The Ancient mariner Sails Again: Transposition of the Human Hsmar1 Element by a Reconstructed Transposase and Activities of the SETMAR Protein on Transposon Ends

Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from...

Full description

Saved in:
Bibliographic Details
Published inMolecular and Cellular Biology Vol. 27; no. 12; pp. 4589 - 4600
Main Authors Miskey, Csaba, Papp, Balázs, Mátés, Lajos, Sinzelle, Ludivine, Keller, Heiko, Izsvák, Zsuzsanna, Ivics, Zoltán
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.06.2007
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to MCB .asm.org, visit: MCB       
AbstractList Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage approximately 50 million years ago. Although Hsmar1 elements are inactive due to mutational damage, one particular copy of the transposase gene has apparently been under selection. This transposase coding region is part of the SETMAR gene, in which a histone methylatransferase SET domain is fused to an Hsmar1 transposase domain. A phylogenetic approach was taken to reconstruct the ancestral Hsmar1 transposase gene, which we named Hsmar1-Ra. The Hsmar1-Ra transposase efficiently mobilizes Hsmar1 transposons by a cut-and-paste mechanism in human cells and zebra fish embryos. Hsmar1-Ra can also mobilize short inverted-repeat transposable elements (MITEs) related to Hsmar1 (MiHsmar1), thereby establishing a functional relationship between an Hsmar1 transposase source and these MITEs. MiHsmar1 excision is 2 orders of magnitude more efficient than that of long elements, thus providing an explanation for their high copy numbers. We show that the SETMAR protein binds and introduces single-strand nicks into Hsmar1 inverted-repeat sequences in vitro. Pathway choices for DNA break repair were found to be characteristically different in response to transposon cleavage mediated by Hsmar1-Ra and SETMAR in vivo. Whereas nonhomologous end joining plays a dominant role in repairing excision sites generated by the Hsmar1-Ra transposase, DNA repair following cleavage by SETMAR predominantly follows a homology-dependent pathway. The novel transposon system can be a useful tool for genome manipulations in vertebrates and for investigations into the transpositional dynamics and the contributions of these elements to primate genome evolution.
Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage similar to 50 million years ago. Although Hsmar1 elements are inactive due to mutational damage, one particular copy of the transposase gene has apparently been under selection. This transposase coding region is part of the SETMAR gene, in which a histone methylatransferase SET domain is fused to an Hsmar1 transposase domain. A phylogenetic approach was taken to reconstruct the ancestral Hsmar1 transposase gene, which we named Hsmar1-Ra. The Hsmar1-Ra transposase efficiently mobilizes Hsmar1 transposons by a cut-and-paste mechanism in human cells and zebra fish embryos. Hsmar1-Ra can also mobilize short inverted-repeat transposable elements (MITEs) related to Hsmar1 (MiHsmar1), thereby establishing a functional relationship between an Hsmar1 transposase source and these MITEs. MiHsmar1 excision is 2 orders of magnitude more efficient than that of long elements, thus providing an explanation for their high copy numbers. We show that the SETMAR protein binds and introduces single-strand nicks into Hsmar1 inverted-repeat sequences in vitro. Pathway choices for DNA break repair were found to be characteristically different in response to transposon cleavage mediated by Hsmar1-Ra and SETMAR in vivo. Whereas nonhomologous end joining plays a dominant role in repairing excision sites generated by the Hsmar1-Ra transposase, DNA repair following cleavage by SETMAR predominantly follows a homology-dependent pathway. The novel transposon system can be a useful tool for genome manipulations in vertebrates and for investigations into the transpositional dynamics and the contributions of these elements to primate genome evolution.
Hsmar1 , one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage ∼50 million years ago. Although Hsmar1 elements are inactive due to mutational damage, one particular copy of the transposase gene has apparently been under selection. This transposase coding region is part of the SETMAR gene, in which a histone methylatransferase SET domain is fused to an Hsmar1 transposase domain. A phylogenetic approach was taken to reconstruct the ancestral Hsmar1 transposase gene, which we named Hsmar1-Ra . The Hsmar1-Ra transposase efficiently mobilizes Hsmar1 transposons by a cut-and-paste mechanism in human cells and zebra fish embryos. Hsmar1-Ra can also mobilize short inverted-repeat transposable elements (MITEs) related to Hsmar1 ( MiHsmar1 ), thereby establishing a functional relationship between an Hsmar1 transposase source and these MITEs. MiHsmar1 excision is 2 orders of magnitude more efficient than that of long elements, thus providing an explanation for their high copy numbers. We show that the SETMAR protein binds and introduces single-strand nicks into Hsmar1 inverted-repeat sequences in vitro. Pathway choices for DNA break repair were found to be characteristically different in response to transposon cleavage mediated by Hsmar1-Ra and SETMAR in vivo. Whereas nonhomologous end joining plays a dominant role in repairing excision sites generated by the Hsmar1-Ra transposase, DNA repair following cleavage by SETMAR predominantly follows a homology-dependent pathway. The novel transposon system can be a useful tool for genome manipulations in vertebrates and for investigations into the transpositional dynamics and the contributions of these elements to primate genome evolution.
Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage ∼50 million years ago. Although Hsmar1 elements are inactive due to mutational damage, one particular copy of the transposase gene has apparently been under selection. This transposase coding region is part of the SETMAR gene, in which a histone methylatransferase SET domain is fused to an Hsmar1 transposase domain. A phylogenetic approach was taken to reconstruct the ancestral Hsmar1 transposase gene, which we named Hsmar1-Ra. The Hsmar1-Ra transposase efficiently mobilizes Hsmar1 transposons by a cut-and-paste mechanism in human cells and zebra fish embryos. Hsmar1-Ra can also mobilize short inverted-repeat transposable elements (MITEs) related to Hsmar1 (MiHsmar1), thereby establishing a functional relationship between an Hsmar1 transposase source and these MITEs. MiHsmar1 excision is 2 orders of magnitude more efficient than that of long elements, thus providing an explanation for their high copy numbers. We show that the SETMAR protein binds and introduces single-strand nicks into Hsmar1 inverted-repeat sequences in vitro. Pathway choices for DNA break repair were found to be characteristically different in response to transposon cleavage mediated by Hsmar1-Ra and SETMAR in vivo. Whereas nonhomologous end joining plays a dominant role in repairing excision sites generated by the Hsmar1-Ra transposase, DNA repair following cleavage by SETMAR predominantly follows a homology-dependent pathway. The novel transposon system can be a useful tool for genome manipulations in vertebrates and for investigations into the transpositional dynamics and the contributions of these elements to primate genome evolution.
Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to MCB .asm.org, visit: MCB       
Author Zsuzsanna Izsvák
Heiko Keller
Csaba Miskey
Ludivine Sinzelle
Balázs Papp
Lajos Mátés
Zoltán Ivics
AuthorAffiliation Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany, 1 Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom, 2 Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Hungary 3
AuthorAffiliation_xml – name: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany, 1 Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom, 2 Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Hungary 3
Author_xml – sequence: 1
  givenname: Csaba
  surname: Miskey
  fullname: Miskey, Csaba
  organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
– sequence: 2
  givenname: Balázs
  surname: Papp
  fullname: Papp, Balázs
  organization: Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
– sequence: 3
  givenname: Lajos
  surname: Mátés
  fullname: Mátés, Lajos
  organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
– sequence: 4
  givenname: Ludivine
  surname: Sinzelle
  fullname: Sinzelle, Ludivine
  organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
– sequence: 5
  givenname: Heiko
  surname: Keller
  fullname: Keller, Heiko
  organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
– sequence: 6
  givenname: Zsuzsanna
  surname: Izsvák
  fullname: Izsvák, Zsuzsanna
  organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
– sequence: 7
  givenname: Zoltán
  surname: Ivics
  fullname: Ivics, Zoltán
  organization: Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17403897$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFv0zAYxS00xLrBjTOyOHAiw05iJ-aAFKpCkTaBtnK2HOdLa5TYne1s6p_Df4pHS4ED4mTL3-89fc_vDJ1YZwGh55RcUJrXb67m7y9ITvIqI_wRmlEi6oyxUpygWXokWVUQforOQvhGCOGCFE_QKa1KUtSimqHvqw3gxmoDNuJReWPB4xtlhoCbtTL2LV55ZcPWBRONs9j1OCbFchqVxcuQFBQvBhgf5O0OK3wN2tkQ_aQjdEexCoCV7XCjo7lLThB-Od0sVlfNNf7iXQST_O1Rk64L24Wn6HGvhgDPDuc5-vphsZovs8vPHz_Nm8tMp7Qx40ITxlhPy05pyjkv87YUwBRntCaaawGqFC1nXacIqWsloG2LikBNWlYXdXGO3u19t1M7QqdTIq8GufUmhdxJp4z8e2LNRq7dnaQifWyZJ4NXBwPvbicIUY4maBgGZcFNQVZpv6oqyv-CVCQsr0UCX-9B7V0IHvrjNpTIh_JlKl_-LF8SnvAXfyb4DR_aTkC1B4ztnR_VvfNDJ6PaDc736de1CbL4h_XLvXJj1pt740GqMMpRtzLNaS5Lltb9AZN5y8c
CitedBy_id crossref_primary_10_1093_bfgp_eln049
crossref_primary_10_1017_S0033583512000145
crossref_primary_10_3390_life11121342
crossref_primary_10_1016_j_cancergencyto_2010_04_011
crossref_primary_10_1016_j_ygeno_2021_03_032
crossref_primary_10_1093_nar_gkt874
crossref_primary_10_1111_j_1748_5967_2010_00314_x
crossref_primary_10_1021_bi900609v
crossref_primary_10_1186_s13100_019_0155_6
crossref_primary_10_1371_journal_pone_0023693
crossref_primary_10_1007_s10709_009_9370_2
crossref_primary_10_1016_j_jmb_2008_07_044
crossref_primary_10_1016_j_tibtech_2012_03_008
crossref_primary_10_3390_ijms20153692
crossref_primary_10_1371_journal_pone_0073227
crossref_primary_10_1038_sj_mt_6300366
crossref_primary_10_1073_pnas_0707746105
crossref_primary_10_1007_s10577_011_9230_7
crossref_primary_10_1016_j_biochi_2008_05_010
crossref_primary_10_1093_molbev_msm191
crossref_primary_10_1128_microbiolspec_MDNA3_0033_2014
crossref_primary_10_1139_gen_2012_0174
crossref_primary_10_1093_nar_gky937
crossref_primary_10_1107_S2053230X16012723
crossref_primary_10_3390_ijms22105084
crossref_primary_10_1111_febs_13257
crossref_primary_10_1093_nar_gku172
crossref_primary_10_1007_s10709_010_9452_1
crossref_primary_10_1093_g3journal_jkab287
crossref_primary_10_1021_bi200333k
crossref_primary_10_1371_journal_pone_0123170
crossref_primary_10_1016_j_abb_2010_04_011
crossref_primary_10_1186_s13100_022_00267_1
crossref_primary_10_1016_j_ympev_2017_02_005
crossref_primary_10_1093_gbe_evp009
crossref_primary_10_3109_10409230903505596
crossref_primary_10_1534_genetics_108_089615
crossref_primary_10_1016_j_tig_2017_07_006
crossref_primary_10_1093_nar_gkp891
crossref_primary_10_1016_j_dnarep_2019_06_006
crossref_primary_10_7554_eLife_00668
crossref_primary_10_3390_v13010076
crossref_primary_10_1128_microbiolspec_MDNA3_0042_2014
crossref_primary_10_1371_journal_pone_0064135
crossref_primary_10_1007_s00438_009_0496_9
crossref_primary_10_1093_nar_gkz552
crossref_primary_10_1186_s12915_015_0145_1
crossref_primary_10_1016_j_gene_2009_06_011
crossref_primary_10_18632_oncotarget_14218
crossref_primary_10_1093_nar_gkab045
crossref_primary_10_1371_journal_pone_0053690
crossref_primary_10_1093_molbev_msu138
crossref_primary_10_1016_j_ympev_2008_03_029
crossref_primary_10_1093_nar_gkn1025
crossref_primary_10_1186_s13100_020_0200_5
crossref_primary_10_1182_blood_2008_08_175760
crossref_primary_10_1093_nar_gkz1119
crossref_primary_10_1016_j_dnarep_2008_08_002
crossref_primary_10_1074_jbc_M113_533216
crossref_primary_10_1371_journal_pone_0139418
crossref_primary_10_1002_dvdy_23891
crossref_primary_10_1093_nar_gkw1164
crossref_primary_10_1128_MCB_01066_10
crossref_primary_10_1186_s12863_019_0719_y
crossref_primary_10_1186_s13100_020_00212_0
crossref_primary_10_1093_nar_gkx826
crossref_primary_10_1146_annurev_genet_40_110405_090448
crossref_primary_10_1093_gbe_evx122
crossref_primary_10_1093_nar_gkn560
crossref_primary_10_1021_bi401193w
crossref_primary_10_1038_nmeth_1332
crossref_primary_10_1007_s10709_009_9434_3
crossref_primary_10_1016_j_gene_2013_04_050
crossref_primary_10_1186_1759_8753_4_15
crossref_primary_10_1038_nrg2337
crossref_primary_10_1186_1423_0127_20_92
crossref_primary_10_1186_1759_8753_4_6
crossref_primary_10_1186_s12870_021_03194_0
crossref_primary_10_1371_journal_pgen_1005902
crossref_primary_10_1016_j_jbc_2022_101894
crossref_primary_10_1074_jbc_M113_523894
crossref_primary_10_7554_eLife_53868
crossref_primary_10_1007_s00425_016_2544_0
Cites_doi 10.1073/pnas.121569298
10.1093/nar/gki509
10.1093/nar/25.17.3389
10.1016/S0168-9525(99)01777-1
10.1128/MCB.17.11.6294
10.1128/MCB.01899-06
10.1093/nar/gkl688
10.1093/genetics/155.4.1821
10.1093/genetics/154.2.647
10.1038/nrg1324
10.1007/s000180050127
10.1073/pnas.94.4.1293
10.1093/emboj/17.18.5497
10.1016/S0092-8674(00)80436-5
10.1016/S0378-1119(97)00472-1
10.1093/bioinformatics/12.4.357
10.1093/genetics/125.1.103
10.1128/MCB.23.23.8505-8518.2003
10.1093/oxfordjournals.molbev.a026351
10.1016/S0021-9258(18)98987-8
10.1038/nature01214
10.2144/97233bm19
10.1016/S0378-1119(01)00530-3
10.1093/nar/gkg910
10.1016/S0022-2836(02)00991-9
10.1016/S0092-8674(04)00301-0
10.1038/nature02107
10.1016/0092-8674(90)90016-8
10.1016/S0968-0004(00)89090-8
10.1093/genetics/149.1.179
10.1007/PL00006440
10.1093/oxfordjournals.molbev.a003896
10.1038/nrg793
10.1002/j.1460-2075.1991.tb07718.x
10.1006/jmbi.2000.4042
10.1016/0022-1910(94)00082-R
10.1093/genetics/166.2.823
10.1201/9781420039399.ch13
10.1111/j.0105-2896.2004.00168.x
10.1073/pnas.211442198
10.1111/j.1365-2583.1993.tb00132.x
10.1002/j.1460-2075.1996.tb00930.x
10.1016/S0378-1119(97)00471-X
10.1073/pnas.83.22.8684
10.1038/35057062
10.1007/s003350010204
10.1534/genetics.106.064360
10.1073/pnas.0507683103
10.1073/pnas.0503676102
10.1016/S1097-2765(03)00524-0
10.1146/annurev.genet.31.1.337
10.1073/pnas.0601161103
ContentType Journal Article
Copyright Copyright © 2007 American Society for Microbiology 2007
Copyright © 2007, American Society for Microbiology 2007
Copyright_xml – notice: Copyright © 2007 American Society for Microbiology 2007
– notice: Copyright © 2007, American Society for Microbiology 2007
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1128/MCB.02027-06
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1098-5549
EndPage 4600
ExternalDocumentID 10_1128_MCB_02027_06
17403897
12270723
mcb_27_12_4589
Genre Article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
18M
29M
2WC
39C
3O-
4.4
53G
5RE
5VS
9M8
AAPBV
ABPTK
ACGFO
ACKIV
ACNCT
ADBBV
ADIYS
AENEX
AFFNX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
HYE
HZ~
IH2
KQ8
L7B
MVM
N9A
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TFL
TFW
TR2
UCJ
UDS
VQA
W8F
WH7
WOQ
Y6R
ZA5
ZCA
.55
.GJ
ABJNI
ABRLO
ABTAH
AEOZL
AGHSJ
CGR
CUY
CVF
ECM
EIF
EMOBN
F20
M4Z
NPM
TDBHL
WHG
X7M
YYP
ZGI
ZXP
ZY4
AAYXX
CITATION
7TM
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c554t-69c0555f14dac166642b49e5a65180c6c9ea49b65dda0088a9ebb370e80b58383
IEDL.DBID RPM
ISSN 0270-7306
1098-5549
IngestDate Tue Sep 17 21:21:01 EDT 2024
Fri Oct 25 23:27:16 EDT 2024
Fri Oct 25 21:27:14 EDT 2024
Thu Sep 12 19:36:30 EDT 2024
Sat Sep 28 07:44:57 EDT 2024
Tue Jun 13 19:25:01 EDT 2023
Wed May 18 15:26:31 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-69c0555f14dac166642b49e5a65180c6c9ea49b65dda0088a9ebb370e80b58383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Corresponding author. Mailing address: Max Delbruck Center for Molecular Medicine, Robert Rössle Str. 10, D-13092 Berlin, Germany. Phone: (49) 30 9406-2546. Fax: (49) 30 9406-2547. E-mail: zivics@mdc-berlin.de
OpenAccessLink https://doi.org/10.1128/mcb.02027-06
PMID 17403897
PQID 19773289
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_70557734
highwire_asm_mcb_27_12_4589
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1900042
crossref_primary_10_1128_MCB_02027_06
proquest_miscellaneous_19773289
pubmed_primary_17403897
informaworld_taylorfrancis_310_1128_MCB_02027_06
PublicationCentury 2000
PublicationDate 2007-06-01
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular and Cellular Biology
PublicationTitleAlternate Mol Cell Biol
PublicationYear 2007
Publisher American Society for Microbiology
Taylor & Francis
Publisher_xml – name: American Society for Microbiology
– name: Taylor & Francis
References 15143319 - Nat Rev Genet. 2004 May;5(5):366-75
10779533 - Mol Biol Evol. 2000 May;17(5):730-7
8533154 - Trends Biochem Sci. 1995 Oct;20(10):412-5
16672366 - Proc Natl Acad Sci U S A. 2006 May 23;103(21):8101-6
9442899 - Annu Rev Genet. 1997;31:337-58
17130240 - Mol Cell Biol. 2007 Feb;27(3):1125-32
14628056 - Nature. 2003 Nov 20;426(6964):310-4
16537485 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4062-7
10964570 - J Mol Biol. 2000 Sep 8;302(1):205-17
1646714 - EMBO J. 1991 Jul;10(7):1919-25
8902363 - Comput Appl Biosci. 1996 Aug;12(4):357-8
9461396 - Gene. 1997 Dec 31;205(1-2):219-28
2165865 - Cell. 1990 Aug 10;62(3):515-25
9087550 - Insect Mol Biol. 1993;2(3):125-39
11675493 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12572-7
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
12520302 - Nature. 2003 Jan 9;421(6919):163-7
15831788 - Nucleic Acids Res. 2005;33(7):2153-65
17003053 - Nucleic Acids Res. 2006;34(18):5238-46
9461395 - Gene. 1997 Dec 31;205(1-2):203-17
15084256 - Cell. 2004 Apr 16;117(2):171-84
3022302 - Proc Natl Acad Sci U S A. 1986 Nov;83(22):8684-8
9367129 - Comput Appl Biosci. 1997 Oct;13(5):555-6
9390559 - Cell. 1997 Nov 14;91(4):501-10
11988759 - Nat Rev Genet. 2002 May;3(5):329-41
9873073 - J Mol Evol. 1999 Jan;48(1):13-21
11371583 - Mol Biol Evol. 2001 Jun;18(6):954-61
14612396 - Mol Cell Biol. 2003 Dec;23(23):8505-18
15242409 - Immunol Rev. 2004 Aug;200:233-48
9343390 - Mol Cell Biol. 1997 Nov;17(11):6294-302
10924477 - Genetics. 2000 Aug;155(4):1821-30
14759372 - Mol Cell. 2004 Jan 30;13(2):279-90
9487389 - Cell Mol Life Sci. 1998 Jan;54(1):80-93
11418241 - Gene. 2001 Jun 27;271(2):203-14
15020471 - Genetics. 2004 Feb;166(2):823-33
11381141 - Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6759-64
11130980 - Mamm Genome. 2000 Dec;11(12):1111-6
9736627 - EMBO J. 1998 Sep 15;17(18):5497-508
9037046 - Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1293-7
9584095 - Genetics. 1998 May;149(1):179-87
11237011 - Nature. 2001 Feb 15;409(6822):860-921
16332963 - Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18075-80
2160399 - Genetics. 1990 May;125(1):103-14
14627820 - Nucleic Acids Res. 2003 Dec 1;31(23):6873-81
17179071 - Genetics. 2007 Jan;175(1):441-52
10655218 - Genetics. 2000 Feb;154(2):647-56
12381300 - J Mol Biol. 2002 Oct 25;323(3):441-52
9298214 - Biotechniques. 1997 Sep;23(3):436-8
8895590 - EMBO J. 1996 Oct 1;15(19):5470-9
10431195 - Trends Genet. 1999 Aug;15(8):326-32
1646809 - J Biol Chem. 1991 Jun 25;266(18):11518-21
Jenuwein T. (R21) 1998; 54
Plasterk R. H. (R39) 1991; 10
Robertson H. M. (R41) 1995; 41
Lidholm D. A. (R31) 1991; 266
R20
R23
R25
R24
R29
Thornton J. W. (R48) 2004; 5
R28
Dufresne M. (R7) 2007; 175
R1
Bryan G. (R4) 1990; 125
R2
Demattei M. V. (R6) 2000; 11
R5
Feschotte C. (R10) 2000; 17
R8
R9
R30
R32
Yang Z. (R51) 1997; 13
R38
Miskey C. (R36) 2003; 31
R37
Robertson H. M. (R42) 1993; 2
Lohe A. R. (R33) 1997; 94
Lampe D. J. (R27) 2000
R40
R44
R47
R46
R49
Feschotte C. (R11) 2005; 33
Loot C. (R35) 2006; 34
Jiang N. (R22) 2003; 421
Lohe A. R. (R34) 2000; 154
Lampe D. J. (R26) 2001; 18
R50
R52
R53
R12
Barry E. G. (R3) 2004; 166
R14
R13
R16
R15
R18
R19
Robertson H. M. (R43) 1997; 205
Izsvak Z. (R17) 1999; 48
Rubin E. (R45) 1997; 17
References_xml – ident: R12
  doi: 10.1073/pnas.121569298
– volume: 33
  start-page: 2153
  year: 2005
  ident: R11
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki509
  contributor:
    fullname: Feschotte C.
– ident: R2
  doi: 10.1093/nar/25.17.3389
– ident: R40
  doi: 10.1016/S0168-9525(99)01777-1
– volume: 17
  start-page: 6294
  year: 1997
  ident: R45
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.17.11.6294
  contributor:
    fullname: Rubin E.
– ident: R32
  doi: 10.1128/MCB.01899-06
– volume: 34
  start-page: 5238
  year: 2006
  ident: R35
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl688
  contributor:
    fullname: Loot C.
– ident: R13
  doi: 10.1093/genetics/155.4.1821
– volume: 154
  start-page: 647
  year: 2000
  ident: R34
  publication-title: Genetics
  doi: 10.1093/genetics/154.2.647
  contributor:
    fullname: Lohe A. R.
– volume: 5
  start-page: 366
  year: 2004
  ident: R48
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1324
  contributor:
    fullname: Thornton J. W.
– volume: 54
  start-page: 80
  year: 1998
  ident: R21
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s000180050127
  contributor:
    fullname: Jenuwein T.
– volume: 94
  start-page: 1293
  year: 1997
  ident: R33
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.4.1293
  contributor:
    fullname: Lohe A. R.
– ident: R47
  doi: 10.1093/emboj/17.18.5497
– ident: R16
  doi: 10.1016/S0092-8674(00)80436-5
– ident: R44
  doi: 10.1016/S0378-1119(97)00472-1
– ident: R38
  doi: 10.1093/bioinformatics/12.4.357
– volume: 13
  start-page: 555
  year: 1997
  ident: R51
  publication-title: Comput. Appl. Biosci.
  contributor:
    fullname: Yang Z.
– volume: 125
  start-page: 103
  year: 1990
  ident: R4
  publication-title: Genetics
  doi: 10.1093/genetics/125.1.103
  contributor:
    fullname: Bryan G.
– ident: R52
  doi: 10.1128/MCB.23.23.8505-8518.2003
– volume: 17
  start-page: 730
  year: 2000
  ident: R10
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a026351
  contributor:
    fullname: Feschotte C.
– volume: 266
  start-page: 11518
  year: 1991
  ident: R31
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)98987-8
  contributor:
    fullname: Lidholm D. A.
– volume: 421
  start-page: 163
  year: 2003
  ident: R22
  publication-title: Nature
  doi: 10.1038/nature01214
  contributor:
    fullname: Jiang N.
– ident: R1
  doi: 10.2144/97233bm19
– ident: R28
  doi: 10.1016/S0378-1119(01)00530-3
– volume: 31
  start-page: 6873
  year: 2003
  ident: R36
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg910
  contributor:
    fullname: Miskey C.
– ident: R49
  doi: 10.1016/S0022-2836(02)00991-9
– ident: R29
  doi: 10.1016/S0092-8674(04)00301-0
– ident: R46
  doi: 10.1038/nature02107
– ident: R8
  doi: 10.1016/0092-8674(90)90016-8
– ident: R19
  doi: 10.1016/S0968-0004(00)89090-8
– ident: R25
  doi: 10.1093/genetics/149.1.179
– volume: 48
  start-page: 13
  year: 1999
  ident: R17
  publication-title: J. Mol. Evol.
  doi: 10.1007/PL00006440
  contributor:
    fullname: Izsvak Z.
– volume: 18
  start-page: 954
  year: 2001
  ident: R26
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a003896
  contributor:
    fullname: Lampe D. J.
– ident: R9
  doi: 10.1038/nrg793
– volume: 10
  start-page: 1919
  year: 1991
  ident: R39
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb07718.x
  contributor:
    fullname: Plasterk R. H.
– ident: R37
  doi: 10.1006/jmbi.2000.4042
– volume: 41
  start-page: 99
  year: 1995
  ident: R41
  publication-title: J. Insect Physiol.
  doi: 10.1016/0022-1910(94)00082-R
  contributor:
    fullname: Robertson H. M.
– volume: 166
  start-page: 823
  year: 2004
  ident: R3
  publication-title: Genetics
  doi: 10.1093/genetics/166.2.823
  contributor:
    fullname: Barry E. G.
– start-page: 237
  volume-title: Insect transgenesis: methods and applications.
  year: 2000
  ident: R27
  doi: 10.1201/9781420039399.ch13
  contributor:
    fullname: Lampe D. J.
– ident: R23
  doi: 10.1111/j.0105-2896.2004.00168.x
– ident: R53
  doi: 10.1073/pnas.211442198
– volume: 2
  start-page: 125
  year: 1993
  ident: R42
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.1993.tb00132.x
  contributor:
    fullname: Robertson H. M.
– ident: R24
  doi: 10.1002/j.1460-2075.1996.tb00930.x
– volume: 205
  start-page: 219
  year: 1997
  ident: R43
  publication-title: Gene
  doi: 10.1016/S0378-1119(97)00471-X
  contributor:
    fullname: Robertson H. M.
– ident: R20
  doi: 10.1073/pnas.83.22.8684
– ident: R15
  doi: 10.1038/35057062
– volume: 11
  start-page: 1111
  year: 2000
  ident: R6
  publication-title: Mamm. Genome
  doi: 10.1007/s003350010204
  contributor:
    fullname: Demattei M. V.
– volume: 175
  start-page: 441
  year: 2007
  ident: R7
  publication-title: Genetics
  doi: 10.1534/genetics.106.064360
  contributor:
    fullname: Dufresne M.
– ident: R50
  doi: 10.1073/pnas.0507683103
– ident: R30
  doi: 10.1073/pnas.0503676102
– ident: R18
  doi: 10.1016/S1097-2765(03)00524-0
– ident: R14
  doi: 10.1146/annurev.genet.31.1.337
– ident: R5
  doi: 10.1073/pnas.0601161103
SSID ssj0006903
Score 2.273656
Snippet Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage ∼50 million years ago....
Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage approximately 50 million...
Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage similar to 50 million years...
Hsmar1 , one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage ∼50 million years ago....
SourceID pubmedcentral
proquest
crossref
pubmed
informaworld
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4589
SubjectTerms Amino Acid Sequence
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Computer Simulation
Consensus Sequence
Danio rerio
DNA Transposable Elements - genetics
DNA Transposable Elements - physiology
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Evolution, Molecular
Genes, Reporter
Histone-Lysine N-Methyltransferase - chemistry
Histone-Lysine N-Methyltransferase - genetics
Histone-Lysine N-Methyltransferase - metabolism
Humans
Luciferases - metabolism
Models, Biological
Molecular Sequence Data
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Phylogeny
Primates
Protein Structure, Tertiary
Sequence Homology, Amino Acid
Transposases - genetics
Transposases - metabolism
Title The Ancient mariner Sails Again: Transposition of the Human Hsmar1 Element by a Reconstructed Transposase and Activities of the SETMAR Protein on Transposon Ends
URI http://mcb.asm.org/content/27/12/4589.abstract
https://www.tandfonline.com/doi/abs/10.1128/MCB.02027-06
https://www.ncbi.nlm.nih.gov/pubmed/17403897
https://search.proquest.com/docview/19773289
https://search.proquest.com/docview/70557734
https://pubmed.ncbi.nlm.nih.gov/PMC1900042
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SQGkvpU1fTtpUh_boXVmWX725y4alsCU0CeQmJFluDbE2sNtDfk7-aUeytc2G9NKbQdIgmJHmG2vmG4BP6GF0yZImprniMa8ki1WamJgVeBcaBBSycLXDy-_54pJ_u8qu9iALtTA-aV-rbmKv-4ntfvncypteT0Oe2PRsOUtcp0vOpvuwjwYaQvTx-sVwzz8rs4LGOJqHbHdWTpezrxPqon3cmWMLLbijlyt2XVKgCX7AXfoYAn2YSHnPM52-gOcjpCT1sPWXsGfsITwZmkzeHsLTWejp9gru0CpIbX0RJOmlr_wj57K7XpP6p-zsFzKSnQ-ZXGTVEgSIxP_pJ4s1rkjIfEg4J-qWSOKi15GD1jTbxegZibQNqbXvTYHBeJB0Pr9Y1j_ImWOH6FC-3a7Bz7lt1q_h8nR-MVvEY5OGWCMS2cR5pR1nWJvwRmr3BsmZ4pXJZJ4lJdW5rozklcqzppGIN0pZGaXSgpqSKvdkm76BA7uy5h0QFKAQv7j27C36TFO1lLY001nZpE1JTQSfg57EzcDFIXwMw0qBqhVetYLmERwHJQq57kWvlcCBhAmelVUE9L5excb_GWmHNiYifVzgx6B7gQpzTyrSmtXvtUgQPqfMCf3XDMdWhHN4BG8HW_m79dH8Iih2rGg7wTF_747ggfAM4OMBOPrvlcfwLCQ-0uQ9HKCdmA-IrjbqxPm27MSfqT-huSTv
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEWovCMorFKgPcMyu4zgvbmG11QJNVdGt1JtlOw5EaryVsj305_BPGTvx0q3KhVsk2yNLM_Z8E898g9BH8DAqp1EdklSykBWChjKOdEgzuAs1AAqR2drh6jRdXLBvl8nlDkp8LYxL2leynZirbmLaXy638rpTU58nNj2rZpHtdMno9BF6DOeVMB-kjxcwBHzuYZlmJAQDTn2-O82n1ezLhNh4H_Zm-UIzZgnmsm2n5ImC77GXPoRB76dS3vFNx8_Q0xFU4nLY_HO0o80BejK0mbw9QHsz39XtBfoNdoFL48ogcSdc7R8-F-1Vj8ufojWf8Uh3PuRy4VWDASJi968fL3pYEeH5kHKO5S0W2MavIwutrjeLwTdiYWpcKtedAsJxL-l8vqzKH_jM8kO0IN9s1sDn3NT9S3RxPF_OFuHYpiFUgEXWYVooyxrWRKwWyr5CMipZoRORJlFOVKoKLVgh06SuBSCOXBRayjgjOifSPtrGr9CuWRn9BmEQIAHB2AbtDXhNXTSENCRRSV7HdU50gD55PfHrgY2DuyiG5hxUy51qOUkDdOiVyEXf8U5JDgMR5SzJiwCRu3rla_dvpBkamfD4YYFHXvccFGYfVYTRq5ueRwCgY2qF_muG5SuCOSxArwdb-bv10fwClG1Z0WaC5f7eHoEj4TjAxyPw9r9XHqG9xbI64SdfT78fon2fBkmid2gXbEa_B6y1lh_cyfoDQvUnXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgEY8LgoWFsMD6AMc0TuK8uIXSqjy6qthdaW-WX4FKG7dSymF_Dv-UsROXdrVcuEWyPXI0Y8839vgbhN6Bh5FlEquQ5IKGtOJJKNJYh0kBe6EGQMEL-3Z4fprPLuiXy-xyp9SXS9qXYjkyV-3ILH-63Mp1KyOfJxYt5uPYVrqkSbRWTXQX3YM1S3IfqA-bMAR97nI5KUgIRpz7nPekjObjjyNiY36Yn-UMLaglmSv2HZMnC77BYHobDr2ZTrnjn6ZP0OMBWOK6_4Gn6I42h-h-X2ry-hA9HPvKbs_Qb7ANXBv3FBK33L3_w2d8edXh-gdfmg94oDzv87nwqsEAE7E778ezDkbEeNKnnWNxjTm2MezARKvVdjD4R8yNwrV0FSogJPeSzibn8_o7XliOiCXIN9sx8DkxqnuOLqaT8_EsHEo1hBLwyCbMK2mZw5qYKi7tTSRNBK10xvMsLonMZaU5rUSeKcUBdZS80kKkBdElEfbiNj1CB2Zl9EuEQYAAFGOLtDfgOXXVENKQTGalSlVJdIDeez2xdc_IwVwkk5QMVMucahnJA3Tslch417JWCgYNccJoVlYBIrt6ZRt3PtL0xUxYervAE697BgqzFyvc6NWvjsUAotPECv1XD8tZBH1ogF70tvJ36oP5BajYs6JtB8v_vd8Cy8LxgA_L4NV_jzxBDxafpuzb59Ovx-iRz4Qk8Wt0ACaj3wDc2oi3bmH9AXOfKHI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Ancient+mariner+Sails+Again%3A+Transposition+of+the+Human+Hsmar1+Element+by+a+Reconstructed+Transposase+and+Activities+of+the+SETMAR+Protein+on+Transposon+Ends&rft.jtitle=Molecular+and+cellular+biology&rft.au=Miskey%2C+Csaba&rft.au=Papp%2C+Bal%C3%A1zs&rft.au=M%C3%A1t%C3%A9s%2C+Lajos&rft.au=Sinzelle%2C+Ludivine&rft.date=2007-06-01&rft.issn=1098-5549&rft.eissn=1098-5549&rft.volume=27&rft.issue=12&rft.spage=4589&rft.epage=4600&rft_id=info:doi/10.1128%2FMCB.02027-06&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_MCB_02027_06
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-7306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-7306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-7306&client=summon