of Bacteriology Vol. 180; no. 21; pp. 5733 - 5738
Main Authors Navarro, R.E, Aguirre, J
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.11.1998
Subjects
Online AccessGet full text
ISSN0021-9193
1098-5530
1067-8832
DOI10.1128/JB.180.21.5733-5738.1998

Cover

Loading…
Abstract Two differentially regulated catalase genes have been identified in the fungus Aspergillus nidulans. The catA gene belongs to a class whose transcripts are specifically induced during asexual sporulation (conidiation) and encodes a catalase accumulated in conidia. Using a developmental mutant affected in the brlA gene, which is unable to form conidia but capable of producing sexual spores (ascospores), we demonstrated that the catA mRNA accumulated during induction of conidiation but did not produce CatA protein. In contrast, high levels of catalase A activity were detected in the ascospores produced by this mutant, indicating that the catA gene is posttranscriptionally regulated. The same type of regulation was observed for a catA::lacZ translational gene fusion, suggesting that the catA message 5' untranslated region could be involved in translational control during development. In a wild-type strain, beta-galactosidase activity driven from the catA::lacZ gene fusion was low in hyphae and increased 50-fold during conidiation and 620-fold in isolated conidia. Consistent with this finding spatial expression of the reporter gene was restricted to metulae, phialides, and conidia. Conidium-associated expression was maintained in a stuA mutant, in which the conidiophore cell pattern is severely deranged. catA mRNA accumulation was also observed when vegetative mycelia was subject to oxidative, osmotic, and nitrogen or carbon starvation stress. Nevertheless, catalase A activity was restricted to the conidia produced under nutrient starvation. Our results provide support for a model in which translation of the catA message, accumulated during conidiation or in response to different types of stress, is linked to the morphogenetic processes involved in asexual and sexual spore formation. Our findings also indicate that brlA-independent mechanisms regulate the expression of genes encoding spore-specific products.
AbstractList Two differentially regulated catalase genes have been identified in the fungus Aspergillus nidulans. The catA gene belongs to a class whose transcripts are specifically induced during asexual sporulation (conidiation) and encodes a catalase accumulated in conidia. Using a developmental mutant affected in the brlA gene, which is unable to form conidia but capable of producing sexual spores (ascospores), we demonstrated that the catA mRNA accumulated during induction of conidiation but did not produce CatA protein. In contrast, high levels of catalase A activity were detected in the ascospores produced by this mutant, indicating that the catA gene is posttranscriptionally regulated. The same type of regulation was observed for a catA::lacZ translational gene fusion, suggesting that the catA message 5' untranslated region could be involved in translational control during development. In a wild-type strain, beta-galactosidase activity driven from the catA::lacZ gene fusion was low in hyphae and increased 50-fold during conidiation and 620-fold in isolated conidia. Consistent with this finding spatial expression of the reporter gene was restricted to metulae, phialides, and conidia. Conidium-associated expression was maintained in a stuA mutant, in which the conidiophore cell pattern is severely deranged. catA mRNA accumulation was also observed when vegetative mycelia was subject to oxidative, osmotic, and nitrogen or carbon starvation stress. Nevertheless, catalase A activity was restricted to the conidia produced under nutrient starvation. Our results provide support for a model in which translation of the catA message, accumulated during conidiation or in response to different types of stress, is linked to the morphogenetic processes involved in asexual and sexual spore formation. Our findings also indicate that brlA-independent mechanisms regulate the expression of genes encoding spore-specific products.Two differentially regulated catalase genes have been identified in the fungus Aspergillus nidulans. The catA gene belongs to a class whose transcripts are specifically induced during asexual sporulation (conidiation) and encodes a catalase accumulated in conidia. Using a developmental mutant affected in the brlA gene, which is unable to form conidia but capable of producing sexual spores (ascospores), we demonstrated that the catA mRNA accumulated during induction of conidiation but did not produce CatA protein. In contrast, high levels of catalase A activity were detected in the ascospores produced by this mutant, indicating that the catA gene is posttranscriptionally regulated. The same type of regulation was observed for a catA::lacZ translational gene fusion, suggesting that the catA message 5' untranslated region could be involved in translational control during development. In a wild-type strain, beta-galactosidase activity driven from the catA::lacZ gene fusion was low in hyphae and increased 50-fold during conidiation and 620-fold in isolated conidia. Consistent with this finding spatial expression of the reporter gene was restricted to metulae, phialides, and conidia. Conidium-associated expression was maintained in a stuA mutant, in which the conidiophore cell pattern is severely deranged. catA mRNA accumulation was also observed when vegetative mycelia was subject to oxidative, osmotic, and nitrogen or carbon starvation stress. Nevertheless, catalase A activity was restricted to the conidia produced under nutrient starvation. Our results provide support for a model in which translation of the catA message, accumulated during conidiation or in response to different types of stress, is linked to the morphogenetic processes involved in asexual and sexual spore formation. Our findings also indicate that brlA-independent mechanisms regulate the expression of genes encoding spore-specific products.
Two differentially regulated catalase genes have been identified in the fungus Aspergillus nidulans . The catA gene belongs to a class whose transcripts are specifically induced during asexual sporulation (conidiation) and encodes a catalase accumulated in conidia. Using a developmental mutant affected in the brlA gene, which is unable to form conidia but capable of producing sexual spores (ascospores), we demonstrated that the catA mRNA accumulated during induction of conidiation but did not produce CatA protein. In contrast, high levels of catalase A activity were detected in the ascospores produced by this mutant, indicating that the catA gene is posttranscriptionally regulated. The same type of regulation was observed for a catA :: lacZ translational gene fusion, suggesting that the catA message 5′ untranslated region could be involved in translational control during development. In a wild-type strain, β-galactosidase activity driven from the catA :: lacZ gene fusion was low in hyphae and increased 50-fold during conidiation and 620-fold in isolated conidia. Consistent with this finding spatial expression of the reporter gene was restricted to metulae, phialides, and conidia. Conidium-associated expression was maintained in a stuA mutant, in which the conidiophore cell pattern is severely deranged. catA mRNA accumulation was also observed when vegetative mycelia was subject to oxidative, osmotic, and nitrogen or carbon starvation stress. Nevertheless, catalase A activity was restricted to the conidia produced under nutrient starvation. Our results provide support for a model in which translation of the catA message, accumulated during conidiation or in response to different types of stress, is linked to the morphogenetic processes involved in asexual and sexual spore formation. Our findings also indicate that brlA -independent mechanisms regulate the expression of genes encoding spore-specific products.
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
Two differentially regulated catalase genes have been identified in the fungus Aspergillus nidulans. The catA gene belongs to a class whose transcripts are specifically induced during asexual sporulation (conidiation) and encodes a catalase accumulated in conidia. Using a developmental mutant affected in the brlA gene, which is unable to form conidia but capable of producing sexual spores (ascospores), we demonstrated that the catA mRNA accumulated during induction of conidiation but did not produce CatA protein. In contrast, high levels of catalase A activity were detected in the ascospores produced by this mutant, indicating that the catA gene is posttranscriptionally regulated. The same type of regulation was observed for a catA::lacZ translational gene fusion, suggesting that the catA message 5' untranslated region could be involved in translational control during development. In a wild-type strain, beta -galactosidase activity driven from the catA::lacZ gene fusion was low in hyphae and increased 50-fold during conidiation and 620-fold in isolated conidia. Consistent with this finding spatial expression of the reporter gene was restricted to metulae, phialides, and conidia. Conidium-associated expression was maintained in a stuA mutant, in which the conidiophore cell pattern is severely deranged. catA mRNA accumulation was also observed when vegetative mycelia was subject to oxidative, osmotic, and nitrogen or carbon starvation stress. Nevertheless, catalase A activity was restricted to the conidia produced under nutrient starvation. Our results provide support for a model in which translation of the catA message, accumulated during conidiation or in response to different types of stress, is linked to the morphogenetic processes involved in asexual and sexual spore formation. Our findings also indicate that brlA-independent mechanisms regulate the expression of genes encoding spore-specific products.
Two differentially regulated catalase genes have been identified in the fungus Aspergillus nidulans. The catA gene belongs to a class whose transcripts are specifically induced during asexual sporulation (conidiation) and encodes a catalase accumulated in conidia.
