A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility
RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we sho...
Saved in:
Published in | Cell host & microbe Vol. 25; no. 1; pp. 153 - 165.e5 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
09.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens.
[Display omitted]
•Phytophthora infection increases production of a pool of secondary siRNAs in Arabidopsis•Secondary siRNAs from a PPR gene cluster contribute to defense against Phytophthora•PPR-siRNAs potentially silence Phytophthora transcripts to confer resistance•Phytophthora effector PSR2 suppresses the biogenesis of PPR-siRNAs to promote infection
The role of plant RNAi in defense against eukaryotic pathogens is unclear. Hou et al. report that Arabidopsis produces a reservoir of secondary siRNAs that confer resistance against the notorious pathogen Phytophthora, likely through trans-kingdom gene silencing. However, a Phytophthora effector defeats this defense by specifically inhibiting secondary siRNA biogenesis. |
---|---|
AbstractList | RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens. RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens. [Display omitted] •Phytophthora infection increases production of a pool of secondary siRNAs in Arabidopsis•Secondary siRNAs from a PPR gene cluster contribute to defense against Phytophthora•PPR-siRNAs potentially silence Phytophthora transcripts to confer resistance•Phytophthora effector PSR2 suppresses the biogenesis of PPR-siRNAs to promote infection The role of plant RNAi in defense against eukaryotic pathogens is unclear. Hou et al. report that Arabidopsis produces a reservoir of secondary siRNAs that confer resistance against the notorious pathogen Phytophthora, likely through trans-kingdom gene silencing. However, a Phytophthora effector defeats this defense by specifically inhibiting secondary siRNA biogenesis. RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens.RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens. RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens. The role of plant RNAi in defense against eukaryotic pathogens is unclear. Hou et al. report that Arabidopsis produces a reservoir of secondary siRNAs that confer resistance against the notorious pathogen Phytophthora , likely through trans-kingdom gene silencing. However, a Phytophthora effector defeats this defense by specifically inhibiting secondary siRNA biogenesis. |
Author | Zhai, Jixian Chen, Xuemei Gu, Weifeng Zeng, Liping Choi, Du Seok Ma, Wenbo Rutter, Brian D. Zhai, Yi Innes, Roger W. Feng, Li Ye, Wenwu Karimi, Hana Z. Zhang, Bailong Hou, Yingnan |
AuthorAffiliation | 1 Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA 5 Department of Botany and Plant Science, University of California, Riverside, Riverside, CA 92521, USA 7 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China 4 Department of Biology, Indiana University, Bloomington, IN 47405, USA 2 Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA 3 Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China 6 Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA 8 These authors contributed equally 9 Lead Contact |
AuthorAffiliation_xml | – name: 9 Lead Contact – name: 3 Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China – name: 6 Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA – name: 7 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China – name: 8 These authors contributed equally – name: 5 Department of Botany and Plant Science, University of California, Riverside, Riverside, CA 92521, USA – name: 2 Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA – name: 1 Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA – name: 4 Department of Biology, Indiana University, Bloomington, IN 47405, USA |
Author_xml | – sequence: 1 givenname: Yingnan surname: Hou fullname: Hou, Yingnan organization: Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA – sequence: 2 givenname: Yi surname: Zhai fullname: Zhai, Yi organization: Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA – sequence: 3 givenname: Li surname: Feng fullname: Feng, Li organization: Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 4 givenname: Hana Z. surname: Karimi fullname: Karimi, Hana Z. organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA – sequence: 5 givenname: Brian D. surname: Rutter fullname: Rutter, Brian D. organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA – sequence: 6 givenname: Liping surname: Zeng fullname: Zeng, Liping organization: Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA – sequence: 7 givenname: Du Seok surname: Choi fullname: Choi, Du Seok organization: Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA – sequence: 8 givenname: Bailong surname: Zhang fullname: Zhang, Bailong organization: Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA – sequence: 9 givenname: Weifeng surname: Gu fullname: Gu, Weifeng organization: Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA – sequence: 10 givenname: Xuemei surname: Chen fullname: Chen, Xuemei organization: Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA – sequence: 11 givenname: Wenwu surname: Ye fullname: Ye, Wenwu organization: Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China – sequence: 12 givenname: Roger W. surname: Innes fullname: Innes, Roger W. organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA – sequence: 13 givenname: Jixian surname: Zhai fullname: Zhai, Jixian organization: Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China – sequence: 14 givenname: Wenbo surname: Ma fullname: Ma, Wenbo email: wenbo.ma@ucr.edu organization: Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30595554$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URH_gBVigLNkk-NpxEksIaVRKi6iggpFYWo5z03iUxMH2VJq3x8O0CFhUrK4ln-_4XJ9TcjS7GQl5CbQACtWbTWEGNxWMQlMAFJTWT8gJSF7mFa3k0a8z5BxYc0xOQ9hQKgSt4Rk55lRIIUR5Qr6vspthF90yxMF5nV30PZrofPZtuyweQ8CQrb2eQ_7Jzredm7Kvn1c2iy678W5yEbP3NqAOmIBgcIm2taONu-fkaa_HgC_u5xlZf7hYn1_l118uP56vrnOTno-5KNuSIppW9HWtWaubsmelNDX0CF3NG45dCxRZC7KqSsqRgeYyTU6lEfyMvDvYLtt2ws7gHL0e1eLtpP1OOW3V3zezHdStu1OS0YZTmgxe3xt492OLIarJpj3GUc_otkGxqqKyrjj7DylUIBmHmifpqz9j_c7z8O9J0BwExrsQPPbK2KijdfuUdlRA1b5itVH7itW-YgWgUsUJZf-gD-6PQm8PEKYu7ix6FYzF2WBnfepbdc4-hv8Ekl3AYg |
CitedBy_id | crossref_primary_10_1093_jxb_erad268 crossref_primary_10_1111_nph_16650 crossref_primary_10_1111_nph_19122 crossref_primary_10_1111_mpp_13255 crossref_primary_10_1111_mpp_13250 crossref_primary_10_1111_tpj_16883 crossref_primary_10_18699_VJGB_22_34 crossref_primary_10_7554_eLife_49750 crossref_primary_10_1002_wsbm_1592 crossref_primary_10_1016_j_copbio_2021_06_005 crossref_primary_10_1360_TB_2023_0788 crossref_primary_10_1371_journal_pone_0304790 crossref_primary_10_1038_s41570_022_00443_0 crossref_primary_10_1039_C8FO02295J crossref_primary_10_1038_s41579_022_00710_3 crossref_primary_10_3390_genes10040310 crossref_primary_10_3390_ijms21072333 crossref_primary_10_1080_15476286_2023_2195731 crossref_primary_10_3389_fpls_2021_757925 crossref_primary_10_1016_j_bbrc_2025_151568 crossref_primary_10_1016_j_gde_2019_07_019 crossref_primary_10_1016_j_cell_2023_05_049 crossref_primary_10_1111_nph_19801 crossref_primary_10_1016_j_pbi_2022_102259 crossref_primary_10_1016_j_pbi_2024_102672 crossref_primary_10_3390_ijms23169236 crossref_primary_10_3390_microorganisms10101980 crossref_primary_10_1016_j_pbi_2019_03_014 crossref_primary_10_1038_s41467_024_50782_3 crossref_primary_10_1016_j_tim_2019_08_009 crossref_primary_10_1073_pnas_2114583119 crossref_primary_10_1016_j_tplants_2024_05_001 crossref_primary_10_1038_s41580_021_00425_y crossref_primary_10_1093_femsre_fuab002 crossref_primary_10_3390_plants11223155 crossref_primary_10_1111_mpp_13269 crossref_primary_10_3390_agronomy12122922 crossref_primary_10_1038_s41467_023_40623_0 crossref_primary_10_3390_ijms23126758 crossref_primary_10_1134_S1021443724607407 crossref_primary_10_1146_annurev_arplant_070122_035226 crossref_primary_10_1371_journal_ppat_1008090 crossref_primary_10_1111_nph_15676 crossref_primary_10_1016_j_biotechadv_2022_108092 crossref_primary_10_1002_pld3_70017 crossref_primary_10_1016_j_jgg_2024_12_011 crossref_primary_10_1111_jph_13022 crossref_primary_10_1111_nph_15836 crossref_primary_10_3390_ijms232113433 crossref_primary_10_3389_fpls_2021_610283 crossref_primary_10_1016_j_molimm_2021_04_009 crossref_primary_10_1007_s00425_025_04625_0 crossref_primary_10_31857_S0555109923030133 crossref_primary_10_3390_membranes12040352 crossref_primary_10_1093_jxb_erac512 crossref_primary_10_3389_fmicb_2022_817844 crossref_primary_10_3390_ijms21165701 crossref_primary_10_1016_j_jplph_2021_153451 crossref_primary_10_1111_tpj_14847 crossref_primary_10_1080_15476286_2022_2062172 crossref_primary_10_1186_s40694_022_00146_7 crossref_primary_10_3389_fpls_2024_1411837 crossref_primary_10_1016_j_pmpp_2023_102018 crossref_primary_10_1016_j_virusres_2022_198704 crossref_primary_10_3389_fpls_2023_1258100 crossref_primary_10_1016_j_tplants_2024_09_012 crossref_primary_10_1002_tpg2_20289 crossref_primary_10_1093_plphys_kiac169 crossref_primary_10_3390_ijms26062631 crossref_primary_10_3390_jof7070562 crossref_primary_10_1016_j_gene_2020_145002 crossref_primary_10_1007_s11427_024_2784_3 crossref_primary_10_15252_embj_2021108174 crossref_primary_10_1093_plcell_koac165 crossref_primary_10_1016_j_jbiotec_2022_09_014 crossref_primary_10_1093_pcp_pcae012 crossref_primary_10_3390_plants10030484 crossref_primary_10_1016_j_xplc_2021_100167 crossref_primary_10_1007_s00122_022_04129_5 crossref_primary_10_1111_mpp_13362 crossref_primary_10_1093_nar_gkz1198 crossref_primary_10_1002_btm2_10623 crossref_primary_10_3390_ijms25126798 crossref_primary_10_7554_eLife_56096 crossref_primary_10_1016_j_molcel_2020_12_004 crossref_primary_10_1093_plcell_koac043 crossref_primary_10_1134_S0003683822100106 crossref_primary_10_1016_j_chom_2019_07_021 crossref_primary_10_1111_ppa_13713 crossref_primary_10_31857_S0015330324040039 crossref_primary_10_1093_ismeco_ycae120 crossref_primary_10_1146_annurev_phyto_121520_023514 crossref_primary_10_1093_jxb_eraa472 crossref_primary_10_1016_j_tplants_2022_06_011 crossref_primary_10_1007_s10142_021_00787_8 crossref_primary_10_1016_j_ncrna_2021_02_001 crossref_primary_10_1016_j_pbi_2021_102060 crossref_primary_10_3389_fcimb_2020_00346 crossref_primary_10_3390_ijms20112816 crossref_primary_10_3390_ijms242116005 crossref_primary_10_1111_mpp_13059 crossref_primary_10_1111_mpp_12885 crossref_primary_10_1073_pnas_1819481116 crossref_primary_10_1093_nar_gkab1289 crossref_primary_10_1096_fba_2021_00040 crossref_primary_10_1139_gen_2024_0088 crossref_primary_10_1111_jipb_13213 crossref_primary_10_1111_pbi_14043 crossref_primary_10_1111_nph_17828 crossref_primary_10_1016_j_omtm_2021_03_006 crossref_primary_10_1038_s41598_024_53685_x crossref_primary_10_1111_mpp_13100 crossref_primary_10_3724_abbs_2024160 crossref_primary_10_3390_plants12244141 crossref_primary_10_1016_j_xplc_2021_100180 crossref_primary_10_1007_s42994_025_00198_4 crossref_primary_10_1016_j_fbr_2022_10_002 crossref_primary_10_1016_j_jplph_2020_153324 crossref_primary_10_1093_plcell_koad076 crossref_primary_10_1111_nph_19394 crossref_primary_10_1111_nph_19790 crossref_primary_10_1038_s41420_020_0271_6 crossref_primary_10_1080_15592324_2024_2382497 crossref_primary_10_3389_fpls_2022_928729 crossref_primary_10_1146_annurev_phyto_021622_103801 crossref_primary_10_1016_j_hpj_2019_11_004 crossref_primary_10_1093_genetics_iyad132 crossref_primary_10_1016_j_jconrel_2023_10_053 crossref_primary_10_1038_s42003_020_01425_y crossref_primary_10_3389_fpls_2020_593905 crossref_primary_10_1016_j_lwt_2023_114781 crossref_primary_10_1016_j_pbi_2022_102228 crossref_primary_10_3390_antibiotics13010080 crossref_primary_10_1016_j_jia_2022_08_060 crossref_primary_10_1016_j_ygeno_2022_110526 crossref_primary_10_1111_nph_16725 crossref_primary_10_1016_j_pbi_2020_05_005 crossref_primary_10_1038_s44319_023_00023_3 crossref_primary_10_1146_annurev_arplant_081720_010616 crossref_primary_10_1371_journal_ppat_1009012 crossref_primary_10_3390_ijms22062913 crossref_primary_10_1073_pnas_1915996117 crossref_primary_10_1111_nph_17364 crossref_primary_10_1007_s44154_024_00208_3 crossref_primary_10_1105_tpc_20_00335 crossref_primary_10_1016_j_isci_2020_101478 crossref_primary_10_1093_treephys_tpad102 crossref_primary_10_3390_agriculture14081289 crossref_primary_10_1111_mpp_13039 crossref_primary_10_3390_microorganisms8060917 crossref_primary_10_1146_annurev_virology_111821_122539 crossref_primary_10_1016_j_chom_2018_12_007 crossref_primary_10_1111_jipb_13358 crossref_primary_10_1080_20013078_2019_1590116 crossref_primary_10_1094_MPMI_09_22_0189_FI crossref_primary_10_1042_EBC20220159 crossref_primary_10_1007_s11033_024_09894_8 crossref_primary_10_1146_annurev_cellbio_100818_125218 crossref_primary_10_1016_j_fbr_2020_01_001 crossref_primary_10_1111_tpj_16555 crossref_primary_10_1038_s41580_022_00496_5 crossref_primary_10_1111_mpp_13329 crossref_primary_10_3390_biomedicines11061554 crossref_primary_10_1111_mpp_13324 crossref_primary_10_1007_s00344_022_10880_2 crossref_primary_10_1016_j_pbi_2019_09_001 crossref_primary_10_1007_s12298_022_01189_1 crossref_primary_10_1111_jph_13040 crossref_primary_10_1093_femsml_uqab003 crossref_primary_10_1111_nph_17758 crossref_primary_10_1007_s44297_023_00003_y crossref_primary_10_1016_j_pbi_2021_102027 crossref_primary_10_1146_annurev_micro_020518_120022 crossref_primary_10_3389_fpls_2021_629776 |
Cites_doi | 10.1093/bioinformatics/btp352 10.1105/tpc.111.084301 10.1038/nprot.2008.67 10.1371/journal.pone.0074588 10.1016/j.molp.2017.12.001 10.1016/j.cell.2015.09.032 10.1146/annurev-phyto-080614-120106 10.1111/mpp.12190 10.1093/jxb/erx355 10.1105/tpc.113.114652 10.1016/S0092-8674(00)80863-6 10.1093/jxb/ern306 10.1146/annurev-arplant-050312-120043 10.1126/science.aar4142 10.1101/sqb.2012.77.015933 10.1038/nmeth.3317 10.1016/j.cub.2018.01.059 10.1016/j.cell.2006.09.032 10.1093/jxb/erv094 10.1186/gb-2009-10-3-r25 10.1111/tpj.13415 10.1093/bioinformatics/btp616 10.1016/j.tplants.2008.10.001 10.1038/nature25027 10.1038/ng.2525 10.1016/j.cub.2008.04.042 10.1105/tpc.107.050062 10.1016/j.mib.2016.04.003 10.1105/tpc.113.110957 10.1146/annurev-arplant-050213-040159 10.1073/pnas.0611119104 10.1038/nrm4085 10.1093/nar/gkr319 10.1016/S0092-8674(00)80864-8 10.1111/pce.12052 10.1038/nplants.2016.153 10.1101/gad.1231804 10.1104/pp.16.01253 10.1038/nbt.3122 10.1094/MPMI-06-14-0190-R 10.1105/tpc.10.6.937 10.1111/j.1469-8137.2006.01844.x 10.1016/j.cub.2006.03.035 10.14806/ej.17.1.200 10.1038/nri2824 10.1186/gb-2013-14-6-211 10.1186/1746-4811-3-12 10.1101/gad.177527.111 10.1038/nature05286 10.1104/pp.103.021980 10.1126/science.1126088 10.1038/ncomms6488 10.1111/j.1462-5822.2006.00683.x 10.4161/rna.25568 10.1073/pnas.0709303105 10.1101/gad.1352605 10.1261/rna.2455411 10.1371/journal.pbio.1001801 10.1104/pp.109.151803 10.1105/tpc.107.057067 10.1111/j.1462-5822.2010.01530.x 10.1016/j.molp.2015.10.004 10.1016/j.pbi.2015.06.007 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.chom.2018.11.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 165.e5 |
ExternalDocumentID | PMC9208300 30595554 10_1016_j_chom_2018_11_007 S1931312818305894 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM129373 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG K97 M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT ZBA CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 5PM |
ID | FETCH-LOGICAL-c554t-54b40eecb5f77a2ba84f249c71fe1d7383edb10e2b1966403e21a3903e309c53 |
IEDL.DBID | IXB |
ISSN | 1931-3128 1934-6069 |
IngestDate | Thu Aug 21 14:01:32 EDT 2025 Tue Aug 05 11:32:27 EDT 2025 Fri Jul 11 03:22:52 EDT 2025 Thu Apr 03 07:08:07 EDT 2025 Tue Jul 01 02:44:21 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Fri Feb 23 02:31:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | pathogenesis RNA interference RNA-silencing suppressor microRNA host-induced gene silencing secondary small RNAs virulence factor plant immunity |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-54b40eecb5f77a2ba84f249c71fe1d7383edb10e2b1966403e21a3903e309c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS Y.H., Y.Z., H.Z.K., B.D.R., and D.S.C. did the experiments. L.F., L.Z., W.Y., and J.Z. did the sequencing analyses and sRNA target prediction. Y.H., Y.Z., H.Z.K., and B.Z. cultivated plants and harvested materials. W.M., Y.H., Y.Z., L.F., and J.Z. prepared figures and tables. W.M., R.W.I., X.C., and W.G. guided the execution of the experiments. W.M., Y.H., and R.W.I. analyzed the data. W.M. conceived the project. W.M. and Y.H. wrote the manuscript. J.Z., W.G., X.C., and R.W.I. revised the manuscript. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9208300 |
PMID | 30595554 |
PQID | 2161923173 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9208300 proquest_miscellaneous_2660976320 proquest_miscellaneous_2161923173 pubmed_primary_30595554 crossref_citationtrail_10_1016_j_chom_2018_11_007 crossref_primary_10_1016_j_chom_2018_11_007 elsevier_sciencedirect_doi_10_1016_j_chom_2018_11_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-09 |
PublicationDateYYYYMMDD | 2019-01-09 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ye, Ma (bib60) 2016; 32 Boutrot, Zipfel (bib10) 2017; 55 Dahan, Mireau (bib17) 2013; 10 Axtell (bib5) 2013; 64 Wang, Bouwmeester, van de Mortel, Shan, Govers (bib55) 2013; 36 Addo-Quaye, Eshoo, Bartel, Axtell (bib1) 2008; 18 Buck, Coakley, Simbari, McSorley, Quintana, Le Bihan, Kumar, Abreu-Goodger, Lear, Harcus (bib11) 2014; 5 Varkonyi-Gasic, Wu, Wood, Walton, Hellens (bib54) 2007; 3 Cai, Qiao, Wang, He, Lin, Palmquist, Huang, Jin (bib12) 2018; 360 Dai, Zhao (bib18) 2011; 39 Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib33) 2009; 25 Navarro, Dunoyer, Jay, Arnold, Dharmasiri, Estelle, Voinnet, Jones (bib39) 2006; 312 Ruiz, Voinnet, Baulcombe (bib50) 1998; 10 Li, Zhang, Zhang, Wu, Qi, Zhou (bib34) 2010; 152 Win, Chaparro-Garcia, Belhaj, Saunders, Yoshida, Dong, Schornack, Zipfel, Robatzek, Hogenhout (bib56) 2012; 77 Ding (bib20) 2010; 10 Baulcombe (bib8) 2015; 26 Yoshikawa, Peragine, Park, Poethig (bib61) 2005; 19 An, Ehlers, Kogel, van Bel, Huckelhoven (bib3) 2006; 172 Barkan, Small (bib7) 2014; 65 Micali, Neumann, Grunewald, Panstruga, O'Connell (bib37) 2011; 13 Chen, Li, Wu (bib13) 2007; 104 Howell, Fahlgren, Chapman, Cumbie, Sullivan, Givan, Kasschau, Carrington (bib25) 2007; 19 Pertea, Pertea, Antonescu, Chang, Mendell, Salzberg (bib44) 2015; 33 Regente, Pinedo, San Clemente, Balliau, Jamet, de la Canal (bib47) 2017; 68 Jiang, Tripathy, Govers, Tyler (bib28) 2008; 105 Petre, Kamoun (bib45) 2014; 12 Cheng, Krishnakumar, Chan, Thibaud-Nissen, Schobel, Town (bib15) 2017; 89 Hua, Zhao, Guo (bib26) 2017; 11 Jones, Dangl (bib29) 2006; 444 Rutter, Innes (bib51) 2017; 173 Langmead, Trapnell, Pop, Salzberg (bib32) 2009; 10 Zhai, Jeong, De Paoli, Park, Rosen, Li, Gonzalez, Yan, Kitto, Grusak (bib62) 2011; 25 Zhai, Bischof, Wang, Feng, Lee, Teng, Chen, Park, Liu, Gallego-Bartolome (bib63) 2015; 163 Kim, Langmead, Salzberg (bib31) 2015; 12 Ellendorff, Fradin, de Jonge, Thomma (bib22) 2009; 60 Chow, Koutsovoulos, Ovando-Vázquez, Laetsch, Bermúdez-Barrientos, Claycomb, Blaxter, Abreu-Goodger, Buck (bib16) 2018 Pall, Hamilton (bib41) 2008; 3 Axtell, Jan, Rajagopalan, Bartel (bib6) 2006; 127 Mourrain, Beclin, Elmayan, Feuerbach, Godon, Morel, Jouette, Lacombe, Nikic, Picault (bib38) 2000; 101 Borges, Martienssen (bib9) 2015; 16 Jahan, Asman, Corcoran, Fogelqvist, Vetukuri, Dixelius (bib27) 2015; 66 Dou, Kale, Wang, Chen, Wang, Jiang, Arredondo, Anderson, Thakur, McDowell (bib21) 2008; 20 An, Huckelhoven, Kogel, van Bel (bib4) 2006; 8 Xiong, Ye, Choi, Wong, Qiao, Tao, Wang, Ma (bib58) 2014; 27 Pais, Win, Yoshida, Etherington, Cano, Raffaele, Banfield, Jones, Kamoun, Saunders (bib40) 2013; 14 Yan, Wei, Wu, Hu, Li, Yang, Xie (bib59) 2015; 8 Kamoun, Furzer, Jones, Judelson, Ali, Dalio, Roy, Schena, Zambounis, Panabieres (bib30) 2015; 16 Fukudome, Kanaya, Egami, Nakazawa, Hiraguri, Moriyama, Fukuhara (bib24) 2011; 17 Peragine, Yoshikawa, Wu, Albrecht, Poethig (bib43) 2004; 18 Robinson, McCarthy, Smyth (bib48) 2010; 26 Xia, Meyers, Liu, Beers, Ye (bib57) 2013; 25 Adenot, Elmayan, Lauressergues, Boutet, Bouche, Gasciolli, Vaucheret (bib2) 2006; 16 Chen, Xing, Li, Tong, Xu (bib14) 2013; 8 Dalmay, Hamilton, Rudd, Angell, Baulcombe (bib19) 2000; 101 Martin (bib35) 2011; 17 Zhang, Zhao, Zhao, Wang, Jin, Chen, Fang, Hua, Ding, Guo (bib64) 2016; 2 Qiao, Liu, Xiong, Flores, Wong, Shi, Wang, Liu, Xiang, Jiang (bib46) 2013; 45 Roux, Schwessinger, Albrecht, Chinchilla, Jones, Holton, Malinovsky, Tor, de Vries, Zipfel (bib49) 2011; 23 Schmitz-Linneweber, Small (bib52) 2008; 13 Shahid, Kim, Johnson, Wafula, Wang, Coruh, Bernal-Galeano, Phifer, dePamphilis, Westwood (bib53) 2018; 553 Papp, Mette, Aufsatz, Daxinger, Schauer, Ray, van der Winden, Matzke, Matzke (bib42) 2003; 132 Meldolesi (bib36) 2018; 28 Baldrich, Rutter, Karimi, Podicheti, Meyers, Innes (bib65) 2018 Fei, Xia, Meyers (bib23) 2013; 25 Axtell (10.1016/j.chom.2018.11.007_bib5) 2013; 64 Yoshikawa (10.1016/j.chom.2018.11.007_bib61) 2005; 19 Kim (10.1016/j.chom.2018.11.007_bib31) 2015; 12 Jahan (10.1016/j.chom.2018.11.007_bib27) 2015; 66 Li (10.1016/j.chom.2018.11.007_bib33) 2009; 25 Xiong (10.1016/j.chom.2018.11.007_bib58) 2014; 27 Chen (10.1016/j.chom.2018.11.007_bib14) 2013; 8 Martin (10.1016/j.chom.2018.11.007_bib35) 2011; 17 Axtell (10.1016/j.chom.2018.11.007_bib6) 2006; 127 Yan (10.1016/j.chom.2018.11.007_bib59) 2015; 8 Barkan (10.1016/j.chom.2018.11.007_bib7) 2014; 65 Chen (10.1016/j.chom.2018.11.007_bib13) 2007; 104 Adenot (10.1016/j.chom.2018.11.007_bib2) 2006; 16 Robinson (10.1016/j.chom.2018.11.007_bib48) 2010; 26 Chow (10.1016/j.chom.2018.11.007_bib16) 2018 Pertea (10.1016/j.chom.2018.11.007_bib44) 2015; 33 Dalmay (10.1016/j.chom.2018.11.007_bib19) 2000; 101 Cheng (10.1016/j.chom.2018.11.007_bib15) 2017; 89 Roux (10.1016/j.chom.2018.11.007_bib49) 2011; 23 Xia (10.1016/j.chom.2018.11.007_bib57) 2013; 25 Dou (10.1016/j.chom.2018.11.007_bib21) 2008; 20 Regente (10.1016/j.chom.2018.11.007_bib47) 2017; 68 Ellendorff (10.1016/j.chom.2018.11.007_bib22) 2009; 60 Micali (10.1016/j.chom.2018.11.007_bib37) 2011; 13 Cai (10.1016/j.chom.2018.11.007_bib12) 2018; 360 Navarro (10.1016/j.chom.2018.11.007_bib39) 2006; 312 Zhang (10.1016/j.chom.2018.11.007_bib64) 2016; 2 Kamoun (10.1016/j.chom.2018.11.007_bib30) 2015; 16 Addo-Quaye (10.1016/j.chom.2018.11.007_bib1) 2008; 18 Buck (10.1016/j.chom.2018.11.007_bib11) 2014; 5 Howell (10.1016/j.chom.2018.11.007_bib25) 2007; 19 Baldrich (10.1016/j.chom.2018.11.007_bib65) 2018 Dahan (10.1016/j.chom.2018.11.007_bib17) 2013; 10 Zhai (10.1016/j.chom.2018.11.007_bib63) 2015; 163 Zhai (10.1016/j.chom.2018.11.007_bib62) 2011; 25 Peragine (10.1016/j.chom.2018.11.007_bib43) 2004; 18 Win (10.1016/j.chom.2018.11.007_bib56) 2012; 77 Qiao (10.1016/j.chom.2018.11.007_bib46) 2013; 45 Borges (10.1016/j.chom.2018.11.007_bib9) 2015; 16 Schmitz-Linneweber (10.1016/j.chom.2018.11.007_bib52) 2008; 13 Rutter (10.1016/j.chom.2018.11.007_bib51) 2017; 173 Petre (10.1016/j.chom.2018.11.007_bib45) 2014; 12 An (10.1016/j.chom.2018.11.007_bib3) 2006; 172 An (10.1016/j.chom.2018.11.007_bib4) 2006; 8 Jones (10.1016/j.chom.2018.11.007_bib29) 2006; 444 Mourrain (10.1016/j.chom.2018.11.007_bib38) 2000; 101 Fukudome (10.1016/j.chom.2018.11.007_bib24) 2011; 17 Wang (10.1016/j.chom.2018.11.007_bib55) 2013; 36 Meldolesi (10.1016/j.chom.2018.11.007_bib36) 2018; 28 Pais (10.1016/j.chom.2018.11.007_bib40) 2013; 14 Fei (10.1016/j.chom.2018.11.007_bib23) 2013; 25 Langmead (10.1016/j.chom.2018.11.007_bib32) 2009; 10 Boutrot (10.1016/j.chom.2018.11.007_bib10) 2017; 55 Ye (10.1016/j.chom.2018.11.007_bib60) 2016; 32 Jiang (10.1016/j.chom.2018.11.007_bib28) 2008; 105 Ruiz (10.1016/j.chom.2018.11.007_bib50) 1998; 10 Pall (10.1016/j.chom.2018.11.007_bib41) 2008; 3 Hua (10.1016/j.chom.2018.11.007_bib26) 2017; 11 Varkonyi-Gasic (10.1016/j.chom.2018.11.007_bib54) 2007; 3 Ding (10.1016/j.chom.2018.11.007_bib20) 2010; 10 Li (10.1016/j.chom.2018.11.007_bib34) 2010; 152 Baulcombe (10.1016/j.chom.2018.11.007_bib8) 2015; 26 Shahid (10.1016/j.chom.2018.11.007_bib53) 2018; 553 Dai (10.1016/j.chom.2018.11.007_bib18) 2011; 39 Papp (10.1016/j.chom.2018.11.007_bib42) 2003; 132 30629921 - Cell Host Microbe. 2019 Jan 9;25(1):7-9 |
References_xml | – year: 2018 ident: bib65 article-title: Plant extracellular vesicles contain diverse small RNA species and are enriched in 10 to 17 nucleotide “tiny” RNAs publication-title: bioRxiv – volume: 18 start-page: 2368 year: 2004 end-page: 2379 ident: bib43 article-title: SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in publication-title: Genes Dev. – volume: 173 start-page: 728 year: 2017 end-page: 741 ident: bib51 article-title: Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins publication-title: Plant Physiol. – volume: 101 start-page: 543 year: 2000 end-page: 553 ident: bib19 article-title: An RNA-Dependent RNA polymerase gene in publication-title: Cell – volume: 25 start-page: 2540 year: 2011 end-page: 2553 ident: bib62 article-title: MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs publication-title: Genes Dev. – volume: 25 start-page: 1555 year: 2013 end-page: 1572 ident: bib57 article-title: MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA biogenesis in eudicots publication-title: Plant Cell – volume: 10 start-page: R25 year: 2009 ident: bib32 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. – volume: 32 start-page: 1 year: 2016 end-page: 6 ident: bib60 article-title: Filamentous pathogen effectors interfering with small RNA silencing in plant hosts publication-title: Curr. Opin. Microbiol. – volume: 553 start-page: 82 year: 2018 end-page: 85 ident: bib53 article-title: MicroRNAs from the parasitic plant publication-title: Nature – volume: 127 start-page: 565 year: 2006 end-page: 577 ident: bib6 article-title: A two-hit trigger for siRNA biogenesis in plants publication-title: Cell – volume: 16 start-page: 727 year: 2015 end-page: 741 ident: bib9 article-title: The expanding world of small RNAs in plants publication-title: Nat. Rev. Mol. Cell Biol. – volume: 163 start-page: 445 year: 2015 end-page: 455 ident: bib63 article-title: A one precursor one siRNA model for pol IV-dependent siRNA biogenesis publication-title: Cell – volume: 172 start-page: 563 year: 2006 end-page: 576 ident: bib3 article-title: Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus publication-title: New Phytol. – volume: 5 start-page: 5488 year: 2014 ident: bib11 article-title: Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity publication-title: Nat. Commun. – volume: 132 start-page: 1382 year: 2003 end-page: 1390 ident: bib42 article-title: Evidence for nuclear processing of plant microRNA and short interfering RNA precursors publication-title: Plant Physiol. – volume: 3 start-page: 12 year: 2007 ident: bib54 article-title: Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs publication-title: Plant Methods – volume: 16 start-page: 927 year: 2006 end-page: 932 ident: bib2 article-title: DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7 publication-title: Curr. Biol. – volume: 360 start-page: 1126 year: 2018 end-page: 1129 ident: bib12 article-title: Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes publication-title: Science – volume: 10 start-page: 1469 year: 2013 end-page: 1476 ident: bib17 article-title: The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes publication-title: RNA Biol. – volume: 77 start-page: 235 year: 2012 end-page: 247 ident: bib56 article-title: Effector biology of plant-associated organisms: concepts and perspectives publication-title: Cold Spring Harb. Symp. Quant. Biol. – volume: 26 start-page: 141 year: 2015 end-page: 146 ident: bib8 article-title: VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts publication-title: Curr. Opin. Plant Biol. – volume: 27 start-page: 1379 year: 2014 end-page: 1389 ident: bib58 article-title: suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and publication-title: Mol. Plant Microbe Interact. – year: 2018 ident: bib16 article-title: An extracellular argonaute protein mediates export of repeat-associated small RNAs into vesicles in parasitic nematodes publication-title: BioRxiv – volume: 18 start-page: 758 year: 2008 end-page: 762 ident: bib1 article-title: Endogenous siRNA and miRNA targets identified by sequencing of the publication-title: Curr. Biol. – volume: 23 start-page: 2440 year: 2011 end-page: 2455 ident: bib49 article-title: The publication-title: Plant Cell – volume: 12 start-page: e1001801 year: 2014 ident: bib45 article-title: How do filamentous pathogens deliver effector proteins into plant cells? publication-title: PLoS Biol. – volume: 8 start-page: 1009 year: 2006 end-page: 1019 ident: bib4 article-title: Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus publication-title: Cell Microbiol. – volume: 17 start-page: 10 year: 2011 end-page: 12 ident: bib35 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J. – volume: 17 start-page: 750 year: 2011 end-page: 760 ident: bib24 article-title: Specific requirement of DRB4, a dsRNA-binding protein, for the in vitro dsRNA-cleaving activity of publication-title: RNA – volume: 8 start-page: 1820 year: 2015 end-page: 1823 ident: bib59 article-title: High-efficiency genome editing in publication-title: Mol. Plant – volume: 33 start-page: 290 year: 2015 end-page: 295 ident: bib44 article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads publication-title: Nat. Biotechnol. – volume: 104 start-page: 3318 year: 2007 end-page: 3323 ident: bib13 article-title: Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in publication-title: Proc. Natl. Acad. Sci. U S A – volume: 65 start-page: 415 year: 2014 end-page: 442 ident: bib7 article-title: Pentatricopeptide repeat proteins in plants publication-title: Annu. Rev. Plant Biol. – volume: 28 start-page: R435 year: 2018 end-page: R444 ident: bib36 article-title: Exosomes and ectosomes in intercellular communication publication-title: Curr. Biol. – volume: 36 start-page: 1192 year: 2013 end-page: 1203 ident: bib55 article-title: A novel publication-title: Plant Cell Environ. – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: bib33 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics – volume: 105 start-page: 4874 year: 2008 end-page: 4879 ident: bib28 article-title: RXLR effector reservoir in two publication-title: Proc. Natl. Acad. Sci. U S A – volume: 12 start-page: 357 year: 2015 end-page: 360 ident: bib31 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods – volume: 64 start-page: 137 year: 2013 end-page: 159 ident: bib5 article-title: Classification and comparison of small RNAs from plants publication-title: Annu. Rev. Plant Biol. – volume: 11 start-page: 235 year: 2017 end-page: 244 ident: bib26 article-title: Trans-kingdom RNA silencing in plant-fungal pathogen interactions publication-title: Mol. Plant – volume: 19 start-page: 2164 year: 2005 end-page: 2175 ident: bib61 article-title: A pathway for the biogenesis of trans-acting siRNAs in publication-title: Genes Dev. – volume: 8 start-page: e74588 year: 2013 ident: bib14 article-title: RNA-seq reveals infection-related gene expression changes in publication-title: PLoS One – volume: 39 start-page: W155 year: 2011 end-page: W159 ident: bib18 article-title: psRNATarget: a plant small RNA target analysis server publication-title: Nucleic Acids Res. – volume: 20 start-page: 1118 year: 2008 end-page: 1133 ident: bib21 article-title: Conserved C-terminal motifs required for avirulence and suppression of cell death by publication-title: Plant Cell – volume: 13 start-page: 663 year: 2008 end-page: 670 ident: bib52 article-title: Pentatricopeptide repeat proteins: a socket set for organelle gene expression publication-title: Trends Plant Sci. – volume: 66 start-page: 2785 year: 2015 end-page: 2794 ident: bib27 article-title: Plant-mediated gene silencing restricts growth of the potato late blight pathogen publication-title: J. Exp. Bot. – volume: 55 start-page: 257 year: 2017 end-page: 286 ident: bib10 article-title: Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance publication-title: Annu. Rev. Phytopathol. – volume: 16 start-page: 413 year: 2015 end-page: 434 ident: bib30 article-title: The top 10 oomycete pathogens in molecular plant pathology publication-title: Mol. Plant Pathol. – volume: 10 start-page: 937 year: 1998 end-page: 946 ident: bib50 article-title: Initiation and maintenance of virus-induced gene silencing publication-title: Plant Cell – volume: 101 start-page: 533 year: 2000 end-page: 542 ident: bib38 article-title: SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance publication-title: Cell – volume: 312 start-page: 436 year: 2006 end-page: 439 ident: bib39 article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling publication-title: Science – volume: 60 start-page: 591 year: 2009 end-page: 602 ident: bib22 article-title: RNA silencing is required for publication-title: J. Exp. Bot. – volume: 3 start-page: 1077 year: 2008 end-page: 1084 ident: bib41 article-title: Improved northern blot method for enhanced detection of small RNA publication-title: Nat. Protoc. – volume: 89 start-page: 789 year: 2017 end-page: 804 ident: bib15 article-title: Araport11: a complete reannotation of the publication-title: Plant J. – volume: 13 start-page: 210 year: 2011 end-page: 226 ident: bib37 article-title: Biogenesis of a specialized plant-fungal interface during host cell internalization of publication-title: Cell Microbiol. – volume: 68 start-page: 5485 year: 2017 end-page: 5495 ident: bib47 article-title: Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth publication-title: J. Exp. Bot. – volume: 2 start-page: 16153 year: 2016 ident: bib64 article-title: Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen publication-title: Nat. Plants – volume: 19 start-page: 926 year: 2007 end-page: 942 ident: bib25 article-title: Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in publication-title: Plant Cell – volume: 10 start-page: 632 year: 2010 end-page: 644 ident: bib20 article-title: RNA-based antiviral immunity publication-title: Nat. Rev. Immunol. – volume: 152 start-page: 2222 year: 2010 end-page: 2231 ident: bib34 article-title: Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity publication-title: Plant Physiol. – volume: 25 start-page: 2400 year: 2013 end-page: 2415 ident: bib23 article-title: Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks publication-title: Plant Cell – volume: 444 start-page: 323 year: 2006 end-page: 329 ident: bib29 article-title: The plant immune system publication-title: Nature – volume: 45 start-page: 330 year: 2013 end-page: 333 ident: bib46 article-title: Oomycete pathogens encode RNA silencing suppressors publication-title: Nat. Genet. – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: bib48 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 14 start-page: 211 year: 2013 ident: bib40 article-title: From pathogen genomes to host plant processes: the power of plant parasitic oomycetes publication-title: Genome Biol. – volume: 25 start-page: 2078 year: 2009 ident: 10.1016/j.chom.2018.11.007_bib33 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 23 start-page: 2440 year: 2011 ident: 10.1016/j.chom.2018.11.007_bib49 article-title: The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens publication-title: Plant Cell doi: 10.1105/tpc.111.084301 – volume: 3 start-page: 1077 year: 2008 ident: 10.1016/j.chom.2018.11.007_bib41 article-title: Improved northern blot method for enhanced detection of small RNA publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.67 – volume: 8 start-page: e74588 year: 2013 ident: 10.1016/j.chom.2018.11.007_bib14 article-title: RNA-seq reveals infection-related gene expression changes in Phytophthora capsici publication-title: PLoS One doi: 10.1371/journal.pone.0074588 – volume: 11 start-page: 235 year: 2017 ident: 10.1016/j.chom.2018.11.007_bib26 article-title: Trans-kingdom RNA silencing in plant-fungal pathogen interactions publication-title: Mol. Plant doi: 10.1016/j.molp.2017.12.001 – volume: 163 start-page: 445 year: 2015 ident: 10.1016/j.chom.2018.11.007_bib63 article-title: A one precursor one siRNA model for pol IV-dependent siRNA biogenesis publication-title: Cell doi: 10.1016/j.cell.2015.09.032 – volume: 55 start-page: 257 year: 2017 ident: 10.1016/j.chom.2018.11.007_bib10 article-title: Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-080614-120106 – volume: 16 start-page: 413 year: 2015 ident: 10.1016/j.chom.2018.11.007_bib30 article-title: The top 10 oomycete pathogens in molecular plant pathology publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12190 – volume: 68 start-page: 5485 year: 2017 ident: 10.1016/j.chom.2018.11.007_bib47 article-title: Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx355 – volume: 25 start-page: 2400 year: 2013 ident: 10.1016/j.chom.2018.11.007_bib23 article-title: Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks publication-title: Plant Cell doi: 10.1105/tpc.113.114652 – volume: 101 start-page: 533 year: 2000 ident: 10.1016/j.chom.2018.11.007_bib38 article-title: Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance publication-title: Cell doi: 10.1016/S0092-8674(00)80863-6 – volume: 60 start-page: 591 year: 2009 ident: 10.1016/j.chom.2018.11.007_bib22 article-title: RNA silencing is required for Arabidopsis defence against Verticillium wilt disease publication-title: J. Exp. Bot. doi: 10.1093/jxb/ern306 – volume: 64 start-page: 137 year: 2013 ident: 10.1016/j.chom.2018.11.007_bib5 article-title: Classification and comparison of small RNAs from plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120043 – volume: 360 start-page: 1126 year: 2018 ident: 10.1016/j.chom.2018.11.007_bib12 article-title: Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes publication-title: Science doi: 10.1126/science.aar4142 – volume: 77 start-page: 235 year: 2012 ident: 10.1016/j.chom.2018.11.007_bib56 article-title: Effector biology of plant-associated organisms: concepts and perspectives publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/sqb.2012.77.015933 – volume: 12 start-page: 357 year: 2015 ident: 10.1016/j.chom.2018.11.007_bib31 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods doi: 10.1038/nmeth.3317 – volume: 28 start-page: R435 year: 2018 ident: 10.1016/j.chom.2018.11.007_bib36 article-title: Exosomes and ectosomes in intercellular communication publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.01.059 – volume: 127 start-page: 565 year: 2006 ident: 10.1016/j.chom.2018.11.007_bib6 article-title: A two-hit trigger for siRNA biogenesis in plants publication-title: Cell doi: 10.1016/j.cell.2006.09.032 – volume: 66 start-page: 2785 year: 2015 ident: 10.1016/j.chom.2018.11.007_bib27 article-title: Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv094 – volume: 10 start-page: R25 year: 2009 ident: 10.1016/j.chom.2018.11.007_bib32 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 89 start-page: 789 year: 2017 ident: 10.1016/j.chom.2018.11.007_bib15 article-title: Araport11: a complete reannotation of the Arabidopsis thaliana reference genome publication-title: Plant J. doi: 10.1111/tpj.13415 – volume: 26 start-page: 139 year: 2010 ident: 10.1016/j.chom.2018.11.007_bib48 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 13 start-page: 663 year: 2008 ident: 10.1016/j.chom.2018.11.007_bib52 article-title: Pentatricopeptide repeat proteins: a socket set for organelle gene expression publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.10.001 – volume: 553 start-page: 82 year: 2018 ident: 10.1016/j.chom.2018.11.007_bib53 article-title: MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs publication-title: Nature doi: 10.1038/nature25027 – volume: 45 start-page: 330 year: 2013 ident: 10.1016/j.chom.2018.11.007_bib46 article-title: Oomycete pathogens encode RNA silencing suppressors publication-title: Nat. Genet. doi: 10.1038/ng.2525 – volume: 18 start-page: 758 year: 2008 ident: 10.1016/j.chom.2018.11.007_bib1 article-title: Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.04.042 – volume: 19 start-page: 926 year: 2007 ident: 10.1016/j.chom.2018.11.007_bib25 article-title: Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting publication-title: Plant Cell doi: 10.1105/tpc.107.050062 – volume: 32 start-page: 1 year: 2016 ident: 10.1016/j.chom.2018.11.007_bib60 article-title: Filamentous pathogen effectors interfering with small RNA silencing in plant hosts publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2016.04.003 – volume: 25 start-page: 1555 year: 2013 ident: 10.1016/j.chom.2018.11.007_bib57 article-title: MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA biogenesis in eudicots publication-title: Plant Cell doi: 10.1105/tpc.113.110957 – volume: 65 start-page: 415 year: 2014 ident: 10.1016/j.chom.2018.11.007_bib7 article-title: Pentatricopeptide repeat proteins in plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050213-040159 – volume: 104 start-page: 3318 year: 2007 ident: 10.1016/j.chom.2018.11.007_bib13 article-title: Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0611119104 – volume: 16 start-page: 727 year: 2015 ident: 10.1016/j.chom.2018.11.007_bib9 article-title: The expanding world of small RNAs in plants publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4085 – volume: 39 start-page: W155 year: 2011 ident: 10.1016/j.chom.2018.11.007_bib18 article-title: psRNATarget: a plant small RNA target analysis server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr319 – volume: 101 start-page: 543 year: 2000 ident: 10.1016/j.chom.2018.11.007_bib19 article-title: An RNA-Dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus publication-title: Cell doi: 10.1016/S0092-8674(00)80864-8 – volume: 36 start-page: 1192 year: 2013 ident: 10.1016/j.chom.2018.11.007_bib55 article-title: A novel Arabidopsis-oomycete pathosystem: differential interactions with Phytophthora capsici reveal a role for camalexin, indole glucosinolates and salicylic acid in defence publication-title: Plant Cell Environ. doi: 10.1111/pce.12052 – volume: 2 start-page: 16153 year: 2016 ident: 10.1016/j.chom.2018.11.007_bib64 article-title: Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen publication-title: Nat. Plants doi: 10.1038/nplants.2016.153 – volume: 18 start-page: 2368 year: 2004 ident: 10.1016/j.chom.2018.11.007_bib43 article-title: SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis publication-title: Genes Dev. doi: 10.1101/gad.1231804 – volume: 173 start-page: 728 year: 2017 ident: 10.1016/j.chom.2018.11.007_bib51 article-title: Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins publication-title: Plant Physiol. doi: 10.1104/pp.16.01253 – volume: 33 start-page: 290 year: 2015 ident: 10.1016/j.chom.2018.11.007_bib44 article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3122 – volume: 27 start-page: 1379 year: 2014 ident: 10.1016/j.chom.2018.11.007_bib58 article-title: Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-06-14-0190-R – volume: 10 start-page: 937 year: 1998 ident: 10.1016/j.chom.2018.11.007_bib50 article-title: Initiation and maintenance of virus-induced gene silencing publication-title: Plant Cell doi: 10.1105/tpc.10.6.937 – volume: 172 start-page: 563 year: 2006 ident: 10.1016/j.chom.2018.11.007_bib3 article-title: Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01844.x – volume: 16 start-page: 927 year: 2006 ident: 10.1016/j.chom.2018.11.007_bib2 article-title: DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7 publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.03.035 – volume: 17 start-page: 10 year: 2011 ident: 10.1016/j.chom.2018.11.007_bib35 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J. doi: 10.14806/ej.17.1.200 – volume: 10 start-page: 632 year: 2010 ident: 10.1016/j.chom.2018.11.007_bib20 article-title: RNA-based antiviral immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2824 – volume: 14 start-page: 211 year: 2013 ident: 10.1016/j.chom.2018.11.007_bib40 article-title: From pathogen genomes to host plant processes: the power of plant parasitic oomycetes publication-title: Genome Biol. doi: 10.1186/gb-2013-14-6-211 – year: 2018 ident: 10.1016/j.chom.2018.11.007_bib16 article-title: An extracellular argonaute protein mediates export of repeat-associated small RNAs into vesicles in parasitic nematodes publication-title: BioRxiv – volume: 3 start-page: 12 year: 2007 ident: 10.1016/j.chom.2018.11.007_bib54 article-title: Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs publication-title: Plant Methods doi: 10.1186/1746-4811-3-12 – volume: 25 start-page: 2540 year: 2011 ident: 10.1016/j.chom.2018.11.007_bib62 article-title: MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs publication-title: Genes Dev. doi: 10.1101/gad.177527.111 – volume: 444 start-page: 323 year: 2006 ident: 10.1016/j.chom.2018.11.007_bib29 article-title: The plant immune system publication-title: Nature doi: 10.1038/nature05286 – volume: 132 start-page: 1382 year: 2003 ident: 10.1016/j.chom.2018.11.007_bib42 article-title: Evidence for nuclear processing of plant microRNA and short interfering RNA precursors publication-title: Plant Physiol. doi: 10.1104/pp.103.021980 – volume: 312 start-page: 436 year: 2006 ident: 10.1016/j.chom.2018.11.007_bib39 article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling publication-title: Science doi: 10.1126/science.1126088 – volume: 5 start-page: 5488 year: 2014 ident: 10.1016/j.chom.2018.11.007_bib11 article-title: Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity publication-title: Nat. Commun. doi: 10.1038/ncomms6488 – volume: 8 start-page: 1009 year: 2006 ident: 10.1016/j.chom.2018.11.007_bib4 article-title: Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus publication-title: Cell Microbiol. doi: 10.1111/j.1462-5822.2006.00683.x – year: 2018 ident: 10.1016/j.chom.2018.11.007_bib65 article-title: Plant extracellular vesicles contain diverse small RNA species and are enriched in 10 to 17 nucleotide “tiny” RNAs publication-title: bioRxiv – volume: 10 start-page: 1469 year: 2013 ident: 10.1016/j.chom.2018.11.007_bib17 article-title: The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes publication-title: RNA Biol. doi: 10.4161/rna.25568 – volume: 105 start-page: 4874 year: 2008 ident: 10.1016/j.chom.2018.11.007_bib28 article-title: RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0709303105 – volume: 19 start-page: 2164 year: 2005 ident: 10.1016/j.chom.2018.11.007_bib61 article-title: A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis publication-title: Genes Dev. doi: 10.1101/gad.1352605 – volume: 17 start-page: 750 year: 2011 ident: 10.1016/j.chom.2018.11.007_bib24 article-title: Specific requirement of DRB4, a dsRNA-binding protein, for the in vitro dsRNA-cleaving activity of Arabidopsis Dicer-like 4 publication-title: RNA doi: 10.1261/rna.2455411 – volume: 12 start-page: e1001801 year: 2014 ident: 10.1016/j.chom.2018.11.007_bib45 article-title: How do filamentous pathogens deliver effector proteins into plant cells? publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001801 – volume: 152 start-page: 2222 year: 2010 ident: 10.1016/j.chom.2018.11.007_bib34 article-title: Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity publication-title: Plant Physiol. doi: 10.1104/pp.109.151803 – volume: 20 start-page: 1118 year: 2008 ident: 10.1016/j.chom.2018.11.007_bib21 article-title: Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b publication-title: Plant Cell doi: 10.1105/tpc.107.057067 – volume: 13 start-page: 210 year: 2011 ident: 10.1016/j.chom.2018.11.007_bib37 article-title: Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria publication-title: Cell Microbiol. doi: 10.1111/j.1462-5822.2010.01530.x – volume: 8 start-page: 1820 year: 2015 ident: 10.1016/j.chom.2018.11.007_bib59 article-title: High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system publication-title: Mol. Plant doi: 10.1016/j.molp.2015.10.004 – volume: 26 start-page: 141 year: 2015 ident: 10.1016/j.chom.2018.11.007_bib8 article-title: VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.06.007 – reference: 30629921 - Cell Host Microbe. 2019 Jan 9;25(1):7-9 |
SSID | ssj0055071 |
Score | 2.6123855 |
Snippet | RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi... RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 153 |
SubjectTerms | Arabidopsis Arabidopsis - genetics Arabidopsis - immunology Arabidopsis - microbiology Arabidopsis Proteins - genetics biogenesis disease susceptibility Disease Susceptibility - microbiology Gene Expression Regulation, Plant Gene Silencing genes Genes, Reporter - genetics host-induced gene silencing Host-Pathogen Interactions - genetics Host-Pathogen Interactions - immunology immunity microRNA MicroRNAs - genetics MicroRNAs - immunology Nicotiana pathogenesis pathogens Phosphoprotein Phosphatases - antagonists & inhibitors Phosphoprotein Phosphatases - metabolism Phytophthora Phytophthora - metabolism Phytophthora - pathogenicity Plant Diseases - immunology Plant Diseases - microbiology plant immunity Plant Immunity - genetics Plant Immunity - immunology Plant Leaves - immunology Plant Leaves - microbiology RNA interference RNA Interference - immunology RNA, Small Interfering - biosynthesis RNA, Small Interfering - drug effects RNA, Small Interfering - genetics RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism RNA-silencing suppressor secondary small RNAs Verticillium Virulence virulence factor Virulence Factors - genetics Virulence Factors - metabolism |
Title | A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility |
URI | https://dx.doi.org/10.1016/j.chom.2018.11.007 https://www.ncbi.nlm.nih.gov/pubmed/30595554 https://www.proquest.com/docview/2161923173 https://www.proquest.com/docview/2660976320 https://pubmed.ncbi.nlm.nih.gov/PMC9208300 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQEhIXVNpSFihypd5Qun7l4ePyEgWBEFB1b1biddhFkCA2HPbfM2MnK7at9tBTlMSOkhnb80088w0h37UQJSuyPNJWqUjl3EWAMvKIZWDOhU2E8xlyl1fJ2S91PoyHK-Soy4XBsMp27Q9rul-t2yv9Vpr958mkfwvQg0vcCMok1sZDTlCpMp_ENzzsVmOk6-JhZ5lH2LpNnAkxXliPBMO7sh_I5IklZf9tnP4Gn3_GUL4zSqcfyEaLJukgvPAmWXHVR7IW6kvOPpHfA3o9niF1QDMGVdNAVVy_UKzl6VnDp9QbKywifD-qn-jN1WBCm5pe-yg9R4_D_g10mPr4Fx9KO_tM7k5P7o7OoraSQmQBLjRRrArFnLNFXIIiRJFnqgS_y6a8dHyUgpfqRgVnThQwIRPFpBM8lxqOkmkbyy2yWtWV2ya0xAyr1Cpd5FoJNdKAGCxzmRapgweJHuGdBI1tWcax2MWj6cLJHgxK3aDUwf0wIPUeOZj3eQ4cG0tbx51izMJIMWAElvb71mnRwBTCfZG8cvXr1AjuvUieyiVtkoQBcpOC9ciXoPn5u8Lw0zHIuUfShTExb4AU3ot3qsnYU3lrARCYsZ3__KZdsg5n2v8S0ntktXl5dV8BJDXFPrgHPy_2_Vx4A4dzEF8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQviM9RPo3EGwq1HefDj2UwdbBVExTRNytxHVq0JdOaPfS_585OKgqoDzxFiu0oufP5fo7vfgfwRktZ8TIvIm2VilQhXIQoo4h4ju5c2lQ6nyF3OknH39SnWTLbg8M-F4bCKru1P6zpfrXu7gw7aQ4vl8vhV4QeIqaDoDym2njqBtxENJCRdR7P3vfLMfF1iXC0LCLq3mXOhCAvKkhC8V35O6LypJqy__ZOf6PPP4Mof_NKR_fgbgcn2Si88X3Yc_UDuBUKTK4fwvcRO1usiTugXaCuWeAqbq4YFfP0tOEr5r0VVRH-MW8u2JfJaMnahp35MD3HPoQDHByw8gEwPpZ2_QimRx-nh-OoK6UQWcQLbZSoUnHnbJlUqAlZFrmqcONlM1E5Mc9wm-rmpeBOlmiRqeKxk6KINV5jrm0SP4b9uqndE2AVpVhlVumy0EqquUbIYLnLtcwcPkgOQPQSNLajGadqF-emjyf7aUjqhqSO-w-DUh_A282Yy0CysbN30ivGbE0Vg15g57jXvRYN2hAdjBS1a65XRgq_jRRZvKNPmnKEbrHkAzgImt-8K84_naCcB5BtzYlNB-Lw3m6plwvP5a0lYmDOn_7nN72C2-Pp6Yk5OZ58fgZ3sEX7_0P6Oey3V9fuBSKmtnzpLeIXzMsShg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Phytophthora+Effector+Suppresses+Trans-Kingdom+RNAi+to+Promote+Disease+Susceptibility&rft.jtitle=Cell+host+%26+microbe&rft.au=Hou%2C+Yingnan&rft.au=Zhai%2C+Yi&rft.au=Feng%2C+Li&rft.au=Karimi%2C+Hana+Z.&rft.date=2019-01-09&rft.pub=Elsevier+Inc&rft.issn=1931-3128&rft.eissn=1934-6069&rft.volume=25&rft.issue=1&rft.spage=153&rft.epage=165.e5&rft_id=info:doi/10.1016%2Fj.chom.2018.11.007&rft.externalDocID=S1931312818305894 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |