Comparison and combination effects on antioxidant power of curcumin with gallic acid, ascorbic acid, and xanthone

Curcumin has been extensively reported as a potential natural antioxidant. However, there was no data on activity comparison as well as the biological interactions of curcumin with other natural antioxidants. The aim of the present study was to investigate the antioxidant power of curcumin in compar...

Full description

Saved in:
Bibliographic Details
Published inDrug Discoveries & Therapeutics Vol. 9; no. 2; pp. 136 - 141
Main Authors Naksuriya, Ornchuma, Okonogi, Siriporn
Format Journal Article
LanguageEnglish
Published Japan International Research and Cooperation Association for Bio & Socio-Sciences Advancement 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Curcumin has been extensively reported as a potential natural antioxidant. However, there was no data on activity comparison as well as the biological interactions of curcumin with other natural antioxidants. The aim of the present study was to investigate the antioxidant power of curcumin in comparison with three important natural antioxidants; gallic acid, ascorbic acid, and xanthone on free radical scavenging action and their combination effects on this activity. The results indicated that the activities of these compounds were dose-dependent. The 50% effective concentration (EC50) of curcumin was found to be 11 μg/mL. Curcumin showed significantly higher antioxidant activity than ascorbic acid and xanthone but less than gallic acid. Interestingly, curcumin revealed synergistic antioxidant effect when combined with gallic acid whereas the antagonistic effect occurred in curcumin combination with ascorbic acid or xanthone. These results suggest that curcumin-gallic acid combination is the potential antioxidant mixture to be used in place of the individual substance whereas using of curcumin in combination with ascorbic acid or xanthone should be avoid.
AbstractList Curcumin has been extensively reported as a potential natural antioxidant. However, there was no data on activity comparison as well as the biological interactions of curcumin with other natural antioxidants. The aim of the present study was to investigate the antioxidant power of curcumin in comparison with three important natural antioxidants; gallic acid, ascorbic acid, and xanthone on free radical scavenging action and their combination effects on this activity. The results indicated that the activities of these compounds were dose-dependent. The 50% effective concentration (EC50) of curcumin was found to be 11 μg/mL. Curcumin showed significantly higher antioxidant activity than ascorbic acid and xanthone but less than gallic acid. Interestingly, curcumin revealed synergistic antioxidant effect when combined with gallic acid whereas the antagonistic effect occurred in curcumin combination with ascorbic acid or xanthone. These results suggest that curcumin-gallic acid combination is the potential antioxidant mixture to be used in place of the individual substance whereas using of curcumin in combination with ascorbic acid or xanthone should be avoid.
Curcumin has been extensively reported as a potential natural antioxidant. However, there was no data on activity comparison as well as the biological interactions of curcumin with other natural antioxidants. The aim of the present study was to investigate the antioxidant power of curcumin in comparison with three important natural antioxidants; gallic acid, ascorbic acid, and xanthone on free radical scavenging action and their combination effects on this activity. The results indicated that the activities of these compounds were dose-dependent. The 50% effective concentration (EC50) of curcumin was found to be 11 μg/mL. Curcumin showed significantly higher antioxidant activity than ascorbic acid and xanthone but less than gallic acid. Interestingly, curcumin revealed synergistic antioxidant effect when combined with gallic acid whereas the antagonistic effect occurred in curcumin combination with ascorbic acid or xanthone. These results suggest that curcumin-gallic acid combination is the potential antioxidant mixture to be used in place of the individual substance whereas using of curcumin in combination with ascorbic acid or xanthone should be avoid.Curcumin has been extensively reported as a potential natural antioxidant. However, there was no data on activity comparison as well as the biological interactions of curcumin with other natural antioxidants. The aim of the present study was to investigate the antioxidant power of curcumin in comparison with three important natural antioxidants; gallic acid, ascorbic acid, and xanthone on free radical scavenging action and their combination effects on this activity. The results indicated that the activities of these compounds were dose-dependent. The 50% effective concentration (EC50) of curcumin was found to be 11 μg/mL. Curcumin showed significantly higher antioxidant activity than ascorbic acid and xanthone but less than gallic acid. Interestingly, curcumin revealed synergistic antioxidant effect when combined with gallic acid whereas the antagonistic effect occurred in curcumin combination with ascorbic acid or xanthone. These results suggest that curcumin-gallic acid combination is the potential antioxidant mixture to be used in place of the individual substance whereas using of curcumin in combination with ascorbic acid or xanthone should be avoid.
Author Okonogi, Siriporn
Naksuriya, Ornchuma
Author_xml – sequence: 1
  fullname: Naksuriya, Ornchuma
  organization: Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University
– sequence: 2
  fullname: Okonogi, Siriporn
  organization: Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25994066$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1r3DAQhkVJadI01x6Ljjl0t5JtydIxWfoFgV5a6E2MR3JWwbY2kswm_z7a3WQLgQrEzGjeZxDzvicnU5gcIR85Wwqhqi_W5mXFuFgyznj9hpxxpfiiVc3fk2Ne81NykdIdK0c0iivxjpxWQuuGSXlG7ldh3ED0KUwUJksxjJ2fIPtSu753mBPdt8rLg7cl0k3YukhDT3GOOI9-oluf1_QWhsEjBfT2M4WEIXb_yjL5obDr8v8P5G0PQ3IXz_Gc_Pn29ffqx-Lm1_efq6ubBQrR5EVbOd0A1r0UqFsmWgYALWv6SqjeKtCVVKy1rey4BK0LA8A1drJGa0HI-pxcHuZuYrifXcpm9AndMMDkwpwMl6pSqhW6KdJPz9K5G501m-hHiI_mZU1F0BwEGENK0fUGfd4vKUfwg-HM7AwxxRCzM8TsDSnY8hX2Mvm_wPUBuEsZbt1RDjF7HNxerk21u0fo2MQ1ROOm-glXEaUg
CitedBy_id crossref_primary_10_5582_ddt_2025_01000
crossref_primary_10_1002_jsfa_9567
crossref_primary_10_1002_cbdv_202301770
crossref_primary_10_3390_ijms24021410
crossref_primary_10_3390_molecules27103226
crossref_primary_10_1016_j_ejmech_2020_113072
crossref_primary_10_1007_s13346_021_00936_3
crossref_primary_10_1016_j_abb_2023_109594
crossref_primary_10_3390_antiox11101993
crossref_primary_10_3390_molecules26041005
crossref_primary_10_1371_journal_pone_0202110
crossref_primary_10_1016_j_foodhyd_2023_108960
crossref_primary_10_1177_1010428317699127
crossref_primary_10_1177_1934578X1801301211
crossref_primary_10_1111_ijfs_13334
crossref_primary_10_1016_j_toxrep_2020_11_008
crossref_primary_10_22159_ijap_2024v16s5_52473
crossref_primary_10_1016_j_ejpb_2016_12_032
crossref_primary_10_3390_nu14214630
crossref_primary_10_3390_pharmaceutics13060766
crossref_primary_10_1111_jam_13659
crossref_primary_10_3390_ijms242216186
crossref_primary_10_3390_molecules26196015
crossref_primary_10_1016_j_bmc_2016_07_020
crossref_primary_10_3389_fendo_2024_1494852
crossref_primary_10_2147_IJN_S443692
crossref_primary_10_1007_s10787_024_01545_5
crossref_primary_10_3390_molecules26195744
crossref_primary_10_3390_nano12071073
crossref_primary_10_1080_00268976_2021_1876265
crossref_primary_10_1016_j_arabjc_2024_105896
crossref_primary_10_3390_molecules27248667
crossref_primary_10_5582_ddt_2017_01055
crossref_primary_10_1080_13880209_2017_1297467
crossref_primary_10_1016_j_fufo_2024_100495
crossref_primary_10_5582_ddt_2017_01013
crossref_primary_10_1016_j_colsurfb_2023_113676
crossref_primary_10_1016_j_fct_2021_112159
crossref_primary_10_1080_03639045_2017_1405434
crossref_primary_10_1155_2016_2853045
crossref_primary_10_1016_j_archoralbio_2020_104690
crossref_primary_10_1016_j_tet_2018_08_007
Cites_doi 10.1158/1078-0432.CCR-04-1087
10.1007/s11010-008-9994-z
10.1016/S1383-5718(99)00220-X
10.5582/ddt.8.18
10.1007/s10875-006-9066-7
10.1016/j.foodchem.2007.02.023
10.1016/j.foodchem.2011.07.127
10.1016/j.bcp.2007.08.016
10.3390/molecules15107035
10.1146/annurev.nutr.012809.104755
10.1016/j.foodchem.2006.09.034
10.1079/BJN19980106
10.1016/j.lfs.2003.09.047
10.1023/A:1017930708099
10.1021/jf901012f
10.1002/mnfr.201100440
10.1007/s00217-004-1012-4
10.1517/14728222.10.1.87
10.1016/j.ejca.2005.05.009
10.1016/j.biocel.2008.06.010
10.2174/187152106774755563
10.1016/j.ejphar.2010.08.059
10.1016/j.foodchem.2009.09.024
10.1007/s13197-012-0887-5
10.1016/j.foodchem.2008.07.061
10.1016/j.foodchem.2012.11.022
10.1016/j.foodchem.2010.09.015
10.1016/S0006-2952(99)00206-3
10.1016/j.colsurfb.2012.02.002
ContentType Journal Article
Copyright 2015 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Copyright_xml – notice: 2015 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.5582/ddt.2015.01013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1881-784X
EndPage 141
ExternalDocumentID 25994066
10_5582_ddt_2015_01013
article_ddt_9_2_9_2015_01013_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
53G
ABDBF
ABPTK
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
EBD
EMOBN
ESX
F5P
JSF
JSH
KQ8
MK0
OK1
P2P
RJT
RZJ
SV3
TUS
7.U
AAYXX
ACUHS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c554t-72e94ac3f65c970570aaa704f258fd8a926807d76b16a99554aa19cb63cdda563
ISSN 1881-7831
IngestDate Fri Jul 11 07:15:41 EDT 2025
Thu Jan 02 22:17:55 EST 2025
Tue Jul 01 01:15:36 EDT 2025
Thu Apr 24 23:09:43 EDT 2025
Wed Apr 05 06:33:01 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c554t-72e94ac3f65c970570aaa704f258fd8a926807d76b16a99554aa19cb63cdda563
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/ddt/9/2/9_2015.01013/_article/-char/en
PMID 25994066
PQID 1682887594
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1682887594
pubmed_primary_25994066
crossref_citationtrail_10_5582_ddt_2015_01013
crossref_primary_10_5582_ddt_2015_01013
jstage_primary_article_ddt_9_2_9_2015_01013_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Drug Discoveries & Therapeutics
PublicationTitleAlternate DD&T
PublicationYear 2015
Publisher International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Publisher_xml – name: International Research and Cooperation Association for Bio & Socio-Sciences Advancement
References 12. Bulmuş FG, Sakin F, Türk G, Sönmez M, Servi K. Protective effects of curcumin on antioxidant status, body weight gain, and reproductive parameters in male rats exposed to subchronic 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Toxicol Environ Chem. 2013; 95:1019-1029.
13. Kelkel M, Jacob C, Dicato M, Diederich M. Potential of the dietary antioxidants resveratrol and curcumin in prevention and treatment of hematologic malignancies. Molecules. 2010; 15:7035-7074.
26. Shang YJ, Jin XL, Shang XL, Tang JJ, Liu GY, Dai F, Qian YP, Fan GJ, Liu Q, Zhou B. Antioxidant capacity of curcumin-directed analogues: Structure-activity relationship and influence of microenvironment. Food Chem. 2010; 119:1435-1442.
21. Fotie J, Bohle DS. Pharmacological and biological activities of xanthones. Antiinfect Agents Med Chem. 2006; 5:15-31.
1. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004; 74:2157-2184.
23. Okonogi S, Duangrat C, Anuchpreeda S, Tachakittirungrod S, Chowwanapoonpohn S. Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem. 2007; 103:839-846.
27. Wu CR, Huang MY, Lin YT, Ju HY, Ching H. Antioxidant properties of Cortex fraxini and its simple coumarins. Food Chem. 2007; 104:1464-1471.
22. Khonkarn R, Mankhetkorn S, Talelli M, Hennink WE, Okonogi S. Cytostatic effect of xanthone-loaded mPEG-b-p(HPMAm-Lac2) micelles towards doxorubicin sensitive and resistant cancer cells. Colloid Surface B. 2012; 94:266-273.
17. Puttipan R, Okonogi S. Antioxidant activity of Rafflesiakerrii flower extract. Drug Discov Ther. 2014; 8:18-24.
19. Diplock A, Charuleux JL, Crozier-Willi G, Kok F, Rice-Evans C, Roberfroid M, Stahl W, Vina-Ribes J. Functional food science and defence against reactive oxidative species. Brit J Nutr. 1998; 80:S77-S112.
29. Mishra K, Ojha H, Chaudhury NK. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012; 130:1036-1043.
24. Zhao L, Wientjes MG, Au JL. Evaluation of combination chemotherapy integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res. 2004; 10:7994-8004.
2. Olszanecki R, Jawień J, Gajda M, Mateuszuk Ł, Gȩbska A, Korabiowska M, Chlopicki S, Korbut R. Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol. 2005; 56:627-635.
4. Shin SK, Ha TY, McGregor RA, Choi MS. Long term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res. 2011; 55:1829-1840.
31. Becker EM, Nissen LR, Skibsted LH. Antioxidant evaluation protocols: Food quality or health effects. Eur Food Res Technol. 2004; 219:561-571.
3. Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr. 2010; 30:173-199.
32. Antunes LMG, Araújo MCP, Darin JDAC, Bianchi MdLP. Effects of the antioxidants curcumin and vitamin C on cisplatin-induced clastogenesis in Wistar rat bone marrow cells. Mutat Res. 2000; 465:131-137.
9. Shah BH, Nawaz Z,Pertani SA, Roomi A, Mahmood H, Saeed SA, Gilani AH. Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling. Biochem Pharmacol. 1999; 58:1167-1172.
20. Kondo M, Zhang L, Ji H, Kou Y, Ou B. Bioavailability and antioxidant effects of a xanthone-rich Mangosteen (Garcinia mangostana) product in humans. J Agr Food Chem. 2009; 57:8788-8792.
11. Sharma R, Gescher A, Steward W. Curcumin: The story so far. Eur J Cancer. 2005; 41:1955-1968.
14. Naidu KA, Thippeswamy NB. Inhibition of human low density lipoprotein oxidation by active principles from spices. Mol Cell Biochem. 2002; 229:19-23.
6. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "curecumin": From kitchen to clinic. Biochem Pharmacol. 2008; 75:787-809.
7. Vogel HA, Pelletier J. Curcumin-biological and medicinal properties. J Pharmacol. 1815; 2:50-50.
30. Suvarnakuta P, Chaweerungrat C, Devahastin S. Effects of drying methods on assay and antioxidant activity of xanthones in mangosteen rind. Food Chem. 2011; 125:240-247.
5. Jagetia GC, Aggarwal BB. "Spicing up" of the immune system by curcumin. J Clin Immunol. 2007; 27:19-35.
8. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009; 41:40-59.
15. Iqbal M; Okazaki Y; Okada S. Curcumin attenuates oxidative damage in animals treated with a renal carcinogen, ferric nitrilotriacetate (Fe-NTA): Implications for cancer prevention. Mol Cell Biochem. 2009; 324:157-164.
16. Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem. 2013; 138:1028-1033.
10. Aggarwal BB, Ichikawa H, Garodia P, Weerasinghe P, Sethi G, Bhatt ID, Pandey MK, Shishodia S, Nair MG. From traditional Ayurvedic medicine to modern medicine: Identification of therapeutic targets for suppression of inflammation and cancer. Expert Opin Ther Targets. 2006; 10:87-118.
28. Suttirak W, Manurakchinakorn S. In vitro antioxidant properties of mangosteen peel extract. J Food Sci Technol. 2014; 51:3546-3558.
25. Zhang Z, Liao L, Moore J, Wu T, Wang Z. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 2009; 113:160-165.
18. Punithavathi VR, Prince PSM, Kumar R, Selvakumari J. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol. 2011; 650:465-471.
22
23
24
25
26
27
28
29
30
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 9. Shah BH, Nawaz Z,Pertani SA, Roomi A, Mahmood H, Saeed SA, Gilani AH. Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling. Biochem Pharmacol. 1999; 58:1167-1172.
– reference: 24. Zhao L, Wientjes MG, Au JL. Evaluation of combination chemotherapy integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res. 2004; 10:7994-8004.
– reference: 17. Puttipan R, Okonogi S. Antioxidant activity of Rafflesiakerrii flower extract. Drug Discov Ther. 2014; 8:18-24.
– reference: 3. Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr. 2010; 30:173-199.
– reference: 19. Diplock A, Charuleux JL, Crozier-Willi G, Kok F, Rice-Evans C, Roberfroid M, Stahl W, Vina-Ribes J. Functional food science and defence against reactive oxidative species. Brit J Nutr. 1998; 80:S77-S112.
– reference: 7. Vogel HA, Pelletier J. Curcumin-biological and medicinal properties. J Pharmacol. 1815; 2:50-50.
– reference: 21. Fotie J, Bohle DS. Pharmacological and biological activities of xanthones. Antiinfect Agents Med Chem. 2006; 5:15-31.
– reference: 18. Punithavathi VR, Prince PSM, Kumar R, Selvakumari J. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol. 2011; 650:465-471.
– reference: 32. Antunes LMG, Araújo MCP, Darin JDAC, Bianchi MdLP. Effects of the antioxidants curcumin and vitamin C on cisplatin-induced clastogenesis in Wistar rat bone marrow cells. Mutat Res. 2000; 465:131-137.
– reference: 25. Zhang Z, Liao L, Moore J, Wu T, Wang Z. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 2009; 113:160-165.
– reference: 4. Shin SK, Ha TY, McGregor RA, Choi MS. Long term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res. 2011; 55:1829-1840.
– reference: 28. Suttirak W, Manurakchinakorn S. In vitro antioxidant properties of mangosteen peel extract. J Food Sci Technol. 2014; 51:3546-3558.
– reference: 12. Bulmuş FG, Sakin F, Türk G, Sönmez M, Servi K. Protective effects of curcumin on antioxidant status, body weight gain, and reproductive parameters in male rats exposed to subchronic 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Toxicol Environ Chem. 2013; 95:1019-1029.
– reference: 26. Shang YJ, Jin XL, Shang XL, Tang JJ, Liu GY, Dai F, Qian YP, Fan GJ, Liu Q, Zhou B. Antioxidant capacity of curcumin-directed analogues: Structure-activity relationship and influence of microenvironment. Food Chem. 2010; 119:1435-1442.
– reference: 30. Suvarnakuta P, Chaweerungrat C, Devahastin S. Effects of drying methods on assay and antioxidant activity of xanthones in mangosteen rind. Food Chem. 2011; 125:240-247.
– reference: 5. Jagetia GC, Aggarwal BB. "Spicing up" of the immune system by curcumin. J Clin Immunol. 2007; 27:19-35.
– reference: 2. Olszanecki R, Jawień J, Gajda M, Mateuszuk Ł, Gȩbska A, Korabiowska M, Chlopicki S, Korbut R. Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol. 2005; 56:627-635.
– reference: 27. Wu CR, Huang MY, Lin YT, Ju HY, Ching H. Antioxidant properties of Cortex fraxini and its simple coumarins. Food Chem. 2007; 104:1464-1471.
– reference: 8. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009; 41:40-59.
– reference: 13. Kelkel M, Jacob C, Dicato M, Diederich M. Potential of the dietary antioxidants resveratrol and curcumin in prevention and treatment of hematologic malignancies. Molecules. 2010; 15:7035-7074.
– reference: 16. Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem. 2013; 138:1028-1033.
– reference: 1. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004; 74:2157-2184.
– reference: 15. Iqbal M; Okazaki Y; Okada S. Curcumin attenuates oxidative damage in animals treated with a renal carcinogen, ferric nitrilotriacetate (Fe-NTA): Implications for cancer prevention. Mol Cell Biochem. 2009; 324:157-164.
– reference: 6. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "curecumin": From kitchen to clinic. Biochem Pharmacol. 2008; 75:787-809.
– reference: 31. Becker EM, Nissen LR, Skibsted LH. Antioxidant evaluation protocols: Food quality or health effects. Eur Food Res Technol. 2004; 219:561-571.
– reference: 11. Sharma R, Gescher A, Steward W. Curcumin: The story so far. Eur J Cancer. 2005; 41:1955-1968.
– reference: 20. Kondo M, Zhang L, Ji H, Kou Y, Ou B. Bioavailability and antioxidant effects of a xanthone-rich Mangosteen (Garcinia mangostana) product in humans. J Agr Food Chem. 2009; 57:8788-8792.
– reference: 29. Mishra K, Ojha H, Chaudhury NK. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012; 130:1036-1043.
– reference: 14. Naidu KA, Thippeswamy NB. Inhibition of human low density lipoprotein oxidation by active principles from spices. Mol Cell Biochem. 2002; 229:19-23.
– reference: 22. Khonkarn R, Mankhetkorn S, Talelli M, Hennink WE, Okonogi S. Cytostatic effect of xanthone-loaded mPEG-b-p(HPMAm-Lac2) micelles towards doxorubicin sensitive and resistant cancer cells. Colloid Surface B. 2012; 94:266-273.
– reference: 10. Aggarwal BB, Ichikawa H, Garodia P, Weerasinghe P, Sethi G, Bhatt ID, Pandey MK, Shishodia S, Nair MG. From traditional Ayurvedic medicine to modern medicine: Identification of therapeutic targets for suppression of inflammation and cancer. Expert Opin Ther Targets. 2006; 10:87-118.
– reference: 23. Okonogi S, Duangrat C, Anuchpreeda S, Tachakittirungrod S, Chowwanapoonpohn S. Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem. 2007; 103:839-846.
– ident: 22
  doi: 10.1158/1078-0432.CCR-04-1087
– ident: 13
  doi: 10.1007/s11010-008-9994-z
– ident: 30
  doi: 10.1016/S1383-5718(99)00220-X
– ident: 15
  doi: 10.5582/ddt.8.18
– ident: 4
  doi: 10.1007/s10875-006-9066-7
– ident: 25
  doi: 10.1016/j.foodchem.2007.02.023
– ident: 27
  doi: 10.1016/j.foodchem.2011.07.127
– ident: 5
  doi: 10.1016/j.bcp.2007.08.016
– ident: 11
  doi: 10.3390/molecules15107035
– ident: 2
  doi: 10.1146/annurev.nutr.012809.104755
– ident: 21
  doi: 10.1016/j.foodchem.2006.09.034
– ident: 17
  doi: 10.1079/BJN19980106
– ident: 1
  doi: 10.1016/j.lfs.2003.09.047
– ident: 12
  doi: 10.1023/A:1017930708099
– ident: 18
  doi: 10.1021/jf901012f
– ident: 3
  doi: 10.1002/mnfr.201100440
– ident: 29
  doi: 10.1007/s00217-004-1012-4
– ident: 9
  doi: 10.1517/14728222.10.1.87
– ident: 10
  doi: 10.1016/j.ejca.2005.05.009
– ident: 7
  doi: 10.1016/j.biocel.2008.06.010
– ident: 19
  doi: 10.2174/187152106774755563
– ident: 16
  doi: 10.1016/j.ejphar.2010.08.059
– ident: 24
  doi: 10.1016/j.foodchem.2009.09.024
– ident: 26
  doi: 10.1007/s13197-012-0887-5
– ident: 23
  doi: 10.1016/j.foodchem.2008.07.061
– ident: 14
  doi: 10.1016/j.foodchem.2012.11.022
– ident: 6
– ident: 28
  doi: 10.1016/j.foodchem.2010.09.015
– ident: 8
  doi: 10.1016/S0006-2952(99)00206-3
– ident: 20
  doi: 10.1016/j.colsurfb.2012.02.002
SSID ssj0000548185
Score 2.2022858
Snippet Curcumin has been extensively reported as a potential natural antioxidant. However, there was no data on activity comparison as well as the biological...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 136
SubjectTerms antagonistic effect
Antioxidant
Antioxidants - pharmacology
Ascorbic Acid - pharmacology
curcumin
Curcumin - pharmacology
gallic acid
Gallic Acid - pharmacology
synergistic effect
Xanthones - pharmacology
Title Comparison and combination effects on antioxidant power of curcumin with gallic acid, ascorbic acid, and xanthone
URI https://www.jstage.jst.go.jp/article/ddt/9/2/9_2015.01013/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/25994066
https://www.proquest.com/docview/1682887594
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Drug Discoveries & Therapeutics, 2015/05/16, Vol.9(2), pp.136-141
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaydoddhr2XvaABQ3dIvEWyLVvYqY8VxQ5dDynQmyFLduE9ks6JgWbH_fKRkq04RQt0O8RxZIpxws8UKZEUIe9CjgVnZR6YUKdBJI0MlM6jQJZcwgCvQ17aaItjcXQafTmLzwaDP72opWaZf9C_r80r-R-pQhvIFbNk_0Gynik0wDnIF44gYTjeSsb7600E2_Q08HOdRH2cBl6ClsvKwPvoAjdFs6HkTa2bn5VL4h7h8jsWbtWVFbhagE-a9xuA-6WydQY2QocO6uYc13g0BoJWdgZXjHopXd5gP1bfF01drayp-rWeadwb0E_wgpEKGthOxFagxOb1rD8ZweJeDIvTn2nKgiRtFXvRb3OBmJ3SlT1s8Z4CZaHojcXMFcW6qubjOMWyscZgMCzDuqsTl9C6WU_7yjjnow_B70EOGfTPsH9m-98h2xxcDdCV27t7B3uHfqYOjFq0atBz736dq_6JTD5u3sSGdXP3Gxj458XNvou1YaYPyP3W-aC7DkkPyaCYPSI7J656-WpMpz3JjekOPVnXNV89Jr_WcKMACNqDG23hRu0lDzdq4UbnJe3gRhFu1MGNIrrGtANb9xE4d1B7Qk4PP0_3j4J2x45Ag1m6DBJeyEjpsBSxlgm4AhOlVDKJSh6npUmV5CKdJCYRORNKSuijFJM6F6E2RsUifEq2ZsD-OaFcs5BFec4KoCqESnUh4sSwScSKJDdmSILun850W84ed1X5kV0v3iF57-kvXCGXGyk_OcF5uvYBt3Qy4_jy1P4iZkmCUhqSt520M9DUuPymZsW8WWRMpByG9FhGQ_LMwcB_A49BY4L1_-LWd_mS3Fs_gK_I1rJuitdgHy_zNy2A_wJFOr3e
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+and+combination+effects+on+antioxidant+power+of+curcumin+with+gallic+acid%2C+ascorbic+acid%2C+and+xanthone&rft.jtitle=Drug+discoveries+%26+therapeutics&rft.au=Naksuriya%2C+Ornchuma&rft.au=Okonogi%2C+Siriporn&rft.date=2015-04-01&rft.issn=1881-7831&rft.eissn=1881-784X&rft.volume=9&rft.issue=2&rft.spage=136&rft.epage=141&rft_id=info:doi/10.5582%2Fddt.2015.01013&rft.externalDBID=n%2Fa&rft.externalDocID=10_5582_ddt_2015_01013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-7831&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-7831&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-7831&client=summon