Author Aguirre, J
Navarro, R.E
AuthorAffiliation Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, D.F
AuthorAffiliation_xml – name: Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, D.F
Author_xml – sequence: 1
  fullname: Navarro, R.E
– sequence: 2
  fullname: Aguirre, J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9791126$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEUhS1UVNLCT0BYLLqb4Md47FmAlFa8qkogQdfWjeNJHDnjwfYUtb8eDwmodFNkyV7c75yr43tP0FEfeosQpmROKVNvLs_nVJE5o3MhOa_Kpea0bdUTNKOkVZUQnByhGSGMVi1t-TN0ktKWEFrXgh2j41a2xaeZobuvIeUcoU8muiG70IPHJvQ5Bo93duUg24SN9R7n28FWabDGdc5gHwx4dweTBIcOG8jgIVm8wKsxun6NF4WNa-f9mHDvVqMvTfDK3lgfhp3t83P0tAOf7IvDe4quP7z_fvGpuvry8fPF4qoyQtS5khLAEGBQW9XWgrLOWssYEKWWQjYWzJJxI5oauLRdDUvRgFKtYMKwDozkp-jt3ncYlyWRKa0jeD1Et4N4qwM4_W-ldxu9DjeaEtlwUfRnB30MP0abst65NP0I9DaMSUtCiFSNfBSsVdPwhrBHQSopp4ROjq8fgNswxjKipBmTpJymLdDL-_n-BjvMuNTf7esmhpSi7bRx-ffcSlrnS0w97ZS-PNdlpzSjetqp6VJ62qlioB4Y_GnxH9JDgI1bb366aDWknd4u7-MFerWHOgga1tElff2NEcoJawmrheK_AGTN6Nk
CODEN JOBAAY
CitedBy_id crossref_primary_10_1046_j_1365_313X_2002_01382_x
crossref_primary_10_1080_07388550903004795
crossref_primary_10_1099_00221287_145_11_3229
crossref_primary_10_1016_j_freeradbiomed_2007_09_019
crossref_primary_10_1016_j_tim_2005_01_007
crossref_primary_10_1111_1462_2920_15011
crossref_primary_10_1128_EC_00085_07
crossref_primary_10_6013_jbrewsocjapan_105_762
crossref_primary_10_1046_j_1432_1327_2001_01774_x
crossref_primary_10_1016_j_bbrc_2017_04_079
crossref_primary_10_1016_S0014_5793_00_01637_9
crossref_primary_10_1128_EC_3_4_835_846_2004
crossref_primary_10_1128_JB_183_4_1434_1440_2001
crossref_primary_10_1093_gbe_evt077
crossref_primary_10_1007_s00284_010_9806_z
crossref_primary_10_3389_ffunb_2021_675459
crossref_primary_10_1111_j_1365_2958_2011_07581_x
crossref_primary_10_1016_j_fgb_2009_09_004
crossref_primary_10_1111_j_1399_3054_2007_00868_x
crossref_primary_10_1590_S1516_89132009000500017
crossref_primary_10_1128_MMBR_00068_17
crossref_primary_10_1016_j_fgb_2008_08_007
crossref_primary_10_3389_fmicb_2017_00516
crossref_primary_10_1093_genetics_157_3_957
crossref_primary_10_1266_ggs_82_301
crossref_primary_10_1111_j_1469_8137_2005_01400_x
crossref_primary_10_1016_j_fgb_2008_12_004
crossref_primary_10_1016_S0167_4781_00_00063_4
crossref_primary_10_1007_s00294_010_0330_2
crossref_primary_10_1080_13693780600900080
crossref_primary_10_1128_EC_00274_12
crossref_primary_10_1016_j_fgb_2008_03_009
crossref_primary_10_1016_j_funbio_2022_12_001
crossref_primary_10_1128_EC_1_5_725_735_2002
crossref_primary_10_1046_j_1365_2958_2003_03800_x
crossref_primary_10_1007_s11356_017_0217_6
crossref_primary_10_1016_j_fgb_2009_11_002
crossref_primary_10_1016_S0891_5849_02_00909_7
crossref_primary_10_1046_j_1365_2958_2002_03087_x
crossref_primary_10_1134_S0026261716030152
crossref_primary_10_1094_MPMI_06_20_0165_R
crossref_primary_10_3412_jsb_63_417
Cites_doi 10.1099/00221287-73-1-45
10.1006/abbi.1995.1162
10.1099/00221287-141-1-21
10.1126/science.277.5324.383
10.1006/dbio.1995.8048
10.1016/0012-1606(80)90349-8
10.1099/00221287-70-3-423
10.1007/BF00279362
10.1128/mcb.7.9.3113-3118.1987
10.1016/S0955-0674(97)80013-0
10.1128/MCB.16.8.4535
10.1093/genetics/63.2.317
10.1128/jb.179.10.3284-3292.1997
10.1101/gad.6.9.1770
10.1093/nar/18.11.3415
10.1016/0147-5975(90)90026-P
10.1128/mcb.7.7.2352-2359.1987
10.1073/pnas.91.2.574
10.1073/pnas.81.5.1470
10.1016/0092-8674(88)90198-5
10.1093/genetics/122.1.65
10.1016/0378-1119(88)90200-4
10.1111/j.1365-2958.1995.tb02389.x
10.1016/S0065-2660(08)60408-3
10.1099/00221287-69-2-261
10.1101/gad.5.7.1161
10.1093/emboj/16.18.5710
10.1002/j.1460-2075.1993.tb05853.x
10.1016/0003-2697(76)90527-3
10.1016/0003-2697(85)90442-7
10.1111/j.1365-2958.1993.tb01565.x
10.1016/S0962-8924(97)01162-8
10.1016/S0065-2660(08)60245-X
ContentType Journal Article
Copyright Copyright American Society for Microbiology Nov 1998
Copyright © 1998, American Society for Microbiology 1998
Copyright_xml – notice: Copyright American Society for Microbiology Nov 1998
– notice: Copyright © 1998, American Society for Microbiology 1998
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1128/JB.180.21.5733-5738.1998
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA

MEDLINE

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5530
1067-8832
EndPage 5738
ExternalDocumentID PMC107635
35831513
9791126
10_1128_JB_180_21_5733_5738_1998
jb_180_21_5733
US201302902458
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
186
18M
1VV
29J
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
79B
85S
8WZ
9M8
A6W
ABPPZ
ABPTK
ABTAH
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AEQTP
AFDAS
AFFDN
AFFNX
AFMIJ
AFRAH
AGCDD
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HYE
HZ~
IH2
KQ8
L7B
MVM
NHB
O9-
OHT
OK1
P-S
P2P
PQQKQ
QZG
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UCJ
UHB
UKR
UPT
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
Y6R
YQT
YR2
YZZ
ZA5
ZCA
ZCG
ZGI
ZXP
ZY4
~02
~KM
AAGFI
AAYXX
ADXHL
AGVNZ
CITATION
H13
P-O
CGR
CUY
CVF
ECM
EIF
NPM
PKN
YIN
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c554t-77aac0a2a4e894512feee22a088b576eacb23c564a37ef4ab56a889525c2fac73
ISSN 0021-9193
IngestDate Thu Aug 21 18:18:38 EDT 2025
Thu Jul 10 23:59:00 EDT 2025
Thu Jul 10 19:59:52 EDT 2025
Fri Jul 11 11:44:59 EDT 2025
Fri Aug 22 20:50:37 EDT 2025
Wed Feb 19 01:15:59 EST 2025
Tue Jul 01 02:56:35 EDT 2025
Thu Apr 24 23:11:54 EDT 2025
Wed May 18 15:54:50 EDT 2016
Wed Dec 27 19:22:56 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c554t-77aac0a2a4e894512feee22a088b576eacb23c564a37ef4ab56a889525c2fac73
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Corresponding author. Mailing address: Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 México, D.F. Phone: (525) 622-5651. Fax: (525) 622-5630. E-mail: jaguirre@ifisiol.unam.mx.
OpenAccessLink https://jb.asm.org/content/jb/180/21/5733.full.pdf
PMID 9791126
PQID 227070769
PQPubID 40724
PageCount 6
ParticipantIDs proquest_miscellaneous_17131017
crossref_citationtrail_10_1128_JB_180_21_5733_5738_1998
proquest_miscellaneous_70007867
proquest_miscellaneous_48663602
pubmed_primary_9791126
fao_agris_US201302902458
highwire_asm_jb_180_21_5733
proquest_journals_227070769
crossref_primary_10_1128_JB_180_21_5733_5738_1998
pubmedcentral_primary_oai_pubmedcentral_nih_gov_107635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-11-01
PublicationDateYYYYMMDD 1998-11-01
PublicationDate_xml – month: 11
  year: 1998
