Between-session reliability of subject-specific musculoskeletal models of the spine derived from optoelectronic motion capture data

This study evaluated the between-session reliability of creating subject-specific musculoskeletal models with optoelectronic motion capture data, and using them to estimate spine loading. Nineteen healthy participants aged 24–74 years underwent the same set of measurements on two separate occasions....

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 112; p. 110044
Main Authors Burkhart, Katelyn, Grindle, Daniel, Bouxsein, Mary L., Anderson, Dennis E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 09.11.2020
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study evaluated the between-session reliability of creating subject-specific musculoskeletal models with optoelectronic motion capture data, and using them to estimate spine loading. Nineteen healthy participants aged 24–74 years underwent the same set of measurements on two separate occasions. Retroreflective markers were placed on anatomical regions, including C7, T1, T4, T5, T8, T9, T12 and L1 spinous processes, pelvis, upper and lower limbs, and head. We created full-body musculoskeletal models with detailed thoracolumbar spines, and scaled these to create subject-specific models for each individual and each session. Models were scaled from distances between markers, and spine curvature was adjusted according to marker-estimated measurements. Using these models, we estimated vertebral compressive loading for five different standardized postures: neutral standing, 45˚ trunk flexion, 15˚ trunk extension, 20˚ lateral bend to the right, and 45˚ axial rotation to the right. Intraclass correlation coefficients (ICCs) and standard error of measurement were calculated as measures of between-session reliability and measurement error, respectively. Spine curvature measures showed excellent reliability (ICC = 0.79–0.91) and body scaling segments showed fair to excellent reliability (ICC = 0.46–0.95). We found that musculoskeletal models showed mostly excellent between-session reliability to estimate spine loading, with 91% of ICC values > 0.75 for all activities. This information is a necessary precursor for using motion capture data to estimate spine loading from subject-specific musculoskeletal models, and suggests that marker data will deliver reproducible subject-specific models and estimates of spine loading.
AbstractList This study evaluated the between-session reliability of creating subject-specific musculoskeletal models with optoelectronic motion capture data, and using them to estimate spine loading. Nineteen healthy participants aged 24–74 years underwent the same set of measurements on two separate occasions. Retroreflective markers were placed on anatomical regions, including C7, T1, T4, T5, T8, T9, T12 and L1 spinous processes, pelvis, upper and lower limbs, and head. We created full-body musculoskeletal models with detailed thoracolumbar spines, and scaled these to create subject-specific models for each individual and each session. Models were scaled from distances between markers, and spine curvature was adjusted according to marker-estimated measurements. Using these models, we estimated vertebral compressive loading for five different standardized postures: neutral standing, 45° trunk flexion, 15° trunk extension, 20° lateral bend to the right, and 45° axial rotation to the right. Intraclass correlation coefficients (ICCs) and standard error of measurement were calculated as measures of between-session reliability and measurement error, respectively. Spine curvature measures showed excellent reliability (ICC= 0.79–0.91) and body scaling segments showed fair to excellent reliability (ICC = 0.46–0.95). We found that musculoskeletal models showed mostly excellent between-session reliability to estimate spine loading, with 91% of ICC values > 0.75 for all activities. This information is a necessary precursor for using motion capture data to estimate spine loading from subject-specific musculoskeletal models, and suggests that marker data will deliver reproducible subject-specific models and estimates of spine loading.
This study evaluated the between-session reliability of creating subject-specific musculoskeletal models with optoelectronic motion capture data, and using them to estimate spine loading. Nineteen healthy participants aged 24-74 years underwent the same set of measurements on two separate occasions. Retroreflective markers were placed on anatomical regions, including C7, T1, T4, T5, T8, T9, T12 and L1 spinous processes, pelvis, upper and lower limbs, and head. We created full-body musculoskeletal models with detailed thoracolumbar spines, and scaled these to create subject-specific models for each individual and each session. Models were scaled from distances between markers, and spine curvature was adjusted according to marker-estimated measurements. Using these models, we estimated vertebral compressive loading for five different standardized postures: neutral standing, 45˚ trunk flexion, 15˚ trunk extension, 20˚ lateral bend to the right, and 45˚ axial rotation to the right. Intraclass correlation coefficients (ICCs) and standard error of measurement were calculated as measures of between-session reliability and measurement error, respectively. Spine curvature measures showed excellent reliability (ICC = 0.79-0.91) and body scaling segments showed fair to excellent reliability (ICC = 0.46-0.95). We found that musculoskeletal models showed mostly excellent between-session reliability to estimate spine loading, with 91% of ICC values > 0.75 for all activities. This information is a necessary precursor for using motion capture data to estimate spine loading from subject-specific musculoskeletal models, and suggests that marker data will deliver reproducible subject-specific models and estimates of spine loading.This study evaluated the between-session reliability of creating subject-specific musculoskeletal models with optoelectronic motion capture data, and using them to estimate spine loading. Nineteen healthy participants aged 24-74 years underwent the same set of measurements on two separate occasions. Retroreflective markers were placed on anatomical regions, including C7, T1, T4, T5, T8, T9, T12 and L1 spinous processes, pelvis, upper and lower limbs, and head. We created full-body musculoskeletal models with detailed thoracolumbar spines, and scaled these to create subject-specific models for each individual and each session. Models were scaled from distances between markers, and spine curvature was adjusted according to marker-estimated measurements. Using these models, we estimated vertebral compressive loading for five different standardized postures: neutral standing, 45˚ trunk flexion, 15˚ trunk extension, 20˚ lateral bend to the right, and 45˚ axial rotation to the right. Intraclass correlation coefficients (ICCs) and standard error of measurement were calculated as measures of between-session reliability and measurement error, respectively. Spine curvature measures showed excellent reliability (ICC = 0.79-0.91) and body scaling segments showed fair to excellent reliability (ICC = 0.46-0.95). We found that musculoskeletal models showed mostly excellent between-session reliability to estimate spine loading, with 91% of ICC values > 0.75 for all activities. This information is a necessary precursor for using motion capture data to estimate spine loading from subject-specific musculoskeletal models, and suggests that marker data will deliver reproducible subject-specific models and estimates of spine loading.
This study evaluated the between-session reliability of creating subject-specific musculoskeletal models with optoelectronic motion capture data, and using them to estimate spine loading. Nineteen healthy participants aged 24–74 years underwent the same set of measurements on two separate occasions. Retroreflective markers were placed on anatomical regions, including C7, T1, T4, T5, T8, T9, T12 and L1 spinous processes, pelvis, upper and lower limbs, and head. We created full-body musculoskeletal models with detailed thoracolumbar spines, and scaled these to create subject-specific models for each individual and each session. Models were scaled from distances between markers, and spine curvature was adjusted according to marker-estimated measurements. Using these models, we estimated vertebral compressive loading for five different standardized postures: neutral standing, 45˚ trunk flexion, 15˚ trunk extension, 20˚ lateral bend to the right, and 45˚ axial rotation to the right. Intraclass correlation coefficients (ICCs) and standard error of measurement were calculated as measures of between-session reliability and measurement error, respectively. Spine curvature measures showed excellent reliability (ICC = 0.79–0.91) and body scaling segments showed fair to excellent reliability (ICC = 0.46–0.95). We found that musculoskeletal models showed mostly excellent between-session reliability to estimate spine loading, with 91% of ICC values > 0.75 for all activities. This information is a necessary precursor for using motion capture data to estimate spine loading from subject-specific musculoskeletal models, and suggests that marker data will deliver reproducible subject-specific models and estimates of spine loading.
This study evaluated the between-session reliability of creating subject-specific musculoskeletal models with optoelectronic motion capture data, and using them to estimate spine loading. Nineteen healthy participants aged 24–74 years underwent the same set of measurements on two separate occasions. Retroreflective markers were placed on anatomical regions, including C7, T1, T4, T5, T8, T9, T12 and L1 spinous processes, pelvis, upper and lower limbs, and head. We created full-body musculoskeletal models with detailed thoracolumbar spines, and scaled these to create subject-specific models for each individual and each session. Models were scaled from distances between markers, and spine curvature was adjusted according to marker-estimated measurements. Using these models, we estimated vertebral compressive loading for five different standardized postures: neutral standing, 45˚ trunk flexion, 15˚ trunk extension, 20˚ lateral bend to the right, and 45˚ axial rotation to the right. Intraclass correlation coefficients (ICCs) and standard error of measurement were calculated as measures of between-session reliability and measurement error, respectively. Spine curvature measures showed excellent reliability (ICC = 0.79–0.91) and body scaling segments showed fair to excellent reliability (ICC = 0.46–0.95). We found that musculoskeletal models showed mostly excellent between-session reliability to estimate spine loading, with 91% of ICC values > 0.75 for all activities. This information is a necessary precursor for using motion capture data to estimate spine loading from subject-specific musculoskeletal models, and suggests that marker data will deliver reproducible subject-specific models and estimates of spine loading.
ArticleNumber 110044
Author Grindle, Daniel
Anderson, Dennis E.
Burkhart, Katelyn
Bouxsein, Mary L.
AuthorAffiliation 2 Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston 02215, Massachusetts
1 Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts
4 Division of Engineering Mechanics, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
3 Department of Orthopaedic Surgery, Harvard Medical School, Boston 02115, Massachusetts
AuthorAffiliation_xml – name: 2 Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston 02215, Massachusetts
– name: 4 Division of Engineering Mechanics, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
– name: 1 Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge 02139, Massachusetts
– name: 3 Department of Orthopaedic Surgery, Harvard Medical School, Boston 02115, Massachusetts
Author_xml – sequence: 1
  givenname: Katelyn
  surname: Burkhart
  fullname: Burkhart, Katelyn
  organization: Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge 02139, MA, United States
– sequence: 2
  givenname: Daniel
  surname: Grindle
  fullname: Grindle, Daniel
  organization: Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston 02215, MA, United States
– sequence: 3
  givenname: Mary L.
  surname: Bouxsein
  fullname: Bouxsein, Mary L.
  organization: Harvard-MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge 02139, MA, United States
– sequence: 4
  givenname: Dennis E.
  surname: Anderson
  fullname: Anderson, Dennis E.
  email: danders7@harvard.bidmc.edu
  organization: Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston 02215, MA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32977297$$D View this record in MEDLINE/PubMed
BookMark eNqNUl2L1DAUDbLi7o7-haXgiy8d89V2CrK4Ln7Bgi_6HNLk1kk3TWqSjsyzf9yU2RGdl5UQAsk5557cey7RmfMOELoieE0wqV8P66EzfgS1XVNM8yXBmPMn6IJsGlZStsFn6AJjSsqWtvgcXcY4YIwb3rTP0DmjbdPkfYF-vYP0E8CVEWI03hUBrJGdsSbtC98Xce4GUKmMEyjTG1WMc1Sz9fEeLCRpi9FrsHGBpi0UcTIOCg3B7EAXffBj4afkM1al4N3C92kpo-SU5pChMsnn6GkvbYQXD-cKffvw_uvtp_Luy8fPtzd3paoqnsqaqp71vNe0ytZ5VbGmUlxC3ZG6q0ATrRpF8mK0Uxx6VWFCKNnUWktGGWMrdH3QneZuBK3ApSCtmIIZZdgLL43498WZrfjud2LDNoy0bRZ49SAQ_I8ZYhKjiQqslQ78HAXlvK4bTqql1ssT6ODn4PL3Mqpiuf0si67Q1d-O_lg5zicD3hwAKvgYA_RCmSSXDmaDxgqCxRIHMYhjHMQSB3GIQ6bXJ_RjhUeJbw_EPFvYGQgiKgNOgTYhj1Jobx6XuD6RUNbkBEh7D_v_EfgN35Lr0A
CitedBy_id crossref_primary_10_1016_j_apergo_2022_103869
crossref_primary_10_3390_bioengineering10020202
crossref_primary_10_1177_21925682251321789
crossref_primary_10_1080_02640414_2024_2394748
crossref_primary_10_1038_s41598_023_50652_w
crossref_primary_10_3390_app14020842
crossref_primary_10_1016_j_jbiomech_2024_112230
crossref_primary_10_1016_j_ohx_2024_e00589
crossref_primary_10_1007_s10439_024_03567_0
crossref_primary_10_3389_fbioe_2021_688041
crossref_primary_10_1016_j_jbiomech_2023_111821
crossref_primary_10_1016_j_jbiomech_2022_111102
crossref_primary_10_3390_s22218342
crossref_primary_10_1080_10255842_2024_2364819
crossref_primary_10_3390_s23010341
crossref_primary_10_1109_ACCESS_2021_3134056
crossref_primary_10_3389_fbioe_2021_720060
crossref_primary_10_1080_00140139_2024_2320355
crossref_primary_10_1016_j_jbiomech_2024_112322
crossref_primary_10_3389_fbioe_2024_1372088
crossref_primary_10_1016_j_jelekin_2022_102728
crossref_primary_10_3233_THC_220155
crossref_primary_10_3389_fbioe_2021_751155
crossref_primary_10_3389_fbioe_2024_1363081
crossref_primary_10_1007_s10439_023_03273_3
crossref_primary_10_1007_s10439_023_03368_x
crossref_primary_10_1016_j_clinbiomech_2025_106448
Cites_doi 10.1002/jbmr.3113
10.1016/S0167-9457(99)00023-8
10.1037/0033-2909.86.2.420
10.1016/j.jbiomech.2018.08.033
10.1016/j.math.2012.10.005
10.1371/journal.pone.0095426
10.1080/10255849908907988
10.1016/j.jbiomech.2016.02.046
10.1016/j.jmpt.2011.04.006
10.1016/j.jbiomech.2017.11.033
10.1016/j.jbiomech.2014.11.040
10.1007/s00586-006-0240-7
10.1016/j.jbiomech.2017.11.013
10.3233/BMR-169750
10.1016/j.spinee.2020.02.004
10.1080/10255842.2018.1564819
10.1016/j.gaitpost.2016.01.024
10.1016/0021-9290(95)00178-6
10.1016/0021-9290(89)90179-6
10.1007/BF02513282
10.1371/journal.pone.0135689
10.1002/jor.23524
10.1109/TBME.2007.901024
10.1109/10.102791
10.1002/jsp2.1120
10.1007/BF02667349
10.1016/j.jbiomech.2017.12.001
10.1123/jab.2016-0282
10.1016/S0268-0033(99)00004-2
10.1016/j.jbiomech.2016.02.030
10.1115/1.1392310
10.1115/1.4030408
10.1016/j.jmpt.2005.06.006
10.3233/BMR-150356
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1016/j.jbiomech.2020.110044
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library (Proquest)
ProQuest Biological Science
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Research Library Prep


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 110044
ExternalDocumentID PMC8383199
32977297
10_1016_j_jbiomech_2020_110044
S0021929020304681
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001102
– fundername: NIAMS NIH HHS
  grantid: R01 AR073019
– fundername: NIA NIH HHS
  grantid: R00 AG042458
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AI.
AIGII
ALIPV
ASPBG
AVWKF
AZFZN
CITATION
EBD
EJD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c554t-62cf3f4fd25297455375c4ae6b16b5ed1dc7c1c1c32bc4efc50112186dda32333
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Thu Aug 21 17:50:10 EDT 2025
Mon Jul 21 09:44:46 EDT 2025
Sat Jul 26 02:23:44 EDT 2025
Thu Apr 03 07:05:46 EDT 2025
Thu Apr 24 22:51:58 EDT 2025
Tue Jul 01 00:44:17 EDT 2025
Fri Feb 23 02:46:24 EST 2024
Tue Aug 26 17:10:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Repeatability
Model scaling
Spine loading
Musculoskeletal model
Motion analysis
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-62cf3f4fd25297455375c4ae6b16b5ed1dc7c1c1c32bc4efc50112186dda32333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8383199
PMID 32977297
PQID 2453977338
PQPubID 1226346
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8383199
proquest_miscellaneous_2446674153
proquest_journals_2453977338
pubmed_primary_32977297
crossref_citationtrail_10_1016_j_jbiomech_2020_110044
crossref_primary_10_1016_j_jbiomech_2020_110044
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2020_110044
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2020_110044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-09
PublicationDateYYYYMMDD 2020-11-09
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Nerot, Skalli, Wang (b0125) 2018; 70
Richards (b0150) 1999; 18
Ignasiak, Rüeger, Sperr, Ferguson (b0095) 2018; 70
Peng, Panda, Van Sint Jan, Wang (b0135) 2015; 48
Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (b0065) 2007; 54
Della Croce, Cappozzo, Kerrigan (b0060) 1999; 37
Severijns, Overbergh, Thauvoye, Baudewijns, Monari, Moke, Desloovere, Scheys (b0160) 2020; 20
Shrout, Fleiss (b0165) 1979; 86
De Leva (b0055) 1996; 29
Delp, Loan, Hoy, Zajac, Topp, Rosen (b0070) 1990; 37
Mousavi, Swann, White, Tromp, Anderson (b0115) 2018; 79
Rast, Graf, Meichtry, Kool, Bauer (b0145) 2016; 49
Snider, Snider, Degenhardt, Johnson, Kribs (b0170) 2011; 34
Cooper, Alexander, Hancock, Smith (b0050) 2013; 18
Granata, Marras, Davis (b0085) 1999; 14
Muyor, Arrabal-Campos, Martínez-Aparicio, Sánchez-Crespo, Villa-Pérez (b0120) 2017; 30
Raabe, Chaudhari (b0140) 2016; 49
Bruno, Bouxsein, Anderson (b0030) 2015; 137
Anderson, Pandy (b0015) 1999; 2
Zemp, R., List, R., Guïay, T., Elsig, J.P., Naxera, J., Taylor, W.R., Lorenzetti, S., 2014. Soft tissue artefacts of the human back: Comparison of the sagittal curvature of the spine measured using skin markers and an open upright MRI. PLoS One 9, 1–8.
Anderson, Pandy (b0010) 2001; 123
Dunk, Lalonde, Callaghan (b0075) 2005; 28
Yamaguchi, Zajac (b0175) 1989; 22
Bruno, Mokhtarzadeh, Allaire, Velie, De Paolis Kaluza, Anderson, Bouxsein (b0040) 2017; 35
.
Bazrgari, Shirazi-Adl, Arjmand (b0020) 2007; 16
Beaucage-Gauvreau, Robertson, Brandon, Fraser, Freeman, Graham, Thewlis, Jones (b0025) 2019; 22
Ferreira, Póvoa, Zanier, Machado, Ferreira (b0080) 2017; 30
Actis, Honegger, Gates, Petrella, Nolasco, Silverman (b0005) 2018; 68
Grindle, Mousavi, Allaire, White, Anderson (b0090) 2020
Krumm, Cockcroft, Zaumseil, Odenwald, Milani, Louw (b0105) 2016; 46
Liu, Laborde, Van Buskirk (b0110) 1971; 42
Pearsall, D.J., Reid, J.G., Livingston, L.A., 1996. Segmental inertial parameters of the human trunk as determined from computed tomography. Ann. Biomed. Eng. 24, 198–210.
Kainz, Hoang, Stockton, Boyd, Lloyd, Carty (b0100) 2017; 33
Bruno, Burkhart, Allaire, Anderson, Bouxsein (b0035) 2017; 32
Schmid, Studer, Hasler, Romkes, Taylor, Brunner, Lorenzetti (b0155) 2015; 10
Carhart (b0045) 2000
Anderson (10.1016/j.jbiomech.2020.110044_b0010) 2001; 123
Mousavi (10.1016/j.jbiomech.2020.110044_b0115) 2018; 79
Severijns (10.1016/j.jbiomech.2020.110044_b0160) 2020; 20
Cooper (10.1016/j.jbiomech.2020.110044_b0050) 2013; 18
Delp (10.1016/j.jbiomech.2020.110044_b0065) 2007; 54
Actis (10.1016/j.jbiomech.2020.110044_b0005) 2018; 68
Carhart (10.1016/j.jbiomech.2020.110044_b0045) 2000
10.1016/j.jbiomech.2020.110044_b0180
Muyor (10.1016/j.jbiomech.2020.110044_b0120) 2017; 30
Schmid (10.1016/j.jbiomech.2020.110044_b0155) 2015; 10
Raabe (10.1016/j.jbiomech.2020.110044_b0140) 2016; 49
Granata (10.1016/j.jbiomech.2020.110044_b0085) 1999; 14
De Leva (10.1016/j.jbiomech.2020.110044_b0055) 1996; 29
10.1016/j.jbiomech.2020.110044_b0130
Delp (10.1016/j.jbiomech.2020.110044_b0070) 1990; 37
Shrout (10.1016/j.jbiomech.2020.110044_b0165) 1979; 86
Grindle (10.1016/j.jbiomech.2020.110044_b0090) 2020
Snider (10.1016/j.jbiomech.2020.110044_b0170) 2011; 34
Ferreira (10.1016/j.jbiomech.2020.110044_b0080) 2017; 30
Beaucage-Gauvreau (10.1016/j.jbiomech.2020.110044_b0025) 2019; 22
Bruno (10.1016/j.jbiomech.2020.110044_b0035) 2017; 32
Ignasiak (10.1016/j.jbiomech.2020.110044_b0095) 2018; 70
Liu (10.1016/j.jbiomech.2020.110044_b0110) 1971; 42
Rast (10.1016/j.jbiomech.2020.110044_b0145) 2016; 49
Richards (10.1016/j.jbiomech.2020.110044_b0150) 1999; 18
Bruno (10.1016/j.jbiomech.2020.110044_b0030) 2015; 137
Della Croce (10.1016/j.jbiomech.2020.110044_b0060) 1999; 37
Bruno (10.1016/j.jbiomech.2020.110044_b0040) 2017; 35
Dunk (10.1016/j.jbiomech.2020.110044_b0075) 2005; 28
Peng (10.1016/j.jbiomech.2020.110044_b0135) 2015; 48
Nerot (10.1016/j.jbiomech.2020.110044_b0125) 2018; 70
Yamaguchi (10.1016/j.jbiomech.2020.110044_b0175) 1989; 22
Bazrgari (10.1016/j.jbiomech.2020.110044_b0020) 2007; 16
Anderson (10.1016/j.jbiomech.2020.110044_b0015) 1999; 2
Kainz (10.1016/j.jbiomech.2020.110044_b0100) 2017; 33
Krumm (10.1016/j.jbiomech.2020.110044_b0105) 2016; 46
References_xml – volume: 16
  start-page: 687
  year: 2007
  end-page: 699
  ident: b0020
  article-title: Analysis of squat and stoop dynamic liftings: Muscle forces and internal spinal loads
  publication-title: Eur. Spine J.
– volume: 20
  start-page: 934
  year: 2020
  end-page: 946
  ident: b0160
  article-title: A subject-specific method to measure dynamic spinal alignment in adult spinal deformity
  publication-title: Spine J.
– volume: 68
  start-page: 107
  year: 2018
  end-page: 114
  ident: b0005
  article-title: Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine
  publication-title: J. Biomech.
– volume: 79
  start-page: 248
  year: 2018
  end-page: 252
  ident: b0115
  article-title: Between-session reliability of opto-electronic motion capture in measuring sagittal posture and 3-D ranges of motion of the thoracolumbar spine
  publication-title: J. Biomech.
– reference: Pearsall, D.J., Reid, J.G., Livingston, L.A., 1996. Segmental inertial parameters of the human trunk as determined from computed tomography. Ann. Biomed. Eng. 24, 198–210.
– volume: 34
  start-page: 306
  year: 2011
  end-page: 313
  ident: b0170
  article-title: Palpatory accuracy of lumbar spinous processes using multiple bony landmarks
  publication-title: J. Manipulative Physiol. Ther.
– volume: 32
  start-page: 1282
  year: 2017
  end-page: 1290
  ident: b0035
  article-title: Spinal Loading Patterns from Biomechanical Modeling Explain the High Incidence of Vertebral Fractures in the Thoracolumbar Region
  publication-title: J. Bone Miner. Res.
– volume: 33
  start-page: 354
  year: 2017
  end-page: 360
  ident: b0100
  article-title: Accuracy and Reliability of Marker-Based Approaches to Scale the Pelvis, Thigh, and Shank Segments in Musculoskeletal Models
  publication-title: J. Appl. Biomech.
– volume: 123
  start-page: 381
  year: 2001
  end-page: 390
  ident: b0010
  article-title: Dynamic optimization of human walking
  publication-title: J. Biomech. Eng.
– volume: 37
  start-page: 757
  year: 1990
  end-page: 767
  ident: b0070
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 42
  start-page: 650
  year: 1971
  end-page: 657
  ident: b0110
  article-title: Inertial properties of a segmented cadaver trunk: their implications in acceleration injuries
  publication-title: Aerosp. Med.
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: b0065
  article-title: OpenSim: Open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 37
  start-page: 155
  year: 1999
  end-page: 161
  ident: b0060
  article-title: Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles
  publication-title: Med. Biol. Eng. Comput.
– year: 2020
  ident: b0090
  article-title: Validity of flexicurve and motion capture for measurements of thoracic kyphosis versus standing radiographic measurements
  publication-title: JOR Spine
– volume: 22
  start-page: 1
  year: 1989
  end-page: 10
  ident: b0175
  article-title: A planar model of the knee joint to characterize the knee extensor mechanism
  publication-title: J. Biomech.
– volume: 30
  start-page: 1319
  year: 2017
  end-page: 1325
  ident: b0120
  article-title: Test-retest reliability and validity of a motion capture (MOCAP) system for measuring thoracic and lumbar spinal curvatures and sacral inclination in the sagittal plane
  publication-title: J. Back Musculoskelet. Rehabil.
– volume: 2
  start-page: 201
  year: 1999
  end-page: 231
  ident: b0015
  article-title: A dynamic optimization solution for vertical jumping in three dimensions
  publication-title: Comput. Methods Biomech. Biomed. Engin.
– volume: 137
  start-page: 1
  year: 2015
  end-page: 10
  ident: b0030
  article-title: Development and Validation of a Musculoskeletal Model of the Fully Articulated Thoracolumbar Spine and Rib Cage
  publication-title: J. Biomech. Eng.
– volume: 18
  start-page: 589
  year: 1999
  end-page: 602
  ident: b0150
  article-title: The measurement of human motion: A comparison of commercially available systems
  publication-title: Hum. Mov. Sci.
– volume: 35
  start-page: 2164
  year: 2017
  end-page: 2173
  ident: b0040
  article-title: Incorporation of CT-based measurements of trunk anatomy into subject-specific musculoskeletal models of the spine influences vertebral loading predictions
  publication-title: J. Orthop. Res.
– year: 2000
  ident: b0045
  article-title: Biomechanical Analysis of Compensatory Stepping: Implications for Paraplegics Standing Via FNS
– volume: 28
  start-page: 386
  year: 2005
  end-page: 392
  ident: b0075
  article-title: Implications for the use of postural analysis as a clinical diagnostic tool: Reliability of quantifying upright standing spinal postures from photographic images
  publication-title: J. Manipulative Physiol. Ther.
– volume: 46
  start-page: 1
  year: 2016
  end-page: 4
  ident: b0105
  article-title: Analytical evaluation of the effects of inconsistent anthropometric measurements on joint kinematics in motion capturing
  publication-title: Gait Posture
– volume: 86
  start-page: 420
  year: 1979
  end-page: 428
  ident: b0165
  article-title: Intraclass correlations: Uses in assessing rater reliability
  publication-title: Psychol. Bull.
– reference: Zemp, R., List, R., Guïay, T., Elsig, J.P., Naxera, J., Taylor, W.R., Lorenzetti, S., 2014. Soft tissue artefacts of the human back: Comparison of the sagittal curvature of the spine measured using skin markers and an open upright MRI. PLoS One 9, 1–8.
– volume: 14
  start-page: 367
  year: 1999
  end-page: 375
  ident: b0085
  article-title: Variation in spinal load and trunk dynamics during repeated lifting exertions
  publication-title: Clin. Biomech.
– reference: .
– volume: 22
  start-page: 451
  year: 2019
  end-page: 464
  ident: b0025
  article-title: Validation of an OpenSim full-body model with detailed lumbar spine for estimating lower lumbar spine loads during symmetric and asymmetric lifting tasks
  publication-title: Comput. Meth. Biomech. Biomed. Engin.
– volume: 48
  start-page: 396
  year: 2015
  end-page: 400
  ident: b0135
  article-title: Methods for determining hip and lumbosacral joint centers in a seated position from external anatomical landmarks
  publication-title: J. Biomech.
– volume: 30
  start-page: 735
  year: 2017
  end-page: 744
  ident: b0080
  article-title: Sensitivity for palpating lumbopelvic soft- tissues and bony landmarks and its associated factors : A single-blinded diagnostic accuracy study
  publication-title: J. Back Musculoskelet. Rehabil.
– volume: 18
  start-page: 289
  year: 2013
  end-page: 293
  ident: b0050
  article-title: The use of pMRI to validate the identification of palpated bony landmarks
  publication-title: Man. Ther.
– volume: 70
  start-page: 96
  year: 2018
  end-page: 101
  ident: b0125
  article-title: Estimation of spinal joint centers from external back profile and anatomical landmarks
  publication-title: J. Biomech.
– volume: 49
  start-page: 807
  year: 2016
  end-page: 811
  ident: b0145
  article-title: Between-day reliability of three-dimensional motion analysis of the trunk: A comparison of marker based protocols
  publication-title: J. Biomech.
– volume: 70
  start-page: 175
  year: 2018
  end-page: 184
  ident: b0095
  article-title: Thoracolumbar spine loading associated with kinematics of the young and the elderly during activities of daily living
  publication-title: J. Biomech.
– volume: 49
  start-page: 1238
  year: 2016
  end-page: 1243
  ident: b0140
  article-title: An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation
  publication-title: J. Biomech.
– volume: 10
  year: 2015
  ident: b0155
  article-title: Using skin markers for spinal curvature quantification in main thoracic adolescent idiopathic scoliosis: An explorative radiographic study
  publication-title: PLoS One
– volume: 29
  start-page: 1223
  year: 1996
  end-page: 1230
  ident: b0055
  article-title: Adjustments to zatsiorsky-seluyanov’s segment inertia parameters
  publication-title: J. Biomech.
– volume: 32
  start-page: 1282
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110044_b0035
  article-title: Spinal Loading Patterns from Biomechanical Modeling Explain the High Incidence of Vertebral Fractures in the Thoracolumbar Region
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.3113
– year: 2000
  ident: 10.1016/j.jbiomech.2020.110044_b0045
– volume: 18
  start-page: 589
  year: 1999
  ident: 10.1016/j.jbiomech.2020.110044_b0150
  article-title: The measurement of human motion: A comparison of commercially available systems
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/S0167-9457(99)00023-8
– volume: 86
  start-page: 420
  year: 1979
  ident: 10.1016/j.jbiomech.2020.110044_b0165
  article-title: Intraclass correlations: Uses in assessing rater reliability
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– volume: 79
  start-page: 248
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110044_b0115
  article-title: Between-session reliability of opto-electronic motion capture in measuring sagittal posture and 3-D ranges of motion of the thoracolumbar spine
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.08.033
– volume: 18
  start-page: 289
  year: 2013
  ident: 10.1016/j.jbiomech.2020.110044_b0050
  article-title: The use of pMRI to validate the identification of palpated bony landmarks
  publication-title: Man. Ther.
  doi: 10.1016/j.math.2012.10.005
– ident: 10.1016/j.jbiomech.2020.110044_b0180
  doi: 10.1371/journal.pone.0095426
– volume: 2
  start-page: 201
  year: 1999
  ident: 10.1016/j.jbiomech.2020.110044_b0015
  article-title: A dynamic optimization solution for vertical jumping in three dimensions
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/10255849908907988
– volume: 49
  start-page: 1238
  year: 2016
  ident: 10.1016/j.jbiomech.2020.110044_b0140
  article-title: An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.02.046
– volume: 34
  start-page: 306
  year: 2011
  ident: 10.1016/j.jbiomech.2020.110044_b0170
  article-title: Palpatory accuracy of lumbar spinous processes using multiple bony landmarks
  publication-title: J. Manipulative Physiol. Ther.
  doi: 10.1016/j.jmpt.2011.04.006
– volume: 70
  start-page: 175
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110044_b0095
  article-title: Thoracolumbar spine loading associated with kinematics of the young and the elderly during activities of daily living
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.11.033
– volume: 48
  start-page: 396
  year: 2015
  ident: 10.1016/j.jbiomech.2020.110044_b0135
  article-title: Methods for determining hip and lumbosacral joint centers in a seated position from external anatomical landmarks
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.11.040
– volume: 16
  start-page: 687
  year: 2007
  ident: 10.1016/j.jbiomech.2020.110044_b0020
  article-title: Analysis of squat and stoop dynamic liftings: Muscle forces and internal spinal loads
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-006-0240-7
– volume: 70
  start-page: 96
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110044_b0125
  article-title: Estimation of spinal joint centers from external back profile and anatomical landmarks
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.11.013
– volume: 30
  start-page: 1319
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110044_b0120
  article-title: Test-retest reliability and validity of a motion capture (MOCAP) system for measuring thoracic and lumbar spinal curvatures and sacral inclination in the sagittal plane
  publication-title: J. Back Musculoskelet. Rehabil.
  doi: 10.3233/BMR-169750
– volume: 20
  start-page: 934
  year: 2020
  ident: 10.1016/j.jbiomech.2020.110044_b0160
  article-title: A subject-specific method to measure dynamic spinal alignment in adult spinal deformity
  publication-title: Spine J.
  doi: 10.1016/j.spinee.2020.02.004
– volume: 22
  start-page: 451
  year: 2019
  ident: 10.1016/j.jbiomech.2020.110044_b0025
  article-title: Validation of an OpenSim full-body model with detailed lumbar spine for estimating lower lumbar spine loads during symmetric and asymmetric lifting tasks
  publication-title: Comput. Meth. Biomech. Biomed. Engin.
  doi: 10.1080/10255842.2018.1564819
– volume: 46
  start-page: 1
  year: 2016
  ident: 10.1016/j.jbiomech.2020.110044_b0105
  article-title: Analytical evaluation of the effects of inconsistent anthropometric measurements on joint kinematics in motion capturing
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.01.024
– volume: 29
  start-page: 1223
  year: 1996
  ident: 10.1016/j.jbiomech.2020.110044_b0055
  article-title: Adjustments to zatsiorsky-seluyanov’s segment inertia parameters
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00178-6
– volume: 22
  start-page: 1
  year: 1989
  ident: 10.1016/j.jbiomech.2020.110044_b0175
  article-title: A planar model of the knee joint to characterize the knee extensor mechanism
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(89)90179-6
– volume: 37
  start-page: 155
  year: 1999
  ident: 10.1016/j.jbiomech.2020.110044_b0060
  article-title: Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02513282
– volume: 10
  year: 2015
  ident: 10.1016/j.jbiomech.2020.110044_b0155
  article-title: Using skin markers for spinal curvature quantification in main thoracic adolescent idiopathic scoliosis: An explorative radiographic study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0135689
– volume: 35
  start-page: 2164
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110044_b0040
  article-title: Incorporation of CT-based measurements of trunk anatomy into subject-specific musculoskeletal models of the spine influences vertebral loading predictions
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.23524
– volume: 54
  start-page: 1940
  year: 2007
  ident: 10.1016/j.jbiomech.2020.110044_b0065
  article-title: OpenSim: Open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 37
  start-page: 757
  year: 1990
  ident: 10.1016/j.jbiomech.2020.110044_b0070
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.102791
– year: 2020
  ident: 10.1016/j.jbiomech.2020.110044_b0090
  article-title: Validity of flexicurve and motion capture for measurements of thoracic kyphosis versus standing radiographic measurements
  publication-title: JOR Spine
  doi: 10.1002/jsp2.1120
– ident: 10.1016/j.jbiomech.2020.110044_b0130
  doi: 10.1007/BF02667349
– volume: 68
  start-page: 107
  year: 2018
  ident: 10.1016/j.jbiomech.2020.110044_b0005
  article-title: Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.12.001
– volume: 33
  start-page: 354
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110044_b0100
  article-title: Accuracy and Reliability of Marker-Based Approaches to Scale the Pelvis, Thigh, and Shank Segments in Musculoskeletal Models
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.2016-0282
– volume: 42
  start-page: 650
  year: 1971
  ident: 10.1016/j.jbiomech.2020.110044_b0110
  article-title: Inertial properties of a segmented cadaver trunk: their implications in acceleration injuries
  publication-title: Aerosp. Med.
– volume: 14
  start-page: 367
  year: 1999
  ident: 10.1016/j.jbiomech.2020.110044_b0085
  article-title: Variation in spinal load and trunk dynamics during repeated lifting exertions
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(99)00004-2
– volume: 49
  start-page: 807
  year: 2016
  ident: 10.1016/j.jbiomech.2020.110044_b0145
  article-title: Between-day reliability of three-dimensional motion analysis of the trunk: A comparison of marker based protocols
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.02.030
– volume: 123
  start-page: 381
  year: 2001
  ident: 10.1016/j.jbiomech.2020.110044_b0010
  article-title: Dynamic optimization of human walking
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1392310
– volume: 137
  start-page: 1
  year: 2015
  ident: 10.1016/j.jbiomech.2020.110044_b0030
  article-title: Development and Validation of a Musculoskeletal Model of the Fully Articulated Thoracolumbar Spine and Rib Cage
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4030408
– volume: 28
  start-page: 386
  year: 2005
  ident: 10.1016/j.jbiomech.2020.110044_b0075
  article-title: Implications for the use of postural analysis as a clinical diagnostic tool: Reliability of quantifying upright standing spinal postures from photographic images
  publication-title: J. Manipulative Physiol. Ther.
  doi: 10.1016/j.jmpt.2005.06.006
– volume: 30
  start-page: 735
  year: 2017
  ident: 10.1016/j.jbiomech.2020.110044_b0080
  article-title: Sensitivity for palpating lumbopelvic soft- tissues and bony landmarks and its associated factors : A single-blinded diagnostic accuracy study
  publication-title: J. Back Musculoskelet. Rehabil.
  doi: 10.3233/BMR-150356
SSID ssj0007479
Score 2.4871306
Snippet This study evaluated the between-session reliability of creating subject-specific musculoskeletal models with optoelectronic motion capture data, and using...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110044
SubjectTerms Adult
Aged
Ankle
Back pain
Biomechanical Phenomena
Correlation coefficients
Curvature
Error analysis
Hip joint
Humans
Investigations
Markers
Middle Aged
Model scaling
Motion analysis
Motion capture
Musculoskeletal model
Optoelectronics
Pelvis
Posture
Range of Motion, Articular
Reliability analysis
Repeatability
Reproducibility of Results
Rotation
Spine
Spine loading
Standard error
Vertebrae
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSAgOFWx5LC3ISIib6SZ-JDlVLaKqkMqJSnuzEtsR3bZJaHYr9dw_zoztpFsQFO0xnt21ZjLz2fPNDCEfaoiJDnA7U1lZMwEBhpWJcUy6EuJRZSrpM_jH39TRifg6l_N44dZHWuXgE72jtq3BO_LdVEjEKnCi2ut-MpwahdnVOELjIXmErcvQqrP5eODC3vCR4pEwgAGztQrhxaeFr2_3CYnUs-FnQvwtOP0JPn_nUK4FpcNnZDOiSbof1P-cPHDNhGztN3CSvrimH6nnd_qL8wl5utZ6cEIeH8ek-ha5OQhcLdaHHh300p2fhvbd17Stab-q8LKGYVEmEovoxQrZq21_BiELsDv103R6XApokvYdfCu18DtXzlIsX6Ftt2xv5-3QMDmImrLD9AVFkuoLcnL45fvnIxZnMzADAGTJVGpqXovapjKFI4mUPJNGlE5Viaqks4k1mUngw0HhwtVGgiPB-VfWljzlnL8kG03buNeEJsqUVpm84rNSFOASXG6zJKkKbuosF-mUyEEp2sTG5Tg_41wPDLWFHpSpUZk6KHNKdke5LrTuuFciG3Suh8JUcKUaosu9ksUoGaFLgCT_JbszmJeODqTXt-Y-Je_Hx_DqYz6nbFy7wjVCKUSEfEpeBWscN8pBK3BuymBLd-x0XIBtxe8-aU5_-PbiOc9BCcWbf_-tbfIE9-DLMosdsrG8XLm3gM-W1Tv_Ev4C7Q49cw
  priority: 102
  providerName: ProQuest
Title Between-session reliability of subject-specific musculoskeletal models of the spine derived from optoelectronic motion capture data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929020304681
https://dx.doi.org/10.1016/j.jbiomech.2020.110044
https://www.ncbi.nlm.nih.gov/pubmed/32977297
https://www.proquest.com/docview/2453977338
https://www.proquest.com/docview/2446674153
https://pubmed.ncbi.nlm.nih.gov/PMC8383199
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KC2N7GF26j2xt0WDsTU1tSZb9mJaWbKNhjBXyZmxZZsla29TJoC972T_eO_mjycboYAQSYuscK3e6O_l-dwfwLkebaNFv54FOci7RwPDEM5Yrm6A9Sk2qXAT_YhpMLuXHmZptwWmXC0Owylb3Nzrdaev2yKj9N0fVfE45vrja_IhCabjJc-nXUmqS8qOf9zAPdJdbmIfHafRalvDiaOFy3F1QwneI-GMp_2ag_nRAf8dRrhmm81142nqUbNzc9DPYssUA9sYF7qavb9l75jCe7uH5AJ6slR8cwKOLNrC-B79OGrwWr5s6HezGXs2bEt63rMxZvUrpgQ2nxEwCF7HrFSFYy_o7mi3035nrqFPTUPQoWV3hVVmGv_PDZoxSWFhZLcv7njus6R7ETFJRCIMRUPU5XJ6ffT2d8LY_AzfohCx54Jtc5DLPfOXjtkQpoZWRiQ1SL0iVzbzMaOPhSyDTpc2NQmVCPbCyLBG-EOIFbBdlYV8B8wKTZIEJU3GcyAjVgg0z7XlpJEyuQ-kPQXVMiU1bvJx6aFzFHUptEXfMjImZccPMIYx6uqop3_Eghe54HnfJqahOY7QwD1JGPeWGCP8T7X4nXnGrROrYl4rccyHCIbztT-Pyp5hOUthyRWNkEJBXKIbwspHGfqICuYJ7J41T2pDTfgCVFt88U8y_uRLjoQiRCdHr_5jSG3hM31zeZrQP28ublT1AB26ZHroViu96pg9hZ_zh02SKnydn089f7gAyzkuk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIvE4INhC2VLASMDNdBPbSfaAUHlUW9rtqZX2ZhLbEV3aJG12QXvm__AbmbGTdAuCcqn2GE821oxnvvG8CHmRg020gNtZFKc5E2BgWBpoy6RNwR5lOpMugj8-iEZH4tNETlbIz7YWBtMqW53oFLUpNd6Rb4VCIlYBj-ptdcZwahRGV9sRGl4s9uziO7hs9ZvdD8Dfl2G48_Hw_Yg1UwWYBtM5Y1Goc56L3IQyBDAtJY-lFqmNsiDKpDWB0bEO4MfhU4XNtYQjgJObjEl5yPECFFT-DTC8A3T24knn4GEv-ialJGAAOwZLFcnT11NXT-8CIKHLvh8I8Tdj-CfY_T1nc8kI7twjdxv0Sre9uN0nK7bokbXtAjz30wV9RV0-qbuo75E7S60Oe-TmuAnir5Ef73xuGKt9TxB6bk-OfbvwBS1zWs8zvBxiWASKiUz0dI7ZsmX9FUwk-ArUTe-pcSmgV1pX8FZq4H--WUOxXIaW1ay8mO9D_aQiqtMKwyUUk2IfkKNr4dpDslqUhX1EaBDp1EQ6yfggFUNQQTYxcRBkQ67zOBFhn8iWKUo3jdJxXseJajPipqplpkJmKs_MPtnq6CrfKuRKirjluWoLYUF1K7BmV1IOO8oGKnkI9F-0m614qUZh1eriePXJ8-4xqBqMH6WFLee4RkQRIlDeJ-teGruNcuAK-GkxbOmSnHYLsI355SfF8RfXzjzhCTBhuPHvz3pGbo0Ox_tqf_dg7zG5jftxJaHDTbI6O5_bJ4ANZ9lTdyAp-XzdGuAX-SN6RA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnTTBA4KOj8IAIwFvpk1i5-MBoY2t2hirJsSkvYXEccTKloSlBfWZ_4q_jjs7yToQjJepj7HTWGff_c73uzuA5znaRI24nftBknOBBoYnjtJc6gTtUapSaSL4BxN_90i8O5bHK_CzzYUhWmWrE42izkpFd-RDV0jCKuhRDfOGFnG4PX5TfeXUQYoirW07DbtF9vXiO7pv9eu9bZT1C9cd73x8u8ubDgNcoRmdcd9VuZeLPHOli8BaSi-QSiTaTx0_lTpzMhUoB38efrbQuZJ4HKiLU5YlnuvRZSiq_9WAvKIerG7tTA4_dHYAgXpDMHE4gpDRUn7y9NXUZNebcIhruPgjIf5mGv-Evr8zOJdM4vg23GqwLNu0m-8OrOiiD-ubBfrxZwv2khl2qbm278PNpcKHfVg7aEL66_BjyzLFeG0rhLBzfXpii4cvWJmzep7SVRGnlFCiNbGzOXFny_oLGkz0HJjp5VPTUMSyrK7wrSzD__mmM0bJM6ysZuVFtx9m-xYxlVQUPGFEkb0LR9cit3vQK8pCPwDm-CrJfBWm3igRESokHWaB46SRp_IgFO4AZCuUWDVl06l7x2nc8uOmcSvMmIQZW2EOYNjNq2zhkCtnBK3M4zYtFhV5jLbtyplRN7MBThYQ_dfcjXZ7xY36quOLwzaAZ91jVDwUTUoKXc5pjPB9wqPeAO7b3dgt1EOpoNcW4JIu7dNuABU1v_ykOPlsipuHXohCiB7--7Oewhqe_vj93mT_Edyg5Zj80GgDerPzuX6MQHGWPmlOJINP160EfgHjZ3_f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Between-session+reliability+of+subject-specific+musculoskeletal+models+of+the+spine+derived+from+optoelectronic+motion+capture+data&rft.jtitle=Journal+of+biomechanics&rft.au=Burkhart%2C+Katelyn&rft.au=Grindle%2C+Daniel&rft.au=Bouxsein%2C+Mary+L.&rft.au=Anderson%2C+Dennis+E.&rft.date=2020-11-09&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=112&rft_id=info:doi/10.1016%2Fj.jbiomech.2020.110044&rft.externalDocID=S0021929020304681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon