The Ancient mariner Sails Again: Transposition of the Human Hsmar1 Element by a Reconstructed Transposase and Activities of the SETMAR Protein on Transposon Ends
Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from...
Saved in:
Published in | Molecular and Cellular Biology Vol. 27; no. 12; pp. 4589 - 4600 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.06.2007
Taylor & Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
MCB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
MCB
About
MCB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
MCB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0270-7306
Online ISSN:
1098-5549
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
MCB
.asm.org, visit:
MCB
|
---|---|
AbstractList | Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage approximately 50 million years ago. Although Hsmar1 elements are inactive due to mutational damage, one particular copy of the transposase gene has apparently been under selection. This transposase coding region is part of the SETMAR gene, in which a histone methylatransferase SET domain is fused to an Hsmar1 transposase domain. A phylogenetic approach was taken to reconstruct the ancestral Hsmar1 transposase gene, which we named Hsmar1-Ra. The Hsmar1-Ra transposase efficiently mobilizes Hsmar1 transposons by a cut-and-paste mechanism in human cells and zebra fish embryos. Hsmar1-Ra can also mobilize short inverted-repeat transposable elements (MITEs) related to Hsmar1 (MiHsmar1), thereby establishing a functional relationship between an Hsmar1 transposase source and these MITEs. MiHsmar1 excision is 2 orders of magnitude more efficient than that of long elements, thus providing an explanation for their high copy numbers. We show that the SETMAR protein binds and introduces single-strand nicks into Hsmar1 inverted-repeat sequences in vitro. Pathway choices for DNA break repair were found to be characteristically different in response to transposon cleavage mediated by Hsmar1-Ra and SETMAR in vivo. Whereas nonhomologous end joining plays a dominant role in repairing excision sites generated by the Hsmar1-Ra transposase, DNA repair following cleavage by SETMAR predominantly follows a homology-dependent pathway. The novel transposon system can be a useful tool for genome manipulations in vertebrates and for investigations into the transpositional dynamics and the contributions of these elements to primate genome evolution. Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage similar to 50 million years ago. Although Hsmar1 elements are inactive due to mutational damage, one particular copy of the transposase gene has apparently been under selection. This transposase coding region is part of the SETMAR gene, in which a histone methylatransferase SET domain is fused to an Hsmar1 transposase domain. A phylogenetic approach was taken to reconstruct the ancestral Hsmar1 transposase gene, which we named Hsmar1-Ra. The Hsmar1-Ra transposase efficiently mobilizes Hsmar1 transposons by a cut-and-paste mechanism in human cells and zebra fish embryos. Hsmar1-Ra can also mobilize short inverted-repeat transposable elements (MITEs) related to Hsmar1 (MiHsmar1), thereby establishing a functional relationship between an Hsmar1 transposase source and these MITEs. MiHsmar1 excision is 2 orders of magnitude more efficient than that of long elements, thus providing an explanation for their high copy numbers. We show that the SETMAR protein binds and introduces single-strand nicks into Hsmar1 inverted-repeat sequences in vitro. Pathway choices for DNA break repair were found to be characteristically different in response to transposon cleavage mediated by Hsmar1-Ra and SETMAR in vivo. Whereas nonhomologous end joining plays a dominant role in repairing excision sites generated by the Hsmar1-Ra transposase, DNA repair following cleavage by SETMAR predominantly follows a homology-dependent pathway. The novel transposon system can be a useful tool for genome manipulations in vertebrates and for investigations into the transpositional dynamics and the contributions of these elements to primate genome evolution. Hsmar1 , one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage ∼50 million years ago. Although Hsmar1 elements are inactive due to mutational damage, one particular copy of the transposase gene has apparently been under selection. This transposase coding region is part of the SETMAR gene, in which a histone methylatransferase SET domain is fused to an Hsmar1 transposase domain. A phylogenetic approach was taken to reconstruct the ancestral Hsmar1 transposase gene, which we named Hsmar1-Ra . The Hsmar1-Ra transposase efficiently mobilizes Hsmar1 transposons by a cut-and-paste mechanism in human cells and zebra fish embryos. Hsmar1-Ra can also mobilize short inverted-repeat transposable elements (MITEs) related to Hsmar1 ( MiHsmar1 ), thereby establishing a functional relationship between an Hsmar1 transposase source and these MITEs. MiHsmar1 excision is 2 orders of magnitude more efficient than that of long elements, thus providing an explanation for their high copy numbers. We show that the SETMAR protein binds and introduces single-strand nicks into Hsmar1 inverted-repeat sequences in vitro. Pathway choices for DNA break repair were found to be characteristically different in response to transposon cleavage mediated by Hsmar1-Ra and SETMAR in vivo. Whereas nonhomologous end joining plays a dominant role in repairing excision sites generated by the Hsmar1-Ra transposase, DNA repair following cleavage by SETMAR predominantly follows a homology-dependent pathway. The novel transposon system can be a useful tool for genome manipulations in vertebrates and for investigations into the transpositional dynamics and the contributions of these elements to primate genome evolution. Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage ∼50 million years ago. Although Hsmar1 elements are inactive due to mutational damage, one particular copy of the transposase gene has apparently been under selection. This transposase coding region is part of the SETMAR gene, in which a histone methylatransferase SET domain is fused to an Hsmar1 transposase domain. A phylogenetic approach was taken to reconstruct the ancestral Hsmar1 transposase gene, which we named Hsmar1-Ra. The Hsmar1-Ra transposase efficiently mobilizes Hsmar1 transposons by a cut-and-paste mechanism in human cells and zebra fish embryos. Hsmar1-Ra can also mobilize short inverted-repeat transposable elements (MITEs) related to Hsmar1 (MiHsmar1), thereby establishing a functional relationship between an Hsmar1 transposase source and these MITEs. MiHsmar1 excision is 2 orders of magnitude more efficient than that of long elements, thus providing an explanation for their high copy numbers. We show that the SETMAR protein binds and introduces single-strand nicks into Hsmar1 inverted-repeat sequences in vitro. Pathway choices for DNA break repair were found to be characteristically different in response to transposon cleavage mediated by Hsmar1-Ra and SETMAR in vivo. Whereas nonhomologous end joining plays a dominant role in repairing excision sites generated by the Hsmar1-Ra transposase, DNA repair following cleavage by SETMAR predominantly follows a homology-dependent pathway. The novel transposon system can be a useful tool for genome manipulations in vertebrates and for investigations into the transpositional dynamics and the contributions of these elements to primate genome evolution. Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2014 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: MCB |
Author | Zsuzsanna Izsvák Heiko Keller Csaba Miskey Ludivine Sinzelle Balázs Papp Lajos Mátés Zoltán Ivics |
AuthorAffiliation | Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany, 1 Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom, 2 Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Hungary 3 |
AuthorAffiliation_xml | – name: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany, 1 Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom, 2 Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Hungary 3 |
Author_xml | – sequence: 1 givenname: Csaba surname: Miskey fullname: Miskey, Csaba organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany – sequence: 2 givenname: Balázs surname: Papp fullname: Papp, Balázs organization: Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom – sequence: 3 givenname: Lajos surname: Mátés fullname: Mátés, Lajos organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany – sequence: 4 givenname: Ludivine surname: Sinzelle fullname: Sinzelle, Ludivine organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany – sequence: 5 givenname: Heiko surname: Keller fullname: Keller, Heiko organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany – sequence: 6 givenname: Zsuzsanna surname: Izsvák fullname: Izsvák, Zsuzsanna organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Hungary – sequence: 7 givenname: Zoltán surname: Ivics fullname: Ivics, Zoltán organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17403897$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFv0zAYxS00xLrBjTOyOHAiw05iJ-aAFKpCkTaBtnK2HOdLa5TYne1s6p_Df4pHS4ED4mTL3-89fc_vDJ1YZwGh55RcUJrXb67m7y9ITvIqI_wRmlEi6oyxUpygWXokWVUQforOQvhGCOGCFE_QKa1KUtSimqHvqw3gxmoDNuJReWPB4xtlhoCbtTL2LV55ZcPWBRONs9j1OCbFchqVxcuQFBQvBhgf5O0OK3wN2tkQ_aQjdEexCoCV7XCjo7lLThB-Od0sVlfNNf7iXQST_O1Rk64L24Wn6HGvhgDPDuc5-vphsZovs8vPHz_Nm8tMp7Qx40ITxlhPy05pyjkv87YUwBRntCaaawGqFC1nXacIqWsloG2LikBNWlYXdXGO3u19t1M7QqdTIq8GufUmhdxJp4z8e2LNRq7dnaQifWyZJ4NXBwPvbicIUY4maBgGZcFNQVZpv6oqyv-CVCQsr0UCX-9B7V0IHvrjNpTIh_JlKl_-LF8SnvAXfyb4DR_aTkC1B4ztnR_VvfNDJ6PaDc736de1CbL4h_XLvXJj1pt740GqMMpRtzLNaS5Lltb9AZN5y8c |
CitedBy_id | crossref_primary_10_1093_bfgp_eln049 crossref_primary_10_1017_S0033583512000145 crossref_primary_10_3390_life11121342 crossref_primary_10_1016_j_cancergencyto_2010_04_011 crossref_primary_10_1016_j_ygeno_2021_03_032 crossref_primary_10_1093_nar_gkt874 crossref_primary_10_1111_j_1748_5967_2010_00314_x crossref_primary_10_1021_bi900609v crossref_primary_10_1186_s13100_019_0155_6 crossref_primary_10_1371_journal_pone_0023693 crossref_primary_10_1007_s10709_009_9370_2 crossref_primary_10_1016_j_jmb_2008_07_044 crossref_primary_10_1016_j_tibtech_2012_03_008 crossref_primary_10_3390_ijms20153692 crossref_primary_10_1371_journal_pone_0073227 crossref_primary_10_1038_sj_mt_6300366 crossref_primary_10_1073_pnas_0707746105 crossref_primary_10_1007_s10577_011_9230_7 crossref_primary_10_1016_j_biochi_2008_05_010 crossref_primary_10_1093_molbev_msm191 crossref_primary_10_1128_microbiolspec_MDNA3_0033_2014 crossref_primary_10_1139_gen_2012_0174 crossref_primary_10_1093_nar_gky937 crossref_primary_10_1107_S2053230X16012723 crossref_primary_10_3390_ijms22105084 crossref_primary_10_1111_febs_13257 crossref_primary_10_1093_nar_gku172 crossref_primary_10_1007_s10709_010_9452_1 crossref_primary_10_1093_g3journal_jkab287 crossref_primary_10_1021_bi200333k crossref_primary_10_1371_journal_pone_0123170 crossref_primary_10_1016_j_abb_2010_04_011 crossref_primary_10_1186_s13100_022_00267_1 crossref_primary_10_1016_j_ympev_2017_02_005 crossref_primary_10_1093_gbe_evp009 crossref_primary_10_3109_10409230903505596 crossref_primary_10_1534_genetics_108_089615 crossref_primary_10_1016_j_tig_2017_07_006 crossref_primary_10_1093_nar_gkp891 crossref_primary_10_1016_j_dnarep_2019_06_006 crossref_primary_10_7554_eLife_00668 crossref_primary_10_3390_v13010076 crossref_primary_10_1128_microbiolspec_MDNA3_0042_2014 crossref_primary_10_1371_journal_pone_0064135 crossref_primary_10_1007_s00438_009_0496_9 crossref_primary_10_1093_nar_gkz552 crossref_primary_10_1186_s12915_015_0145_1 crossref_primary_10_1016_j_gene_2009_06_011 crossref_primary_10_18632_oncotarget_14218 crossref_primary_10_1093_nar_gkab045 crossref_primary_10_1371_journal_pone_0053690 crossref_primary_10_1093_molbev_msu138 crossref_primary_10_1016_j_ympev_2008_03_029 crossref_primary_10_1093_nar_gkn1025 crossref_primary_10_1186_s13100_020_0200_5 crossref_primary_10_1182_blood_2008_08_175760 crossref_primary_10_1093_nar_gkz1119 crossref_primary_10_1016_j_dnarep_2008_08_002 crossref_primary_10_1074_jbc_M113_533216 crossref_primary_10_1371_journal_pone_0139418 crossref_primary_10_1002_dvdy_23891 crossref_primary_10_1093_nar_gkw1164 crossref_primary_10_1128_MCB_01066_10 crossref_primary_10_1186_s12863_019_0719_y crossref_primary_10_1186_s13100_020_00212_0 crossref_primary_10_1093_nar_gkx826 crossref_primary_10_1146_annurev_genet_40_110405_090448 crossref_primary_10_1093_gbe_evx122 crossref_primary_10_1093_nar_gkn560 crossref_primary_10_1021_bi401193w crossref_primary_10_1038_nmeth_1332 crossref_primary_10_1007_s10709_009_9434_3 crossref_primary_10_1016_j_gene_2013_04_050 crossref_primary_10_1186_1759_8753_4_15 crossref_primary_10_1038_nrg2337 crossref_primary_10_1186_1423_0127_20_92 crossref_primary_10_1186_1759_8753_4_6 crossref_primary_10_1186_s12870_021_03194_0 crossref_primary_10_1371_journal_pgen_1005902 crossref_primary_10_1016_j_jbc_2022_101894 crossref_primary_10_1074_jbc_M113_523894 crossref_primary_10_7554_eLife_53868 crossref_primary_10_1007_s00425_016_2544_0 |
Cites_doi | 10.1073/pnas.121569298 10.1093/nar/gki509 10.1093/nar/25.17.3389 10.1016/S0168-9525(99)01777-1 10.1128/MCB.17.11.6294 10.1128/MCB.01899-06 10.1093/nar/gkl688 10.1093/genetics/155.4.1821 10.1093/genetics/154.2.647 10.1038/nrg1324 10.1007/s000180050127 10.1073/pnas.94.4.1293 10.1093/emboj/17.18.5497 10.1016/S0092-8674(00)80436-5 10.1016/S0378-1119(97)00472-1 10.1093/bioinformatics/12.4.357 10.1093/genetics/125.1.103 10.1128/MCB.23.23.8505-8518.2003 10.1093/oxfordjournals.molbev.a026351 10.1016/S0021-9258(18)98987-8 10.1038/nature01214 10.2144/97233bm19 10.1016/S0378-1119(01)00530-3 10.1093/nar/gkg910 10.1016/S0022-2836(02)00991-9 10.1016/S0092-8674(04)00301-0 10.1038/nature02107 10.1016/0092-8674(90)90016-8 10.1016/S0968-0004(00)89090-8 10.1093/genetics/149.1.179 10.1007/PL00006440 10.1093/oxfordjournals.molbev.a003896 10.1038/nrg793 10.1002/j.1460-2075.1991.tb07718.x 10.1006/jmbi.2000.4042 10.1016/0022-1910(94)00082-R 10.1093/genetics/166.2.823 10.1201/9781420039399.ch13 10.1111/j.0105-2896.2004.00168.x 10.1073/pnas.211442198 10.1111/j.1365-2583.1993.tb00132.x 10.1002/j.1460-2075.1996.tb00930.x 10.1016/S0378-1119(97)00471-X 10.1073/pnas.83.22.8684 10.1038/35057062 10.1007/s003350010204 10.1534/genetics.106.064360 10.1073/pnas.0507683103 10.1073/pnas.0503676102 10.1016/S1097-2765(03)00524-0 10.1146/annurev.genet.31.1.337 10.1073/pnas.0601161103 |
ContentType | Journal Article |
Copyright | Copyright © 2007 American Society for Microbiology 2007 Copyright © 2007, American Society for Microbiology 2007 |
Copyright_xml | – notice: Copyright © 2007 American Society for Microbiology 2007 – notice: Copyright © 2007, American Society for Microbiology 2007 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1128/MCB.02027-06 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1098-5549 |
EndPage | 4600 |
ExternalDocumentID | 10_1128_MCB_02027_06 17403897 12270723 mcb_27_12_4589 |
Genre | Article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 18M 29M 2WC 39C 3O- 4.4 53G 5RE 5VS 9M8 AAPBV ABPTK ACGFO ACKIV ACNCT ADBBV ADIYS AENEX AFFNX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 HYE HZ~ IH2 KQ8 L7B MVM N9A O9- OK1 P2P RHF RHI RNS RPM RSF TFL TFW TR2 UCJ UDS VQA W8F WH7 WOQ Y6R ZA5 ZCA .55 .GJ ABJNI ABRLO ABTAH AEOZL AGHSJ CGR CUY CVF ECM EIF EMOBN F20 M4Z NPM TDBHL WHG X7M YYP ZGI ZXP ZY4 AAYXX CITATION 7TM 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c554t-69c0555f14dac166642b49e5a65180c6c9ea49b65dda0088a9ebb370e80b58383 |
IEDL.DBID | RPM |
ISSN | 0270-7306 1098-5549 |
IngestDate | Tue Sep 17 21:21:01 EDT 2024 Fri Oct 25 23:27:16 EDT 2024 Fri Oct 25 21:27:14 EDT 2024 Thu Sep 12 19:36:30 EDT 2024 Sat Sep 28 07:44:57 EDT 2024 Tue Jun 13 19:25:01 EDT 2023 Wed May 18 15:26:31 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-69c0555f14dac166642b49e5a65180c6c9ea49b65dda0088a9ebb370e80b58383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Corresponding author. Mailing address: Max Delbruck Center for Molecular Medicine, Robert Rössle Str. 10, D-13092 Berlin, Germany. Phone: (49) 30 9406-2546. Fax: (49) 30 9406-2547. E-mail: zivics@mdc-berlin.de |
OpenAccessLink | https://doi.org/10.1128/mcb.02027-06 |
PMID | 17403897 |
PQID | 19773289 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_70557734 highwire_asm_mcb_27_12_4589 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1900042 crossref_primary_10_1128_MCB_02027_06 proquest_miscellaneous_19773289 pubmed_primary_17403897 informaworld_taylorfrancis_310_1128_MCB_02027_06 |
PublicationCentury | 2000 |
PublicationDate | 2007-06-01 |
PublicationDateYYYYMMDD | 2007-06-01 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular and Cellular Biology |
PublicationTitleAlternate | Mol Cell Biol |
PublicationYear | 2007 |
Publisher | American Society for Microbiology Taylor & Francis |
Publisher_xml | – name: American Society for Microbiology – name: Taylor & Francis |
References | 15143319 - Nat Rev Genet. 2004 May;5(5):366-75 10779533 - Mol Biol Evol. 2000 May;17(5):730-7 8533154 - Trends Biochem Sci. 1995 Oct;20(10):412-5 16672366 - Proc Natl Acad Sci U S A. 2006 May 23;103(21):8101-6 9442899 - Annu Rev Genet. 1997;31:337-58 17130240 - Mol Cell Biol. 2007 Feb;27(3):1125-32 14628056 - Nature. 2003 Nov 20;426(6964):310-4 16537485 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4062-7 10964570 - J Mol Biol. 2000 Sep 8;302(1):205-17 1646714 - EMBO J. 1991 Jul;10(7):1919-25 8902363 - Comput Appl Biosci. 1996 Aug;12(4):357-8 9461396 - Gene. 1997 Dec 31;205(1-2):219-28 2165865 - Cell. 1990 Aug 10;62(3):515-25 9087550 - Insect Mol Biol. 1993;2(3):125-39 11675493 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12572-7 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 12520302 - Nature. 2003 Jan 9;421(6919):163-7 15831788 - Nucleic Acids Res. 2005;33(7):2153-65 17003053 - Nucleic Acids Res. 2006;34(18):5238-46 9461395 - Gene. 1997 Dec 31;205(1-2):203-17 15084256 - Cell. 2004 Apr 16;117(2):171-84 3022302 - Proc Natl Acad Sci U S A. 1986 Nov;83(22):8684-8 9367129 - Comput Appl Biosci. 1997 Oct;13(5):555-6 9390559 - Cell. 1997 Nov 14;91(4):501-10 11988759 - Nat Rev Genet. 2002 May;3(5):329-41 9873073 - J Mol Evol. 1999 Jan;48(1):13-21 11371583 - Mol Biol Evol. 2001 Jun;18(6):954-61 14612396 - Mol Cell Biol. 2003 Dec;23(23):8505-18 15242409 - Immunol Rev. 2004 Aug;200:233-48 9343390 - Mol Cell Biol. 1997 Nov;17(11):6294-302 10924477 - Genetics. 2000 Aug;155(4):1821-30 14759372 - Mol Cell. 2004 Jan 30;13(2):279-90 9487389 - Cell Mol Life Sci. 1998 Jan;54(1):80-93 11418241 - Gene. 2001 Jun 27;271(2):203-14 15020471 - Genetics. 2004 Feb;166(2):823-33 11381141 - Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6759-64 11130980 - Mamm Genome. 2000 Dec;11(12):1111-6 9736627 - EMBO J. 1998 Sep 15;17(18):5497-508 9037046 - Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1293-7 9584095 - Genetics. 1998 May;149(1):179-87 11237011 - Nature. 2001 Feb 15;409(6822):860-921 16332963 - Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18075-80 2160399 - Genetics. 1990 May;125(1):103-14 14627820 - Nucleic Acids Res. 2003 Dec 1;31(23):6873-81 17179071 - Genetics. 2007 Jan;175(1):441-52 10655218 - Genetics. 2000 Feb;154(2):647-56 12381300 - J Mol Biol. 2002 Oct 25;323(3):441-52 9298214 - Biotechniques. 1997 Sep;23(3):436-8 8895590 - EMBO J. 1996 Oct 1;15(19):5470-9 10431195 - Trends Genet. 1999 Aug;15(8):326-32 1646809 - J Biol Chem. 1991 Jun 25;266(18):11518-21 Jenuwein T. (R21) 1998; 54 Plasterk R. H. (R39) 1991; 10 Robertson H. M. (R41) 1995; 41 Lidholm D. A. (R31) 1991; 266 R20 R23 R25 R24 R29 Thornton J. W. (R48) 2004; 5 R28 Dufresne M. (R7) 2007; 175 R1 Bryan G. (R4) 1990; 125 R2 Demattei M. V. (R6) 2000; 11 R5 Feschotte C. (R10) 2000; 17 R8 R9 R30 R32 Yang Z. (R51) 1997; 13 R38 Miskey C. (R36) 2003; 31 R37 Robertson H. M. (R42) 1993; 2 Lohe A. R. (R33) 1997; 94 Lampe D. J. (R27) 2000 R40 R44 R47 R46 R49 Feschotte C. (R11) 2005; 33 Loot C. (R35) 2006; 34 Jiang N. (R22) 2003; 421 Lohe A. R. (R34) 2000; 154 Lampe D. J. (R26) 2001; 18 R50 R52 R53 R12 Barry E. G. (R3) 2004; 166 R14 R13 R16 R15 R18 R19 Robertson H. M. (R43) 1997; 205 Izsvak Z. (R17) 1999; 48 Rubin E. (R45) 1997; 17 |
References_xml | – ident: R12 doi: 10.1073/pnas.121569298 – volume: 33 start-page: 2153 year: 2005 ident: R11 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki509 contributor: fullname: Feschotte C. – ident: R2 doi: 10.1093/nar/25.17.3389 – ident: R40 doi: 10.1016/S0168-9525(99)01777-1 – volume: 17 start-page: 6294 year: 1997 ident: R45 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.17.11.6294 contributor: fullname: Rubin E. – ident: R32 doi: 10.1128/MCB.01899-06 – volume: 34 start-page: 5238 year: 2006 ident: R35 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl688 contributor: fullname: Loot C. – ident: R13 doi: 10.1093/genetics/155.4.1821 – volume: 154 start-page: 647 year: 2000 ident: R34 publication-title: Genetics doi: 10.1093/genetics/154.2.647 contributor: fullname: Lohe A. R. – volume: 5 start-page: 366 year: 2004 ident: R48 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1324 contributor: fullname: Thornton J. W. – volume: 54 start-page: 80 year: 1998 ident: R21 publication-title: Cell Mol. Life Sci. doi: 10.1007/s000180050127 contributor: fullname: Jenuwein T. – volume: 94 start-page: 1293 year: 1997 ident: R33 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.4.1293 contributor: fullname: Lohe A. R. – ident: R47 doi: 10.1093/emboj/17.18.5497 – ident: R16 doi: 10.1016/S0092-8674(00)80436-5 – ident: R44 doi: 10.1016/S0378-1119(97)00472-1 – ident: R38 doi: 10.1093/bioinformatics/12.4.357 – volume: 13 start-page: 555 year: 1997 ident: R51 publication-title: Comput. Appl. Biosci. contributor: fullname: Yang Z. – volume: 125 start-page: 103 year: 1990 ident: R4 publication-title: Genetics doi: 10.1093/genetics/125.1.103 contributor: fullname: Bryan G. – ident: R52 doi: 10.1128/MCB.23.23.8505-8518.2003 – volume: 17 start-page: 730 year: 2000 ident: R10 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026351 contributor: fullname: Feschotte C. – volume: 266 start-page: 11518 year: 1991 ident: R31 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)98987-8 contributor: fullname: Lidholm D. A. – volume: 421 start-page: 163 year: 2003 ident: R22 publication-title: Nature doi: 10.1038/nature01214 contributor: fullname: Jiang N. – ident: R1 doi: 10.2144/97233bm19 – ident: R28 doi: 10.1016/S0378-1119(01)00530-3 – volume: 31 start-page: 6873 year: 2003 ident: R36 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg910 contributor: fullname: Miskey C. – ident: R49 doi: 10.1016/S0022-2836(02)00991-9 – ident: R29 doi: 10.1016/S0092-8674(04)00301-0 – ident: R46 doi: 10.1038/nature02107 – ident: R8 doi: 10.1016/0092-8674(90)90016-8 – ident: R19 doi: 10.1016/S0968-0004(00)89090-8 – ident: R25 doi: 10.1093/genetics/149.1.179 – volume: 48 start-page: 13 year: 1999 ident: R17 publication-title: J. Mol. Evol. doi: 10.1007/PL00006440 contributor: fullname: Izsvak Z. – volume: 18 start-page: 954 year: 2001 ident: R26 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a003896 contributor: fullname: Lampe D. J. – ident: R9 doi: 10.1038/nrg793 – volume: 10 start-page: 1919 year: 1991 ident: R39 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb07718.x contributor: fullname: Plasterk R. H. – ident: R37 doi: 10.1006/jmbi.2000.4042 – volume: 41 start-page: 99 year: 1995 ident: R41 publication-title: J. Insect Physiol. doi: 10.1016/0022-1910(94)00082-R contributor: fullname: Robertson H. M. – volume: 166 start-page: 823 year: 2004 ident: R3 publication-title: Genetics doi: 10.1093/genetics/166.2.823 contributor: fullname: Barry E. G. – start-page: 237 volume-title: Insect transgenesis: methods and applications. year: 2000 ident: R27 doi: 10.1201/9781420039399.ch13 contributor: fullname: Lampe D. J. – ident: R23 doi: 10.1111/j.0105-2896.2004.00168.x – ident: R53 doi: 10.1073/pnas.211442198 – volume: 2 start-page: 125 year: 1993 ident: R42 publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.1993.tb00132.x contributor: fullname: Robertson H. M. – ident: R24 doi: 10.1002/j.1460-2075.1996.tb00930.x – volume: 205 start-page: 219 year: 1997 ident: R43 publication-title: Gene doi: 10.1016/S0378-1119(97)00471-X contributor: fullname: Robertson H. M. – ident: R20 doi: 10.1073/pnas.83.22.8684 – ident: R15 doi: 10.1038/35057062 – volume: 11 start-page: 1111 year: 2000 ident: R6 publication-title: Mamm. Genome doi: 10.1007/s003350010204 contributor: fullname: Demattei M. V. – volume: 175 start-page: 441 year: 2007 ident: R7 publication-title: Genetics doi: 10.1534/genetics.106.064360 contributor: fullname: Dufresne M. – ident: R50 doi: 10.1073/pnas.0507683103 – ident: R30 doi: 10.1073/pnas.0503676102 – ident: R18 doi: 10.1016/S1097-2765(03)00524-0 – ident: R14 doi: 10.1146/annurev.genet.31.1.337 – ident: R5 doi: 10.1073/pnas.0601161103 |
SSID | ssj0006903 |
Score | 2.273656 |
Snippet | Article Usage Stats
Services
MCB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage ∼50 million years ago.... Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage approximately 50 million... Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage similar to 50 million years... Hsmar1 , one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage ∼50 million years ago.... |
SourceID | pubmedcentral proquest crossref pubmed informaworld highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4589 |
SubjectTerms | Amino Acid Sequence Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Computer Simulation Consensus Sequence Danio rerio DNA Transposable Elements - genetics DNA Transposable Elements - physiology DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Evolution, Molecular Genes, Reporter Histone-Lysine N-Methyltransferase - chemistry Histone-Lysine N-Methyltransferase - genetics Histone-Lysine N-Methyltransferase - metabolism Humans Luciferases - metabolism Models, Biological Molecular Sequence Data Nuclear Proteins - genetics Nuclear Proteins - metabolism Phylogeny Primates Protein Structure, Tertiary Sequence Homology, Amino Acid Transposases - genetics Transposases - metabolism |
Title | The Ancient mariner Sails Again: Transposition of the Human Hsmar1 Element by a Reconstructed Transposase and Activities of the SETMAR Protein on Transposon Ends |
URI | http://mcb.asm.org/content/27/12/4589.abstract https://www.tandfonline.com/doi/abs/10.1128/MCB.02027-06 https://www.ncbi.nlm.nih.gov/pubmed/17403897 https://search.proquest.com/docview/19773289 https://search.proquest.com/docview/70557734 https://pubmed.ncbi.nlm.nih.gov/PMC1900042 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SQGkvpU1fTtpUh_boXVmWX725y4alsCU0CeQmJFluDbE2sNtDfk7-aUeytc2G9NKbQdIgmJHmG2vmG4BP6GF0yZImprniMa8ki1WamJgVeBcaBBSycLXDy-_54pJ_u8qu9iALtTA-aV-rbmKv-4ntfvncypteT0Oe2PRsOUtcp0vOpvuwjwYaQvTx-sVwzz8rs4LGOJqHbHdWTpezrxPqon3cmWMLLbijlyt2XVKgCX7AXfoYAn2YSHnPM52-gOcjpCT1sPWXsGfsITwZmkzeHsLTWejp9gru0CpIbX0RJOmlr_wj57K7XpP6p-zsFzKSnQ-ZXGTVEgSIxP_pJ4s1rkjIfEg4J-qWSOKi15GD1jTbxegZibQNqbXvTYHBeJB0Pr9Y1j_ImWOH6FC-3a7Bz7lt1q_h8nR-MVvEY5OGWCMS2cR5pR1nWJvwRmr3BsmZ4pXJZJ4lJdW5rozklcqzppGIN0pZGaXSgpqSKvdkm76BA7uy5h0QFKAQv7j27C36TFO1lLY001nZpE1JTQSfg57EzcDFIXwMw0qBqhVetYLmERwHJQq57kWvlcCBhAmelVUE9L5excb_GWmHNiYifVzgx6B7gQpzTyrSmtXvtUgQPqfMCf3XDMdWhHN4BG8HW_m79dH8Iih2rGg7wTF_747ggfAM4OMBOPrvlcfwLCQ-0uQ9HKCdmA-IrjbqxPm27MSfqT-huSTv |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEWovCMorFKgPcMyu4zgvbmG11QJNVdGt1JtlOw5EaryVsj305_BPGTvx0q3KhVsk2yNLM_Z8E898g9BH8DAqp1EdklSykBWChjKOdEgzuAs1AAqR2drh6jRdXLBvl8nlDkp8LYxL2leynZirbmLaXy638rpTU58nNj2rZpHtdMno9BF6DOeVMB-kjxcwBHzuYZlmJAQDTn2-O82n1ezLhNh4H_Zm-UIzZgnmsm2n5ImC77GXPoRB76dS3vFNx8_Q0xFU4nLY_HO0o80BejK0mbw9QHsz39XtBfoNdoFL48ogcSdc7R8-F-1Vj8ufojWf8Uh3PuRy4VWDASJi968fL3pYEeH5kHKO5S0W2MavIwutrjeLwTdiYWpcKtedAsJxL-l8vqzKH_jM8kO0IN9s1sDn3NT9S3RxPF_OFuHYpiFUgEXWYVooyxrWRKwWyr5CMipZoRORJlFOVKoKLVgh06SuBSCOXBRayjgjOifSPtrGr9CuWRn9BmEQIAHB2AbtDXhNXTSENCRRSV7HdU50gD55PfHrgY2DuyiG5hxUy51qOUkDdOiVyEXf8U5JDgMR5SzJiwCRu3rla_dvpBkamfD4YYFHXvccFGYfVYTRq5ueRwCgY2qF_muG5SuCOSxArwdb-bv10fwClG1Z0WaC5f7eHoEj4TjAxyPw9r9XHqG9xbI64SdfT78fon2fBkmid2gXbEa_B6y1lh_cyfoDQvUnXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgEY8LgoWFsMD6AMc0TuK8uIXSqjy6qthdaW-WX4FKG7dSymF_Dv-UsROXdrVcuEWyPXI0Y8839vgbhN6Bh5FlEquQ5IKGtOJJKNJYh0kBe6EGQMEL-3Z4fprPLuiXy-xyp9SXS9qXYjkyV-3ILH-63Mp1KyOfJxYt5uPYVrqkSbRWTXQX3YM1S3IfqA-bMAR97nI5KUgIRpz7nPekjObjjyNiY36Yn-UMLaglmSv2HZMnC77BYHobDr2ZTrnjn6ZP0OMBWOK6_4Gn6I42h-h-X2ry-hA9HPvKbs_Qb7ANXBv3FBK33L3_w2d8edXh-gdfmg94oDzv87nwqsEAE7E778ezDkbEeNKnnWNxjTm2MezARKvVdjD4R8yNwrV0FSogJPeSzibn8_o7XliOiCXIN9sx8DkxqnuOLqaT8_EsHEo1hBLwyCbMK2mZw5qYKi7tTSRNBK10xvMsLonMZaU5rUSeKcUBdZS80kKkBdElEfbiNj1CB2Zl9EuEQYAAFGOLtDfgOXXVENKQTGalSlVJdIDeez2xdc_IwVwkk5QMVMucahnJA3Tslch417JWCgYNccJoVlYBIrt6ZRt3PtL0xUxYervAE697BgqzFyvc6NWvjsUAotPECv1XD8tZBH1ogF70tvJ36oP5BajYs6JtB8v_vd8Cy8LxgA_L4NV_jzxBDxafpuzb59Ovx-iRz4Qk8Wt0ACaj3wDc2oi3bmH9AXOfKHI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Ancient+mariner+Sails+Again%3A+Transposition+of+the+Human+Hsmar1+Element+by+a+Reconstructed+Transposase+and+Activities+of+the+SETMAR+Protein+on+Transposon+Ends&rft.jtitle=Molecular+and+cellular+biology&rft.au=Miskey%2C+Csaba&rft.au=Papp%2C+Bal%C3%A1zs&rft.au=M%C3%A1t%C3%A9s%2C+Lajos&rft.au=Sinzelle%2C+Ludivine&rft.date=2007-06-01&rft.issn=1098-5549&rft.eissn=1098-5549&rft.volume=27&rft.issue=12&rft.spage=4589&rft.epage=4600&rft_id=info:doi/10.1128%2FMCB.02027-06&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_MCB_02027_06 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-7306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-7306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-7306&client=summon |