  text: 1998-11-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of Bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 1998
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
Mayorga M. E. (e_1_3_2_24_2) 1992; 235
Miller K. Y. (e_1_3_2_27_2) 1992; 6
e_1_3_2_29_2
Skromne I. (e_1_3_2_34_2) 1995; 141
Long R. M. (e_1_3_2_22_2) 1997; 277
Nasmyth K. (e_1_3_2_28_2) 1997; 9
Martinelli S. D. (e_1_3_2_23_2) 1971; 69
Yelton M. M. (e_1_3_2_40_2) 1984; 81
Dutton J. R. (e_1_3_2_14_2) 1997; 16
Stringer M. A. (e_1_3_2_37_2) 1995; 16
e_1_3_2_20_2
e_1_3_2_21_2
Clutterbuck A. J. (e_1_3_2_13_2) 1972; 70
Gavis E. R. (e_1_3_2_16_2) 1997; 7
Navarro R. E. (e_1_3_2_30_2) 1996; 29
Fidel S. (e_1_3_2_15_2) 1988; 70
Aguirre J. (e_1_3_2_3_2) 1990; 14
Stringer M. A. (e_1_3_2_36_2) 1991; 5
Micklem D. R. (e_1_3_2_25_2) 1995; 172
e_1_3_2_9_2
Clerch L. B. (e_1_3_2_11_2) 1995; 317
e_1_3_2_17_2
Aguirre J. (e_1_3_2_4_2) 1993; 8
e_1_3_2_18_2
e_1_3_2_19_2
Aramayo R. (e_1_3_2_7_2) 1993; 12
e_1_3_2_32_2
Smith P. K. (e_1_3_2_35_2) 1985; 150
e_1_3_2_10_2
e_1_3_2_5_2
Aramayo R. (e_1_3_2_6_2) 1990; 18
Oliver P. T. P. (e_1_3_2_31_2) 1972; 73
e_1_3_2_12_2
e_1_3_2_33_2
Basilion J. P. (e_1_3_2_8_2) 1994; 91
Adams T. H. (e_1_3_2_2_2) 1988; 54
Timberlake W. E. (e_1_3_2_39_2) 1994; 29
Timberlake W. E. (e_1_3_2_38_2) 1980; 78
9219698 - Science. 1997 Jul 18;277(5324):383-7
9150225 - J Bacteriol. 1997 May;179(10):3284-92
3843705 - Anal Biochem. 1985 Oct;150(1):76-85
7872794 - Arch Biochem Biophys. 1995 Feb 20;317(1):267-74
8290565 - Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):574-8
17709012 - Trends Cell Biol. 1997 Dec;7(12):485-92
7765135 - Prog Ind Microbiol. 1994;29:383-427
2192364 - Nucleic Acids Res. 1990 Jun 11;18(11):3415
4947820 - J Gen Microbiol. 1971 Dec;69(2):261-8
6324193 - Proc Natl Acad Sci U S A. 1984 Mar;81(5):1470-4
8598056 - Curr Genet. 1996 Mar;29(4):352-9
4347343 - J Gen Microbiol. 1972 Nov;73(1):45-54
942051 - Anal Biochem. 1976 May 7;72:248-54
8491194 - EMBO J. 1993 May;12(5):2039-48
8316075 - Mol Microbiol. 1993 Apr;8(2):211-8
8612958 - Dev Biol. 1995 Dec;172(2):377-95
3293800 - Cell. 1988 Jul 29;54(3):353-62
7894714 - Microbiology. 1995 Jan;141 ( Pt 1):21-8
8754854 - Mol Cell Biol. 1996 Aug;16(8):4535-43
9312029 - EMBO J. 1997 Sep 15;16(18):5710-21
2823119 - Mol Cell Biol. 1987 Sep;7(9):3113-8
2471671 - Genetics. 1989 May;122(1):65-71
9159073 - Curr Opin Cell Biol. 1997 Jun;9(3):396-400
327767 - Adv Genet. 1977;19:33-131
1465094 - Mol Gen Genet. 1992 Nov;235(2-3):205-12
2975248 - Gene. 1988 Oct 30;70(2):283-93
2065971 - Genes Dev. 1991 Jul;5(7):1161-71
6997115 - Dev Biol. 1980 Aug;78(2):497-510
3039345 - Mol Cell Biol. 1987 Jul;7(7):2352-9
5366214 - Genetics. 1969 Oct;63(2):317-27
7651135 - Mol Microbiol. 1995 Apr;16(1):33-44
13040135 - Adv Genet. 1953;5:141-238
1516832 - Genes Dev. 1992 Sep;6(9):1770-82
4624671 - J Gen Microbiol. 1972 May;70(3):423-35
References_xml – volume: 73
  start-page: 45
  year: 1972
  ident: e_1_3_2_31_2
  article-title: Conidiophore and spore development in Aspergillus nidulans
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-73-1-45
– volume: 29
  start-page: 383
  year: 1994
  ident: e_1_3_2_39_2
  article-title: Genetic regulation of conidiation
  publication-title: Prog. Ind. Microbiol.
– volume: 317
  start-page: 267
  year: 1995
  ident: e_1_3_2_11_2
  article-title: A 3′ untranslated region of catalase mRNA composed of a stem-loop and dinucleotide repeat elements binds a 69-kDa redox-sensitive protein
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1995.1162
– volume: 141
  start-page: 21
  year: 1995
  ident: e_1_3_2_34_2
  article-title: Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene
  publication-title: Microbiology
  doi: 10.1099/00221287-141-1-21
– ident: e_1_3_2_20_2
– volume: 277
  start-page: 383
  year: 1997
  ident: e_1_3_2_22_2
  article-title: Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA
  publication-title: Science
  doi: 10.1126/science.277.5324.383
– volume: 172
  start-page: 377
  year: 1995
  ident: e_1_3_2_25_2
  article-title: mRNA localisation during development
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1995.8048
– volume: 78
  start-page: 497
  year: 1980
  ident: e_1_3_2_38_2
  article-title: Developmental gene regulation in Aspergillus nidulans
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(80)90349-8
– volume: 70
  start-page: 423
  year: 1972
  ident: e_1_3_2_13_2
  article-title: Absence of laccase from yellow-spored mutants of Aspergillus nidulans
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-70-3-423
– volume: 235
  start-page: 205
  year: 1992
  ident: e_1_3_2_24_2
  article-title: The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00279362
– ident: e_1_3_2_9_2
  doi: 10.1128/mcb.7.9.3113-3118.1987
– volume: 29
  start-page: 352
  year: 1996
  ident: e_1_3_2_30_2
  article-title: catA, a new Aspergillus nidulans gene encoding a developmentally regulated catalase
  publication-title: Curr. Genet.
– volume: 9
  start-page: 396
  year: 1997
  ident: e_1_3_2_28_2
  article-title: The cytoskeleton in mRNA localization and cell differentiation
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(97)80013-0
– ident: e_1_3_2_17_2
  doi: 10.1128/MCB.16.8.4535
– ident: e_1_3_2_12_2
  doi: 10.1093/genetics/63.2.317
– ident: e_1_3_2_21_2
  doi: 10.1128/jb.179.10.3284-3292.1997
– ident: e_1_3_2_26_2
– volume: 6
  start-page: 1770
  year: 1992
  ident: e_1_3_2_27_2
  article-title: StuA is required for cell pattern formation in Aspergillus
  publication-title: Genes Dev.
  doi: 10.1101/gad.6.9.1770
– volume: 18
  start-page: 3415
  year: 1990
  ident: e_1_3_2_6_2
  article-title: Sequence and molecular structure of the Aspergillus nidulans yA (laccase I) gene
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.11.3415
– ident: e_1_3_2_29_2
– volume: 14
  start-page: 290
  year: 1990
  ident: e_1_3_2_3_2
  article-title: Spatial control of developmental regulatory genes in Aspergillus nidulans
  publication-title: Exp. Mycol.
  doi: 10.1016/0147-5975(90)90026-P
– ident: e_1_3_2_18_2
  doi: 10.1128/mcb.7.7.2352-2359.1987
– volume: 91
  start-page: 574
  year: 1994
  ident: e_1_3_2_8_2
  article-title: The iron-responsive element-binding protein: localization of the RNA-binding site to the aconitase active-site cleft
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.2.574
– volume: 81
  start-page: 1470
  year: 1984
  ident: e_1_3_2_40_2
  article-title: Transformation of Aspergillus nidulans by using a trpC plasmid
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.81.5.1470
– volume: 54
  start-page: 353
  year: 1988
  ident: e_1_3_2_2_2
  article-title: brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90198-5
– ident: e_1_3_2_5_2
  doi: 10.1093/genetics/122.1.65
– volume: 70
  start-page: 283
  year: 1988
  ident: e_1_3_2_15_2
  article-title: Aspergillus nidulans contains a single actin gene which has unique intron locations and encodes a γ-actin
  publication-title: Gene
  doi: 10.1016/0378-1119(88)90200-4
– ident: e_1_3_2_33_2
– volume: 16
  start-page: 33
  year: 1995
  ident: e_1_3_2_37_2
  article-title: dewA encodes a fungal hydrophobin component of the Aspergillus spore wall
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1995.tb02389.x
– ident: e_1_3_2_32_2
  doi: 10.1016/S0065-2660(08)60408-3
– volume: 69
  start-page: 261
  year: 1971
  ident: e_1_3_2_23_2
  article-title: A quantitative survey of conidiation mutants in Aspergillus nidulans
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-69-2-261
– volume: 5
  start-page: 1161
  year: 1991
  ident: e_1_3_2_36_2
  article-title: Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation
  publication-title: Genes Dev.
  doi: 10.1101/gad.5.7.1161
– volume: 16
  start-page: 5710
  year: 1997
  ident: e_1_3_2_14_2
  article-title: StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans
  publication-title: EMBO J.
  doi: 10.1093/emboj/16.18.5710
– volume: 12
  start-page: 2039
  year: 1993
  ident: e_1_3_2_7_2
  article-title: The Aspergillus nidulans yA gene is regulated by abaA
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1993.tb05853.x
– ident: e_1_3_2_10_2
  doi: 10.1016/0003-2697(76)90527-3
– volume: 150
  start-page: 76
  year: 1985
  ident: e_1_3_2_35_2
  article-title: Measurement of protein using bicinchoninic acid
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(85)90442-7
– volume: 8
  start-page: 211
  year: 1993
  ident: e_1_3_2_4_2
  article-title: Spatial and temporal controls of the Aspergillus brlA developmental regulatory gene
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1993.tb01565.x
– volume: 7
  start-page: 485
  year: 1997
  ident: e_1_3_2_16_2
  article-title: Expeditions to the pole: RNA localization in Xenopus and Drosophila
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(97)01162-8
– ident: e_1_3_2_19_2
  doi: 10.1016/S0065-2660(08)60245-X
– reference: 6324193 - Proc Natl Acad Sci U S A. 1984 Mar;81(5):1470-4
– reference: 8598056 - Curr Genet. 1996 Mar;29(4):352-9
– reference: 8491194 - EMBO J. 1993 May;12(5):2039-48
– reference: 4947820 - J Gen Microbiol. 1971 Dec;69(2):261-8
– reference: 13040135 - Adv Genet. 1953;5:141-238
– reference: 9159073 - Curr Opin Cell Biol. 1997 Jun;9(3):396-400
– reference: 2192364 - Nucleic Acids Res. 1990 Jun 11;18(11):3415
– reference: 327767 - Adv Genet. 1977;19:33-131
– reference: 3843705 - Anal Biochem. 1985 Oct;150(1):76-85
– reference: 7894714 - Microbiology. 1995 Jan;141 ( Pt 1):21-8
– reference: 6997115 - Dev Biol. 1980 Aug;78(2):497-510
– reference: 9219698 - Science. 1997 Jul 18;277(5324):383-7
– reference: 942051 - Anal Biochem. 1976 May 7;72:248-54
– reference: 2471671 - Genetics. 1989 May;122(1):65-71
– reference: 3039345 - Mol Cell Biol. 1987 Jul;7(7):2352-9
– reference: 2975248 - Gene. 1988 Oct 30;70(2):283-93
– reference: 7765135 - Prog Ind Microbiol. 1994;29:383-427
– reference: 8754854 - Mol Cell Biol. 1996 Aug;16(8):4535-43
– reference: 7651135 - Mol Microbiol. 1995 Apr;16(1):33-44
– reference: 9312029 - EMBO J. 1997 Sep 15;16(18):5710-21
– reference: 2065971 - Genes Dev. 1991 Jul;5(7):1161-71
– reference: 3293800 - Cell. 1988 Jul 29;54(3):353-62
– reference: 2823119 - Mol Cell Biol. 1987 Sep;7(9):3113-8
– reference: 4624671 - J Gen Microbiol. 1972 May;70(3):423-35
– reference: 9150225 - J Bacteriol. 1997 May;179(10):3284-92
– reference: 1465094 - Mol Gen Genet. 1992 Nov;235(2-3):205-12
– reference: 8612958 - Dev Biol. 1995 Dec;172(2):377-95
– reference: 1516832 - Genes Dev. 1992 Sep;6(9):1770-82
– reference: 17709012 - Trends Cell Biol. 1997 Dec;7(12):485-92
– reference: 5366214 - Genetics. 1969 Oct;63(2):317-27
– reference: 4347343 - J Gen Microbiol. 1972 Nov;73(1):45-54
– reference: 7872794 - Arch Biochem Biophys. 1995 Feb 20;317(1):267-74
– reference: 8290565 - Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):574-8
– reference: 8316075 - Mol Microbiol. 1993 Apr;8(2):211-8
SSID ssj0014452
Score 1.7626303
Snippet Two differentially regulated catalase genes have been identified in the fungus Aspergillus nidulans. The catA gene belongs to a class whose transcripts are...
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
Two differentially regulated catalase genes have been identified in the fungus Aspergillus nidulans . The catA gene belongs to a class whose transcripts are...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5733
SubjectTerms Artificial Gene Fusion
ascospores
Aspergillus nidulans
Aspergillus nidulans - enzymology
Aspergillus nidulans - genetics
Aspergillus nidulellus
Bacteriology
Base Sequence
beta-galactosidase
catalase
Catalase - genetics
conidia
conidiation
conidiophores
cytochemistry
DNA, Bacterial
enzyme activity
enzymology
Eukaryotic Cells
fungal anatomy
Fungi
gene expression
Gene Expression Regulation, Bacterial
Gene Expression Regulation, Enzymologic
Genes
genetics
hyphae
Lac Operon
messenger RNA
metulae
Molecular biology
Molecular Sequence Data
osmotic pressure
phialides
Plant reproduction
promoter regions
Protein Biosynthesis
recombinant DNA
reporter genes
RNA Processing, Post-Transcriptional
RNA, Messenger
Spores, Bacterial
sporulation
stress
translation
Title Posttranscriptional control mediates cell type-specific localization of catalase A during Aspergillus nidulans development
URI http://jb.asm.org/content/180/21/5733.abstract
https://www.ncbi.nlm.nih.gov/pubmed/9791126
https://www.proquest.com/docview/227070769
https://www.proquest.com/docview/17131017
https://www.proquest.com/docview/48663602
https://www.proquest.com/docview/70007867
https://pubmed.ncbi.nlm.nih.gov/PMC107635
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLbSTpX6Mu1WNesuftieIlgwN_OYRJ2qaNnD1kh9swyYjipNqkImrf9r_2_ngCEmSqZuL1aEsYM5H-dinwshH7gbhFHsxZbDORgonhdZYEYwC5OVo7hLk6pM5-xrcDH3plf-Va_32_BaWpexnTzsjCv5H6rCNaArRsn-A2XbSeEC_Ab6QgsUhvZRNMZKuyUKm-bTr3YCat_zWVWDQxWDCe7OoblpVbXmszwZfEEBpgMw6wCtEsMpFXAJHbY4wgTi1_ligflb83S9gD8xHYz26LTjOvdzZ6v-26qQg3Mb-PhPTPjYuuwAf5q4H8ejYjC6Xuf32gk3bSPynM4GRHuyZLqZzvJNGimT_aI_iFOXRLRVzXFBXFqcu1sseWhgrw6h1hwW8zfuZv0MwxmmYxsG28yx8UYLGo4BmdwcAkS8u60gEYURhlBtZGFz_r8lIlvHxZtYwPSCOQKnPyBPGFgnTrNJpA-vPM_XSerr1TYOZIx_2vd4x-RIP0tHPzrI5MrIXL3LCtp25jW0o8tn5KmGAB3VGH1Oemr5ghzVhU5_vSQPO5BKNVJpg1SKSKUdpFITqXSV0QapdERrpFIDqbRBKjWQ-orMP59fTi4sXfXDSkC1LcHckzIZSiY9xSMP9NFMKcWYBHEYg3EMikLM3MQPPOmGKvNk7AeS88hnfsIymYTuCTlcrpbqlFDJQZ9OJctAT_Wkw2QUO2Hmhi5zozRKkz4Jm3ctEp0SHyuzLERlGjMupmOT3thwgfTqE6cdeVenhXnEmFMgp5DXIL3F_DurfAYidH2ArrOGxkIWt6ILM-htyC409ykEYyFm6gqiPnnf9oJowPM-uVSrdSGc0HFR4u6_w8MXFAzZ_jvCyogIYI6TGmbtcjVe-yTo4K_tx7z13Z5l_qPKX-8MMQvm67-u-Ywcb3jNG3JY3q_VW1D_y_hd9bH9AZVQAOo
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Posttranscriptional+Control+Mediates+Cell+Type-Specific+Localization+of+Catalase+A+during+Aspergillus+nidulans+Development&rft.jtitle=Journal+of+Bacteriology&rft.au=Rosa+E.+Navarro&rft.au=Jes%C3%BAs+Aguirre&rft.date=1998-11-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1067-8832&rft.volume=180&rft.issue=21&rft.spage=5733&rft_id=info:doi/10.1128%2FJB.180.21.5733-5738.1998&rft_id=info%3Apmid%2F9791126&rft.externalDBID=n%2Fa&rft.externalDocID=jb_180_21_5733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon