Engineering nanoscale order into a designed protein fiber

We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to st...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 104; no. 26; pp. 10853 - 10858
Main Authors Papapostolou, David, Smith, Andrew M, Atkins, Edward D.T, Oliver, Seb J, Ryadnov, Maxim G, Serpell, Louise C, Woolfson, Derek N
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 26.06.2007
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded α-helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as α-helices as designed. These patterns extend unbroken across the widths (>=50 nm) and lengths (>10 μm) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology.
AbstractList We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded alpha-helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as alpha-helices as designed. These patterns extend unbroken across the widths (>/=50 nm) and lengths (>10 microm) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology.
We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded α-helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as α-helices as designed. These patterns extend unbroken across the widths (≥50 nm) and lengths (>10 μm) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology.
We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded α-helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as a-helices as designed. These patterns extend unbroken across the widths (≥50 nm) and lengths (>10 pm) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology. [PUBLICATION ABSTRACT]
We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded α-helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as α-helices as designed. These patterns extend unbroken across the widths (≥50 nm) and lengths (>10 μm) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology. bionanoscience nanofibers peptide assembly rational protein design self-assembly
We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded alpha -helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as alpha -helices as designed. These patterns extend unbroken across the widths ( greater than or equal to 50 nm) and lengths (>10 mu m) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology.
We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally engineered to alter fiber assembly, stability, and morphology. Here, we show that rational mutations to our original peptide designs lead to structures with a remarkable level of order on the nanoscale that mimics certain natural fibrous assemblies. In the engineered system, the peptides assemble into two-stranded α-helical coiled-coil rods, which pack in axial register in a 3D hexagonal lattice of size 1.824 nm, and with a periodicity of 4.2 nm along the fiber axis. This model is supported by both electron microscopy and x-ray diffraction. Specifically, the fibers display surface striations separated by nanoscale distances that precisely match the 4.2-nm length expected for peptides configured as α-helices as designed. These patterns extend unbroken across the widths (>=50 nm) and lengths (>10 μm) of the fibers. Furthermore, the spacing of the striations can be altered predictably by changing the length of the peptides. These features reflect a high level of internal order within the fibers introduced by the peptide-design process. To our knowledge, this exceptional order, and its persistence along and across the fibers, is unique in a biomimetic system. This work represents a step toward rational bottom-up assembly of nanostructured fibrous biomaterials for potential applications in synthetic biology and nanobiotechnology.
Author Oliver, Seb J
Atkins, Edward D.T
Woolfson, Derek N
Papapostolou, David
Smith, Andrew M
Ryadnov, Maxim G
Serpell, Louise C
Author_xml – sequence: 1
  fullname: Papapostolou, David
– sequence: 2
  fullname: Smith, Andrew M
– sequence: 3
  fullname: Atkins, Edward D.T
– sequence: 4
  fullname: Oliver, Seb J
– sequence: 5
  fullname: Ryadnov, Maxim G
– sequence: 6
  fullname: Serpell, Louise C
– sequence: 7
  fullname: Woolfson, Derek N
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17567757$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAUxC1URLeFMycg6gGJw7bvOf68IKGqfEiVOEDPlpM4wausvdhJBf99He2qC1w4vcP8ZvRGc0ZOQgyOkJcIlwiyvtoFmy9BAihABPaErBA0rgXTcEJWAFSuFaPslJzlvAEAzRU8I6couZCSyxXRN2Hwwbnkw1AFG2Ju7eiqmDqXKh-mWNmqc9kPwXXVLsXJ-VD1vnHpOXna2zG7F4d7Tu4-3ny__ry-_frpy_WH23XLOZvWQlmmLe9VgxQo623XOsEEVch1-bJhSJ2yHdUt1o22LUjRc7C17GQDHKA-J-_3ubu52briDlOyo9klv7Xpt4nWm7-V4H-YId4bVBqRLwFvDwEp_pxdnszW59aNow0uztmgFppSRgt48Q-4iXMKpZyhgDWiUHWBrvZQm2LOyfWPnyCYZROzbGKOmxTH6z8LHPnDCAV4dwAW5zGOGSrKUbw2_TyOk_s1Fbb6D1uQV3tkk6eYHhnKWS2AqqK_2eu9jcYOyWdz920pCCCVoKXkA-9xtAA
CitedBy_id crossref_primary_10_1002_bip_22479
crossref_primary_10_1021_ja404677c
crossref_primary_10_1039_C4NR03328K
crossref_primary_10_1021_jacs_0c08174
crossref_primary_10_1021_acs_chemrev_8b00038
crossref_primary_10_1002_anie_201104647
crossref_primary_10_1002_mabi_201200062
crossref_primary_10_1021_bi400001c
crossref_primary_10_1039_C5SC03260A
crossref_primary_10_1134_S1068162011060069
crossref_primary_10_1021_bm900544e
crossref_primary_10_1039_C5CP05938K
crossref_primary_10_1021_nn1035312
crossref_primary_10_1038_s41586_019_1683_4
crossref_primary_10_1016_j_bbabio_2016_09_002
crossref_primary_10_1039_b609047h
crossref_primary_10_1039_D0NR04313C
crossref_primary_10_3390_ma9010053
crossref_primary_10_1021_acsnano_3c01452
crossref_primary_10_1515_pac_2017_0709
crossref_primary_10_1021_ja412867z
crossref_primary_10_1098_rsfs_2016_0141
crossref_primary_10_1002_advs_201802043
crossref_primary_10_1016_j_mtbio_2023_100786
crossref_primary_10_1016_j_tibtech_2009_04_002
crossref_primary_10_1073_pnas_1912810117
crossref_primary_10_1016_j_jsb_2008_01_016
crossref_primary_10_1016_j_jsb_2013_12_005
crossref_primary_10_1021_acsbiomaterials_3c00221
crossref_primary_10_1021_jacs_5b03973
crossref_primary_10_1016_j_biotechadv_2017_05_002
crossref_primary_10_1002_anie_201006496
crossref_primary_10_1002_chem_200801206
crossref_primary_10_1039_C7OB01134B
crossref_primary_10_1021_bm900474k
crossref_primary_10_1063_1_4863077
crossref_primary_10_1021_bm100843e
crossref_primary_10_1039_C8NR05770B
crossref_primary_10_2174_0929866525666180917163142
crossref_primary_10_1021_jacs_8b08163
crossref_primary_10_1002_chem_200902758
crossref_primary_10_1002_mabi_201100295
crossref_primary_10_1021_ja3053943
crossref_primary_10_1021_sb200015u
crossref_primary_10_1007_s40242_021_1130_6
crossref_primary_10_1177_1535370216640941
crossref_primary_10_1039_C7RA02811C
crossref_primary_10_1039_C8CS00115D
crossref_primary_10_1039_D0TB02604B
crossref_primary_10_1021_ja905539h
crossref_primary_10_3390_gels2010012
crossref_primary_10_1021_bm500874t
crossref_primary_10_1021_ja0778444
crossref_primary_10_1140_epje_i2011_11005_0
crossref_primary_10_1016_j_biomaterials_2009_10_014
crossref_primary_10_1021_acsbiomaterials_7b00561
crossref_primary_10_1021_bm300882d
crossref_primary_10_3389_fchem_2019_00172
crossref_primary_10_1021_acs_bioconjchem_7b00668
crossref_primary_10_1002_anie_202208647
crossref_primary_10_3389_fbioe_2021_652384
crossref_primary_10_1016_j_ccr_2020_213418
crossref_primary_10_1021_bm800459v
crossref_primary_10_1021_ja2077894
crossref_primary_10_1039_c2sm26092a
crossref_primary_10_1039_c0cs00152j
crossref_primary_10_1007_s12274_008_8006_7
crossref_primary_10_1007_s42242_021_00149_0
crossref_primary_10_1021_jp307716y
crossref_primary_10_1016_j_jmb_2015_11_022
crossref_primary_10_1002_cnma_201600048
crossref_primary_10_1016_j_biotechadv_2019_107491
crossref_primary_10_1002_anie_202301331
crossref_primary_10_1021_jp300048e
crossref_primary_10_1038_nmat2427
crossref_primary_10_1002_tcr_201800149
crossref_primary_10_1039_b803281e
crossref_primary_10_1021_jp200607x
crossref_primary_10_1021_am800143u
crossref_primary_10_1016_j_jsb_2007_11_005
crossref_primary_10_1039_C4SM00378K
crossref_primary_10_1021_jacs_5b03326
crossref_primary_10_1039_C8SM01754A
crossref_primary_10_1039_D3RA08261J
crossref_primary_10_1142_S2251237316400037
crossref_primary_10_1039_c0cs00032a
crossref_primary_10_1039_C6SC01306F
crossref_primary_10_1042_BST20150077
crossref_primary_10_1039_C8SM00435H
crossref_primary_10_1074_jbc_M109_092445
crossref_primary_10_1039_C6TB02737G
crossref_primary_10_1002_ange_202301331
crossref_primary_10_1021_acsnano_5b04531
crossref_primary_10_1007_s12668_012_0065_2
crossref_primary_10_1002_bip_21345
crossref_primary_10_3390_ma12040581
crossref_primary_10_1016_j_biomaterials_2008_01_031
crossref_primary_10_1021_ja802447e
crossref_primary_10_1038_nmat2479
crossref_primary_10_1021_ja8037323
crossref_primary_10_1016_j_actamat_2012_10_046
crossref_primary_10_1039_c0cc00212g
crossref_primary_10_1039_C4PY00173G
crossref_primary_10_1021_ja902662e
crossref_primary_10_1134_S1811238212050025
crossref_primary_10_1002_bip_21100
crossref_primary_10_1007_s13758_011_0002_x
crossref_primary_10_1021_ja076265w
crossref_primary_10_1021_ja411325c
crossref_primary_10_1002_adfm_201101905
crossref_primary_10_1002_anie_201403780
crossref_primary_10_1073_pnas_1118622109
crossref_primary_10_1002_pat_1136
crossref_primary_10_1016_j_bioactmat_2019_01_002
crossref_primary_10_1016_j_jsb_2010_03_003
crossref_primary_10_1002_mabi_201800221
crossref_primary_10_1021_bm5019062
crossref_primary_10_1021_ol801461a
crossref_primary_10_1002_adfm_201606273
crossref_primary_10_1021_acs_chemrev_1c00712
crossref_primary_10_1016_j_jcis_2020_09_023
crossref_primary_10_1002_marc_201400058
crossref_primary_10_1002_ange_201104647
crossref_primary_10_1016_j_bioactmat_2024_06_013
crossref_primary_10_1038_srep07529
crossref_primary_10_1002_bip_23117
crossref_primary_10_1017_S0033583522000014
crossref_primary_10_1021_jacs_6b05751
crossref_primary_10_1586_17434440_2013_839209
crossref_primary_10_1021_acs_jpcb_1c04873
crossref_primary_10_1002_pro_2665
crossref_primary_10_1021_cb700249v
crossref_primary_10_1016_j_biotechadv_2011_10_004
crossref_primary_10_1002_ange_202208647
crossref_primary_10_1039_b914339b
crossref_primary_10_1021_ja072960s
crossref_primary_10_1016_j_biomaterials_2010_06_041
crossref_primary_10_1021_ja4074529
crossref_primary_10_1016_j_bpj_2009_12_4309
crossref_primary_10_1021_acs_chemrev_5b00369
crossref_primary_10_3389_fbinf_2022_1046493
crossref_primary_10_1002_ange_201006496
crossref_primary_10_1021_bi900534r
crossref_primary_10_1039_b902440a
crossref_primary_10_3389_fchem_2021_770102
crossref_primary_10_1021_acsbiomaterials_9b00408
crossref_primary_10_1039_b802690d
crossref_primary_10_1021_jp9088436
crossref_primary_10_1016_j_str_2014_12_008
crossref_primary_10_1016_j_colsurfa_2023_131257
crossref_primary_10_1098_rsif_2012_0740
crossref_primary_10_1016_j_jsb_2017_09_002
crossref_primary_10_1021_acs_bioconjchem_5b00487
crossref_primary_10_1016_j_biomaterials_2008_03_020
crossref_primary_10_1016_j_addr_2016_03_002
crossref_primary_10_1039_b919453n
crossref_primary_10_1021_acsnano_9b06814
crossref_primary_10_1021_ja504377s
crossref_primary_10_3390_ijms21103584
crossref_primary_10_1016_j_biomaterials_2010_12_002
crossref_primary_10_1021_bi900387t
crossref_primary_10_1021_jacs_5b03593
crossref_primary_10_1038_s41467_020_20689_w
crossref_primary_10_1039_c3ra40234g
crossref_primary_10_1021_la802009t
crossref_primary_10_1039_c3mb25442a
crossref_primary_10_1042_BST0370653
crossref_primary_10_3389_fmats_2022_1022386
crossref_primary_10_1021_jacs_6b06592
crossref_primary_10_1002_advs_202103820
crossref_primary_10_1021_acs_biomac_5b00572
crossref_primary_10_1038_s41598_017_10918_6
crossref_primary_10_1039_b914337h
crossref_primary_10_1021_acssynbio_8b00241
crossref_primary_10_1016_j_nantod_2014_10_002
crossref_primary_10_1021_bi801072s
crossref_primary_10_1039_b807150k
crossref_primary_10_1002_adma_201703444
crossref_primary_10_1002_bip_21157
crossref_primary_10_1016_j_bioelechem_2017_11_009
crossref_primary_10_1039_C9MH00580C
crossref_primary_10_1021_ja907617a
crossref_primary_10_1002_ange_201403780
crossref_primary_10_1021_bm5004948
crossref_primary_10_1021_acsabm_2c00275
crossref_primary_10_1002_jps_22407
crossref_primary_10_3390_pharmaceutics16020240
crossref_primary_10_1098_rsif_2013_0051
crossref_primary_10_1073_pnas_2021899118
crossref_primary_10_1021_acssynbio_8b00007
crossref_primary_10_1039_C5CS00470E
Cites_doi 10.1107/S0365110X52001635
10.1021/ja052972i
10.1002/adfm.200500568
10.1107/S0365110X53001964
10.1002/anie.200461599
10.1016/j.sbi.2005.07.005
10.1073/pnas.191250198
10.1093/oso/9780198599579.003.0093
10.1016/0032-3861(73)90097-9
10.1073/pnas.252340199
10.1016/S0076-6879(99)09036-9
10.1021/ar970004h
10.1021/bi000246g
10.1006/jsbi.1996.0003
10.1006/jmbi.2001.4545
10.1073/pnas.111150598
10.1016/S0167-7799(01)01840-6
10.1021/ja0605974
10.1083/jcb.105.1.403
10.1016/j.cossms.2004.01.010
10.1016/S0065-3233(05)70008-5
10.1016/S0021-9258(17)32364-5
10.1002/cbic.200300781
10.1016/j.copbio.2005.05.005
10.1016/S0962-8924(00)01898-5
10.1073/pnas.052703499
10.1146/annurev.biochem.73.011303.073823
10.1073/pnas.0505871102
10.1016/j.sbi.2004.06.006
10.1126/science.1948029
10.1002/anie.200351418
10.1016/S1359-0278(98)00011-X
10.1016/0968-0004(96)10052-9
10.1021/bi030079v
10.1038/nmat885
10.1016/S0065-3233(05)70004-8
10.1016/j.cbpa.2006.09.019
10.1016/j.sbi.2006.07.001
10.1016/S1074-5521(01)00073-4
10.1016/S0065-3233(05)70003-6
10.1073/pnas.0431081100
10.1016/S0167-7799(98)01212-8
10.1016/j.tet.2004.06.068
10.1002/prot.340150302
10.1016/j.bpc.2004.07.021
10.1016/0022-2836(82)90396-5
10.1016/S0959-440X(02)00350-0
10.1006/jsbi.1998.3976
10.1006/jsbi.1998.4073
10.1016/S1367-5931(02)00391-5
10.1021/ja048144r
ContentType Journal Article
Copyright Copyright 2007 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jun 26, 2007
2007 by The National Academy of Sciences of the USA 2007
Copyright_xml – notice: Copyright 2007 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jun 26, 2007
– notice: 2007 by The National Academy of Sciences of the USA 2007
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
5PM
DOI 10.1073/pnas.0700801104
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE
CrossRef
Virology and AIDS Abstracts


Engineering Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 10858
ExternalDocumentID 1296149831
10_1073_pnas_0700801104
17567757
104_26_10853
25436028
US201300786268
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/B/04676/2
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
ADQXQ
5PM
ID FETCH-LOGICAL-c554t-68a49a5f8b12024fadce64628159490b412e8ad29c13b9ac076f50a37d7b05003
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:28:10 EDT 2024
Fri Aug 16 06:14:03 EDT 2024
Fri Sep 13 00:12:29 EDT 2024
Fri Aug 23 01:51:04 EDT 2024
Tue Aug 27 13:47:04 EDT 2024
Wed Nov 11 00:29:42 EST 2020
Thu May 30 08:49:40 EDT 2019
Fri Feb 02 07:05:37 EST 2024
Wed Dec 27 19:07:55 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-68a49a5f8b12024fadce64628159490b412e8ad29c13b9ac076f50a37d7b05003
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Present address: Material Science Centre, University of Manchester, P.O. Box 88, Manchester M60 1QD, United Kingdom.
Edited by Alan R. Fersht, University of Cambridge, Cambridge, United Kingdom, and approved May 21, 2007
Author contributions: D.P. and A.M.S. contributed equally to this work; D.P., A.M.S., and D.N.W. designed research; D.P., A.M.S., and L.C.S. performed research; M.G.R. contributed new reagents/analytic tools; D.P., A.M.S., E.D.T.A., S.J.O., L.C.S., and D.N.W. analyzed data; and D.P., E.D.T.A., L.C.S., and D.N.W. wrote the paper.
OpenAccessLink https://doi.org/10.1073/pnas.0700801104
PMID 17567757
PQID 201311683
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_0700801104
pubmed_primary_17567757
proquest_journals_201311683
pnas_primary_104_26_10853_fulltext
proquest_miscellaneous_19692242
pnas_primary_104_26_10853
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1891150
jstor_primary_25436028
fao_agris_US201300786268
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2007-06-26
PublicationDateYYYYMMDD 2007-06-26
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-26
  day: 26
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2007
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_4_3_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
Parry DAD (e_1_3_4_31_2) 1999
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_32_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
Pollard TD (e_1_3_4_1_2) 2002
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_16_2
e_1_3_4_37_2
Makin OS (e_1_3_4_43_2) 2007
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_41_2
  doi: 10.1107/S0365110X52001635
– ident: e_1_3_4_47_2
  doi: 10.1021/ja052972i
– ident: e_1_3_4_26_2
  doi: 10.1002/adfm.200500568
– ident: e_1_3_4_35_2
  doi: 10.1107/S0365110X53001964
– ident: e_1_3_4_42_2
  doi: 10.1002/anie.200461599
– ident: e_1_3_4_46_2
  doi: 10.1016/j.sbi.2005.07.005
– ident: e_1_3_4_28_2
  doi: 10.1073/pnas.191250198
– start-page: 285
  volume-title: Guidebook to the Cytoskeletal and Motor Proteins
  year: 1999
  ident: e_1_3_4_31_2
  doi: 10.1093/oso/9780198599579.003.0093
  contributor:
    fullname: Parry DAD
– ident: e_1_3_4_40_2
  doi: 10.1016/0032-3861(73)90097-9
– ident: e_1_3_4_37_2
  doi: 10.1073/pnas.252340199
– ident: e_1_3_4_53_2
  doi: 10.1016/S0076-6879(99)09036-9
– ident: e_1_3_4_16_2
  doi: 10.1021/ar970004h
– ident: e_1_3_4_11_2
  doi: 10.1021/bi000246g
– ident: e_1_3_4_51_2
  doi: 10.1006/jsbi.1996.0003
– ident: e_1_3_4_22_2
  doi: 10.1006/jmbi.2001.4545
– ident: e_1_3_4_34_2
  doi: 10.1073/pnas.111150598
– ident: e_1_3_4_9_2
  doi: 10.1016/S0167-7799(01)01840-6
– ident: e_1_3_4_38_2
  doi: 10.1021/ja0605974
– ident: e_1_3_4_39_2
  doi: 10.1083/jcb.105.1.403
– ident: e_1_3_4_5_2
  doi: 10.1016/j.cossms.2004.01.010
– ident: e_1_3_4_45_2
  doi: 10.1016/S0065-3233(05)70008-5
– ident: e_1_3_4_30_2
  doi: 10.1016/S0021-9258(17)32364-5
– ident: e_1_3_4_21_2
  doi: 10.1002/cbic.200300781
– ident: e_1_3_4_50_2
  doi: 10.1016/j.copbio.2005.05.005
– volume-title: Cell Biology
  year: 2002
  ident: e_1_3_4_1_2
  contributor:
    fullname: Pollard TD
– ident: e_1_3_4_20_2
  doi: 10.1016/S0962-8924(00)01898-5
– year: 2007
  ident: e_1_3_4_43_2
  publication-title: J Appl Crystallogr
  contributor:
    fullname: Makin OS
– ident: e_1_3_4_33_2
  doi: 10.1073/pnas.052703499
– ident: e_1_3_4_32_2
  doi: 10.1146/annurev.biochem.73.011303.073823
– ident: e_1_3_4_14_2
  doi: 10.1073/pnas.0505871102
– ident: e_1_3_4_6_2
  doi: 10.1016/j.sbi.2004.06.006
– ident: e_1_3_4_24_2
  doi: 10.1126/science.1948029
– ident: e_1_3_4_49_2
  doi: 10.1002/anie.200351418
– ident: e_1_3_4_15_2
  doi: 10.1016/S1359-0278(98)00011-X
– ident: e_1_3_4_18_2
  doi: 10.1016/0968-0004(96)10052-9
– ident: e_1_3_4_4_2
  doi: 10.1021/bi030079v
– ident: e_1_3_4_25_2
  doi: 10.1038/nmat885
– ident: e_1_3_4_17_2
  doi: 10.1016/S0065-3233(05)70004-8
– ident: e_1_3_4_7_2
  doi: 10.1016/j.cbpa.2006.09.019
– ident: e_1_3_4_8_2
  doi: 10.1016/j.sbi.2006.07.001
– ident: e_1_3_4_12_2
  doi: 10.1016/S1074-5521(01)00073-4
– ident: e_1_3_4_23_2
  doi: 10.1016/S0065-3233(05)70003-6
– ident: e_1_3_4_10_2
  doi: 10.1073/pnas.0431081100
– ident: e_1_3_4_19_2
  doi: 10.1016/S0167-7799(98)01212-8
– ident: e_1_3_4_13_2
  doi: 10.1016/j.tet.2004.06.068
– ident: e_1_3_4_36_2
  doi: 10.1002/prot.340150302
– ident: e_1_3_4_44_2
  doi: 10.1016/j.bpc.2004.07.021
– ident: e_1_3_4_29_2
  doi: 10.1016/0022-2836(82)90396-5
– ident: e_1_3_4_2_2
  doi: 10.1016/S0959-440X(02)00350-0
– ident: e_1_3_4_27_2
  doi: 10.1006/jsbi.1998.3976
– ident: e_1_3_4_52_2
  doi: 10.1006/jsbi.1998.4073
– ident: e_1_3_4_3_2
  doi: 10.1016/S1367-5931(02)00391-5
– ident: e_1_3_4_48_2
  doi: 10.1021/ja048144r
SSID ssj0009580
Score 2.411456
Snippet We have established a designed system comprising two peptides that coassemble to form long, thickened protein fibers in water. This system can be rationally...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10853
SubjectTerms Biochemistry
Biocompatible Materials - chemical synthesis
Biological Sciences
Biomimetic Materials - chemical synthesis
Biophysics
Design
Design engineering
Diffraction patterns
Modeling
Mutation
Nanostructures
Nanotechnology
Peptides
Peptides - chemistry
Protein Conformation
Protein Engineering - methods
Proteins
Proteins - chemical synthesis
Simulations
Water
Wave diffraction
Waxes
X ray diffraction
Title Engineering nanoscale order into a designed protein fiber
URI https://www.jstor.org/stable/25436028
http://www.pnas.org/content/104/26/10853.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17567757
https://www.proquest.com/docview/201311683/abstract/
https://search.proquest.com/docview/19692242
https://pubmed.ncbi.nlm.nih.gov/PMC1891150
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11e-KCKG1p-kGtikM5ZDdxHNs5ooqqQipCgpV6s2zHhpWosyLb_8_Ym-xuEVw4O3Gi-fC8kZ-fAd4ZVjnayja3urU5M4XIGysix51RYbDE2nR7w_1nfjdnnx7qhz2ox7MwibRvzWIafj5Ow-JH4lYuH-1s5InNvtzflLKJQGY2gYmoqrFF3yjtyvW5E4rLL6Ns1PMR1WwZdD_FGEeUhFUvXckjai5ErE07VWnidTfSE6PmKb71N_z5J41ypy7dvoKXA6AkH9Y_fgB7LryGgyFle3I96Eq_P4RmR3uQBB26Hv3jSBLfJIuw6ogmbSJ0uJYk_YZFID4ySo5gfvvx281dPtyckFuEB6ucS80aXXtpSopF2KMfHI-nUBG8sKYwrKRO6pY2tqxMo20huK8LXYlWmKLGRD-G_dAFdwKk1nVjPTYhnmIzoY2hpZPcibbRpS49y-B6tJxargUyVNrYFpWKllNbe2dwgpZV-jsuX2r-lcZNU0Qo2FLJDI6TuTdTxDP6HLFPBlmaZTs1U5RHWdO6yuDqn2PKD9yZDM5Gz6khPXtFk8oQlzjF5WYU8ypulujguqdeRdkghDc0gzdrL28_M8RMBuKZ_zcPRMXu5yMYyEm5ewjc0_9-8wxejIRFys9hf_XryV0gKlqZtykLfgNzfQYn
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB215QAXoEBpKFALcSiHZBPHiZMjqqgW6FZIdFFvlu04sII6K5K98PWMnWR3W8EBzhM7smY88yy_eQZ4rVhqaFVUoZaVDpmKeVhq7jjujHKFJVb71xtmF_l0zj5cZVc7kI29MJ60r9Uisj-uI7v45rmVy2s9GXlik0-z06QoHZCZ7MId3K-Uj4f0tdZu0XeeUEzAjLJR0Yenk6WVbYRRjjgJ655_lIdnOeeuOm3Vpd1aNiNB0ame4qg_IdDbRMqtynT2AL6Ma-oJKd-jVaci_euW3OM_L_oh3B-wKnnbm_dhx9hHsD9kg5acDJLVbx5DuSVrSKy0TYuuN8TrepKF7RoiSeW5IqYiXhpiYUntyCpPYH727vJ0Gg6PMoQakUcX5oVkpczqQiUU63uNLja5a3BFXMTKWLGEmkJWtNRJqkqpY57XWSxTXnEVZ5hDDmDPNtYcAslkVuoazzc1xXOKVIompsgNr0qZyKRmAZyMLhHLXntD-DtzngrnErFxZACH6DIhv2JmFPPP1N3HIvjB01oRwIH343oK1_6fI6wKIPCzbKZmguZOMTVLA3j1V5uoB1pOAEdjSIhh57eCegGjvMApjtdW3LLuHkZa06xa4RSJEDnRAJ724bP5zRCMAfAbgbX-wImB37RguHhR8CE8nv33yGO4O72cnYvz9xcfj-DeyIuk-XPY636uzAsEX5166bfab8sKKBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RIiEulAJt0wKNEIdyyCZxnDg5osKqfLSqBCtVXCzbsWEFdVYke-HXM3aS3W0Fl57tTGTNeOaN_PwM8FrSTJO6rCMlahVRmbCoUsxx3ClhEkus8q83nF8UZzP68Sq_2njqy5P2lZxP7K_riZ3_8NzKxbWKR55YfHl-mpaVAzLxojbxFtzHPUuqsVFf6e2W_e0TgkmYEjqq-rAsXljRTjDSESth7fMP87C8YMxVqI3atGVEM5IUnfIpfvUvFHqbTLlRnaY78G1cV09K-TlZdnKi_tySfLzTwh_DowGzhm_7KbtwT9snsDtkhTY8GaSr3zyFakPeMLTCNi2GgA69vmc4t10TirD2nBFdh14iYm5D40grz2A2ff_19CwaHmeIFCKQLipKQSuRm1KmBOu8QVfrwl10RXxEq0TSlOhS1KRSaSYroRJWmDwRGauZTHLMJXuwbRurDyDMRV4pg32OIdivCClJqstCs7oSqUgNDeBkdAtf9Boc3J-ds4w7t_C1MwM4QLdx8R0zJJ99Ie5cFkEQdm1lAHvelysTTgagQHgVQOCtrE1TTgqnnJpnAbz67xg3Az0ngKMxLPiQAVpOvJBRUaKJ49Uobl13HiOsbpYtd8pEiKBIAPt9CK1_MwRkAOxGcK0mOFHwmyMYMl4cfAiRwzt_eQwPLt9N-ecPF5-O4OFIjyTFc9jufi_1C8RgnXzpd9tfN3UqmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+nanoscale+order+into+a+designed+protein+fiber&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=David+Papapostolou&rft.au=Andrew+M.+Smith&rft.au=Edward+D.+T.+Atkins&rft.au=Seb+J.+Oliver&rft.date=2007-06-26&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=104&rft.issue=26&rft.spage=10853&rft_id=info:doi/10.1073%2Fpnas.0700801104&rft_id=info%3Apmid%2F17567757&rft.externalDBID=n%2Fa&rft.externalDocID=104_26_10853
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F26.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F26.cover.gif