DeepPurpose: a deep learning library for drug–target interaction prediction

Abstract Summary Accurate prediction of drug–target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bi...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 36; no. 22-23; pp. 5545 - 5547
Main Authors Huang, Kexin, Fu, Tianfan, Glass, Lucas M, Zitnik, Marinka, Xiao, Cao, Sun, Jimeng
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.12.2020
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
DOI10.1093/bioinformatics/btaa1005

Cover

Loading…
Abstract Abstract Summary Accurate prediction of drug–target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many other useful features. We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets. Availability and implementation https://github.com/kexinhuang12345/DeepPurpose. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Accurate prediction of drug-target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many other useful features. We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets.SUMMARYAccurate prediction of drug-target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many other useful features. We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets.https://github.com/kexinhuang12345/DeepPurpose.AVAILABILITY AND IMPLEMENTATIONhttps://github.com/kexinhuang12345/DeepPurpose.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Accurate prediction of drug-target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many other useful features. We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets. https://github.com/kexinhuang12345/DeepPurpose. Supplementary data are available at Bioinformatics online.
Abstract Summary Accurate prediction of drug–target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many other useful features. We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets. Availability and implementation https://github.com/kexinhuang12345/DeepPurpose. Supplementary information Supplementary data are available at Bioinformatics online.
Accurate prediction of drug–target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many other useful features. We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets. Availability and implementation https://github.com/kexinhuang12345/DeepPurpose. Supplementary information Supplementary data are available at Bioinformatics online.
Author Sun, Jimeng
Fu, Tianfan
Glass, Lucas M
Huang, Kexin
Xiao, Cao
Zitnik, Marinka
AuthorAffiliation btaa1005-aff4 University of Illinois at Urbana-Champaign , Urbana, IL 61801, USA
btaa1005-aff3 IQVIA , Cambridge, MA 02139, USA
btaa1005-aff1 Harvard University , Boston, MA 02115, USA
btaa1005-aff2 Georgia Institute of Technology , Atlanta, GA 30332, USA
AuthorAffiliation_xml – name: btaa1005-aff2 Georgia Institute of Technology , Atlanta, GA 30332, USA
– name: btaa1005-aff4 University of Illinois at Urbana-Champaign , Urbana, IL 61801, USA
– name: btaa1005-aff1 Harvard University , Boston, MA 02115, USA
– name: btaa1005-aff3 IQVIA , Cambridge, MA 02139, USA
Author_xml – sequence: 1
  givenname: Kexin
  orcidid: 0000-0001-6693-8390
  surname: Huang
  fullname: Huang, Kexin
– sequence: 2
  givenname: Tianfan
  surname: Fu
  fullname: Fu, Tianfan
– sequence: 3
  givenname: Lucas M
  surname: Glass
  fullname: Glass, Lucas M
– sequence: 4
  givenname: Marinka
  surname: Zitnik
  fullname: Zitnik, Marinka
– sequence: 5
  givenname: Cao
  surname: Xiao
  fullname: Xiao, Cao
– sequence: 6
  givenname: Jimeng
  surname: Sun
  fullname: Sun, Jimeng
  email: jimeng@illinois.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33275143$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1O3TAQhS1ExV95BRqpm25usePYTpCKVNFfCUQX7dqaOONbo1w72E6l7ngH3rBPUtPLRYVNu_JY_s6Z45l9su2DR0JeMPqa0Y4f9y44b0NcQXYmHfcZgFEqtsge41Itmpax7Yea8l2yn9IVLQQVcofscl4rwRq-Ry7eIU5f5jiFhCcVVEO5ViNC9M4vq9H1EeLPqnSqhjgvf93cZohLzJXzGSOY7IKvpoiD-1M-J88sjAkP788D8u3D-69nnxbnlx8_n709XxghmrwQnbKttVLSFjrTSdkxZRQTUqGtpW3oQCm3lKsWaiONamQPirOhEYoBw4EfkNO17zT3KxwM-hxh1FN0qxJXB3D68Yt33_Uy_NAtZbKRqhi8ujeI4XrGlPXKJYPjCB7DnHRdIMmE4rSgL5-gV2GOvnxPc1YXQ97xulBHfyd6iLKZdAHerAETQ0oRrTYuw93QSkA3akb13Wb1483qzWaLXj3Rb1r8W1mvlWGe_lv0G6q8w4Q
CitedBy_id crossref_primary_10_1093_bib_bbae121
crossref_primary_10_1016_j_eswa_2024_123730
crossref_primary_10_3390_molecules27165114
crossref_primary_10_1016_j_csbj_2023_01_021
crossref_primary_10_1515_sagmb_2024_0004
crossref_primary_10_3389_fgene_2025_1471037
crossref_primary_10_1016_j_isci_2023_107646
crossref_primary_10_1080_23311916_2021_1958666
crossref_primary_10_1016_j_aichem_2024_100070
crossref_primary_10_1016_j_cjprs_2022_10_004
crossref_primary_10_1016_j_str_2024_02_004
crossref_primary_10_1021_acsomega_2c06653
crossref_primary_10_1093_bib_bbae480
crossref_primary_10_1016_j_compbiolchem_2024_108172
crossref_primary_10_3390_ijms25073747
crossref_primary_10_1021_acs_jcim_4c00584
crossref_primary_10_1038_s41467_025_57828_0
crossref_primary_10_1016_j_patter_2022_100445
crossref_primary_10_1080_07391102_2024_2316767
crossref_primary_10_3389_fphar_2024_1459954
crossref_primary_10_1016_j_jiph_2023_04_019
crossref_primary_10_1007_s11030_021_10225_3
crossref_primary_10_1142_S0219720024500161
crossref_primary_10_1016_j_ejmech_2023_115500
crossref_primary_10_1016_j_compbiomed_2023_107283
crossref_primary_10_1016_j_eswa_2023_121274
crossref_primary_10_1021_acsomega_2c06781
crossref_primary_10_1093_bib_bbad261
crossref_primary_10_1021_acs_jctc_2c01314
crossref_primary_10_13005_bbra_3318
crossref_primary_10_1038_s41467_023_37572_z
crossref_primary_10_3390_biomedicines11072025
crossref_primary_10_1080_07391102_2023_2250479
crossref_primary_10_1016_j_compbiomed_2024_108435
crossref_primary_10_3934_mbe_2022151
crossref_primary_10_1093_bib_bbad386
crossref_primary_10_1007_s10822_024_00571_3
crossref_primary_10_1002_tcr_202400182
crossref_primary_10_1038_s41598_025_86840_z
crossref_primary_10_48175_IJARSCT_22854
crossref_primary_10_1093_bib_bbac326
crossref_primary_10_1007_s11030_021_10217_3
crossref_primary_10_1016_j_neucom_2023_127203
crossref_primary_10_1038_s41467_023_43597_1
crossref_primary_10_1186_s12859_023_05181_8
crossref_primary_10_1007_s00894_023_05492_w
crossref_primary_10_1080_07391102_2023_2293277
crossref_primary_10_1093_bib_bbaf078
crossref_primary_10_1073_pnas_2220778120
crossref_primary_10_1016_j_xcrp_2023_101520
crossref_primary_10_1080_1062936X_2024_2306336
crossref_primary_10_1016_j_biopha_2022_113350
crossref_primary_10_1002_adts_202400378
crossref_primary_10_3390_genes15010054
crossref_primary_10_1093_bioinformatics_btac035
crossref_primary_10_3389_fphar_2022_854965
crossref_primary_10_3389_fphar_2022_892559
crossref_primary_10_7554_eLife_97330
crossref_primary_10_1093_bioinformatics_btac676
crossref_primary_10_1371_journal_pone_0289890
crossref_primary_10_1038_s41598_022_17573_6
crossref_primary_10_1016_j_bbrc_2023_07_018
crossref_primary_10_1016_j_compbiomed_2023_107226
crossref_primary_10_1016_j_isci_2022_105314
crossref_primary_10_1093_bib_bbad327
crossref_primary_10_1007_s00894_022_05373_8
crossref_primary_10_1016_j_bmc_2022_117003
crossref_primary_10_1109_TKDE_2021_3052150
crossref_primary_10_1016_j_bmc_2025_118095
crossref_primary_10_1038_s41598_022_08787_9
crossref_primary_10_1371_journal_pone_0276609
crossref_primary_10_1016_j_scitotenv_2021_151103
crossref_primary_10_1080_07391102_2024_2435634
crossref_primary_10_1186_s13321_022_00666_9
crossref_primary_10_18632_aging_206190
crossref_primary_10_1002_qub2_32
crossref_primary_10_1021_acs_jcim_4c00171
crossref_primary_10_3390_ijms25147753
crossref_primary_10_1007_s44163_024_00192_7
crossref_primary_10_3389_fphar_2022_1098800
crossref_primary_10_1093_bib_bbac199
crossref_primary_10_3389_frai_2024_1372161
crossref_primary_10_1007_s00521_024_10814_x
crossref_primary_10_1016_j_compbiomed_2024_108339
crossref_primary_10_1021_acs_jcim_3c00866
crossref_primary_10_1097_PRS_0000000000010350
crossref_primary_10_1109_TCBB_2021_3121275
crossref_primary_10_3390_biomedicines13020262
crossref_primary_10_1039_D1SC06946B
crossref_primary_10_1109_TCBB_2022_3205282
crossref_primary_10_1109_TNNLS_2021_3111745
crossref_primary_10_1371_journal_pcbi_1011597
crossref_primary_10_1038_s41598_022_16493_9
crossref_primary_10_1093_bib_bbac226
crossref_primary_10_1080_07391102_2022_2042389
crossref_primary_10_1109_TCBB_2023_3237863
crossref_primary_10_3389_fphar_2022_1007556
crossref_primary_10_1016_j_heliyon_2023_e18622
crossref_primary_10_3390_ijms22189983
crossref_primary_10_1007_s12672_025_01978_6
crossref_primary_10_1038_s42003_024_06797_z
crossref_primary_10_1038_s42256_024_00876_w
crossref_primary_10_1038_s41467_021_27137_3
crossref_primary_10_1186_s12859_021_04464_2
crossref_primary_10_3390_biom11050643
crossref_primary_10_3390_molecules27134098
crossref_primary_10_1021_acs_jcim_4c00422
crossref_primary_10_1093_bib_bbac263
crossref_primary_10_3389_fphar_2024_1331062
crossref_primary_10_1093_bioinformatics_btac731
crossref_primary_10_1155_2022_2461055
crossref_primary_10_3390_ijerph18031117
crossref_primary_10_1021_acs_jcim_4c01907
crossref_primary_10_1109_JBHI_2021_3121798
crossref_primary_10_3390_molecules27103112
crossref_primary_10_1002_jcc_27388
crossref_primary_10_3390_ijms25168917
crossref_primary_10_15302_J_QB_022_0320
crossref_primary_10_1016_j_aichem_2023_100039
crossref_primary_10_3390_ijms24076573
crossref_primary_10_1016_j_ailsci_2024_100100
crossref_primary_10_3390_biology12040519
crossref_primary_10_1039_D2CP05332B
crossref_primary_10_3389_fgene_2021_638330
crossref_primary_10_1007_s00530_024_01325_9
crossref_primary_10_3390_ijms242116013
crossref_primary_10_1109_TBDATA_2020_3048644
crossref_primary_10_1021_acsomega_3c00030
crossref_primary_10_1016_j_compbiomed_2022_105214
crossref_primary_10_1016_j_crphar_2021_100042
crossref_primary_10_1155_2024_6621199
crossref_primary_10_3389_fgene_2021_738274
crossref_primary_10_3389_fmolb_2023_1227371
crossref_primary_10_1016_j_compbiomed_2023_107372
crossref_primary_10_1016_j_scitotenv_2022_153639
crossref_primary_10_3390_molecules30020274
crossref_primary_10_1093_bib_bbae340
crossref_primary_10_1093_bioinformatics_btae416
crossref_primary_10_1007_s00284_023_03282_4
crossref_primary_10_1016_j_eng_2023_01_014
crossref_primary_10_3389_fchem_2024_1380266
crossref_primary_10_1016_j_drudis_2022_02_023
crossref_primary_10_1038_s42256_021_00438_4
crossref_primary_10_1093_bioinformatics_btae135
crossref_primary_10_1021_acs_jcim_4c02264
crossref_primary_10_3390_foods12183386
crossref_primary_10_7554_eLife_97330_3
crossref_primary_10_2174_1574893616666211119093100
crossref_primary_10_1021_acsami_2c08891
crossref_primary_10_1016_j_ejmech_2025_117269
crossref_primary_10_1109_JBHI_2024_3402529
crossref_primary_10_3390_molecules27092980
crossref_primary_10_1093_biomet_asae010
crossref_primary_10_1093_bib_bbaf024
crossref_primary_10_2174_0118715206270568231129054853
crossref_primary_10_1093_bioinformatics_btad615
crossref_primary_10_1186_s12864_022_08648_9
crossref_primary_10_3390_biom12121754
crossref_primary_10_1016_j_ymeth_2022_02_007
crossref_primary_10_2174_0115734099282231240214095025
crossref_primary_10_3390_ph18030329
crossref_primary_10_1016_j_envint_2024_109032
crossref_primary_10_1093_bib_bbad368
crossref_primary_10_1002_cpz1_302
crossref_primary_10_1186_s12859_024_05698_6
crossref_primary_10_1093_bioinformatics_btac485
crossref_primary_10_1021_acs_jcim_4c00772
crossref_primary_10_1093_bib_bbad120
crossref_primary_10_1002_wcms_1597
crossref_primary_10_7554_eLife_68832
crossref_primary_10_1254_fpj_22072
crossref_primary_10_1093_bib_bbac427
crossref_primary_10_1021_acs_jcim_2c01008
crossref_primary_10_1007_s11063_021_10617_4
crossref_primary_10_1109_TETC_2023_3238963
crossref_primary_10_2174_1573409918666220816112206
crossref_primary_10_1007_s11030_024_10975_w
Cites_doi 10.1093/nar/gkl999
10.1038/nm.4306
10.1093/bib/bbu010
10.1038/nrd.2016.230
10.1371/journal.pcbi.1007129
10.1021/acs.jcim.9b00237
10.1186/s13321-017-0209-z
10.1021/acschembio.6b00346
10.1111/tmi.13383
10.1016/j.inffus.2018.09.012
10.1038/nbt.1990
10.1093/nar/gky1033
10.1093/bioinformatics/bty593
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. 2020
The Author(s) 2020. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. 2020
– notice: The Author(s) 2020. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1093/bioinformatics/btaa1005
DatabaseName Oxford Journals Open Access Collection (Oxford University Press)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection (Oxford University Press)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 5547
ExternalDocumentID PMC8016467
33275143
10_1093_bioinformatics_btaa1005
10.1093/bioinformatics/btaa1005
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Report
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R56 HL138415
– fundername: NINDS NIH HHS
  grantid: R01 NS107291
– fundername: ;
– fundername: ;
  grantid: SCH-2014438; IIS-1418511; CCF-1533768; IIS-1838042
– fundername: ;
  grantid: R01 1R01NS107291-01; R56HL138415
– fundername: ;
  grantid: IIS-2030459; IIS-2033384
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
ROX
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c554t-597f8ff6608a9c966917c71567ef26f40d003f0378a2c6c746ba731d4571a1ed3
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:16:40 EDT 2025
Fri Jul 11 10:06:14 EDT 2025
Mon Jun 30 10:41:31 EDT 2025
Wed Feb 19 02:28:39 EST 2025
Tue Jul 01 02:33:54 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Apr 02 07:04:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22-23
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2020. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-597f8ff6608a9c966917c71567ef26f40d003f0378a2c6c746ba731d4571a1ed3
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6693-8390
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btaa1005
PMID 33275143
PQID 3128013932
PQPubID 36124
PageCount 3
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8016467
proquest_miscellaneous_2467615730
proquest_journals_3128013932
pubmed_primary_33275143
crossref_citationtrail_10_1093_bioinformatics_btaa1005
crossref_primary_10_1093_bioinformatics_btaa1005
oup_primary_10_1093_bioinformatics_btaa1005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2020
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Yang (2023062707100304900_btaa1005-B15) 2019; 59
Kim (2023062707100304900_btaa1005-B6) 2019; 47
Rutkowska (2023062707100304900_btaa1005-B12) 2016; 11
Corsello (2023062707100304900_btaa1005-B3) 2017; 23
Santos (2023062707100304900_btaa1005-B13) 2017; 16
Zitnik (2023062707100304900_btaa1005-B16) 2019; 50
Lee (2023062707100304900_btaa1005-B7) 2019; 15
Abid (2023062707100304900_btaa1005-B1) 2019
Pahikkala (2023062707100304900_btaa1005-B11) 2015; 16
Cho (2023062707100304900_btaa1005-B2) 2014
Liu (2023062707100304900_btaa1005-B8) 2007; 35
Öztürk (2023062707100304900_btaa1005-B10) 2018; 34
Nguyen (2023062707100304900_btaa1005-B9) 2020
Davis (2023062707100304900_btaa1005-B4) 2011; 29
He (2023062707100304900_btaa1005-B5) 2017; 9
Velavan (2023062707100304900_btaa1005-B14) 2020; 25
References_xml – volume: 35
  start-page: D198
  year: 2007
  ident: 2023062707100304900_btaa1005-B8
  article-title: BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl999
– volume: 23
  start-page: 405
  year: 2017
  ident: 2023062707100304900_btaa1005-B3
  article-title: The drug repurposing hub: a next-generation drug library and information resource
  publication-title: Nat. Med
  doi: 10.1038/nm.4306
– year: 2019
  ident: 2023062707100304900_btaa1005-B1
– volume: 16
  start-page: 325
  year: 2015
  ident: 2023062707100304900_btaa1005-B11
  article-title: Toward more realistic drug–target interaction predictions
  publication-title: Brief. Bioinf
  doi: 10.1093/bib/bbu010
– volume: 16
  start-page: 19
  year: 2017
  ident: 2023062707100304900_btaa1005-B13
  article-title: A comprehensive map of molecular drug targets
  publication-title: Nat. Rev. Drug Discov
  doi: 10.1038/nrd.2016.230
– volume: 15
  start-page: e1007129
  year: 2019
  ident: 2023062707100304900_btaa1005-B7
  article-title: DeepConv-DTI: prediction of drug–target interactions via deep learning with convolution on protein sequences
  publication-title: PLOS Comput. Biol
  doi: 10.1371/journal.pcbi.1007129
– start-page: 103
  year: 2014
  ident: 2023062707100304900_btaa1005-B2
– volume: 59
  start-page: 3370
  year: 2019
  ident: 2023062707100304900_btaa1005-B15
  article-title: Analyzing learned molecular representations for property prediction
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.9b00237
– volume: 9
  start-page: 24
  year: 2017
  ident: 2023062707100304900_btaa1005-B5
  article-title: SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines
  publication-title: J. Cheminf
  doi: 10.1186/s13321-017-0209-z
– year: 2020
  ident: 2023062707100304900_btaa1005-B9
– volume: 11
  start-page: 2541
  year: 2016
  ident: 2023062707100304900_btaa1005-B12
  article-title: A modular probe strategy for drug localization, target identification and target occupancy measurement on single cell level
  publication-title: ACS Chem. Biol
  doi: 10.1021/acschembio.6b00346
– volume: 25
  start-page: 278
  year: 2020
  ident: 2023062707100304900_btaa1005-B14
  article-title: The COVID19 epidemic
  publication-title: Trop. Med. Int. Health
  doi: 10.1111/tmi.13383
– volume: 50
  start-page: 71
  year: 2019
  ident: 2023062707100304900_btaa1005-B16
  article-title: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities
  publication-title: Inf. Fus
  doi: 10.1016/j.inffus.2018.09.012
– volume: 29
  start-page: 1046
  year: 2011
  ident: 2023062707100304900_btaa1005-B4
  article-title: Comprehensive analysis of kinase inhibitor selectivity
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.1990
– volume: 47
  start-page: D1102
  year: 2019
  ident: 2023062707100304900_btaa1005-B6
  article-title: Pubchem 2019 update: improved access to chemical data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1033
– volume: 34
  start-page: i821
  year: 2018
  ident: 2023062707100304900_btaa1005-B10
  article-title: DeepDTA: deep drug–target binding affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty593
SSID ssj0005056
Score 2.6862292
Snippet Abstract Summary Accurate prediction of drug–target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising...
Accurate prediction of drug-target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI...
Accurate prediction of drug–target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5545
SubjectTerms Applications Notes
Availability
Bioinformatics
Deep Learning
Drug Development
Drug Discovery
Pharmaceutical Preparations
Prediction models
Proteins
Title DeepPurpose: a deep learning library for drug–target interaction prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/33275143
https://www.proquest.com/docview/3128013932
https://www.proquest.com/docview/2467615730
https://pubmed.ncbi.nlm.nih.gov/PMC8016467
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5kQfAivq2uEsGblO0m2ST1JuqyCD4OCnsraZquC9Jd9nHw5n_wH_pLnPSx2gVRby1J-phJOt90Jt8AnPKQxq6aJLqpXPqcUevHllmfo-lOQ2M6yuYJsnei98Rv-p3-CtBqL8xyCD9krXg4KklEHXFxK55p3S5oS9EUO7r8x_v-V1ZHkBdsdURkPlcBq1K6fr5OzSDVNrl9w5rLKZPfbFB3A9ZL8EguCm1vworNtmC1KCf5ug23V9aOH1Byo6k9J5okeErKshADUv6vIfhsJJnMBx9v70UaOHGUEZNigwMZT1zkxh3uwFP3-vGy55flEnyDmGDmo2uQqjQVIlA6NOjGoCdmJPpn0qZUpDxIcAWnAZNKUyOM5CLWkrUT3pFt3bYJ24VGNsrsPhCpRWBpohEMWK5CpXSqhAl44siqjEw8EJXMIlNyibuSFi9REdNmUV3YUSVsD4LFwHFBp_H7kDNUyt97NyvlReVqnEYMjbCDuox6cLJoxnXkgiM6s6P5NKJoMRDd4QfPg71C14t7MkalA5YeyNosWHRwHN31lmz4nHN1q5zATR786yUOYY06tz7PmmlCYzaZ2yPEPrP4OJ_tn-5sCKs
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepPurpose%3A+a+deep+learning+library+for+drug%E2%80%93target+interaction+prediction&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Huang%2C+Kexin&rft.au=Fu%2C+Tianfan&rft.au=Glass%2C+Lucas+M&rft.au=Zitnik%2C+Marinka&rft.date=2020-12-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=36&rft.issue=22-23&rft.spage=5545&rft.epage=5547&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaa1005&rft_id=info%3Apmid%2F33275143&rft.externalDocID=PMC8016467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon