Experimental evolution of multicellularity

Multicellularity was one of the most significant innovations in the history of life, but its initial evolution remains poorly understood. Using experimental evolution, we show that key steps in this transition could have occurred quickly. We subjected the unicellular yeast Saccharomyces cerevisiae t...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 5; pp. 1595 - 1600
Main Authors Ratcliff, William C, Denison, R. Ford, Borrello, Mark, Travisano, Michael
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 31.01.2012
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multicellularity was one of the most significant innovations in the history of life, but its initial evolution remains poorly understood. Using experimental evolution, we show that key steps in this transition could have occurred quickly. We subjected the unicellular yeast Saccharomyces cerevisiae to an environment in which we expected multicellularity to be adaptive. We observed the rapid evolution of clustering genotypes that display a novel multicellular life history characterized by reproduction via multicellular propagules, a juvenile phase, and determinate growth. The multicellular clusters are uniclonal, minimizing within-cluster genetic conflicts of interest. Simple among-cell division of labor rapidly evolved. Early multicellular strains were composed of physiologically similar cells, but these subsequently evolved higher rates of programmed cell death (apoptosis), an adaptation that increases propagule production. These results show that key aspects of multicellular complexity, a subject of central importance to biology, can readily evolve from unicellular eukaryotes.
AbstractList Multicellularity was one of the most significant innovations in the history of life, but its initial evolution remains poorly understood. Using experimental evolution, we show that key steps in this transition could have occurred quickly. We subjected the unicellular yeast Saccharomyces cerevisiae to an environment in which we expected multicellularity to be adaptive. We observed the rapid evolution of clustering genotypes that display a novel multicellular life history characterized by reproduction via multicellular propagules, a juvenile phase, and determinate growth. The multicellular clusters are uniclonal, minimizing within-cluster genetic conflicts of interest. Simple among-cell division of labor rapidly evolved. Early multicellular strains were composed of physiologically similar cells, but these subsequently evolved higher rates of programmed cell death (apoptosis), an adaptation that increases propagule production. These results show that key aspects of multicellular complexity, a subject of central importance to biology, can readily evolve from unicellular eukaryotes. [PUBLICATION ABSTRACT]
Multicellularity was one of the most significant innovations in the history of life, but its initial evolution remains poorly understood. Using experimental evolution, we show that key steps in this transition could have occurred quickly. We subjected the unicellular yeast Saccharomyces cerevisiae to an environment in which we expected multicellularity to be adaptive. We observed the rapid evolution of clustering genotypes that display a novel multicellular life history characterized by reproduction via multicellular propagules, a juvenile phase, and determinate growth. The multicellular clusters are uniclonal, minimizing within-cluster genetic conflicts of interest. Simple among-cell division of labor rapidly evolved. Early multicellular strains were composed of physiologically similar cells, but these subsequently evolved higher rates of programmed cell death (apoptosis), an adaptation that increases propagule production. These results show that key aspects of multicellular complexity, a subject of central importance to biology, can readily evolve from unicellular eukaryotes.
Multicellularity was one of the most significant innovations in the history of life, but its initial evolution remains poorly understood. Using experimental evolution, we show that key steps in this transition could have occurred quickly. We subjected the unicellular yeast Saccharomyces cerevisiae to an environment in which we expected multicellularity to be adaptive. We observed the rapid evolution of clustering genotypes that display a novel multicellular life history characterized by reproduction via multicellular propagules, a juvenile phase, and determinate growth. The multicellular clusters are uniclonal, minimizing within-cluster genetic conflicts of interest. Simple among-cell division of labor rapidly evolved. Early multicellular strains were composed of physiologically similar cells, but these subsequently evolved higher rates of programmed cell death (apoptosis), an adaptation that increases propagule production. These results show that key aspects of multicellular complexity, a subject of central importance to biology, can readily evolve from unicellular eukaryotes.
Multicellularity was one of the most significant innovations in the history of life, but its initial evolution remains poorly understood. Using experimental evolution, we show that key steps in this transition could have occurred quickly. We subjected the unicellular yeast Saccharomyces cerevisiae to an environment in which we expected multicellularity to be adaptive. We observed the rapid evolution of clustering genotypes that display a novel multicellular life history characterized by reproduction via multicellular propagules, a juvenile phase, and determinate growth. The multicellular clusters are uniclonal, minimizing within-cluster genetic conflicts of interest. Simple among< ell division of labor rapidly evolved. Early multicellular strains were composed of physiologically similar cells, but these subsequently evolved higher rates of programmed cell death (apoptosis), an adaptation that increases propagule production. These results show that key aspects of multicellular complexity, a subject of central importance to biology, can readily evolve from unicellular eukaryotes.
Author Borrello, Mark
Travisano, Michael
Ratcliff, William C
Denison, R. Ford
Author_xml – sequence: 1
  fullname: Ratcliff, William C
– sequence: 2
  fullname: Denison, R. Ford
– sequence: 3
  fullname: Borrello, Mark
– sequence: 4
  fullname: Travisano, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22307617$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtLJDEUhYMo2j7WrnSa2QwIpffmWdkMiDijILhQ1yFdlWg11ZWepErGf2-K1vaxSRb3u4dz7tklm13oHCGHCKcIip0tO5tOEVEwyhD0BpnkFwvJNWySCQBVRckp3yG7Kc0BQIsStskOpQyURDUhJ5f_ly42C9f1tp2659AOfRO6afDTxdD2TeXadmhtbPqXfbLlbZvcwdu_Rx7-XN5fXBU3t3-vL85vikoI3hdyNqMUnEU389RT4bDWtaclkwCszO5KKzwD5ym3QjuwimlX11hZJT1mZo_8Xukuh9nC1VW2Fm1rltmljS8m2MZ8nXTNk3kMz4ZRpZDLLPDrTSCGf4NLvVk0aQxiOxeGZDSFnB-kyuTPb-Q8DLHL6YxGLaUu9Sh3toKqGFKKzq-tIJixBTO2YD5ayBvHnxOs-fezfwLGzQ85bYRBoUUGjlbAPPUhrgmOfIzI8_zHau5tMPYxNsk83FFADoCqzN7ZKxuJoeA
CitedBy_id crossref_primary_10_1098_rsos_160544
crossref_primary_10_1111_nyas_13515
crossref_primary_10_1128_aem_00764_23
crossref_primary_10_1186_s12898_020_00281_y
crossref_primary_10_1086_684100
crossref_primary_10_1093_bjps_axv033
crossref_primary_10_1007_s13752_018_0311_0
crossref_primary_10_1038_s41467_021_21050_5
crossref_primary_10_1038_s42003_022_03228_9
crossref_primary_10_1093_biosci_biu045
crossref_primary_10_1016_j_shpsc_2014_10_006
crossref_primary_10_1111_evo_12101
crossref_primary_10_1039_c2cc32387g
crossref_primary_10_1007_s10539_015_9482_2
crossref_primary_10_1007_s00249_024_01702_2
crossref_primary_10_1186_s12052_015_0041_8
crossref_primary_10_7554_eLife_08595
crossref_primary_10_1098_rsif_2021_0716
crossref_primary_10_1098_rspb_2019_1098
crossref_primary_10_3390_fermentation6010020
crossref_primary_10_7554_eLife_72707
crossref_primary_10_7554_eLife_92899
crossref_primary_10_1016_j_jmb_2019_09_023
crossref_primary_10_1098_rstb_2016_0420
crossref_primary_10_1371_journal_pcbi_1005860
crossref_primary_10_3389_fmicb_2018_00158
crossref_primary_10_1016_j_mib_2023_102394
crossref_primary_10_1111_pala_12047
crossref_primary_10_1016_j_fgb_2016_06_007
crossref_primary_10_1038_s42003_024_06485_y
crossref_primary_10_1093_jxb_eraa213
crossref_primary_10_1002_bies_201200143
crossref_primary_10_1007_s11229_017_1673_8
crossref_primary_10_7554_eLife_47951
crossref_primary_10_1016_j_fbr_2018_08_001
crossref_primary_10_1038_ncomms3742
crossref_primary_10_1073_pnas_2122197119
crossref_primary_10_3389_fevo_2021_730714
crossref_primary_10_1016_j_mib_2015_06_018
crossref_primary_10_3390_pathogens7010011
crossref_primary_10_1016_j_mib_2014_12_007
crossref_primary_10_1093_femsyr_fox025
crossref_primary_10_1038_s41559_019_0940_0
crossref_primary_10_1098_rsif_2016_0121
crossref_primary_10_1007_s10539_013_9363_5
crossref_primary_10_1038_ismej_2017_69
crossref_primary_10_1111_evo_14549
crossref_primary_10_1111_j_1558_5646_2012_01802_x
crossref_primary_10_1098_rsos_160554
crossref_primary_10_3389_fmicb_2021_619122
crossref_primary_10_7554_eLife_78822
crossref_primary_10_1007_s10539_012_9354_y
crossref_primary_10_1007_s12268_022_1812_8
crossref_primary_10_3389_fmicb_2019_01568
crossref_primary_10_7554_eLife_00655
crossref_primary_10_1016_j_fgb_2022_103671
crossref_primary_10_3892_ol_2020_11829
crossref_primary_10_7554_eLife_46735
crossref_primary_10_1093_nsr_nwad200
crossref_primary_10_1016_j_cell_2013_02_026
crossref_primary_10_1016_j_mib_2015_01_003
crossref_primary_10_1098_rstb_2013_0362
crossref_primary_10_1016_j_molp_2024_03_011
crossref_primary_10_1038_s41467_021_23104_0
crossref_primary_10_1016_j_jtbi_2015_02_002
crossref_primary_10_1111_eva_12943
crossref_primary_10_1016_j_jtbi_2018_08_038
crossref_primary_10_7554_eLife_83296
crossref_primary_10_1007_s12038_013_9375_y
crossref_primary_10_1371_journal_pone_0059664
crossref_primary_10_1098_rsif_2022_0018
crossref_primary_10_7554_eLife_54348
crossref_primary_10_1098_rstb_2021_0408
crossref_primary_10_1098_rsfs_2015_0057
crossref_primary_10_1140_epjp_s13360_022_03252_y
crossref_primary_10_1098_rspb_2023_1722
crossref_primary_10_1111_jeu_12306
crossref_primary_10_1557_mrs_2013_133
crossref_primary_10_1016_j_fbr_2020_07_002
crossref_primary_10_1086_678257
crossref_primary_10_1098_rspb_2023_1055
crossref_primary_10_1016_j_tim_2017_02_015
crossref_primary_10_1007_s10539_019_9688_9
crossref_primary_10_1016_j_actaastro_2014_08_013
crossref_primary_10_1073_pnas_1922076117
crossref_primary_10_1088_1478_3975_13_3_031001
crossref_primary_10_1088_1478_3975_10_3_035001
crossref_primary_10_1098_rspb_2016_1303
crossref_primary_10_1371_journal_pgen_1006668
crossref_primary_10_1111_jpy_13461
crossref_primary_10_1002_jez_b_22907
crossref_primary_10_1016_j_jgr_2021_04_006
crossref_primary_10_1371_journal_pgen_1008606
crossref_primary_10_1007_s00294_018_0823_y
crossref_primary_10_1016_j_jtbi_2020_110293
crossref_primary_10_3390_jof7110886
crossref_primary_10_1016_j_gde_2022_101943
crossref_primary_10_1007_s10710_013_9196_7
crossref_primary_10_1007_s13752_021_00376_9
crossref_primary_10_3390_genes12040487
crossref_primary_10_1146_annurev_fluid_010313_141426
crossref_primary_10_1017_S0024282921000256
crossref_primary_10_1016_j_jtbi_2013_09_024
crossref_primary_10_1371_journal_pcbi_1008406
crossref_primary_10_1093_gbe_evt142
crossref_primary_10_1371_journal_pgen_1005684
crossref_primary_10_1111_brv_12418
crossref_primary_10_1098_rsif_2017_0484
crossref_primary_10_3389_fcell_2021_823447
crossref_primary_10_1016_j_coisb_2017_11_007
crossref_primary_10_1073_pnas_2015565118
crossref_primary_10_1098_rsos_180912
crossref_primary_10_1038_s41559_024_02367_y
crossref_primary_10_1016_j_ympev_2014_01_007
crossref_primary_10_1016_j_mimet_2021_106338
crossref_primary_10_1007_s13752_012_0072_0
crossref_primary_10_1098_rsos_192211
crossref_primary_10_1111_brv_12412
crossref_primary_10_7554_eLife_73715
crossref_primary_10_1128_spectrum_03847_22
crossref_primary_10_7554_eLife_55414
crossref_primary_10_1038_s41567_017_0012_9
crossref_primary_10_1007_s10539_016_9517_3
crossref_primary_10_1007_s13752_021_00387_6
crossref_primary_10_1111_j_1558_5646_2012_01782_x
crossref_primary_10_3998_ptpbio_6284
crossref_primary_10_1002_jez_b_22924
crossref_primary_10_1016_j_tplants_2016_02_004
crossref_primary_10_1093_femsyr_foab044
crossref_primary_10_1111_evo_13654
crossref_primary_10_1098_rsif_2016_0282
crossref_primary_10_4161_cam_19582
crossref_primary_10_1007_s13752_019_00317_7
crossref_primary_10_1016_j_cbpa_2017_08_012
crossref_primary_10_1016_j_gde_2018_05_006
crossref_primary_10_1016_j_mib_2016_04_007
crossref_primary_10_1098_rspb_2019_1948
crossref_primary_10_3390_genes14081635
crossref_primary_10_1038_s41567_017_0002_y
crossref_primary_10_1371_journal_pbio_3001587
crossref_primary_10_15252_msb_202211353
crossref_primary_10_1038_s41522_022_00292_1
crossref_primary_10_1098_rspb_2015_2547
crossref_primary_10_1371_journal_pcbi_1005042
crossref_primary_10_1073_pnas_2208019119
crossref_primary_10_1093_evolut_qpad037
crossref_primary_10_1111_jeb_12804
crossref_primary_10_3389_fmicb_2017_01837
crossref_primary_10_1089_ast_2017_1779
crossref_primary_10_1128_MMBR_00008_18
crossref_primary_10_1098_rspb_2021_2722
crossref_primary_10_1134_S0031030113020044
crossref_primary_10_2142_biophys_63_316
crossref_primary_10_1002_yea_3241
crossref_primary_10_1186_s12862_023_02133_x
crossref_primary_10_1002_ece3_5322
crossref_primary_10_1002_2015EF000339
crossref_primary_10_1016_j_algal_2023_103220
crossref_primary_10_1002_bies_201300052
crossref_primary_10_1073_pnas_1608278113
crossref_primary_10_3390_biology5020018
crossref_primary_10_1111_ede_12013
crossref_primary_10_7554_eLife_00367
crossref_primary_10_1128_mSystems_00018_20
crossref_primary_10_7554_eLife_23804
crossref_primary_10_1111_evo_13392
crossref_primary_10_1016_j_cub_2024_05_014
crossref_primary_10_1002_wcms_1701
crossref_primary_10_1534_genetics_116_198895
crossref_primary_10_1111_1462_2920_12866
crossref_primary_10_1038_s41559_024_02391_y
crossref_primary_10_3389_fevo_2024_1335452
crossref_primary_10_1007_s12038_013_9344_5
crossref_primary_10_3389_fevo_2022_823588
crossref_primary_10_1016_j_mib_2022_102141
crossref_primary_10_1111_evo_13727
crossref_primary_10_1186_s12915_020_0762_1
crossref_primary_10_18632_aging_202727
crossref_primary_10_1093_femsec_fiac115
crossref_primary_10_1016_j_cub_2020_03_072
crossref_primary_10_1371_journal_pbio_3000397
crossref_primary_10_1002_ece3_7515
crossref_primary_10_1146_annurev_biophys_101220_072829
crossref_primary_10_1016_j_mib_2012_09_005
crossref_primary_10_1017_S1473550423000204
crossref_primary_10_1016_j_devcel_2017_09_016
crossref_primary_10_1016_j_jtbi_2014_06_026
crossref_primary_10_1038_s41598_017_16229_0
crossref_primary_10_1002_yea_3018
crossref_primary_10_1016_j_jtbi_2014_06_023
crossref_primary_10_1086_714488
crossref_primary_10_1098_rstb_2015_0444
crossref_primary_10_1007_s00446_021_00404_8
crossref_primary_10_1098_rstb_2012_0266
crossref_primary_10_1038_ncomms12085
crossref_primary_10_1371_journal_pbio_1001858
crossref_primary_10_1086_700095
crossref_primary_10_1128_mbio_01021_24
crossref_primary_10_1128_AAC_01371_12
crossref_primary_10_1016_j_mad_2018_09_001
crossref_primary_10_1038_nrg3564
crossref_primary_10_1063_5_0080845
crossref_primary_10_1093_gbe_evs083
crossref_primary_10_1186_s13068_024_02503_7
crossref_primary_10_1098_rsif_2015_0044
crossref_primary_10_1016_j_jhevol_2019_102671
crossref_primary_10_1016_j_cub_2020_08_006
crossref_primary_10_1016_j_physa_2018_11_023
crossref_primary_10_1111_evo_12760
crossref_primary_10_1515_bot_2016_0058
crossref_primary_10_1038_s41586_023_06052_1
crossref_primary_10_1098_rstb_2015_0438
crossref_primary_10_1111_evo_13615
crossref_primary_10_1098_rstb_2017_0106
crossref_primary_10_1002_jez_b_22727
crossref_primary_10_1016_j_gde_2017_09_003
crossref_primary_10_1016_j_tree_2020_07_013
crossref_primary_10_1128_EC_00184_12
crossref_primary_10_1016_j_ymben_2016_10_010
crossref_primary_10_1002_ece3_8067
crossref_primary_10_1007_s42087_021_00215_0
crossref_primary_10_1186_s12915_021_01087_0
crossref_primary_10_1016_j_cub_2023_03_031
crossref_primary_10_1016_j_physa_2017_11_080
crossref_primary_10_1146_annurev_micro_051421_121352
crossref_primary_10_1038_s41559_020_01363_2
crossref_primary_10_1002_ece3_3979
crossref_primary_10_3390_jof7090723
crossref_primary_10_1038_msb_2013_42
crossref_primary_10_1073_pnas_1209927110
crossref_primary_10_1126_science_1262053
crossref_primary_10_3390_fermentation3010004
crossref_primary_10_1098_rsif_2014_0982
crossref_primary_10_1093_bjps_axt055
crossref_primary_10_1371_journal_pcbi_1003803
crossref_primary_10_1093_evlett_qrae024
crossref_primary_10_3389_fcell_2023_1254636
crossref_primary_10_1007_s10516_018_9379_1
crossref_primary_10_1016_j_tree_2023_07_007
crossref_primary_10_1146_annurev_ecolsys_120213_091740
crossref_primary_10_1371_journal_pcbi_1010698
crossref_primary_10_1098_rsfs_2021_0082
crossref_primary_10_1038_s41467_023_39320_9
crossref_primary_10_1098_rsif_2016_0108
crossref_primary_10_1186_s12860_019_0234_z
crossref_primary_10_1186_s12915_024_01878_1
crossref_primary_10_3390_genes11060690
crossref_primary_10_1086_716178
crossref_primary_10_1126_sciadv_adn2706
crossref_primary_10_1038_s41396_022_01275_y
crossref_primary_10_3390_plants12183342
crossref_primary_10_1038_s41559_019_1086_9
crossref_primary_10_1086_697508
crossref_primary_10_3390_genes14040941
crossref_primary_10_1073_pnas_2315850121
crossref_primary_10_1371_journal_pcbi_1006987
crossref_primary_10_1016_j_tibs_2015_08_010
crossref_primary_10_1371_journal_pbio_3001844
crossref_primary_10_1128_JB_00469_20
crossref_primary_10_1016_j_bjm_2016_09_017
crossref_primary_10_7554_eLife_66711
crossref_primary_10_1038_ncomms15707
crossref_primary_10_1093_genetics_iyac042
crossref_primary_10_1038_nrmicro3178
crossref_primary_10_1038_nature_2012_9810
crossref_primary_10_7554_eLife_56349
crossref_primary_10_1103_PhysRevE_97_050401
crossref_primary_10_1016_j_tpb_2015_03_003
crossref_primary_10_1038_s41559_018_0503_9
crossref_primary_10_1007_s12038_014_9420_5
crossref_primary_10_1016_j_jtbi_2016_04_037
crossref_primary_10_21769_BioProtoc_3668
crossref_primary_10_7554_eLife_79665
crossref_primary_10_7554_eLife_84336
crossref_primary_10_1038_ncomms7102
crossref_primary_10_1128_mSphere_00702_18
crossref_primary_10_3389_fmicb_2016_01444
crossref_primary_10_3389_fmars_2018_00144
crossref_primary_10_1007_s11047_013_9380_y
crossref_primary_10_1016_j_cub_2016_05_057
crossref_primary_10_1016_j_mbs_2016_03_002
crossref_primary_10_1111_jeb_13964
crossref_primary_10_1016_j_tcb_2012_08_010
crossref_primary_10_7717_peerj_7565
crossref_primary_10_1016_j_tree_2012_06_001
crossref_primary_10_1038_s41598_019_39558_8
crossref_primary_10_1038_s41598_020_63081_w
crossref_primary_10_1111_tpj_12189
crossref_primary_10_1086_682588
crossref_primary_10_1098_rstb_2016_0175
crossref_primary_10_1186_s12934_023_02072_8
crossref_primary_10_1086_716634
crossref_primary_10_1038_nrmicro_2016_84
crossref_primary_10_3389_fpls_2014_00737
crossref_primary_10_1073_pnas_1202233109
crossref_primary_10_1098_rsos_191859
crossref_primary_10_1080_17435390_2018_1553253
crossref_primary_10_3390_genes12050661
crossref_primary_10_1007_s10682_017_9888_1
crossref_primary_10_1371_journal_pgen_1007691
crossref_primary_10_1162_artl_a_00284
crossref_primary_10_1140_epjp_i2017_11347_6
crossref_primary_10_1103_PhysRevX_14_011008
crossref_primary_10_1016_j_shpsc_2018_12_001
crossref_primary_10_1016_j_synbio_2017_10_004
crossref_primary_10_1093_genetics_iyac061
crossref_primary_10_1073_pnas_1305949110
crossref_primary_10_1134_S0006297922120100
crossref_primary_10_1098_rsif_2019_0054
crossref_primary_10_1111_evo_13701
Cites_doi 10.1098/rspb.2011.0766
10.1016/j.cub.2010.09.014
10.1111/j.1558-5646.2007.00304.x
10.1016/S0169-5347(97)01313-X
10.1111/j.1558-5646.2008.00541.x
10.1073/pnas.0811205106
10.1016/S1383-5742(02)00110-2
10.1038/nrc1016
10.1007/s10539-005-9018-2
10.1002/bies.20197
10.1038/nature06279
10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0.CO;2-6
10.1016/j.jtbi.2005.08.043
10.1038/nrc2013
10.1099/00221287-147-9-2409
10.1016/j.femsyr.2004.07.007
10.1098/rstb.2009.0095
10.1126/science.1188800
10.1371/journal.pbio.1001122
10.1016/j.cell.2008.09.037
10.1371/journal.pbio.0060287
10.1093/icb/43.1.64
10.1146/annurev.ecolsys.36.102403.114735
10.1073/pnas.0702207104
10.1083/jcb.145.4.757
10.1038/cdd.2009.219
10.1111/j.1420-9101.2007.01466.x
10.1007/BF00647962
10.1016/0022-5193(64)90038-4
10.1038/35037734
10.1073/pnas.0335420100
10.1666/0094-8373(2005)031[0133:TDOES]2.0.CO;2
10.1007/BF02705126
10.1038/nature09201
10.1007/s00239-009-9201-1
10.1016/S0531-5565(01)00160-7
10.1093/emboj/19.24.6686
10.1111/j.1558-5646.2010.01103.x
10.1023/A:1006527528063
10.1002/bies.201000039
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jan 31, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jan 31, 2012
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1115323109
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE
CrossRef




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 1600
ExternalDocumentID 2577456201
10_1073_pnas_1115323109
22307617
109_5_1595
41477144
US201400178919
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ADQXQ
5PM
ID FETCH-LOGICAL-c554t-6bb220ea1ebf2f25e1d9df283600380918a5f30ef24a59e0a739edd1ca76f1003
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:22:25 EDT 2024
Fri Aug 16 21:31:19 EDT 2024
Fri Sep 13 04:44:41 EDT 2024
Fri Aug 23 01:10:32 EDT 2024
Sat Sep 28 07:58:02 EDT 2024
Wed Nov 11 00:29:43 EST 2020
Fri Feb 02 07:04:34 EST 2024
Wed Dec 27 19:20:12 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-6bb220ea1ebf2f25e1d9df283600380918a5f30ef24a59e0a739edd1ca76f1003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: W.C.R., R.F.D., and M.T. designed research; W.C.R. performed research; W.C.R., R.F.D., M.B., and M.T. analyzed data; and W.C.R., R.F.D., M.B., and M.T. wrote the paper.
Edited* by Richard E. Lenski, Michigan State University, East Lansing, MI, and approved December 14, 2011 (received for review September 19, 2011)
OpenAccessLink https://www.pnas.org/content/pnas/109/5/1595.full.pdf
PMID 22307617
PQID 919669896
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_919669896
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3277146
crossref_primary_10_1073_pnas_1115323109
proquest_miscellaneous_920230067
pubmed_primary_22307617
jstor_primary_41477144
fao_agris_US201400178919
pnas_primary_109_5_1595
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2012-01-31
PublicationDateYYYYMMDD 2012-01-31
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 20722725 - Evolution. 2011 Jan;65(1):3-20
12787815 - Mutat Res. 2003 Jun;543(3):235-49
21680410 - Integr Comp Biol. 2003 Feb;43(1):64-73
15489193 - FEMS Yeast Res. 2004 Nov;5(2):111-7
19013280 - Cell. 2008 Nov 14;135(4):726-37
12547910 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1095-8
12612657 - Nat Rev Cancer. 2003 Mar;3(3):226-31
18036158 - J Evol Biol. 2008 Jan;21(1):104-10
18031303 - Evolution. 2008 Feb;62(2):436-51
15714559 - Bioessays. 2005 Mar;27(3):299-310
11118203 - EMBO J. 2000 Dec 15;19(24):6686-96
11048731 - Nature. 2000 Oct 12;407(6805):796-801
20616280 - Science. 2010 Jul 9;329(5988):223-6
20075938 - Cell Death Differ. 2010 May;17(5):763-73
12799498 - J Biosci. 2003 Jun;28(4):523-8
16288782 - J Theor Biol. 2006 Mar 21;239(2):257-72
20726010 - Bioessays. 2010 Oct;32(10):872-80
5875341 - J Theor Biol. 1964 Jul;7(1):1-16
17494740 - Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8597-604
17109012 - Nat Rev Cancer. 2006 Dec;6(12):924-35
21561969 - Proc Biol Sci. 2012 Jan 7;279(1726):116-21
21238226 - Trends Ecol Evol. 1998 Mar;13(3):112-6
18004383 - Nature. 2007 Nov 15;450(7168):411-4
19223580 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3254-8
10330404 - J Cell Biol. 1999 May 17;145(4):757-67
19805423 - Philos Trans R Soc Lond B Biol Sci. 2009 Nov 12;364(1533):3143-55
21857801 - PLoS Biol. 2011 Aug;9(8):e1001122
19209377 - J Mol Evol. 2009 Mar;68(3):256-68
19154376 - Evolution. 2009 Feb;63(2):306-23
11672984 - Exp Gerontol. 2001 Nov;36(10):1619-37
19067487 - PLoS Biol. 2008 Nov 25;6(11):e287
11535781 - Microbiology. 2001 Sep;147(Pt 9):2409-15
20971426 - Curr Biol. 2010 Oct 26;20(20):R875-6
20686567 - Nature. 2010 Aug 5;466(7307):720-6
Buss LW (e_1_3_3_27_2) 1987
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
Maynard Smith J (e_1_3_3_1_2) 1995
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_2_2
  doi: 10.1098/rspb.2011.0766
– ident: e_1_3_3_34_2
  doi: 10.1016/j.cub.2010.09.014
– ident: e_1_3_3_11_2
  doi: 10.1111/j.1558-5646.2007.00304.x
– ident: e_1_3_3_6_2
  doi: 10.1016/S0169-5347(97)01313-X
– ident: e_1_3_3_21_2
  doi: 10.1111/j.1558-5646.2008.00541.x
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.0811205106
– ident: e_1_3_3_39_2
  doi: 10.1016/S1383-5742(02)00110-2
– ident: e_1_3_3_8_2
  doi: 10.1038/nrc1016
– ident: e_1_3_3_17_2
  doi: 10.1007/s10539-005-9018-2
– ident: e_1_3_3_3_2
  doi: 10.1002/bies.20197
– ident: e_1_3_3_20_2
  doi: 10.1038/nature06279
– ident: e_1_3_3_13_2
  doi: 10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0.CO;2-6
– ident: e_1_3_3_19_2
  doi: 10.1016/j.jtbi.2005.08.043
– ident: e_1_3_3_4_2
  doi: 10.1038/nrc2013
– ident: e_1_3_3_32_2
  doi: 10.1099/00221287-147-9-2409
– ident: e_1_3_3_29_2
  doi: 10.1016/j.femsyr.2004.07.007
– ident: e_1_3_3_23_2
  doi: 10.1098/rstb.2009.0095
– ident: e_1_3_3_41_2
  doi: 10.1126/science.1188800
– ident: e_1_3_3_18_2
  doi: 10.1371/journal.pbio.1001122
– ident: e_1_3_3_25_2
  doi: 10.1016/j.cell.2008.09.037
– ident: e_1_3_3_5_2
  doi: 10.1371/journal.pbio.0060287
– ident: e_1_3_3_35_2
  doi: 10.1093/icb/43.1.64
– volume-title: The Major Transitions in Evolution
  year: 1995
  ident: e_1_3_3_1_2
  contributor:
    fullname: Maynard Smith J
– ident: e_1_3_3_10_2
  doi: 10.1146/annurev.ecolsys.36.102403.114735
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.0702207104
– volume-title: The Evolution of Individuality
  year: 1987
  ident: e_1_3_3_27_2
  contributor:
    fullname: Buss LW
– ident: e_1_3_3_30_2
  doi: 10.1083/jcb.145.4.757
– ident: e_1_3_3_31_2
  doi: 10.1038/cdd.2009.219
– ident: e_1_3_3_12_2
  doi: 10.1111/j.1420-9101.2007.01466.x
– ident: e_1_3_3_15_2
  doi: 10.1007/BF00647962
– ident: e_1_3_3_24_2
  doi: 10.1016/0022-5193(64)90038-4
– ident: e_1_3_3_36_2
  doi: 10.1038/35037734
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.0335420100
– ident: e_1_3_3_42_2
  doi: 10.1666/0094-8373(2005)031[0133:TDOES]2.0.CO;2
– ident: e_1_3_3_22_2
  doi: 10.1007/BF02705126
– ident: e_1_3_3_33_2
  doi: 10.1038/nature09201
– ident: e_1_3_3_38_2
  doi: 10.1007/s00239-009-9201-1
– ident: e_1_3_3_7_2
  doi: 10.1016/S0531-5565(01)00160-7
– ident: e_1_3_3_26_2
  doi: 10.1093/emboj/19.24.6686
– ident: e_1_3_3_37_2
  doi: 10.1111/j.1558-5646.2010.01103.x
– ident: e_1_3_3_16_2
  doi: 10.1023/A:1006527528063
– ident: e_1_3_3_28_2
  doi: 10.1002/bies.201000039
SSID ssj0009580
Score 2.5877564
Snippet Multicellularity was one of the most significant innovations in the history of life, but its initial evolution remains poorly understood. Using experimental...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1595
SubjectTerms Apoptosis
Biological Evolution
Biological Sciences
Cell adhesion
Cell division
Cells
Cellular differentiation
determinate growth
Ecological competition
eukaryotic cells
Evolution
Forced migration
Genes, Fungal
Genotype
Genotype & phenotype
Genotypes
labor
life history
new technology
Phenotypes
Physiology
reproduction
Saccharomyces cerevisiae
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Yeast
Yeasts
Title Experimental evolution of multicellularity
URI https://www.jstor.org/stable/41477144
http://www.pnas.org/content/109/5/1595.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22307617
https://www.proquest.com/docview/919669896/abstract/
https://search.proquest.com/docview/920230067
https://pubmed.ncbi.nlm.nih.gov/PMC3277146
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2xnHqpSltKSoty4EArhU38uT5WCISQqCq1K3GzbMdukUp2xS79_Z3xJlmoOPVsZxTNjGfGyZs3AMdKJWWidlUKta5E8rJymMWqlkmfgnFN4NTgfP1VXc7F1Y282QE59MJk0H7wt6fd77vT7vZXxlYu78J0wIlNv12fcaY1TWqZwERzPlzRR6bd2abvhGH4FUwMfD6aT5edW1GMkJyqGiIMZYSDVnla2TYrTZJbDPBE4jzFp56rP_-FUT7KSxev4GVfUJZfNi--Bzuxew17_ZFdlSc9r_SnN_D5_BGbfxn_9E5XLlKZYYX0DZ9AqViXv4X5xfmPs8uqH5VQBawH1pXynrE6uib6xBKTsWlNmxh1aNR8hjXBzMnE65iYcNLE2mluYts2wWmVGtyzD7vdoosHUDIvRdKp9bgqaLhkMkokHgwLKvJYF3AyqMouN4wYNv_J1tySquxWwQUcoCqt-4nxys6_M7rNYQSYmQaX9rN-RxGiEWRUUcC7LGUr2lhpseiSBRwONrD9QVtZFKVoBqYqoBxX8YSQylwXFw-4hSbEU1Ym0dlgo_DB_AXoJ6YcNxD59tMV9MlMwt374Pv_fvIQXqBCCBeDefAD7K7vH-JHLHDW_ig79F9GW_Zp
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB615QAXoEDpUh574FCQNtn1M3tEVasATYVEg3qzvF4bKugmIgkHfj0zzu6mrbjAeeyR7BnPjOXP3wC8Viqo0mubBZfrTIRKZhazWFYzWQVX2sJx-uA8OVPjqfhwIS-2QHZ_YSJo31WXg-bH1aC5_BaxlfMrN-xwYsNPkyPOtKZOLdtwB88r090lvefaHa1_njAMwIKJjtFH8-G8sQuKEpJTXUOUoYyQ0Cr2K9vkpe1gZx1AkVhPcdbfKtDbQMprmenkAXzp1rQGpHwfrJbVwP2-Rff4z4t-CPfbWjV9txbvwpZvHsFuGw0W6WFLWf3mMbw9vtYoIPW_Wn9OZyGNiEV6HiC8K5b8T2B6cnx-NM7aLgyZw1JjmamqYiz3tvBVYIFJX9RlHRh9_sj5CMuNkZWB5z4wYWXpc6t56eu6cFarUOCYPdhpZo3fh5RVUgQd6gqlgvpWhlKJwF3JnPLc5wkcdjYw8zXZhomP5JobsoHZWC6BfbSRsV8xFJrpZ0YXRQwuo7JA0V40XK9CFIK2TiTwNGrZqC6NNFjPyQQOOuOa9gwvDKpS1F5TJZD2Ujx8tGW28bMVDqHm85TwSXX0hF5551cJ6Bs-0g8gXu-bErR85PduLf3sv2e-grvj88mpOX1_9vEA7uHmEPwG0-1z2Fn-XPkXWEctq5fx1PwBtbQYbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZokRAXoEDbpTz2wKEgbbLrZ3xEpVF5tKoEkSoulu21oYJuIpJw4Ncz4-xu0opTzzMeyR57Zix__oaQ11JGqYOyRfSlKnh0orCQxYqaChe9tpVn-MH59EyeTPjHC3Gx0eorgfa9uxw0v64GzeWPhK2cXflhhxMbnp8eMaoUdmqZ1XG4Re7CmaW6u6j3fLuj1e8TCkGYU96x-ig2nDV2jpFCMKxtkDaUIhpapp5l69y0Fe20Ayki8ymM-l8VehNMuZGdxg_Jt25eK1DKz8Fy4Qb-7w3Kx1tN_BF50Nas-buVyg65E5rHZKeNCvP8sKWufvOEvD3eaBiQhz_tvs6nMU_IRXwmQNwrlP5PyWR8_PXopGi7MRQeSo5FIZ2jtAy2Ci7SSEWoal1Hip9ASjaCsmNkRWRliJRboUNpFdOhritvlYwV6OyS7WbahH2SUyd4VLF2IOXYvzJqySPzmnoZWCgzctj5wcxWpBsmPZYrZtAPZu29jOyDn4z9DiHRTL5QvDBCkBnpCkS7yXm9CV5xXD6ekb1kZW1aG2GgrhMZOegcbNqzPDdgSmKbTZmRvJfCIcQls02YLkEFm9Bj4kfTaTf0xru9lRF1bZ_0CsjvfV0C3k883623n9165Cty7_z92Hz-cPbpgNyHtUEUDmTd52R78XsZXkA5tXAv08H5B58FGu4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+evolution+of+multicellularity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ratcliff%2C+William&rft.au=Denison%2C+R.+Ford&rft.au=Borrello%2C+Mark&rft.au=Travisano%2C+Michael&rft.date=2012-01-31&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=5&rft.spage=1595&rft.epage=1600&rft_id=info:doi/10.1073%2Fpnas.1115323109&rft.externalDocID=41477144
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F5.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F5.cover.gif