A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility

RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we sho...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 25; no. 1; pp. 153 - 165.e5
Main Authors Hou, Yingnan, Zhai, Yi, Feng, Li, Karimi, Hana Z., Rutter, Brian D., Zeng, Liping, Choi, Du Seok, Zhang, Bailong, Gu, Weifeng, Chen, Xuemei, Ye, Wenwu, Innes, Roger W., Zhai, Jixian, Ma, Wenbo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 09.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens. [Display omitted] •Phytophthora infection increases production of a pool of secondary siRNAs in Arabidopsis•Secondary siRNAs from a PPR gene cluster contribute to defense against Phytophthora•PPR-siRNAs potentially silence Phytophthora transcripts to confer resistance•Phytophthora effector PSR2 suppresses the biogenesis of PPR-siRNAs to promote infection The role of plant RNAi in defense against eukaryotic pathogens is unclear. Hou et al. report that Arabidopsis produces a reservoir of secondary siRNAs that confer resistance against the notorious pathogen Phytophthora, likely through trans-kingdom gene silencing. However, a Phytophthora effector defeats this defense by specifically inhibiting secondary siRNA biogenesis.
AbstractList RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens.
RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens. [Display omitted] •Phytophthora infection increases production of a pool of secondary siRNAs in Arabidopsis•Secondary siRNAs from a PPR gene cluster contribute to defense against Phytophthora•PPR-siRNAs potentially silence Phytophthora transcripts to confer resistance•Phytophthora effector PSR2 suppresses the biogenesis of PPR-siRNAs to promote infection The role of plant RNAi in defense against eukaryotic pathogens is unclear. Hou et al. report that Arabidopsis produces a reservoir of secondary siRNAs that confer resistance against the notorious pathogen Phytophthora, likely through trans-kingdom gene silencing. However, a Phytophthora effector defeats this defense by specifically inhibiting secondary siRNA biogenesis.
RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens.RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens.
RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear. Here, we show that Phytophthora infection of Arabidopsis leads to increased production of a diverse pool of secondary small interfering RNAs (siRNAs). Instead of regulating endogenous plant genes, these siRNAs are found in extracellular vesicles and likely silence target genes in Phytophthora during natural infection. Introduction of a plant siRNA in Phytophthora leads to developmental deficiency and abolishes virulence, while Arabidopsis mutants defective in secondary siRNA biogenesis are hypersusceptible. Notably, Phytophthora effector PSR2 specifically inhibits secondary siRNA biogenesis in Arabidopsis and promotes infection. These findings uncover the role of siRNAs as antimicrobial agents against eukaryotic pathogens and highlight a defense/counter-defense arms race centered on trans-kingdom gene silencing between hosts and pathogens. The role of plant RNAi in defense against eukaryotic pathogens is unclear. Hou et al. report that Arabidopsis produces a reservoir of secondary siRNAs that confer resistance against the notorious pathogen Phytophthora , likely through trans-kingdom gene silencing. However, a Phytophthora effector defeats this defense by specifically inhibiting secondary siRNA biogenesis.
Author Zhai, Jixian
Chen, Xuemei
Gu, Weifeng
Zeng, Liping
Choi, Du Seok
Ma, Wenbo
Rutter, Brian D.
Zhai, Yi
Innes, Roger W.
Feng, Li
Ye, Wenwu
Karimi, Hana Z.
Zhang, Bailong
Hou, Yingnan
AuthorAffiliation 1 Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
5 Department of Botany and Plant Science, University of California, Riverside, Riverside, CA 92521, USA
7 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
4 Department of Biology, Indiana University, Bloomington, IN 47405, USA
2 Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA
3 Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
6 Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
8 These authors contributed equally
9 Lead Contact
AuthorAffiliation_xml – name: 9 Lead Contact
– name: 3 Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
– name: 6 Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
– name: 7 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
– name: 8 These authors contributed equally
– name: 5 Department of Botany and Plant Science, University of California, Riverside, Riverside, CA 92521, USA
– name: 2 Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA
– name: 1 Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
– name: 4 Department of Biology, Indiana University, Bloomington, IN 47405, USA
Author_xml – sequence: 1
  givenname: Yingnan
  surname: Hou
  fullname: Hou, Yingnan
  organization: Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
– sequence: 2
  givenname: Yi
  surname: Zhai
  fullname: Zhai, Yi
  organization: Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
– sequence: 3
  givenname: Li
  surname: Feng
  fullname: Feng, Li
  organization: Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 4
  givenname: Hana Z.
  surname: Karimi
  fullname: Karimi, Hana Z.
  organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA
– sequence: 5
  givenname: Brian D.
  surname: Rutter
  fullname: Rutter, Brian D.
  organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA
– sequence: 6
  givenname: Liping
  surname: Zeng
  fullname: Zeng, Liping
  organization: Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
– sequence: 7
  givenname: Du Seok
  surname: Choi
  fullname: Choi, Du Seok
  organization: Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
– sequence: 8
  givenname: Bailong
  surname: Zhang
  fullname: Zhang, Bailong
  organization: Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA
– sequence: 9
  givenname: Weifeng
  surname: Gu
  fullname: Gu, Weifeng
  organization: Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
– sequence: 10
  givenname: Xuemei
  surname: Chen
  fullname: Chen, Xuemei
  organization: Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA
– sequence: 11
  givenname: Wenwu
  surname: Ye
  fullname: Ye, Wenwu
  organization: Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
– sequence: 12
  givenname: Roger W.
  surname: Innes
  fullname: Innes, Roger W.
  organization: Department of Biology, Indiana University, Bloomington, IN 47405, USA
– sequence: 13
  givenname: Jixian
  surname: Zhai
  fullname: Zhai, Jixian
  organization: Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
– sequence: 14
  givenname: Wenbo
  surname: Ma
  fullname: Ma, Wenbo
  email: wenbo.ma@ucr.edu
  organization: Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30595554$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URH_gBVigLNkk-NpxEksIaVRKi6iggpFYWo5z03iUxMH2VJq3x8O0CFhUrK4ln-_4XJ9TcjS7GQl5CbQACtWbTWEGNxWMQlMAFJTWT8gJSF7mFa3k0a8z5BxYc0xOQ9hQKgSt4Rk55lRIIUR5Qr6vspthF90yxMF5nV30PZrofPZtuyweQ8CQrb2eQ_7Jzredm7Kvn1c2iy678W5yEbP3NqAOmIBgcIm2taONu-fkaa_HgC_u5xlZf7hYn1_l118uP56vrnOTno-5KNuSIppW9HWtWaubsmelNDX0CF3NG45dCxRZC7KqSsqRgeYyTU6lEfyMvDvYLtt2ws7gHL0e1eLtpP1OOW3V3zezHdStu1OS0YZTmgxe3xt492OLIarJpj3GUc_otkGxqqKyrjj7DylUIBmHmifpqz9j_c7z8O9J0BwExrsQPPbK2KijdfuUdlRA1b5itVH7itW-YgWgUsUJZf-gD-6PQm8PEKYu7ix6FYzF2WBnfepbdc4-hv8Ekl3AYg
CitedBy_id crossref_primary_10_1093_jxb_erad268
crossref_primary_10_1111_nph_16650
crossref_primary_10_1111_nph_19122
crossref_primary_10_1111_mpp_13255
crossref_primary_10_1111_mpp_13250
crossref_primary_10_1111_tpj_16883
crossref_primary_10_18699_VJGB_22_34
crossref_primary_10_7554_eLife_49750
crossref_primary_10_1002_wsbm_1592
crossref_primary_10_1016_j_copbio_2021_06_005
crossref_primary_10_1360_TB_2023_0788
crossref_primary_10_1371_journal_pone_0304790
crossref_primary_10_1038_s41570_022_00443_0
crossref_primary_10_1039_C8FO02295J
crossref_primary_10_1038_s41579_022_00710_3
crossref_primary_10_3390_genes10040310
crossref_primary_10_3390_ijms21072333
crossref_primary_10_1080_15476286_2023_2195731
crossref_primary_10_3389_fpls_2021_757925
crossref_primary_10_1016_j_bbrc_2025_151568
crossref_primary_10_1016_j_gde_2019_07_019
crossref_primary_10_1016_j_cell_2023_05_049
crossref_primary_10_1111_nph_19801
crossref_primary_10_1016_j_pbi_2022_102259
crossref_primary_10_1016_j_pbi_2024_102672
crossref_primary_10_3390_ijms23169236
crossref_primary_10_3390_microorganisms10101980
crossref_primary_10_1016_j_pbi_2019_03_014
crossref_primary_10_1038_s41467_024_50782_3
crossref_primary_10_1016_j_tim_2019_08_009
crossref_primary_10_1073_pnas_2114583119
crossref_primary_10_1016_j_tplants_2024_05_001
crossref_primary_10_1038_s41580_021_00425_y
crossref_primary_10_1093_femsre_fuab002
crossref_primary_10_3390_plants11223155
crossref_primary_10_1111_mpp_13269
crossref_primary_10_3390_agronomy12122922
crossref_primary_10_1038_s41467_023_40623_0
crossref_primary_10_3390_ijms23126758
crossref_primary_10_1134_S1021443724607407
crossref_primary_10_1146_annurev_arplant_070122_035226
crossref_primary_10_1371_journal_ppat_1008090
crossref_primary_10_1111_nph_15676
crossref_primary_10_1016_j_biotechadv_2022_108092
crossref_primary_10_1002_pld3_70017
crossref_primary_10_1016_j_jgg_2024_12_011
crossref_primary_10_1111_jph_13022
crossref_primary_10_1111_nph_15836
crossref_primary_10_3390_ijms232113433
crossref_primary_10_3389_fpls_2021_610283
crossref_primary_10_1016_j_molimm_2021_04_009
crossref_primary_10_1007_s00425_025_04625_0
crossref_primary_10_31857_S0555109923030133
crossref_primary_10_3390_membranes12040352
crossref_primary_10_1093_jxb_erac512
crossref_primary_10_3389_fmicb_2022_817844
crossref_primary_10_3390_ijms21165701
crossref_primary_10_1016_j_jplph_2021_153451
crossref_primary_10_1111_tpj_14847
crossref_primary_10_1080_15476286_2022_2062172
crossref_primary_10_1186_s40694_022_00146_7
crossref_primary_10_3389_fpls_2024_1411837
crossref_primary_10_1016_j_pmpp_2023_102018
crossref_primary_10_1016_j_virusres_2022_198704
crossref_primary_10_3389_fpls_2023_1258100
crossref_primary_10_1016_j_tplants_2024_09_012
crossref_primary_10_1002_tpg2_20289
crossref_primary_10_1093_plphys_kiac169
crossref_primary_10_3390_ijms26062631
crossref_primary_10_3390_jof7070562
crossref_primary_10_1016_j_gene_2020_145002
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_15252_embj_2021108174
crossref_primary_10_1093_plcell_koac165
crossref_primary_10_1016_j_jbiotec_2022_09_014
crossref_primary_10_1093_pcp_pcae012
crossref_primary_10_3390_plants10030484
crossref_primary_10_1016_j_xplc_2021_100167
crossref_primary_10_1007_s00122_022_04129_5
crossref_primary_10_1111_mpp_13362
crossref_primary_10_1093_nar_gkz1198
crossref_primary_10_1002_btm2_10623
crossref_primary_10_3390_ijms25126798
crossref_primary_10_7554_eLife_56096
crossref_primary_10_1016_j_molcel_2020_12_004
crossref_primary_10_1093_plcell_koac043
crossref_primary_10_1134_S0003683822100106
crossref_primary_10_1016_j_chom_2019_07_021
crossref_primary_10_1111_ppa_13713
crossref_primary_10_31857_S0015330324040039
crossref_primary_10_1093_ismeco_ycae120
crossref_primary_10_1146_annurev_phyto_121520_023514
crossref_primary_10_1093_jxb_eraa472
crossref_primary_10_1016_j_tplants_2022_06_011
crossref_primary_10_1007_s10142_021_00787_8
crossref_primary_10_1016_j_ncrna_2021_02_001
crossref_primary_10_1016_j_pbi_2021_102060
crossref_primary_10_3389_fcimb_2020_00346
crossref_primary_10_3390_ijms20112816
crossref_primary_10_3390_ijms242116005
crossref_primary_10_1111_mpp_13059
crossref_primary_10_1111_mpp_12885
crossref_primary_10_1073_pnas_1819481116
crossref_primary_10_1093_nar_gkab1289
crossref_primary_10_1096_fba_2021_00040
crossref_primary_10_1139_gen_2024_0088
crossref_primary_10_1111_jipb_13213
crossref_primary_10_1111_pbi_14043
crossref_primary_10_1111_nph_17828
crossref_primary_10_1016_j_omtm_2021_03_006
crossref_primary_10_1038_s41598_024_53685_x
crossref_primary_10_1111_mpp_13100
crossref_primary_10_3724_abbs_2024160
crossref_primary_10_3390_plants12244141
crossref_primary_10_1016_j_xplc_2021_100180
crossref_primary_10_1007_s42994_025_00198_4
crossref_primary_10_1016_j_fbr_2022_10_002
crossref_primary_10_1016_j_jplph_2020_153324
crossref_primary_10_1093_plcell_koad076
crossref_primary_10_1111_nph_19394
crossref_primary_10_1111_nph_19790
crossref_primary_10_1038_s41420_020_0271_6
crossref_primary_10_1080_15592324_2024_2382497
crossref_primary_10_3389_fpls_2022_928729
crossref_primary_10_1146_annurev_phyto_021622_103801
crossref_primary_10_1016_j_hpj_2019_11_004
crossref_primary_10_1093_genetics_iyad132
crossref_primary_10_1016_j_jconrel_2023_10_053
crossref_primary_10_1038_s42003_020_01425_y
crossref_primary_10_3389_fpls_2020_593905
crossref_primary_10_1016_j_lwt_2023_114781
crossref_primary_10_1016_j_pbi_2022_102228
crossref_primary_10_3390_antibiotics13010080
crossref_primary_10_1016_j_jia_2022_08_060
crossref_primary_10_1016_j_ygeno_2022_110526
crossref_primary_10_1111_nph_16725
crossref_primary_10_1016_j_pbi_2020_05_005
crossref_primary_10_1038_s44319_023_00023_3
crossref_primary_10_1146_annurev_arplant_081720_010616
crossref_primary_10_1371_journal_ppat_1009012
crossref_primary_10_3390_ijms22062913
crossref_primary_10_1073_pnas_1915996117
crossref_primary_10_1111_nph_17364
crossref_primary_10_1007_s44154_024_00208_3
crossref_primary_10_1105_tpc_20_00335
crossref_primary_10_1016_j_isci_2020_101478
crossref_primary_10_1093_treephys_tpad102
crossref_primary_10_3390_agriculture14081289
crossref_primary_10_1111_mpp_13039
crossref_primary_10_3390_microorganisms8060917
crossref_primary_10_1146_annurev_virology_111821_122539
crossref_primary_10_1016_j_chom_2018_12_007
crossref_primary_10_1111_jipb_13358
crossref_primary_10_1080_20013078_2019_1590116
crossref_primary_10_1094_MPMI_09_22_0189_FI
crossref_primary_10_1042_EBC20220159
crossref_primary_10_1007_s11033_024_09894_8
crossref_primary_10_1146_annurev_cellbio_100818_125218
crossref_primary_10_1016_j_fbr_2020_01_001
crossref_primary_10_1111_tpj_16555
crossref_primary_10_1038_s41580_022_00496_5
crossref_primary_10_1111_mpp_13329
crossref_primary_10_3390_biomedicines11061554
crossref_primary_10_1111_mpp_13324
crossref_primary_10_1007_s00344_022_10880_2
crossref_primary_10_1016_j_pbi_2019_09_001
crossref_primary_10_1007_s12298_022_01189_1
crossref_primary_10_1111_jph_13040
crossref_primary_10_1093_femsml_uqab003
crossref_primary_10_1111_nph_17758
crossref_primary_10_1007_s44297_023_00003_y
crossref_primary_10_1016_j_pbi_2021_102027
crossref_primary_10_1146_annurev_micro_020518_120022
crossref_primary_10_3389_fpls_2021_629776
Cites_doi 10.1093/bioinformatics/btp352
10.1105/tpc.111.084301
10.1038/nprot.2008.67
10.1371/journal.pone.0074588
10.1016/j.molp.2017.12.001
10.1016/j.cell.2015.09.032
10.1146/annurev-phyto-080614-120106
10.1111/mpp.12190
10.1093/jxb/erx355
10.1105/tpc.113.114652
10.1016/S0092-8674(00)80863-6
10.1093/jxb/ern306
10.1146/annurev-arplant-050312-120043
10.1126/science.aar4142
10.1101/sqb.2012.77.015933
10.1038/nmeth.3317
10.1016/j.cub.2018.01.059
10.1016/j.cell.2006.09.032
10.1093/jxb/erv094
10.1186/gb-2009-10-3-r25
10.1111/tpj.13415
10.1093/bioinformatics/btp616
10.1016/j.tplants.2008.10.001
10.1038/nature25027
10.1038/ng.2525
10.1016/j.cub.2008.04.042
10.1105/tpc.107.050062
10.1016/j.mib.2016.04.003
10.1105/tpc.113.110957
10.1146/annurev-arplant-050213-040159
10.1073/pnas.0611119104
10.1038/nrm4085
10.1093/nar/gkr319
10.1016/S0092-8674(00)80864-8
10.1111/pce.12052
10.1038/nplants.2016.153
10.1101/gad.1231804
10.1104/pp.16.01253
10.1038/nbt.3122
10.1094/MPMI-06-14-0190-R
10.1105/tpc.10.6.937
10.1111/j.1469-8137.2006.01844.x
10.1016/j.cub.2006.03.035
10.14806/ej.17.1.200
10.1038/nri2824
10.1186/gb-2013-14-6-211
10.1186/1746-4811-3-12
10.1101/gad.177527.111
10.1038/nature05286
10.1104/pp.103.021980
10.1126/science.1126088
10.1038/ncomms6488
10.1111/j.1462-5822.2006.00683.x
10.4161/rna.25568
10.1073/pnas.0709303105
10.1101/gad.1352605
10.1261/rna.2455411
10.1371/journal.pbio.1001801
10.1104/pp.109.151803
10.1105/tpc.107.057067
10.1111/j.1462-5822.2010.01530.x
10.1016/j.molp.2015.10.004
10.1016/j.pbi.2015.06.007
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.chom.2018.11.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 165.e5
ExternalDocumentID PMC9208300
30595554
10_1016_j_chom_2018_11_007
S1931312818305894
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM129373
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
ZBA
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
5PM
ID FETCH-LOGICAL-c554t-54b40eecb5f77a2ba84f249c71fe1d7383edb10e2b1966403e21a3903e309c53
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 14:01:32 EDT 2025
Tue Aug 05 11:32:27 EDT 2025
Fri Jul 11 03:22:52 EDT 2025
Thu Apr 03 07:08:07 EDT 2025
Tue Jul 01 02:44:21 EDT 2025
Thu Apr 24 22:53:14 EDT 2025
Fri Feb 23 02:31:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords pathogenesis
RNA interference
RNA-silencing suppressor
microRNA
host-induced gene silencing
secondary small RNAs
virulence factor
plant immunity
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-54b40eecb5f77a2ba84f249c71fe1d7383edb10e2b1966403e21a3903e309c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
Y.H., Y.Z., H.Z.K., B.D.R., and D.S.C. did the experiments. L.F., L.Z., W.Y., and J.Z. did the sequencing analyses and sRNA target prediction. Y.H., Y.Z., H.Z.K., and B.Z. cultivated plants and harvested materials. W.M., Y.H., Y.Z., L.F., and J.Z. prepared figures and tables. W.M., R.W.I., X.C., and W.G. guided the execution of the experiments. W.M., Y.H., and R.W.I. analyzed the data. W.M. conceived the project. W.M. and Y.H. wrote the manuscript. J.Z., W.G., X.C., and R.W.I. revised the manuscript.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9208300
PMID 30595554
PQID 2161923173
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9208300
proquest_miscellaneous_2660976320
proquest_miscellaneous_2161923173
pubmed_primary_30595554
crossref_citationtrail_10_1016_j_chom_2018_11_007
crossref_primary_10_1016_j_chom_2018_11_007
elsevier_sciencedirect_doi_10_1016_j_chom_2018_11_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-09
PublicationDateYYYYMMDD 2019-01-09
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ye, Ma (bib60) 2016; 32
Boutrot, Zipfel (bib10) 2017; 55
Dahan, Mireau (bib17) 2013; 10
Axtell (bib5) 2013; 64
Wang, Bouwmeester, van de Mortel, Shan, Govers (bib55) 2013; 36
Addo-Quaye, Eshoo, Bartel, Axtell (bib1) 2008; 18
Buck, Coakley, Simbari, McSorley, Quintana, Le Bihan, Kumar, Abreu-Goodger, Lear, Harcus (bib11) 2014; 5
Varkonyi-Gasic, Wu, Wood, Walton, Hellens (bib54) 2007; 3
Cai, Qiao, Wang, He, Lin, Palmquist, Huang, Jin (bib12) 2018; 360
Dai, Zhao (bib18) 2011; 39
Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib33) 2009; 25
Navarro, Dunoyer, Jay, Arnold, Dharmasiri, Estelle, Voinnet, Jones (bib39) 2006; 312
Ruiz, Voinnet, Baulcombe (bib50) 1998; 10
Li, Zhang, Zhang, Wu, Qi, Zhou (bib34) 2010; 152
Win, Chaparro-Garcia, Belhaj, Saunders, Yoshida, Dong, Schornack, Zipfel, Robatzek, Hogenhout (bib56) 2012; 77
Ding (bib20) 2010; 10
Baulcombe (bib8) 2015; 26
Yoshikawa, Peragine, Park, Poethig (bib61) 2005; 19
An, Ehlers, Kogel, van Bel, Huckelhoven (bib3) 2006; 172
Barkan, Small (bib7) 2014; 65
Micali, Neumann, Grunewald, Panstruga, O'Connell (bib37) 2011; 13
Chen, Li, Wu (bib13) 2007; 104
Howell, Fahlgren, Chapman, Cumbie, Sullivan, Givan, Kasschau, Carrington (bib25) 2007; 19
Pertea, Pertea, Antonescu, Chang, Mendell, Salzberg (bib44) 2015; 33
Regente, Pinedo, San Clemente, Balliau, Jamet, de la Canal (bib47) 2017; 68
Jiang, Tripathy, Govers, Tyler (bib28) 2008; 105
Petre, Kamoun (bib45) 2014; 12
Cheng, Krishnakumar, Chan, Thibaud-Nissen, Schobel, Town (bib15) 2017; 89
Hua, Zhao, Guo (bib26) 2017; 11
Jones, Dangl (bib29) 2006; 444
Rutter, Innes (bib51) 2017; 173
Langmead, Trapnell, Pop, Salzberg (bib32) 2009; 10
Zhai, Jeong, De Paoli, Park, Rosen, Li, Gonzalez, Yan, Kitto, Grusak (bib62) 2011; 25
Zhai, Bischof, Wang, Feng, Lee, Teng, Chen, Park, Liu, Gallego-Bartolome (bib63) 2015; 163
Kim, Langmead, Salzberg (bib31) 2015; 12
Ellendorff, Fradin, de Jonge, Thomma (bib22) 2009; 60
Chow, Koutsovoulos, Ovando-Vázquez, Laetsch, Bermúdez-Barrientos, Claycomb, Blaxter, Abreu-Goodger, Buck (bib16) 2018
Pall, Hamilton (bib41) 2008; 3
Axtell, Jan, Rajagopalan, Bartel (bib6) 2006; 127
Mourrain, Beclin, Elmayan, Feuerbach, Godon, Morel, Jouette, Lacombe, Nikic, Picault (bib38) 2000; 101
Borges, Martienssen (bib9) 2015; 16
Jahan, Asman, Corcoran, Fogelqvist, Vetukuri, Dixelius (bib27) 2015; 66
Dou, Kale, Wang, Chen, Wang, Jiang, Arredondo, Anderson, Thakur, McDowell (bib21) 2008; 20
An, Huckelhoven, Kogel, van Bel (bib4) 2006; 8
Xiong, Ye, Choi, Wong, Qiao, Tao, Wang, Ma (bib58) 2014; 27
Pais, Win, Yoshida, Etherington, Cano, Raffaele, Banfield, Jones, Kamoun, Saunders (bib40) 2013; 14
Yan, Wei, Wu, Hu, Li, Yang, Xie (bib59) 2015; 8
Kamoun, Furzer, Jones, Judelson, Ali, Dalio, Roy, Schena, Zambounis, Panabieres (bib30) 2015; 16
Fukudome, Kanaya, Egami, Nakazawa, Hiraguri, Moriyama, Fukuhara (bib24) 2011; 17
Peragine, Yoshikawa, Wu, Albrecht, Poethig (bib43) 2004; 18
Robinson, McCarthy, Smyth (bib48) 2010; 26
Xia, Meyers, Liu, Beers, Ye (bib57) 2013; 25
Adenot, Elmayan, Lauressergues, Boutet, Bouche, Gasciolli, Vaucheret (bib2) 2006; 16
Chen, Xing, Li, Tong, Xu (bib14) 2013; 8
Dalmay, Hamilton, Rudd, Angell, Baulcombe (bib19) 2000; 101
Martin (bib35) 2011; 17
Zhang, Zhao, Zhao, Wang, Jin, Chen, Fang, Hua, Ding, Guo (bib64) 2016; 2
Qiao, Liu, Xiong, Flores, Wong, Shi, Wang, Liu, Xiang, Jiang (bib46) 2013; 45
Roux, Schwessinger, Albrecht, Chinchilla, Jones, Holton, Malinovsky, Tor, de Vries, Zipfel (bib49) 2011; 23
Schmitz-Linneweber, Small (bib52) 2008; 13
Shahid, Kim, Johnson, Wafula, Wang, Coruh, Bernal-Galeano, Phifer, dePamphilis, Westwood (bib53) 2018; 553
Papp, Mette, Aufsatz, Daxinger, Schauer, Ray, van der Winden, Matzke, Matzke (bib42) 2003; 132
Meldolesi (bib36) 2018; 28
Baldrich, Rutter, Karimi, Podicheti, Meyers, Innes (bib65) 2018
Fei, Xia, Meyers (bib23) 2013; 25
Axtell (10.1016/j.chom.2018.11.007_bib5) 2013; 64
Yoshikawa (10.1016/j.chom.2018.11.007_bib61) 2005; 19
Kim (10.1016/j.chom.2018.11.007_bib31) 2015; 12
Jahan (10.1016/j.chom.2018.11.007_bib27) 2015; 66
Li (10.1016/j.chom.2018.11.007_bib33) 2009; 25
Xiong (10.1016/j.chom.2018.11.007_bib58) 2014; 27
Chen (10.1016/j.chom.2018.11.007_bib14) 2013; 8
Martin (10.1016/j.chom.2018.11.007_bib35) 2011; 17
Axtell (10.1016/j.chom.2018.11.007_bib6) 2006; 127
Yan (10.1016/j.chom.2018.11.007_bib59) 2015; 8
Barkan (10.1016/j.chom.2018.11.007_bib7) 2014; 65
Chen (10.1016/j.chom.2018.11.007_bib13) 2007; 104
Adenot (10.1016/j.chom.2018.11.007_bib2) 2006; 16
Robinson (10.1016/j.chom.2018.11.007_bib48) 2010; 26
Chow (10.1016/j.chom.2018.11.007_bib16) 2018
Pertea (10.1016/j.chom.2018.11.007_bib44) 2015; 33
Dalmay (10.1016/j.chom.2018.11.007_bib19) 2000; 101
Cheng (10.1016/j.chom.2018.11.007_bib15) 2017; 89
Roux (10.1016/j.chom.2018.11.007_bib49) 2011; 23
Xia (10.1016/j.chom.2018.11.007_bib57) 2013; 25
Dou (10.1016/j.chom.2018.11.007_bib21) 2008; 20
Regente (10.1016/j.chom.2018.11.007_bib47) 2017; 68
Ellendorff (10.1016/j.chom.2018.11.007_bib22) 2009; 60
Micali (10.1016/j.chom.2018.11.007_bib37) 2011; 13
Cai (10.1016/j.chom.2018.11.007_bib12) 2018; 360
Navarro (10.1016/j.chom.2018.11.007_bib39) 2006; 312
Zhang (10.1016/j.chom.2018.11.007_bib64) 2016; 2
Kamoun (10.1016/j.chom.2018.11.007_bib30) 2015; 16
Addo-Quaye (10.1016/j.chom.2018.11.007_bib1) 2008; 18
Buck (10.1016/j.chom.2018.11.007_bib11) 2014; 5
Howell (10.1016/j.chom.2018.11.007_bib25) 2007; 19
Baldrich (10.1016/j.chom.2018.11.007_bib65) 2018
Dahan (10.1016/j.chom.2018.11.007_bib17) 2013; 10
Zhai (10.1016/j.chom.2018.11.007_bib63) 2015; 163
Zhai (10.1016/j.chom.2018.11.007_bib62) 2011; 25
Peragine (10.1016/j.chom.2018.11.007_bib43) 2004; 18
Win (10.1016/j.chom.2018.11.007_bib56) 2012; 77
Qiao (10.1016/j.chom.2018.11.007_bib46) 2013; 45
Borges (10.1016/j.chom.2018.11.007_bib9) 2015; 16
Schmitz-Linneweber (10.1016/j.chom.2018.11.007_bib52) 2008; 13
Rutter (10.1016/j.chom.2018.11.007_bib51) 2017; 173
Petre (10.1016/j.chom.2018.11.007_bib45) 2014; 12
An (10.1016/j.chom.2018.11.007_bib3) 2006; 172
An (10.1016/j.chom.2018.11.007_bib4) 2006; 8
Jones (10.1016/j.chom.2018.11.007_bib29) 2006; 444
Mourrain (10.1016/j.chom.2018.11.007_bib38) 2000; 101
Fukudome (10.1016/j.chom.2018.11.007_bib24) 2011; 17
Wang (10.1016/j.chom.2018.11.007_bib55) 2013; 36
Meldolesi (10.1016/j.chom.2018.11.007_bib36) 2018; 28
Pais (10.1016/j.chom.2018.11.007_bib40) 2013; 14
Fei (10.1016/j.chom.2018.11.007_bib23) 2013; 25
Langmead (10.1016/j.chom.2018.11.007_bib32) 2009; 10
Boutrot (10.1016/j.chom.2018.11.007_bib10) 2017; 55
Ye (10.1016/j.chom.2018.11.007_bib60) 2016; 32
Jiang (10.1016/j.chom.2018.11.007_bib28) 2008; 105
Ruiz (10.1016/j.chom.2018.11.007_bib50) 1998; 10
Pall (10.1016/j.chom.2018.11.007_bib41) 2008; 3
Hua (10.1016/j.chom.2018.11.007_bib26) 2017; 11
Varkonyi-Gasic (10.1016/j.chom.2018.11.007_bib54) 2007; 3
Ding (10.1016/j.chom.2018.11.007_bib20) 2010; 10
Li (10.1016/j.chom.2018.11.007_bib34) 2010; 152
Baulcombe (10.1016/j.chom.2018.11.007_bib8) 2015; 26
Shahid (10.1016/j.chom.2018.11.007_bib53) 2018; 553
Dai (10.1016/j.chom.2018.11.007_bib18) 2011; 39
Papp (10.1016/j.chom.2018.11.007_bib42) 2003; 132
30629921 - Cell Host Microbe. 2019 Jan 9;25(1):7-9
References_xml – year: 2018
  ident: bib65
  article-title: Plant extracellular vesicles contain diverse small RNA species and are enriched in 10 to 17 nucleotide “tiny” RNAs
  publication-title: bioRxiv
– volume: 18
  start-page: 2368
  year: 2004
  end-page: 2379
  ident: bib43
  article-title: SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in
  publication-title: Genes Dev.
– volume: 173
  start-page: 728
  year: 2017
  end-page: 741
  ident: bib51
  article-title: Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins
  publication-title: Plant Physiol.
– volume: 101
  start-page: 543
  year: 2000
  end-page: 553
  ident: bib19
  article-title: An RNA-Dependent RNA polymerase gene in
  publication-title: Cell
– volume: 25
  start-page: 2540
  year: 2011
  end-page: 2553
  ident: bib62
  article-title: MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs
  publication-title: Genes Dev.
– volume: 25
  start-page: 1555
  year: 2013
  end-page: 1572
  ident: bib57
  article-title: MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA biogenesis in eudicots
  publication-title: Plant Cell
– volume: 10
  start-page: R25
  year: 2009
  ident: bib32
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
– volume: 32
  start-page: 1
  year: 2016
  end-page: 6
  ident: bib60
  article-title: Filamentous pathogen effectors interfering with small RNA silencing in plant hosts
  publication-title: Curr. Opin. Microbiol.
– volume: 553
  start-page: 82
  year: 2018
  end-page: 85
  ident: bib53
  article-title: MicroRNAs from the parasitic plant
  publication-title: Nature
– volume: 127
  start-page: 565
  year: 2006
  end-page: 577
  ident: bib6
  article-title: A two-hit trigger for siRNA biogenesis in plants
  publication-title: Cell
– volume: 16
  start-page: 727
  year: 2015
  end-page: 741
  ident: bib9
  article-title: The expanding world of small RNAs in plants
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 163
  start-page: 445
  year: 2015
  end-page: 455
  ident: bib63
  article-title: A one precursor one siRNA model for pol IV-dependent siRNA biogenesis
  publication-title: Cell
– volume: 172
  start-page: 563
  year: 2006
  end-page: 576
  ident: bib3
  article-title: Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus
  publication-title: New Phytol.
– volume: 5
  start-page: 5488
  year: 2014
  ident: bib11
  article-title: Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity
  publication-title: Nat. Commun.
– volume: 132
  start-page: 1382
  year: 2003
  end-page: 1390
  ident: bib42
  article-title: Evidence for nuclear processing of plant microRNA and short interfering RNA precursors
  publication-title: Plant Physiol.
– volume: 3
  start-page: 12
  year: 2007
  ident: bib54
  article-title: Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs
  publication-title: Plant Methods
– volume: 16
  start-page: 927
  year: 2006
  end-page: 932
  ident: bib2
  article-title: DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7
  publication-title: Curr. Biol.
– volume: 360
  start-page: 1126
  year: 2018
  end-page: 1129
  ident: bib12
  article-title: Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes
  publication-title: Science
– volume: 10
  start-page: 1469
  year: 2013
  end-page: 1476
  ident: bib17
  article-title: The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes
  publication-title: RNA Biol.
– volume: 77
  start-page: 235
  year: 2012
  end-page: 247
  ident: bib56
  article-title: Effector biology of plant-associated organisms: concepts and perspectives
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
– volume: 26
  start-page: 141
  year: 2015
  end-page: 146
  ident: bib8
  article-title: VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts
  publication-title: Curr. Opin. Plant Biol.
– volume: 27
  start-page: 1379
  year: 2014
  end-page: 1389
  ident: bib58
  article-title: suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and
  publication-title: Mol. Plant Microbe Interact.
– year: 2018
  ident: bib16
  article-title: An extracellular argonaute protein mediates export of repeat-associated small RNAs into vesicles in parasitic nematodes
  publication-title: BioRxiv
– volume: 18
  start-page: 758
  year: 2008
  end-page: 762
  ident: bib1
  article-title: Endogenous siRNA and miRNA targets identified by sequencing of the
  publication-title: Curr. Biol.
– volume: 23
  start-page: 2440
  year: 2011
  end-page: 2455
  ident: bib49
  article-title: The
  publication-title: Plant Cell
– volume: 12
  start-page: e1001801
  year: 2014
  ident: bib45
  article-title: How do filamentous pathogens deliver effector proteins into plant cells?
  publication-title: PLoS Biol.
– volume: 8
  start-page: 1009
  year: 2006
  end-page: 1019
  ident: bib4
  article-title: Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus
  publication-title: Cell Microbiol.
– volume: 17
  start-page: 10
  year: 2011
  end-page: 12
  ident: bib35
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J.
– volume: 17
  start-page: 750
  year: 2011
  end-page: 760
  ident: bib24
  article-title: Specific requirement of DRB4, a dsRNA-binding protein, for the in vitro dsRNA-cleaving activity of
  publication-title: RNA
– volume: 8
  start-page: 1820
  year: 2015
  end-page: 1823
  ident: bib59
  article-title: High-efficiency genome editing in
  publication-title: Mol. Plant
– volume: 33
  start-page: 290
  year: 2015
  end-page: 295
  ident: bib44
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
  publication-title: Nat. Biotechnol.
– volume: 104
  start-page: 3318
  year: 2007
  end-page: 3323
  ident: bib13
  article-title: Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 65
  start-page: 415
  year: 2014
  end-page: 442
  ident: bib7
  article-title: Pentatricopeptide repeat proteins in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 28
  start-page: R435
  year: 2018
  end-page: R444
  ident: bib36
  article-title: Exosomes and ectosomes in intercellular communication
  publication-title: Curr. Biol.
– volume: 36
  start-page: 1192
  year: 2013
  end-page: 1203
  ident: bib55
  article-title: A novel
  publication-title: Plant Cell Environ.
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: bib33
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 105
  start-page: 4874
  year: 2008
  end-page: 4879
  ident: bib28
  article-title: RXLR effector reservoir in two
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 12
  start-page: 357
  year: 2015
  end-page: 360
  ident: bib31
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
– volume: 64
  start-page: 137
  year: 2013
  end-page: 159
  ident: bib5
  article-title: Classification and comparison of small RNAs from plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 11
  start-page: 235
  year: 2017
  end-page: 244
  ident: bib26
  article-title: Trans-kingdom RNA silencing in plant-fungal pathogen interactions
  publication-title: Mol. Plant
– volume: 19
  start-page: 2164
  year: 2005
  end-page: 2175
  ident: bib61
  article-title: A pathway for the biogenesis of trans-acting siRNAs in
  publication-title: Genes Dev.
– volume: 8
  start-page: e74588
  year: 2013
  ident: bib14
  article-title: RNA-seq reveals infection-related gene expression changes in
  publication-title: PLoS One
– volume: 39
  start-page: W155
  year: 2011
  end-page: W159
  ident: bib18
  article-title: psRNATarget: a plant small RNA target analysis server
  publication-title: Nucleic Acids Res.
– volume: 20
  start-page: 1118
  year: 2008
  end-page: 1133
  ident: bib21
  article-title: Conserved C-terminal motifs required for avirulence and suppression of cell death by
  publication-title: Plant Cell
– volume: 13
  start-page: 663
  year: 2008
  end-page: 670
  ident: bib52
  article-title: Pentatricopeptide repeat proteins: a socket set for organelle gene expression
  publication-title: Trends Plant Sci.
– volume: 66
  start-page: 2785
  year: 2015
  end-page: 2794
  ident: bib27
  article-title: Plant-mediated gene silencing restricts growth of the potato late blight pathogen
  publication-title: J. Exp. Bot.
– volume: 55
  start-page: 257
  year: 2017
  end-page: 286
  ident: bib10
  article-title: Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance
  publication-title: Annu. Rev. Phytopathol.
– volume: 16
  start-page: 413
  year: 2015
  end-page: 434
  ident: bib30
  article-title: The top 10 oomycete pathogens in molecular plant pathology
  publication-title: Mol. Plant Pathol.
– volume: 10
  start-page: 937
  year: 1998
  end-page: 946
  ident: bib50
  article-title: Initiation and maintenance of virus-induced gene silencing
  publication-title: Plant Cell
– volume: 101
  start-page: 533
  year: 2000
  end-page: 542
  ident: bib38
  article-title: SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance
  publication-title: Cell
– volume: 312
  start-page: 436
  year: 2006
  end-page: 439
  ident: bib39
  article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling
  publication-title: Science
– volume: 60
  start-page: 591
  year: 2009
  end-page: 602
  ident: bib22
  article-title: RNA silencing is required for
  publication-title: J. Exp. Bot.
– volume: 3
  start-page: 1077
  year: 2008
  end-page: 1084
  ident: bib41
  article-title: Improved northern blot method for enhanced detection of small RNA
  publication-title: Nat. Protoc.
– volume: 89
  start-page: 789
  year: 2017
  end-page: 804
  ident: bib15
  article-title: Araport11: a complete reannotation of the
  publication-title: Plant J.
– volume: 13
  start-page: 210
  year: 2011
  end-page: 226
  ident: bib37
  article-title: Biogenesis of a specialized plant-fungal interface during host cell internalization of
  publication-title: Cell Microbiol.
– volume: 68
  start-page: 5485
  year: 2017
  end-page: 5495
  ident: bib47
  article-title: Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth
  publication-title: J. Exp. Bot.
– volume: 2
  start-page: 16153
  year: 2016
  ident: bib64
  article-title: Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen
  publication-title: Nat. Plants
– volume: 19
  start-page: 926
  year: 2007
  end-page: 942
  ident: bib25
  article-title: Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in
  publication-title: Plant Cell
– volume: 10
  start-page: 632
  year: 2010
  end-page: 644
  ident: bib20
  article-title: RNA-based antiviral immunity
  publication-title: Nat. Rev. Immunol.
– volume: 152
  start-page: 2222
  year: 2010
  end-page: 2231
  ident: bib34
  article-title: Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity
  publication-title: Plant Physiol.
– volume: 25
  start-page: 2400
  year: 2013
  end-page: 2415
  ident: bib23
  article-title: Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks
  publication-title: Plant Cell
– volume: 444
  start-page: 323
  year: 2006
  end-page: 329
  ident: bib29
  article-title: The plant immune system
  publication-title: Nature
– volume: 45
  start-page: 330
  year: 2013
  end-page: 333
  ident: bib46
  article-title: Oomycete pathogens encode RNA silencing suppressors
  publication-title: Nat. Genet.
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: bib48
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 14
  start-page: 211
  year: 2013
  ident: bib40
  article-title: From pathogen genomes to host plant processes: the power of plant parasitic oomycetes
  publication-title: Genome Biol.
– volume: 25
  start-page: 2078
  year: 2009
  ident: 10.1016/j.chom.2018.11.007_bib33
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 23
  start-page: 2440
  year: 2011
  ident: 10.1016/j.chom.2018.11.007_bib49
  article-title: The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.084301
– volume: 3
  start-page: 1077
  year: 2008
  ident: 10.1016/j.chom.2018.11.007_bib41
  article-title: Improved northern blot method for enhanced detection of small RNA
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.67
– volume: 8
  start-page: e74588
  year: 2013
  ident: 10.1016/j.chom.2018.11.007_bib14
  article-title: RNA-seq reveals infection-related gene expression changes in Phytophthora capsici
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0074588
– volume: 11
  start-page: 235
  year: 2017
  ident: 10.1016/j.chom.2018.11.007_bib26
  article-title: Trans-kingdom RNA silencing in plant-fungal pathogen interactions
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2017.12.001
– volume: 163
  start-page: 445
  year: 2015
  ident: 10.1016/j.chom.2018.11.007_bib63
  article-title: A one precursor one siRNA model for pol IV-dependent siRNA biogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.032
– volume: 55
  start-page: 257
  year: 2017
  ident: 10.1016/j.chom.2018.11.007_bib10
  article-title: Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-080614-120106
– volume: 16
  start-page: 413
  year: 2015
  ident: 10.1016/j.chom.2018.11.007_bib30
  article-title: The top 10 oomycete pathogens in molecular plant pathology
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12190
– volume: 68
  start-page: 5485
  year: 2017
  ident: 10.1016/j.chom.2018.11.007_bib47
  article-title: Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx355
– volume: 25
  start-page: 2400
  year: 2013
  ident: 10.1016/j.chom.2018.11.007_bib23
  article-title: Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.114652
– volume: 101
  start-page: 533
  year: 2000
  ident: 10.1016/j.chom.2018.11.007_bib38
  article-title: Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80863-6
– volume: 60
  start-page: 591
  year: 2009
  ident: 10.1016/j.chom.2018.11.007_bib22
  article-title: RNA silencing is required for Arabidopsis defence against Verticillium wilt disease
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ern306
– volume: 64
  start-page: 137
  year: 2013
  ident: 10.1016/j.chom.2018.11.007_bib5
  article-title: Classification and comparison of small RNAs from plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120043
– volume: 360
  start-page: 1126
  year: 2018
  ident: 10.1016/j.chom.2018.11.007_bib12
  article-title: Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes
  publication-title: Science
  doi: 10.1126/science.aar4142
– volume: 77
  start-page: 235
  year: 2012
  ident: 10.1016/j.chom.2018.11.007_bib56
  article-title: Effector biology of plant-associated organisms: concepts and perspectives
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/sqb.2012.77.015933
– volume: 12
  start-page: 357
  year: 2015
  ident: 10.1016/j.chom.2018.11.007_bib31
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3317
– volume: 28
  start-page: R435
  year: 2018
  ident: 10.1016/j.chom.2018.11.007_bib36
  article-title: Exosomes and ectosomes in intercellular communication
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.01.059
– volume: 127
  start-page: 565
  year: 2006
  ident: 10.1016/j.chom.2018.11.007_bib6
  article-title: A two-hit trigger for siRNA biogenesis in plants
  publication-title: Cell
  doi: 10.1016/j.cell.2006.09.032
– volume: 66
  start-page: 2785
  year: 2015
  ident: 10.1016/j.chom.2018.11.007_bib27
  article-title: Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv094
– volume: 10
  start-page: R25
  year: 2009
  ident: 10.1016/j.chom.2018.11.007_bib32
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 89
  start-page: 789
  year: 2017
  ident: 10.1016/j.chom.2018.11.007_bib15
  article-title: Araport11: a complete reannotation of the Arabidopsis thaliana reference genome
  publication-title: Plant J.
  doi: 10.1111/tpj.13415
– volume: 26
  start-page: 139
  year: 2010
  ident: 10.1016/j.chom.2018.11.007_bib48
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 13
  start-page: 663
  year: 2008
  ident: 10.1016/j.chom.2018.11.007_bib52
  article-title: Pentatricopeptide repeat proteins: a socket set for organelle gene expression
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2008.10.001
– volume: 553
  start-page: 82
  year: 2018
  ident: 10.1016/j.chom.2018.11.007_bib53
  article-title: MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs
  publication-title: Nature
  doi: 10.1038/nature25027
– volume: 45
  start-page: 330
  year: 2013
  ident: 10.1016/j.chom.2018.11.007_bib46
  article-title: Oomycete pathogens encode RNA silencing suppressors
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2525
– volume: 18
  start-page: 758
  year: 2008
  ident: 10.1016/j.chom.2018.11.007_bib1
  article-title: Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.04.042
– volume: 19
  start-page: 926
  year: 2007
  ident: 10.1016/j.chom.2018.11.007_bib25
  article-title: Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.050062
– volume: 32
  start-page: 1
  year: 2016
  ident: 10.1016/j.chom.2018.11.007_bib60
  article-title: Filamentous pathogen effectors interfering with small RNA silencing in plant hosts
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2016.04.003
– volume: 25
  start-page: 1555
  year: 2013
  ident: 10.1016/j.chom.2018.11.007_bib57
  article-title: MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA biogenesis in eudicots
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.110957
– volume: 65
  start-page: 415
  year: 2014
  ident: 10.1016/j.chom.2018.11.007_bib7
  article-title: Pentatricopeptide repeat proteins in plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050213-040159
– volume: 104
  start-page: 3318
  year: 2007
  ident: 10.1016/j.chom.2018.11.007_bib13
  article-title: Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0611119104
– volume: 16
  start-page: 727
  year: 2015
  ident: 10.1016/j.chom.2018.11.007_bib9
  article-title: The expanding world of small RNAs in plants
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4085
– volume: 39
  start-page: W155
  year: 2011
  ident: 10.1016/j.chom.2018.11.007_bib18
  article-title: psRNATarget: a plant small RNA target analysis server
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr319
– volume: 101
  start-page: 543
  year: 2000
  ident: 10.1016/j.chom.2018.11.007_bib19
  article-title: An RNA-Dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80864-8
– volume: 36
  start-page: 1192
  year: 2013
  ident: 10.1016/j.chom.2018.11.007_bib55
  article-title: A novel Arabidopsis-oomycete pathosystem: differential interactions with Phytophthora capsici reveal a role for camalexin, indole glucosinolates and salicylic acid in defence
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12052
– volume: 2
  start-page: 16153
  year: 2016
  ident: 10.1016/j.chom.2018.11.007_bib64
  article-title: Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2016.153
– volume: 18
  start-page: 2368
  year: 2004
  ident: 10.1016/j.chom.2018.11.007_bib43
  article-title: SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1231804
– volume: 173
  start-page: 728
  year: 2017
  ident: 10.1016/j.chom.2018.11.007_bib51
  article-title: Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01253
– volume: 33
  start-page: 290
  year: 2015
  ident: 10.1016/j.chom.2018.11.007_bib44
  article-title: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3122
– volume: 27
  start-page: 1379
  year: 2014
  ident: 10.1016/j.chom.2018.11.007_bib58
  article-title: Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-06-14-0190-R
– volume: 10
  start-page: 937
  year: 1998
  ident: 10.1016/j.chom.2018.11.007_bib50
  article-title: Initiation and maintenance of virus-induced gene silencing
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.6.937
– volume: 172
  start-page: 563
  year: 2006
  ident: 10.1016/j.chom.2018.11.007_bib3
  article-title: Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01844.x
– volume: 16
  start-page: 927
  year: 2006
  ident: 10.1016/j.chom.2018.11.007_bib2
  article-title: DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.03.035
– volume: 17
  start-page: 10
  year: 2011
  ident: 10.1016/j.chom.2018.11.007_bib35
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J.
  doi: 10.14806/ej.17.1.200
– volume: 10
  start-page: 632
  year: 2010
  ident: 10.1016/j.chom.2018.11.007_bib20
  article-title: RNA-based antiviral immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2824
– volume: 14
  start-page: 211
  year: 2013
  ident: 10.1016/j.chom.2018.11.007_bib40
  article-title: From pathogen genomes to host plant processes: the power of plant parasitic oomycetes
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-6-211
– year: 2018
  ident: 10.1016/j.chom.2018.11.007_bib16
  article-title: An extracellular argonaute protein mediates export of repeat-associated small RNAs into vesicles in parasitic nematodes
  publication-title: BioRxiv
– volume: 3
  start-page: 12
  year: 2007
  ident: 10.1016/j.chom.2018.11.007_bib54
  article-title: Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-3-12
– volume: 25
  start-page: 2540
  year: 2011
  ident: 10.1016/j.chom.2018.11.007_bib62
  article-title: MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs
  publication-title: Genes Dev.
  doi: 10.1101/gad.177527.111
– volume: 444
  start-page: 323
  year: 2006
  ident: 10.1016/j.chom.2018.11.007_bib29
  article-title: The plant immune system
  publication-title: Nature
  doi: 10.1038/nature05286
– volume: 132
  start-page: 1382
  year: 2003
  ident: 10.1016/j.chom.2018.11.007_bib42
  article-title: Evidence for nuclear processing of plant microRNA and short interfering RNA precursors
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.021980
– volume: 312
  start-page: 436
  year: 2006
  ident: 10.1016/j.chom.2018.11.007_bib39
  article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling
  publication-title: Science
  doi: 10.1126/science.1126088
– volume: 5
  start-page: 5488
  year: 2014
  ident: 10.1016/j.chom.2018.11.007_bib11
  article-title: Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6488
– volume: 8
  start-page: 1009
  year: 2006
  ident: 10.1016/j.chom.2018.11.007_bib4
  article-title: Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus
  publication-title: Cell Microbiol.
  doi: 10.1111/j.1462-5822.2006.00683.x
– year: 2018
  ident: 10.1016/j.chom.2018.11.007_bib65
  article-title: Plant extracellular vesicles contain diverse small RNA species and are enriched in 10 to 17 nucleotide “tiny” RNAs
  publication-title: bioRxiv
– volume: 10
  start-page: 1469
  year: 2013
  ident: 10.1016/j.chom.2018.11.007_bib17
  article-title: The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes
  publication-title: RNA Biol.
  doi: 10.4161/rna.25568
– volume: 105
  start-page: 4874
  year: 2008
  ident: 10.1016/j.chom.2018.11.007_bib28
  article-title: RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0709303105
– volume: 19
  start-page: 2164
  year: 2005
  ident: 10.1016/j.chom.2018.11.007_bib61
  article-title: A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1352605
– volume: 17
  start-page: 750
  year: 2011
  ident: 10.1016/j.chom.2018.11.007_bib24
  article-title: Specific requirement of DRB4, a dsRNA-binding protein, for the in vitro dsRNA-cleaving activity of Arabidopsis Dicer-like 4
  publication-title: RNA
  doi: 10.1261/rna.2455411
– volume: 12
  start-page: e1001801
  year: 2014
  ident: 10.1016/j.chom.2018.11.007_bib45
  article-title: How do filamentous pathogens deliver effector proteins into plant cells?
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001801
– volume: 152
  start-page: 2222
  year: 2010
  ident: 10.1016/j.chom.2018.11.007_bib34
  article-title: Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.151803
– volume: 20
  start-page: 1118
  year: 2008
  ident: 10.1016/j.chom.2018.11.007_bib21
  article-title: Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.057067
– volume: 13
  start-page: 210
  year: 2011
  ident: 10.1016/j.chom.2018.11.007_bib37
  article-title: Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria
  publication-title: Cell Microbiol.
  doi: 10.1111/j.1462-5822.2010.01530.x
– volume: 8
  start-page: 1820
  year: 2015
  ident: 10.1016/j.chom.2018.11.007_bib59
  article-title: High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2015.10.004
– volume: 26
  start-page: 141
  year: 2015
  ident: 10.1016/j.chom.2018.11.007_bib8
  article-title: VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2015.06.007
– reference: 30629921 - Cell Host Microbe. 2019 Jan 9;25(1):7-9
SSID ssj0055071
Score 2.6123855
Snippet RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi...
RNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 153
SubjectTerms Arabidopsis
Arabidopsis - genetics
Arabidopsis - immunology
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
biogenesis
disease susceptibility
Disease Susceptibility - microbiology
Gene Expression Regulation, Plant
Gene Silencing
genes
Genes, Reporter - genetics
host-induced gene silencing
Host-Pathogen Interactions - genetics
Host-Pathogen Interactions - immunology
immunity
microRNA
MicroRNAs - genetics
MicroRNAs - immunology
Nicotiana
pathogenesis
pathogens
Phosphoprotein Phosphatases - antagonists & inhibitors
Phosphoprotein Phosphatases - metabolism
Phytophthora
Phytophthora - metabolism
Phytophthora - pathogenicity
Plant Diseases - immunology
Plant Diseases - microbiology
plant immunity
Plant Immunity - genetics
Plant Immunity - immunology
Plant Leaves - immunology
Plant Leaves - microbiology
RNA interference
RNA Interference - immunology
RNA, Small Interfering - biosynthesis
RNA, Small Interfering - drug effects
RNA, Small Interfering - genetics
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
RNA-silencing suppressor
secondary small RNAs
Verticillium
Virulence
virulence factor
Virulence Factors - genetics
Virulence Factors - metabolism
Title A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility
URI https://dx.doi.org/10.1016/j.chom.2018.11.007
https://www.ncbi.nlm.nih.gov/pubmed/30595554
https://www.proquest.com/docview/2161923173
https://www.proquest.com/docview/2660976320
https://pubmed.ncbi.nlm.nih.gov/PMC9208300
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQEhIXVNpSFihypd5Qun7l4ePyEgWBEFB1b1biddhFkCA2HPbfM2MnK7at9tBTlMSOkhnb80088w0h37UQJSuyPNJWqUjl3EWAMvKIZWDOhU2E8xlyl1fJ2S91PoyHK-Soy4XBsMp27Q9rul-t2yv9Vpr958mkfwvQg0vcCMok1sZDTlCpMp_ENzzsVmOk6-JhZ5lH2LpNnAkxXliPBMO7sh_I5IklZf9tnP4Gn3_GUL4zSqcfyEaLJukgvPAmWXHVR7IW6kvOPpHfA3o9niF1QDMGVdNAVVy_UKzl6VnDp9QbKywifD-qn-jN1WBCm5pe-yg9R4_D_g10mPr4Fx9KO_tM7k5P7o7OoraSQmQBLjRRrArFnLNFXIIiRJFnqgS_y6a8dHyUgpfqRgVnThQwIRPFpBM8lxqOkmkbyy2yWtWV2ya0xAyr1Cpd5FoJNdKAGCxzmRapgweJHuGdBI1tWcax2MWj6cLJHgxK3aDUwf0wIPUeOZj3eQ4cG0tbx51izMJIMWAElvb71mnRwBTCfZG8cvXr1AjuvUieyiVtkoQBcpOC9ciXoPn5u8Lw0zHIuUfShTExb4AU3ot3qsnYU3lrARCYsZ3__KZdsg5n2v8S0ntktXl5dV8BJDXFPrgHPy_2_Vx4A4dzEF8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQviM9RPo3EGwq1HefDj2UwdbBVExTRNytxHVq0JdOaPfS_585OKgqoDzxFiu0oufP5fo7vfgfwRktZ8TIvIm2VilQhXIQoo4h4ju5c2lQ6nyF3OknH39SnWTLbg8M-F4bCKru1P6zpfrXu7gw7aQ4vl8vhV4QeIqaDoDym2njqBtxENJCRdR7P3vfLMfF1iXC0LCLq3mXOhCAvKkhC8V35O6LypJqy__ZOf6PPP4Mof_NKR_fgbgcn2Si88X3Yc_UDuBUKTK4fwvcRO1usiTugXaCuWeAqbq4YFfP0tOEr5r0VVRH-MW8u2JfJaMnahp35MD3HPoQDHByw8gEwPpZ2_QimRx-nh-OoK6UQWcQLbZSoUnHnbJlUqAlZFrmqcONlM1E5Mc9wm-rmpeBOlmiRqeKxk6KINV5jrm0SP4b9uqndE2AVpVhlVumy0EqquUbIYLnLtcwcPkgOQPQSNLajGadqF-emjyf7aUjqhqSO-w-DUh_A282Yy0CysbN30ivGbE0Vg15g57jXvRYN2hAdjBS1a65XRgq_jRRZvKNPmnKEbrHkAzgImt-8K84_naCcB5BtzYlNB-Lw3m6plwvP5a0lYmDOn_7nN72C2-Pp6Yk5OZ58fgZ3sEX7_0P6Oey3V9fuBSKmtnzpLeIXzMsShg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Phytophthora+Effector+Suppresses+Trans-Kingdom+RNAi+to+Promote+Disease+Susceptibility&rft.jtitle=Cell+host+%26+microbe&rft.au=Hou%2C+Yingnan&rft.au=Zhai%2C+Yi&rft.au=Feng%2C+Li&rft.au=Karimi%2C+Hana+Z.&rft.date=2019-01-09&rft.pub=Elsevier+Inc&rft.issn=1931-3128&rft.eissn=1934-6069&rft.volume=25&rft.issue=1&rft.spage=153&rft.epage=165.e5&rft_id=info:doi/10.1016%2Fj.chom.2018.11.007&rft.externalDocID=S1931312818305894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon