Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming
Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method...
Saved in:
Published in | Cell Vol. 176; no. 4; pp. 928 - 943.e22 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.
[Display omitted]
•Optimal transport analysis recovers trajectories from 315,000 scRNA-seq profiles•Induced pluripotent stem cell reprogramming produces diverse developmental programs•Regulatory analysis identifies a series of TFs predictive of specific cell fates•Transcription factor Obox6 and cytokine GDF9 increase reprogramming efficiency
Application of a new analytical approach to examine developmental trajectories of single cells offers insight into how paracrine interactions shape reprogramming. |
---|---|
AbstractList | Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.
[Display omitted]
•Optimal transport analysis recovers trajectories from 315,000 scRNA-seq profiles•Induced pluripotent stem cell reprogramming produces diverse developmental programs•Regulatory analysis identifies a series of TFs predictive of specific cell fates•Transcription factor Obox6 and cytokine GDF9 increase reprogramming efficiency
Application of a new analytical approach to examine developmental trajectories of single cells offers insight into how paracrine interactions shape reprogramming. Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology. Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 scRNA-seq profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates, and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology. Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology. Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology. |
Author | Tabaka, Marcin Brumbaugh, Justin Lee, Lia Lander, Eric S. Regev, Aviv Cleary, Brian Subramanian, Vidya Gould, Joshua Rigollet, Philippe Solomon, Aryeh Hochedlinger, Konrad Jaenisch, Rudolf Berube, Peter Liu, Siyan Lin, Stacie Chen, Jenny Schiebinger, Geoffrey Shu, Jian |
AuthorAffiliation | 13 Howard Hughes Medical Institute, Chevy Chase, MD, USA 10 Harvard Medical School, Boston, MA 02115, USA 7 Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA 9 Harvard Stem Cell Institute, Cambridge, MA 02138, USA 12 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 11 MIT Center for Statistics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 4 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139 USA 5 Cancer Center, Massachusetts General Hospital, Boston, MA 02114 USA 2 Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA 3 Computational and Systems Biology Program, MIT, Cambridge, MA 02142, USA 6 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 1 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 14 Department of Systems Biology Harvard Med |
AuthorAffiliation_xml | – name: 8 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA – name: 9 Harvard Stem Cell Institute, Cambridge, MA 02138, USA – name: 2 Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA – name: 4 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139 USA – name: 1 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – name: 3 Computational and Systems Biology Program, MIT, Cambridge, MA 02142, USA – name: 7 Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA – name: 11 MIT Center for Statistics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – name: 12 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – name: 10 Harvard Medical School, Boston, MA 02115, USA – name: 6 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – name: 5 Cancer Center, Massachusetts General Hospital, Boston, MA 02114 USA – name: 13 Howard Hughes Medical Institute, Chevy Chase, MD, USA – name: 14 Department of Systems Biology Harvard Medical School, Boston, MA 02125, USA – name: 15 Biochemistry Program, Wellesley College, Wellesley, 02481, MA, USA |
Author_xml | – sequence: 1 givenname: Geoffrey surname: Schiebinger fullname: Schiebinger, Geoffrey organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 2 givenname: Jian surname: Shu fullname: Shu, Jian email: jianshu@broadinstitute.org organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 3 givenname: Marcin surname: Tabaka fullname: Tabaka, Marcin organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 4 givenname: Brian surname: Cleary fullname: Cleary, Brian organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 5 givenname: Vidya surname: Subramanian fullname: Subramanian, Vidya organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 6 givenname: Aryeh surname: Solomon fullname: Solomon, Aryeh organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 7 givenname: Joshua surname: Gould fullname: Gould, Joshua organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 8 givenname: Siyan surname: Liu fullname: Liu, Siyan organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 9 givenname: Stacie surname: Lin fullname: Lin, Stacie organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 10 givenname: Peter surname: Berube fullname: Berube, Peter organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 11 givenname: Lia surname: Lee fullname: Lee, Lia organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 12 givenname: Jenny surname: Chen fullname: Chen, Jenny organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 13 givenname: Justin surname: Brumbaugh fullname: Brumbaugh, Justin organization: Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 14 givenname: Philippe surname: Rigollet fullname: Rigollet, Philippe organization: MIT Center for Statistics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 15 givenname: Konrad surname: Hochedlinger fullname: Hochedlinger, Konrad organization: Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 16 givenname: Rudolf surname: Jaenisch fullname: Jaenisch, Rudolf organization: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA – sequence: 17 givenname: Aviv surname: Regev fullname: Regev, Aviv email: aregev@broadinstitute.org organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA – sequence: 18 givenname: Eric S. surname: Lander fullname: Lander, Eric S. email: lander@broadinstitute.org organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30712874$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v1DAQtVAR3Rb-AAeUI5eEsTf-iISQqqWUSpUqQTlbTjJZvHLsYGdX9N_jaFsEHMrFI3nee_Nm3hk58cEjIa8pVBSoeLerOnSuYkCbCmgFIJ6RFYVGljWV7ISsABpWKiHrU3KW0g4AFOf8BTldg6RMyXpFpttptqNx5V00Pk0hzsWFN-4-2VSEofhq_dZhuclziiv0WFz-nCKmZIMvrnv0sx0spuIjHtCFacwfxhVZaofdHOLSsr74glMM22jGMau9JM8H4xK-eqjn5Nuny7vN5_Lm9up6c3FTdpzXc7lWA2sV7ep2zTqOrBWNoAYbzlvKBUrWg5QCsO25YLWsB9UIo0BiI7iiQ7M-Jx-OutO-HbHvsrVonJ5i3jbe62Cs_rvj7Xe9DQctamAKIAu8fRCI4cce06xHm5aDG49hnzRjjMJaUKn-D6WyqZv8igx986et334eE8kAdQR0MaQUcdCdnc2cD55dWqcp6CV8vdPLAL2Er4HqHH6msn-oj-pPkt4fSZjDOFiMOnUWfYe9jTlE3Qf7FP0XggrJ2Q |
CitedBy_id | crossref_primary_10_1007_s10959_024_01349_x crossref_primary_10_1016_j_conb_2023_102752 crossref_primary_10_1016_j_cels_2025_101194 crossref_primary_10_1002_qub2_86 crossref_primary_10_1214_22_AIHP1356 crossref_primary_10_1016_j_semcdb_2020_05_022 crossref_primary_10_1186_s13059_023_02989_8 crossref_primary_10_1038_s41467_024_46773_z crossref_primary_10_1038_s41592_024_02303_9 crossref_primary_10_1101_gr_277960_123 crossref_primary_10_1186_s13059_024_03461_x crossref_primary_10_1038_s41467_021_21808_x crossref_primary_10_3389_fcell_2020_570107 crossref_primary_10_1016_j_molmed_2021_09_006 crossref_primary_10_1016_j_cels_2024_12_001 crossref_primary_10_1038_s41556_023_01193_x crossref_primary_10_1126_sciadv_aba1190 crossref_primary_10_1093_bioadv_vbae099 crossref_primary_10_1038_s41592_023_01969_x crossref_primary_10_1103_PhysRevResearch_6_033239 crossref_primary_10_1016_j_engappai_2024_108938 crossref_primary_10_3390_biom13081242 crossref_primary_10_1016_j_coisb_2021_100355 crossref_primary_10_1137_22M149260X crossref_primary_10_1038_d41586_025_00107_1 crossref_primary_10_1038_s41467_021_21810_3 crossref_primary_10_1073_pnas_2105859118 crossref_primary_10_2139_ssrn_4152682 crossref_primary_10_1111_cgf_14621 crossref_primary_10_3390_cells11091404 crossref_primary_10_1038_s41422_023_00802_6 crossref_primary_10_1016_j_devcel_2019_03_001 crossref_primary_10_1089_genbio_2022_0001 crossref_primary_10_1214_23_AAP1995 crossref_primary_10_1093_gbe_evae258 crossref_primary_10_7554_eLife_88742_3 crossref_primary_10_1038_d41586_019_01211_9 crossref_primary_10_1016_j_devcel_2024_11_022 crossref_primary_10_1186_s13046_021_01955_1 crossref_primary_10_1038_s41576_020_00292_x crossref_primary_10_1042_BST20231488 crossref_primary_10_1159_000540352 crossref_primary_10_1038_s41556_019_0390_6 crossref_primary_10_1101_gr_249706_119 crossref_primary_10_1038_s43586_024_00334_2 crossref_primary_10_12677_ACM_2022_126742 crossref_primary_10_1038_s41576_025_00821_6 crossref_primary_10_1007_s11357_021_00426_x crossref_primary_10_1016_j_devcel_2024_03_029 crossref_primary_10_1038_s41598_021_83395_7 crossref_primary_10_1016_j_gde_2021_04_004 crossref_primary_10_1016_j_devcel_2023_08_001 crossref_primary_10_7554_eLife_91597_3 crossref_primary_10_1038_s41592_023_02144_y crossref_primary_10_1038_s41467_024_52846_w crossref_primary_10_1038_s41587_023_02082_2 crossref_primary_10_1093_bib_bbaf071 crossref_primary_10_1016_j_bpj_2019_10_014 crossref_primary_10_3389_fnetp_2023_1225736 crossref_primary_10_1093_nar_gkaa506 crossref_primary_10_1371_journal_pcbi_1007828 crossref_primary_10_1016_j_molmed_2020_08_012 crossref_primary_10_3389_fcell_2022_865038 crossref_primary_10_1214_24_AOS2379 crossref_primary_10_1016_j_cell_2024_12_012 crossref_primary_10_1016_j_jocs_2023_101998 crossref_primary_10_1146_annurev_cancerbio_030419_033413 crossref_primary_10_7554_eLife_91597 crossref_primary_10_1016_j_stem_2019_06_010 crossref_primary_10_1038_s41586_023_06685_2 crossref_primary_10_1038_s41592_023_01968_y crossref_primary_10_1038_s42256_023_00763_w crossref_primary_10_1080_00268976_2023_2297818 crossref_primary_10_1016_j_celrep_2019_04_056 crossref_primary_10_21769_BioProtoc_3698 crossref_primary_10_1038_s42003_024_05988_y crossref_primary_10_1089_cell_2022_0071 crossref_primary_10_1038_s41467_021_25133_1 crossref_primary_10_3390_ijms22115988 crossref_primary_10_1038_s41467_021_23518_w crossref_primary_10_1016_j_tcb_2023_07_013 crossref_primary_10_1101_gr_253880_119 crossref_primary_10_1038_s41585_023_00805_3 crossref_primary_10_1088_1478_3975_ac8c16 crossref_primary_10_3390_jcm12123884 crossref_primary_10_1093_bioinformatics_btac171 crossref_primary_10_1109_JPROC_2022_3166132 crossref_primary_10_7554_eLife_88742 crossref_primary_10_1093_nsr_nwab029 crossref_primary_10_1016_j_cmet_2022_09_026 crossref_primary_10_1016_j_spa_2024_104462 crossref_primary_10_1073_pnas_2215155120 crossref_primary_10_1002_jcsm_13155 crossref_primary_10_1016_j_yexcr_2019_111645 crossref_primary_10_2174_0113894501279977231210170231 crossref_primary_10_1016_j_yamp_2023_01_002 crossref_primary_10_1016_j_jspi_2024_106185 crossref_primary_10_1098_rsfs_2022_0002 crossref_primary_10_1137_22M1518281 crossref_primary_10_1093_nargab_lqae144 crossref_primary_10_1016_j_stemcr_2019_10_009 crossref_primary_10_1093_bib_bbab573 crossref_primary_10_1089_cmb_2021_0446 crossref_primary_10_1016_j_semcdb_2019_12_004 crossref_primary_10_1016_j_stemcr_2022_07_009 crossref_primary_10_31083_FBL26200 crossref_primary_10_1016_j_jaip_2022_04_027 crossref_primary_10_1038_s41592_024_02302_w crossref_primary_10_1093_bioinformatics_btae483 crossref_primary_10_1038_s41598_022_20089_8 crossref_primary_10_1093_bib_bbae713 crossref_primary_10_1126_sciadv_adj8862 crossref_primary_10_1103_Physics_14_12 crossref_primary_10_1016_j_crmeth_2021_100095 crossref_primary_10_1038_s44161_024_00570_5 crossref_primary_10_1063_5_0007316 crossref_primary_10_1073_pnas_2207824119 crossref_primary_10_7554_eLife_64819 crossref_primary_10_1016_j_cdev_2023_203849 crossref_primary_10_1242_dev_203090 crossref_primary_10_3389_fcell_2021_731402 crossref_primary_10_1038_s44318_024_00070_z crossref_primary_10_1158_2159_8290_CD_21_0282 crossref_primary_10_1242_dev_173849 crossref_primary_10_1016_j_stem_2023_02_007 crossref_primary_10_1016_j_stem_2023_02_008 crossref_primary_10_1038_s41467_022_31131_8 crossref_primary_10_1186_s13059_020_02078_0 crossref_primary_10_1371_journal_pcbi_1010962 crossref_primary_10_3390_cimb44020035 crossref_primary_10_1038_s41587_024_02186_3 crossref_primary_10_1126_sciadv_adg8495 crossref_primary_10_1098_rsif_2023_0537 crossref_primary_10_1016_j_coisb_2021_02_002 crossref_primary_10_1016_j_heliyon_2023_e18133 crossref_primary_10_1186_s13059_020_02128_7 crossref_primary_10_1089_cell_2022_0160 crossref_primary_10_1016_j_stemcr_2021_12_017 crossref_primary_10_1016_j_cell_2023_04_020 crossref_primary_10_1042_BST20210135 crossref_primary_10_1371_journal_pcbi_1008205 crossref_primary_10_1371_journal_pcbi_1012015 crossref_primary_10_3389_fcell_2023_1328522 crossref_primary_10_1093_bioinformatics_btac084 crossref_primary_10_1038_s41419_020_2684_9 crossref_primary_10_1186_s13059_022_02667_1 crossref_primary_10_3934_mbe_2022395 crossref_primary_10_1021_acschembio_9b00714 crossref_primary_10_3150_21_BEJ1433 crossref_primary_10_1109_ACCESS_2021_3072613 crossref_primary_10_1093_nar_gkad262 crossref_primary_10_1038_s41590_023_01437_w crossref_primary_10_1016_j_cell_2021_04_003 crossref_primary_10_1016_j_cell_2021_04_004 crossref_primary_10_1002_advs_202409642 crossref_primary_10_1137_23M1624403 crossref_primary_10_1016_j_jtbi_2021_110923 crossref_primary_10_1038_s41586_024_07171_z crossref_primary_10_1093_nargab_lqad069 crossref_primary_10_1146_annurev_neuro_070918_050421 crossref_primary_10_1371_journal_pcbi_1012006 crossref_primary_10_1134_S1990519X23700104 crossref_primary_10_1093_bioinformatics_btae393 crossref_primary_10_3390_ijms24032266 crossref_primary_10_1093_nar_gkab1132 crossref_primary_10_1016_j_stem_2020_12_012 crossref_primary_10_1038_s41467_024_51382_x crossref_primary_10_1038_s41587_022_01476_y crossref_primary_10_1038_s41467_024_54466_w crossref_primary_10_1186_s12915_024_02085_8 crossref_primary_10_1016_j_celrep_2023_112547 crossref_primary_10_1242_dev_177220 crossref_primary_10_1615_JMachLearnModelComput_2023047369 crossref_primary_10_1016_j_coph_2022_102312 crossref_primary_10_1016_j_devcel_2023_11_007 crossref_primary_10_1038_s41576_021_00444_7 crossref_primary_10_1137_22M1528847 crossref_primary_10_1093_imaiai_iaae006 crossref_primary_10_22331_q_2024_09_25_1483 crossref_primary_10_1016_j_cels_2021_08_013 crossref_primary_10_3389_fbinf_2023_1191961 crossref_primary_10_1007_s00440_025_01366_9 crossref_primary_10_1111_exd_14248 crossref_primary_10_1242_dev_188474 crossref_primary_10_1103_PhysRevX_13_011013 crossref_primary_10_1111_imcb_12787 crossref_primary_10_1182_blood_2018_08_835355 crossref_primary_10_1016_j_coisb_2021_03_006 crossref_primary_10_1038_s41585_023_00837_9 crossref_primary_10_1007_s10915_024_02766_0 crossref_primary_10_1038_s41586_019_1773_3 crossref_primary_10_1214_23_AIHP1369 crossref_primary_10_1016_j_ccell_2020_06_012 crossref_primary_10_34133_research_0118 crossref_primary_10_1038_s41467_019_09670_4 crossref_primary_10_1093_bib_bbae233 crossref_primary_10_1126_sciadv_ado9970 crossref_primary_10_1038_s41580_024_00768_2 crossref_primary_10_1214_20_AOS1997 crossref_primary_10_1016_j_devcel_2022_01_008 crossref_primary_10_1242_jcs_232223 crossref_primary_10_1093_bioinformatics_btaa482 crossref_primary_10_1007_s10851_020_00996_z crossref_primary_10_3390_e23091134 crossref_primary_10_1126_sciimmunol_adk4893 crossref_primary_10_1371_journal_pcbi_1009821 crossref_primary_10_15252_embj_2020106785 crossref_primary_10_1016_j_gde_2020_05_016 crossref_primary_10_1016_j_patter_2023_100793 crossref_primary_10_3390_cancers15174357 crossref_primary_10_1016_j_jid_2023_11_008 crossref_primary_10_1038_s41587_022_01209_1 crossref_primary_10_1038_s41587_020_00801_7 crossref_primary_10_1051_e3sconf_202014501033 crossref_primary_10_1016_j_it_2019_06_006 crossref_primary_10_26508_lsa_202201706 crossref_primary_10_1038_s41540_024_00424_7 crossref_primary_10_1093_bib_bbaa342 crossref_primary_10_1038_s42003_024_06104_w crossref_primary_10_1038_s41592_021_01171_x crossref_primary_10_1038_s12276_020_0420_2 crossref_primary_10_1038_s41467_022_35094_8 crossref_primary_10_1103_PhysRevResearch_5_033213 crossref_primary_10_1371_journal_pgen_1010942 crossref_primary_10_1016_j_cels_2025_101205 crossref_primary_10_1038_s41556_022_00986_w crossref_primary_10_1089_cell_2021_0037 crossref_primary_10_3390_cancers13184561 crossref_primary_10_1038_s41586_021_03626_9 crossref_primary_10_1146_annurev_genet_071719_023616 crossref_primary_10_1016_j_coisb_2021_06_002 crossref_primary_10_1016_j_omtn_2023_102044 crossref_primary_10_1186_s12859_024_05988_z crossref_primary_10_1016_j_gde_2021_06_003 crossref_primary_10_1088_1361_6633_ac7a4a crossref_primary_10_1093_nargab_lqad024 crossref_primary_10_1371_journal_pcbi_1010031 crossref_primary_10_1038_s41586_024_08453_2 crossref_primary_10_1103_PhysRevResearch_6_033070 crossref_primary_10_1242_dev_203152 crossref_primary_10_1016_j_devcel_2023_12_010 crossref_primary_10_1038_s42003_024_06564_0 crossref_primary_10_1038_s41467_020_18900_z crossref_primary_10_1016_j_gde_2020_05_033 crossref_primary_10_1360_SSM_2024_0308 crossref_primary_10_1038_s41576_021_00341_z crossref_primary_10_1038_s41592_022_01728_4 crossref_primary_10_1093_nar_gkac785 crossref_primary_10_1002_cyto_a_24928 crossref_primary_10_31857_S0041377123060093 crossref_primary_10_1016_j_cels_2022_05_002 crossref_primary_10_3390_ijms252313128 crossref_primary_10_1093_jrsssb_qkad008 crossref_primary_10_1016_j_coisb_2021_04_006 crossref_primary_10_1002_dvg_23591 crossref_primary_10_1103_PhysRevE_100_013310 crossref_primary_10_1093_bioinformatics_btae518 crossref_primary_10_1186_s13227_023_00214_y crossref_primary_10_3389_fbioe_2021_748942 crossref_primary_10_1016_j_devcel_2023_08_023 crossref_primary_10_1089_cell_2024_0035 crossref_primary_10_1073_pnas_1913931118 crossref_primary_10_1038_s41467_024_53776_3 crossref_primary_10_1007_s00245_022_09911_x crossref_primary_10_1073_pnas_2401540121 crossref_primary_10_1093_bioinformatics_btab488 crossref_primary_10_1111_cgf_14778 crossref_primary_10_1038_s41467_022_30633_9 crossref_primary_10_1016_j_cels_2024_11_001 crossref_primary_10_1186_s13059_021_02518_5 crossref_primary_10_3150_23_BEJ1697 crossref_primary_10_1093_bib_bbac017 crossref_primary_10_1038_s41467_023_40803_y crossref_primary_10_1038_s41596_021_00534_0 crossref_primary_10_1016_j_jbc_2024_107824 crossref_primary_10_1242_dev_201867 crossref_primary_10_1016_j_cels_2021_09_012 crossref_primary_10_1038_s41556_023_01191_z crossref_primary_10_1093_nar_gkac235 crossref_primary_10_1016_j_ailsci_2023_100068 crossref_primary_10_1093_bioinformatics_btac227 crossref_primary_10_1016_j_neuron_2023_10_039 crossref_primary_10_1038_s41467_020_17009_7 crossref_primary_10_1016_j_actbio_2022_08_049 crossref_primary_10_1093_bioinformatics_btae400 crossref_primary_10_1093_bioinformatics_btae520 crossref_primary_10_1103_PhysRevE_103_012113 crossref_primary_10_1007_s00439_020_02116_8 crossref_primary_10_1038_s41559_022_01884_y crossref_primary_10_1242_dev_203015 crossref_primary_10_1016_j_trecan_2022_04_007 crossref_primary_10_1109_ACCESS_2023_3257427 crossref_primary_10_1242_dev_201873 crossref_primary_10_1002_JLB_6MR0720_131R crossref_primary_10_1038_s41467_024_45199_x crossref_primary_10_1016_j_cell_2024_04_039 crossref_primary_10_1371_journal_pcbi_1009466 crossref_primary_10_1101_cshperspect_a035733 crossref_primary_10_1016_j_inffus_2025_103108 crossref_primary_10_1038_s41586_022_04593_5 crossref_primary_10_1101_gr_257063_119 crossref_primary_10_3390_cells10113246 crossref_primary_10_1038_s44161_022_00205_7 crossref_primary_10_1186_s13059_024_03436_y crossref_primary_10_1242_dev_179788 crossref_primary_10_1007_s10915_024_02586_2 crossref_primary_10_1038_s41467_023_37270_w crossref_primary_10_1007_s10915_023_02396_y crossref_primary_10_1016_j_patcog_2022_108795 crossref_primary_10_1038_s41587_019_0088_0 crossref_primary_10_1073_pnas_2406842121 crossref_primary_10_1093_bib_bbad130 crossref_primary_10_1016_j_asoc_2024_112599 crossref_primary_10_1021_acsphyschemau_3c00079 crossref_primary_10_1002_cpz1_261 crossref_primary_10_1146_annurev_chembioeng_011720_103410 crossref_primary_10_1101_gad_348678_121 crossref_primary_10_1038_s41598_022_21596_4 crossref_primary_10_1038_s41592_020_0905_x crossref_primary_10_1038_s41587_021_01182_1 crossref_primary_10_1002_wics_1587 crossref_primary_10_1016_j_stem_2020_03_009 crossref_primary_10_1016_j_stem_2023_08_001 crossref_primary_10_1101_cshperspect_a035725 crossref_primary_10_1038_s41587_023_01657_3 crossref_primary_10_1103_PhysRevLett_130_010402 crossref_primary_10_1137_24M1658966 crossref_primary_10_3390_cancers16132354 crossref_primary_10_1007_s43670_021_00009_z crossref_primary_10_1073_pnas_2005477117 crossref_primary_10_1093_gigascience_giaa126 crossref_primary_10_1016_j_csbj_2023_03_023 crossref_primary_10_1016_j_fmre_2024_01_020 crossref_primary_10_1103_PhysRevX_14_021032 crossref_primary_10_1126_sciadv_abk1239 crossref_primary_10_1016_j_tiv_2022_105424 crossref_primary_10_1038_s41593_023_01424_2 crossref_primary_10_1038_s43588_022_00251_y crossref_primary_10_1016_j_coisb_2021_05_009 crossref_primary_10_1038_s41589_024_01799_8 |
Cites_doi | 10.1016/j.stem.2014.11.005 10.1016/j.cellsig.2011.11.011 10.1371/journal.pone.0098679 10.1038/nmeth.1409 10.1371/journal.pone.0008055 10.1074/jbc.M704343200 10.1016/j.celrep.2017.06.016 10.1126/science.aar3131 10.1016/j.cell.2015.06.016 10.1016/j.stem.2008.01.004 10.1038/nmeth.4662 10.1093/bioinformatics/btx173 10.1006/geno.2002.6759 10.1038/nature12243 10.1038/nrm.2016.8 10.1073/pnas.1408993111 10.1126/science.1254745 10.1016/j.celrep.2016.11.080 10.3390/genes8100267 10.1038/nature21350 10.1007/s00441-007-0466-7 10.1126/science.aaf4445 10.1038/nbt.4096 10.1038/ncb3193 10.1016/j.stem.2018.04.014 10.1371/journal.pone.0153656 10.1038/srep20980 10.1016/j.molcel.2010.05.004 10.1016/j.stem.2015.09.011 10.1016/j.cell.2010.01.027 10.1242/dev.038828 10.1016/j.stem.2018.05.025 10.1090/mcom/3303 10.1016/j.semcancer.2014.08.003 10.1242/dev.133462 10.1038/nmeth.4402 10.1074/jbc.M601811200 10.1095/biolreprod.109.083097 10.1016/j.stemcr.2016.02.003 10.1016/j.stem.2015.01.015 10.1016/j.ydbio.2005.05.010 10.1038/nature06968 10.1016/j.ydbio.2015.10.015 10.1038/nature20123 10.1006/dbio.2001.0373 10.1016/j.placenta.2016.04.016 10.1137/S0036141096303359 10.1091/mbc.e06-07-0624 10.1016/j.ydbio.2006.02.025 10.1038/78765 10.1016/j.cub.2015.11.060 10.1038/nature07056 10.1128/MCB.20.2.530-541.2000 10.1016/j.cell.2014.11.040 10.3934/dcds.2014.34.1533 10.1126/science.aar4362 10.1126/sciimmunol.aal2192 10.1101/gr.101469.109 10.1016/j.cell.2012.11.039 10.1016/j.cell.2006.07.024 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2019.01.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 943.e22 |
ExternalDocumentID | PMC6402800 30712874 10_1016_j_cell_2019_01_006 S009286741930039X |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD058013 – fundername: NICHD NIH HHS grantid: R01 HD045022 – fundername: NINDS NIH HHS grantid: R01 NS088538 – fundername: Howard Hughes Medical Institute – fundername: NICHD NIH HHS grantid: K99 HD096049 – fundername: NIGMS NIH HHS grantid: T32 GM087237 – fundername: NIMH NIH HHS grantid: R01 MH111502 – fundername: NIMH NIH HHS grantid: R01 MH104610 – fundername: NIMH NIH HHS grantid: U19 MH114830 – fundername: NIAID NIH HHS grantid: U24 AI118672 |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 7-5 85S AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABCQX ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YZZ ZA5 ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c554t-38f2b81c4b32c5e2b6961ae955b156e72d07760ebd562474f896a807e96581f93 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 18:22:43 EDT 2025 Mon Jul 21 10:28:52 EDT 2025 Sun Aug 24 04:10:09 EDT 2025 Mon Jul 21 06:04:30 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 Tue Jul 01 02:17:02 EDT 2025 Fri Feb 23 02:49:41 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | reprogramming iPSCs optimal-transport scRNA-seq development paracrine interactions regulation trajectories ancestors descendants |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-38f2b81c4b32c5e2b6961ae955b156e72d07760ebd562474f896a807e96581f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present Address: Weizmann Institute of Science, Rehovot, Israel Lead contact. Author Contributions JS and ESL conceived and designed the study of reprogramming in single-cell resolution. GS and ESL conceived the application of optimal transport; PR, AR, MT, and BC provided input on the development of the approach. MT, GS, BC, and JG developed WADDINGTON-OT. MT, GS, BC, ESL and A.R. analyzed the data, with assistance from J.S. All experiments were designed and performed by JS, with input from RJ and assistance from AS, SL, SL, PB, LL, JB, KH and VS. The manuscript was written by ESL, AR, GS, BC, MT, JS, and VS. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S009286741930039X |
PMID | 30712874 |
PQID | 2179492176 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6402800 proquest_miscellaneous_2221036178 proquest_miscellaneous_2179492176 pubmed_primary_30712874 crossref_citationtrail_10_1016_j_cell_2019_01_006 crossref_primary_10_1016_j_cell_2019_01_006 elsevier_sciencedirect_doi_10_1016_j_cell_2019_01_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-07 |
PublicationDateYYYYMMDD | 2019-02-07 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Villani (bib62) 2008 Withington, Scott, Saunders, Lopes Floro, Preis, Michalicek, Maclean, Sparrow, Barbera, Dunwoodie (bib67) 2006; 294 Chizat, Peyré, Schmitzer, Vialard (bib6) 2018; 87 Liu, Han, Peng, Peng, Wei, Li, Wang, Yu, Yang, Cao (bib28) 2015; 17 Mosteiro, Pantoja, Alcazar, Marión, Chondronasiou, Rovira, Fernandez-Marcos, Muñoz-Martin, Blanco-Aparicio, Pastor (bib37) 2016; 354 Kim, Marinov, Pepke, Singer, He, Williams, Schroth, Elowitz, Wold (bib21) 2015; 16 Froidure, Marchal-Duval, Ghanem, Gerish, Jaillet, Crestani, Mailleux (bib10) 2016; 48 Klauzinska, Castro, Rangel, Spike, Gray, Bertolette, Cuttitta, Salomon (bib22) 2014; 29 Latos, Hemberger (bib24) 2016; 143 Takahashi, Yamanaka (bib57) 2006; 126 Hannibal, Baker (bib13) 2016; 26 Mertins, Przybylski, Yosef, Qiao, Clauser, Raychowdhury, Eisenhaure, Maritzen, Haucke, Satoh (bib33) 2017; 19 Scott, Anson-Cartwright, Riley, Reda, Cross (bib53) 2000; 20 Kolodziejczyk, Kim, Tsang, Ilicic, Henriksson, Natarajan, Tuck, Gao, Bühler, Liu (bib23) 2015; 17 Takahashi, Yamanaka (bib58) 2016; 17 Ralston, Cox, Nishioka, Sasaki, Chea, Rugg-Gunn, Guo, Robson, Draper, Rossant (bib48) 2010; 137 Elson, Lelièvre, Guillet, Chevalier, Plun-Favreau, Froger, Suard, de Coignac, Delneste, Bonnefoy (bib8) 2000; 3 Santambrogio (bib51) 2015 Cacchiarelli, Trapnell, Ziller, Soumillon, Cesana, Karnik, Donaghey, Smith, Ratanasirintrawoot, Zhang (bib5) 2015; 162 Parr, Cornish, Cybulsky, McMahon (bib42) 2001; 237 Léonard (bib25) 2014; 34 Zhao, Fu, Zhu, Liu, Zhang, Yi, Chen, Jiao, Xu, Xu (bib73) 2018; 23 Rashid, Kotton, Bar-Joseph (bib49) 2017; 33 Marco, Karp, Guo, Robson, Hart, Trippa, Yuan (bib32) 2014; 111 Herman, Sagar, Grün (bib15) 2018; 15 Mikkelsen, Hanna, Zhang, Ku, Wernig, Schorderet, Bernstein, Jaenisch, Lander, Meissner (bib35) 2008; 454 Lim, Loh, Zhang, Li, Chen, Wang, Bakre, Ng, Stanton (bib27) 2007; 18 Zunder, Lujan, Goltsev, Wernig, Nolan (bib74) 2015; 16 Stadtfeld, Maherali, Borkent, Hochedlinger (bib56) 2010; 7 Tunster, Creeth, John (bib61) 2016; 409 Liu, Brumbaugh, Bar-Nur, Smith, Stadtfeld, Meissner, Hochedlinger, Michor (bib29) 2016; 17 Pei, Grishin (bib44) 2012; 24 Pasque, Tchieu, Karnik, Uyeda, Sadhu Dimashkie, Case, Papp, Bonora, Patel, Ho (bib43) 2014; 159 Butler, Hoffman, Smibert, Papalexi, Satija (bib4) 2018; 36 Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib14) 2010; 38 Kantorovich, L. (1942). On the translocation of masses. Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS Kester, van Oudenaarden (bib19) 2018; 23 Rajkovic, Yan, Yan, Klysik, Matzuk (bib47) 2002; 79 Wu, Oatley, Oatley, Kaucher, Avarbock, Brinster (bib70) 2010; 82 Tanay, Regev (bib59) 2017; 541 Ambrosio, Gigli, Savaré (bib2) 2008 Lönnberg, Svensson, James, Fernandez-Ruiz, Sebina, Montandon, Soon, Fogg, Nair, Liligeto (bib30) 2017; 2 Gonzalez-Muñoz, Arboleda-Estudillo, Otu, Cibelli (bib12) 2014; 345 Park, Lee, Jang, Lee, Park, Kim, Hong, Song, Park, Park (bib41) 2016; 6 Waddington (bib63) 1936 199–201. Woo, Kim, Jun, Kim, Haar, Lee, Hegg, Bandhakavi, Griffin, Kim (bib69) 2007; 282 Saelens, Cannoodt, Todorov, Saeys (bib50) 2018 Ma, Roth, Groskopf, Tsai, Orkin, Grosveld, Engel, Linzer (bib31) 1997; 124 Gegenschatz-Schmid, Verkauskas, Demougin, Bilius, Dasevicius, Stadler, Hadziselimovic (bib11) 2017; 8 Polo, Anderssen, Walsh, Schwarz, Nefzger, Lim, Borkent, Apostolou, Alaei, Cloutier (bib45) 2012; 151 Shi, Wang, Pan, Geng, Guo, Pei (bib54) 2006; 281 Waddington (bib64) 1957 Jacomy, Venturini, Heymann, Bastian (bib16) 2014; 9 Tirosh, Venteicher, Hebert, Escalante, Patel, Yizhak, Fisher, Rodman, Mount, Filbin (bib60) 2016; 539 Wu, Hong, Huang, Huang, He, Fang, Luo (bib71) 2016; 43 O’Malley, Skylaki, Iwabuchi, Chantzoura, Ruetz, Johnsson, Tomlinson, Linnarsson, Kaji (bib38) 2013; 499 Parenti, Halbisen, Wang, Latham, Ralston (bib40) 2016; 6 Simmons, Cross (bib55) 2005; 284 Brambrink, Foreman, Welstead, Lengner, Wernig, Suh, Jaenisch (bib3) 2008; 2 Jordan, Kinderlehrer, Otto (bib17) 1998; 29 Schrodinger (bib52) 1932; 2 Wolf, Hamey, Plass, Solana, Dahlin, Gottgens, Rajewsky, Simon, Theis (bib68) 2017 Aigner, Bogdahn (bib1) 2008; 331 Cuturi (bib7) 2013 Liang, Zhang, Lu, Yang, Tian, Wang, Tan, Tan (bib26) 2016; 11 Parast, Yu, Ciric, Salata, Davis, Milstone (bib39) 2009; 4 Wagner, Weinreb, Collins, Briggs, Megason, Klein (bib65) 2018; 360 Kidder, Palmer (bib20) 2010; 20 Qiu, Mao, Tang, Wang, Chawla, Pliner, Trapnell (bib46) 2017; 14 Messina, Biressi, Monteverde, Magli, Cassano, Perani, Roncaglia, Tagliafico, Starnes, Campbell (bib34) 2010; 140 Ying, Wray, Nichols, Batlle-Morera, Doble, Woodgett, Cohen, Smith (bib72) 2008; 453 Weinreb, Wolock, Klein (bib66) 2016 Farrell, Wang, Riesenfeld, Shekhar, Regev, Schier (bib9) 2018; 360 Monge (bib36) 1781 Mosteiro (10.1016/j.cell.2019.01.006_bib37) 2016; 354 Aigner (10.1016/j.cell.2019.01.006_bib1) 2008; 331 Marco (10.1016/j.cell.2019.01.006_bib32) 2014; 111 Zhao (10.1016/j.cell.2019.01.006_bib73) 2018; 23 Jordan (10.1016/j.cell.2019.01.006_bib17) 1998; 29 Liu (10.1016/j.cell.2019.01.006_bib28) 2015; 17 Klauzinska (10.1016/j.cell.2019.01.006_bib22) 2014; 29 Stadtfeld (10.1016/j.cell.2019.01.006_bib56) 2010; 7 Froidure (10.1016/j.cell.2019.01.006_bib10) 2016; 48 Qiu (10.1016/j.cell.2019.01.006_bib46) 2017; 14 Herman (10.1016/j.cell.2019.01.006_bib15) 2018; 15 Waddington (10.1016/j.cell.2019.01.006_bib64) 1957 Zunder (10.1016/j.cell.2019.01.006_bib74) 2015; 16 Farrell (10.1016/j.cell.2019.01.006_bib9) 2018; 360 Ralston (10.1016/j.cell.2019.01.006_bib48) 2010; 137 O’Malley (10.1016/j.cell.2019.01.006_bib38) 2013; 499 Parr (10.1016/j.cell.2019.01.006_bib42) 2001; 237 Parast (10.1016/j.cell.2019.01.006_bib39) 2009; 4 Lönnberg (10.1016/j.cell.2019.01.006_bib30) 2017; 2 Cacchiarelli (10.1016/j.cell.2019.01.006_bib5) 2015; 162 Ying (10.1016/j.cell.2019.01.006_bib72) 2008; 453 10.1016/j.cell.2019.01.006_bib18 Rajkovic (10.1016/j.cell.2019.01.006_bib47) 2002; 79 Park (10.1016/j.cell.2019.01.006_bib41) 2016; 6 Simmons (10.1016/j.cell.2019.01.006_bib55) 2005; 284 Chizat (10.1016/j.cell.2019.01.006_bib6) 2018; 87 Liu (10.1016/j.cell.2019.01.006_bib29) 2016; 17 Takahashi (10.1016/j.cell.2019.01.006_bib58) 2016; 17 Kim (10.1016/j.cell.2019.01.006_bib21) 2015; 16 Saelens (10.1016/j.cell.2019.01.006_bib50) 2018 Schrodinger (10.1016/j.cell.2019.01.006_bib52) 1932; 2 Parenti (10.1016/j.cell.2019.01.006_bib40) 2016; 6 Cuturi (10.1016/j.cell.2019.01.006_bib7) 2013 Butler (10.1016/j.cell.2019.01.006_bib4) 2018; 36 Mertins (10.1016/j.cell.2019.01.006_bib33) 2017; 19 Mikkelsen (10.1016/j.cell.2019.01.006_bib35) 2008; 454 Elson (10.1016/j.cell.2019.01.006_bib8) 2000; 3 Wagner (10.1016/j.cell.2019.01.006_bib65) 2018; 360 Gonzalez-Muñoz (10.1016/j.cell.2019.01.006_bib12) 2014; 345 Scott (10.1016/j.cell.2019.01.006_bib53) 2000; 20 Heinz (10.1016/j.cell.2019.01.006_bib14) 2010; 38 Polo (10.1016/j.cell.2019.01.006_bib45) 2012; 151 Wu (10.1016/j.cell.2019.01.006_bib70) 2010; 82 Santambrogio (10.1016/j.cell.2019.01.006_bib51) 2015 Villani (10.1016/j.cell.2019.01.006_bib62) 2008 Latos (10.1016/j.cell.2019.01.006_bib24) 2016; 143 Messina (10.1016/j.cell.2019.01.006_bib34) 2010; 140 Lim (10.1016/j.cell.2019.01.006_bib27) 2007; 18 Tirosh (10.1016/j.cell.2019.01.006_bib60) 2016; 539 Ambrosio (10.1016/j.cell.2019.01.006_bib2) 2008 Rashid (10.1016/j.cell.2019.01.006_bib49) 2017; 33 Tanay (10.1016/j.cell.2019.01.006_bib59) 2017; 541 Takahashi (10.1016/j.cell.2019.01.006_bib57) 2006; 126 Kidder (10.1016/j.cell.2019.01.006_bib20) 2010; 20 Withington (10.1016/j.cell.2019.01.006_bib67) 2006; 294 Wolf (10.1016/j.cell.2019.01.006_bib68) 2017 Kester (10.1016/j.cell.2019.01.006_bib19) 2018; 23 Léonard (10.1016/j.cell.2019.01.006_bib25) 2014; 34 Wu (10.1016/j.cell.2019.01.006_bib71) 2016; 43 Liang (10.1016/j.cell.2019.01.006_bib26) 2016; 11 Waddington (10.1016/j.cell.2019.01.006_bib63) 1936 Ma (10.1016/j.cell.2019.01.006_bib31) 1997; 124 Hannibal (10.1016/j.cell.2019.01.006_bib13) 2016; 26 Weinreb (10.1016/j.cell.2019.01.006_bib66) 2016 Brambrink (10.1016/j.cell.2019.01.006_bib3) 2008; 2 Pei (10.1016/j.cell.2019.01.006_bib44) 2012; 24 Monge (10.1016/j.cell.2019.01.006_bib36) 1781 Pasque (10.1016/j.cell.2019.01.006_bib43) 2014; 159 Tunster (10.1016/j.cell.2019.01.006_bib61) 2016; 409 Gegenschatz-Schmid (10.1016/j.cell.2019.01.006_bib11) 2017; 8 Shi (10.1016/j.cell.2019.01.006_bib54) 2006; 281 Jacomy (10.1016/j.cell.2019.01.006_bib16) 2014; 9 Woo (10.1016/j.cell.2019.01.006_bib69) 2007; 282 Kolodziejczyk (10.1016/j.cell.2019.01.006_bib23) 2015; 17 30849376 - Cell. 2019 Mar 7;176(6):1517. doi: 10.1016/j.cell.2019.02.026 |
References_xml | – volume: 124 start-page: 907 year: 1997 end-page: 914 ident: bib31 article-title: GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo publication-title: Development – volume: 2 start-page: 269 year: 1932 end-page: 310 ident: bib52 article-title: Sur la theorie relativiste de l’electron et l’interpretation de la mecanique quan- tique publication-title: Ann. Inst. H. Poincare – volume: 499 start-page: 88 year: 2013 end-page: 91 ident: bib38 article-title: High-resolution analysis with novel cell-surface markers identifies routes to iPS cells publication-title: Nature – volume: 9 start-page: e98679 year: 2014 ident: bib16 article-title: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software publication-title: PLoS ONE – year: 1936 ident: bib63 article-title: How Animals Develop – volume: 16 start-page: 88 year: 2015 end-page: 101 ident: bib21 article-title: Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming publication-title: Cell Stem Cell – year: 2016 ident: bib66 article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data publication-title: bioRxiv – volume: 137 start-page: 395 year: 2010 end-page: 403 ident: bib48 article-title: Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2 publication-title: Development – volume: 162 start-page: 412 year: 2015 end-page: 424 ident: bib5 article-title: Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency publication-title: Cell – volume: 8 start-page: 267 year: 2017 ident: bib11 article-title: DMRTC2, PAX7, BRACHYURY/T and TERT are implicated in male germ cell development following curative hormone treatment for cryptorchidism-induced infertility publication-title: Genes (Basel) – volume: 281 start-page: 23319 year: 2006 end-page: 23325 ident: bib54 article-title: Regulation of the pluripotency marker Rex-1 by Nanog and Sox2 publication-title: J. Biol. Chem. – volume: 126 start-page: 663 year: 2006 end-page: 676 ident: bib57 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 409 start-page: 251 year: 2016 end-page: 260 ident: bib61 article-title: The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources publication-title: Dev. Biol. – volume: 2 start-page: 151 year: 2008 end-page: 159 ident: bib3 article-title: Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells publication-title: Cell Stem Cell – volume: 284 start-page: 12 year: 2005 end-page: 24 ident: bib55 article-title: Determinants of trophoblast lineage and cell subtype specification in the mouse placenta publication-title: Dev. Biol. – volume: 539 start-page: 309 year: 2016 end-page: 313 ident: bib60 article-title: Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma publication-title: Nature – volume: 48 start-page: OA506 year: 2016 ident: bib10 article-title: Mesenchyme associated transcription factor PRRX1: a key regulator of IPF fibroblast publication-title: Eur. Respir. J. – volume: 20 start-page: 530 year: 2000 end-page: 541 ident: bib53 article-title: The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms publication-title: Mol. Cell. Biol. – volume: 17 start-page: 856 year: 2015 end-page: 867 ident: bib28 article-title: The oncogene c-Jun impedes somatic cell reprogramming publication-title: Nat. Cell Biol. – year: 2017 ident: bib68 article-title: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells publication-title: bioRxiv – volume: 111 start-page: E5643 year: 2014 end-page: E5650 ident: bib32 article-title: Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 53 year: 2010 end-page: 55 ident: bib56 article-title: A reprogrammable mouse strain from gene-targeted embryonic stem cells publication-title: Nat. Methods – year: 2008 ident: bib62 article-title: Optimal Transport Old and New – volume: 17 start-page: 183 year: 2016 end-page: 193 ident: bib58 article-title: A decade of transcription factor-mediated reprogramming to pluripotency publication-title: Nat. Rev. Mol. Cell Biol. – volume: 454 start-page: 49 year: 2008 end-page: 55 ident: bib35 article-title: Dissecting direct reprogramming through integrative genomic analysis publication-title: Nature – volume: 331 start-page: 225 year: 2008 end-page: 241 ident: bib1 article-title: TGF-beta in neural stem cells and in tumors of the central nervous system publication-title: Cell Tissue Res. – start-page: 666 year: 1781 end-page: 704 ident: bib36 article-title: Mémoire sur la théorie des déblais et des remblais publication-title: Mém de l’Ac R des Sc – volume: 11 start-page: e0153656 year: 2016 ident: bib26 article-title: MSX2 induces trophoblast invasion in human placenta publication-title: PLoS ONE – year: 2008 ident: bib2 article-title: Gradient Flows in Metric Spaces and in the Space of Probability Measures – volume: 6 start-page: 447 year: 2016 end-page: 455 ident: bib40 article-title: OSKM induce extraembryonic endoderm stem cells in parallel to induced pluripotent stem cells publication-title: Stem Cell Reports – volume: 2 start-page: eaal2192 year: 2017 ident: bib30 article-title: Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria publication-title: Sci. Immunol. – year: 2018 ident: bib50 article-title: A comparison of single-cell trajectory inference methods: towards more accurate and robust tools publication-title: bioRxiv – year: 1957 ident: bib64 article-title: The Strategy of the Genes; a Discussion of Some Aspects of Theoretical Biology – volume: 15 start-page: 379 year: 2018 end-page: 386 ident: bib15 article-title: FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data publication-title: Nat. Methods – volume: 17 start-page: 3395 year: 2016 end-page: 3406 ident: bib29 article-title: Probabilistic modeling of reprogramming to induced pluripotent stem cells publication-title: Cell Rep. – volume: 19 start-page: 2853 year: 2017 end-page: 2866 ident: bib33 article-title: An integrative framework reveals signaling-to-transcription events in Toll-like receptor signaling publication-title: Cell Rep. – volume: 33 start-page: 2504 year: 2017 end-page: 2512 ident: bib49 article-title: TASIC: determining branching models from time series single cell data publication-title: Bioinformatics – volume: 294 start-page: 67 year: 2006 end-page: 82 ident: bib67 article-title: Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta publication-title: Dev. Biol. – volume: 282 start-page: 25604 year: 2007 end-page: 25612 ident: bib69 article-title: PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling publication-title: J. Biol. Chem. – volume: 345 start-page: 822 year: 2014 end-page: 825 ident: bib12 article-title: Cell reprogramming. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming publication-title: Science – volume: 20 start-page: 458 year: 2010 end-page: 472 ident: bib20 article-title: Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance publication-title: Genome Res. – volume: 16 start-page: 323 year: 2015 end-page: 337 ident: bib74 article-title: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry publication-title: Cell Stem Cell – volume: 79 start-page: 711 year: 2002 end-page: 717 ident: bib47 article-title: Obox, a family of homeobox genes preferentially expressed in germ cells publication-title: Genomics – volume: 24 start-page: 758 year: 2012 end-page: 769 ident: bib44 article-title: Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors publication-title: Cell. Signal. – volume: 3 start-page: 867 year: 2000 end-page: 872 ident: bib8 article-title: CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex publication-title: Nat. Neurosci. – volume: 23 start-page: 166 year: 2018 end-page: 179 ident: bib19 article-title: Single-cell transcriptomics meets lineage tracing publication-title: Cell Stem Cell – volume: 453 start-page: 519 year: 2008 end-page: 523 ident: bib72 article-title: The ground state of embryonic stem cell self-renewal publication-title: Nature – volume: 14 start-page: 979 year: 2017 end-page: 982 ident: bib46 article-title: Reversed graph embedding resolves complex single-cell trajectories publication-title: Nat. Methods – volume: 82 start-page: 1103 year: 2010 end-page: 1111 ident: bib70 article-title: The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells publication-title: Biol. Reprod. – volume: 140 start-page: 554 year: 2010 end-page: 566 ident: bib34 article-title: Nfix regulates fetal-specific transcription in developing skeletal muscle publication-title: Cell – volume: 360 start-page: 981 year: 2018 end-page: 987 ident: bib65 article-title: Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo publication-title: Science – volume: 151 start-page: 1617 year: 2012 end-page: 1632 ident: bib45 article-title: A molecular roadmap of reprogramming somatic cells into iPS cells publication-title: Cell – volume: 29 start-page: 51 year: 2014 end-page: 58 ident: bib22 article-title: The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition publication-title: Semin. Cancer Biol. – volume: 43 start-page: 17 year: 2016 end-page: 25 ident: bib71 article-title: CXCR2 is decreased in preeclamptic placentas and promotes human trophoblast invasion through the Akt signaling pathway publication-title: Placenta – volume: 38 start-page: 576 year: 2010 end-page: 589 ident: bib14 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell – volume: 36 start-page: 411 year: 2018 end-page: 420 ident: bib4 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. – volume: 87 start-page: 2563 year: 2018 end-page: 2609 ident: bib6 article-title: Scaling algorithms for unbalanced transport problems publication-title: Math. Comp. – volume: 34 start-page: 1533 year: 2014 end-page: 1574 ident: bib25 article-title: A survey of the Schrödinger problem and some of its connections with optimal transport publication-title: DCDS-A – volume: 29 start-page: 1 year: 1998 end-page: 17 ident: bib17 article-title: The variational formulation of the Fokker--Planck equation publication-title: SIAM J. Math. Anal. – volume: 159 start-page: 1681 year: 2014 end-page: 1697 ident: bib43 article-title: X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency publication-title: Cell – volume: 354 start-page: aaf4445 year: 2016 ident: bib37 article-title: Tissue damage and senescence provide critical signals for cellular reprogramming in vivo publication-title: Science – volume: 17 start-page: 471 year: 2015 end-page: 485 ident: bib23 article-title: Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation publication-title: Cell Stem Cell – volume: 143 start-page: 3650 year: 2016 end-page: 3660 ident: bib24 article-title: From the stem of the placental tree: trophoblast stem cells and their progeny publication-title: Development – reference: Kantorovich, L. (1942). On the translocation of masses. Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS – volume: 26 start-page: 230 year: 2016 end-page: 236 ident: bib13 article-title: Selective amplification of the genome surrounding key placental genes in trophoblast giant cells publication-title: Curr. Biol. – year: 2013 ident: bib7 article-title: Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances – volume: 360 start-page: eaar3131 year: 2018 ident: bib9 article-title: Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis publication-title: Science – volume: 18 start-page: 1348 year: 2007 end-page: 1358 ident: bib27 article-title: Zic3 is required for maintenance of pluripotency in embryonic stem cells publication-title: Mol. Biol. Cell – start-page: 99 year: 2015 end-page: 102 ident: bib51 article-title: Optimal Transport for Applied Mathematicians – volume: 541 start-page: 331 year: 2017 end-page: 338 ident: bib59 article-title: Scaling single-cell genomics from phenomenology to mechanism publication-title: Nature – volume: 4 start-page: e8055 year: 2009 ident: bib39 article-title: PPARgamma regulates trophoblast proliferation and promotes labyrinthine trilineage differentiation publication-title: PLoS ONE – volume: 237 start-page: 324 year: 2001 end-page: 332 ident: bib42 article-title: Wnt7b regulates placental development in mice publication-title: Dev. Biol. – reference: , 199–201. – volume: 23 start-page: 31 year: 2018 end-page: 45 ident: bib73 article-title: Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming publication-title: Cell Stem Cell – volume: 6 start-page: 20980 year: 2016 ident: bib41 article-title: SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes publication-title: Sci. Rep. – volume: 16 start-page: 88 year: 2015 ident: 10.1016/j.cell.2019.01.006_bib21 article-title: Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.11.005 – start-page: 666 year: 1781 ident: 10.1016/j.cell.2019.01.006_bib36 article-title: Mémoire sur la théorie des déblais et des remblais publication-title: Mém de l’Ac R des Sc – volume: 24 start-page: 758 year: 2012 ident: 10.1016/j.cell.2019.01.006_bib44 article-title: Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2011.11.011 – volume: 9 start-page: e98679 year: 2014 ident: 10.1016/j.cell.2019.01.006_bib16 article-title: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software publication-title: PLoS ONE doi: 10.1371/journal.pone.0098679 – volume: 7 start-page: 53 year: 2010 ident: 10.1016/j.cell.2019.01.006_bib56 article-title: A reprogrammable mouse strain from gene-targeted embryonic stem cells publication-title: Nat. Methods doi: 10.1038/nmeth.1409 – volume: 4 start-page: e8055 year: 2009 ident: 10.1016/j.cell.2019.01.006_bib39 article-title: PPARgamma regulates trophoblast proliferation and promotes labyrinthine trilineage differentiation publication-title: PLoS ONE doi: 10.1371/journal.pone.0008055 – volume: 282 start-page: 25604 year: 2007 ident: 10.1016/j.cell.2019.01.006_bib69 article-title: PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704343200 – volume: 19 start-page: 2853 year: 2017 ident: 10.1016/j.cell.2019.01.006_bib33 article-title: An integrative framework reveals signaling-to-transcription events in Toll-like receptor signaling publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.06.016 – year: 1936 ident: 10.1016/j.cell.2019.01.006_bib63 – volume: 360 start-page: eaar3131 year: 2018 ident: 10.1016/j.cell.2019.01.006_bib9 article-title: Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis publication-title: Science doi: 10.1126/science.aar3131 – volume: 124 start-page: 907 year: 1997 ident: 10.1016/j.cell.2019.01.006_bib31 article-title: GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo publication-title: Development – volume: 162 start-page: 412 year: 2015 ident: 10.1016/j.cell.2019.01.006_bib5 article-title: Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency publication-title: Cell doi: 10.1016/j.cell.2015.06.016 – volume: 2 start-page: 151 year: 2008 ident: 10.1016/j.cell.2019.01.006_bib3 article-title: Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.01.004 – volume: 15 start-page: 379 year: 2018 ident: 10.1016/j.cell.2019.01.006_bib15 article-title: FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data publication-title: Nat. Methods doi: 10.1038/nmeth.4662 – volume: 33 start-page: 2504 year: 2017 ident: 10.1016/j.cell.2019.01.006_bib49 article-title: TASIC: determining branching models from time series single cell data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx173 – volume: 79 start-page: 711 year: 2002 ident: 10.1016/j.cell.2019.01.006_bib47 article-title: Obox, a family of homeobox genes preferentially expressed in germ cells publication-title: Genomics doi: 10.1006/geno.2002.6759 – year: 2016 ident: 10.1016/j.cell.2019.01.006_bib66 article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data publication-title: bioRxiv – volume: 499 start-page: 88 year: 2013 ident: 10.1016/j.cell.2019.01.006_bib38 article-title: High-resolution analysis with novel cell-surface markers identifies routes to iPS cells publication-title: Nature doi: 10.1038/nature12243 – volume: 17 start-page: 183 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib58 article-title: A decade of transcription factor-mediated reprogramming to pluripotency publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.8 – volume: 111 start-page: E5643 year: 2014 ident: 10.1016/j.cell.2019.01.006_bib32 article-title: Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1408993111 – volume: 345 start-page: 822 year: 2014 ident: 10.1016/j.cell.2019.01.006_bib12 article-title: Cell reprogramming. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming publication-title: Science doi: 10.1126/science.1254745 – ident: 10.1016/j.cell.2019.01.006_bib18 – volume: 17 start-page: 3395 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib29 article-title: Probabilistic modeling of reprogramming to induced pluripotent stem cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.11.080 – volume: 8 start-page: 267 year: 2017 ident: 10.1016/j.cell.2019.01.006_bib11 article-title: DMRTC2, PAX7, BRACHYURY/T and TERT are implicated in male germ cell development following curative hormone treatment for cryptorchidism-induced infertility publication-title: Genes (Basel) doi: 10.3390/genes8100267 – volume: 541 start-page: 331 year: 2017 ident: 10.1016/j.cell.2019.01.006_bib59 article-title: Scaling single-cell genomics from phenomenology to mechanism publication-title: Nature doi: 10.1038/nature21350 – volume: 331 start-page: 225 year: 2008 ident: 10.1016/j.cell.2019.01.006_bib1 article-title: TGF-beta in neural stem cells and in tumors of the central nervous system publication-title: Cell Tissue Res. doi: 10.1007/s00441-007-0466-7 – volume: 354 start-page: aaf4445 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib37 article-title: Tissue damage and senescence provide critical signals for cellular reprogramming in vivo publication-title: Science doi: 10.1126/science.aaf4445 – volume: 36 start-page: 411 year: 2018 ident: 10.1016/j.cell.2019.01.006_bib4 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 17 start-page: 856 year: 2015 ident: 10.1016/j.cell.2019.01.006_bib28 article-title: The oncogene c-Jun impedes somatic cell reprogramming publication-title: Nat. Cell Biol. doi: 10.1038/ncb3193 – volume: 23 start-page: 166 year: 2018 ident: 10.1016/j.cell.2019.01.006_bib19 article-title: Single-cell transcriptomics meets lineage tracing publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.04.014 – year: 1957 ident: 10.1016/j.cell.2019.01.006_bib64 – volume: 11 start-page: e0153656 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib26 article-title: MSX2 induces trophoblast invasion in human placenta publication-title: PLoS ONE doi: 10.1371/journal.pone.0153656 – volume: 6 start-page: 20980 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib41 article-title: SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes publication-title: Sci. Rep. doi: 10.1038/srep20980 – volume: 38 start-page: 576 year: 2010 ident: 10.1016/j.cell.2019.01.006_bib14 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 17 start-page: 471 year: 2015 ident: 10.1016/j.cell.2019.01.006_bib23 article-title: Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.09.011 – year: 2008 ident: 10.1016/j.cell.2019.01.006_bib2 – volume: 140 start-page: 554 year: 2010 ident: 10.1016/j.cell.2019.01.006_bib34 article-title: Nfix regulates fetal-specific transcription in developing skeletal muscle publication-title: Cell doi: 10.1016/j.cell.2010.01.027 – volume: 137 start-page: 395 year: 2010 ident: 10.1016/j.cell.2019.01.006_bib48 article-title: Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2 publication-title: Development doi: 10.1242/dev.038828 – volume: 23 start-page: 31 year: 2018 ident: 10.1016/j.cell.2019.01.006_bib73 article-title: Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.05.025 – volume: 87 start-page: 2563 year: 2018 ident: 10.1016/j.cell.2019.01.006_bib6 article-title: Scaling algorithms for unbalanced transport problems publication-title: Math. Comp. doi: 10.1090/mcom/3303 – volume: 29 start-page: 51 year: 2014 ident: 10.1016/j.cell.2019.01.006_bib22 article-title: The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2014.08.003 – year: 2013 ident: 10.1016/j.cell.2019.01.006_bib7 – volume: 143 start-page: 3650 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib24 article-title: From the stem of the placental tree: trophoblast stem cells and their progeny publication-title: Development doi: 10.1242/dev.133462 – volume: 14 start-page: 979 year: 2017 ident: 10.1016/j.cell.2019.01.006_bib46 article-title: Reversed graph embedding resolves complex single-cell trajectories publication-title: Nat. Methods doi: 10.1038/nmeth.4402 – year: 2018 ident: 10.1016/j.cell.2019.01.006_bib50 article-title: A comparison of single-cell trajectory inference methods: towards more accurate and robust tools publication-title: bioRxiv – volume: 281 start-page: 23319 year: 2006 ident: 10.1016/j.cell.2019.01.006_bib54 article-title: Regulation of the pluripotency marker Rex-1 by Nanog and Sox2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M601811200 – volume: 82 start-page: 1103 year: 2010 ident: 10.1016/j.cell.2019.01.006_bib70 article-title: The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells publication-title: Biol. Reprod. doi: 10.1095/biolreprod.109.083097 – volume: 6 start-page: 447 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib40 article-title: OSKM induce extraembryonic endoderm stem cells in parallel to induced pluripotent stem cells publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2016.02.003 – volume: 16 start-page: 323 year: 2015 ident: 10.1016/j.cell.2019.01.006_bib74 article-title: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.01.015 – volume: 284 start-page: 12 year: 2005 ident: 10.1016/j.cell.2019.01.006_bib55 article-title: Determinants of trophoblast lineage and cell subtype specification in the mouse placenta publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2005.05.010 – start-page: 99 year: 2015 ident: 10.1016/j.cell.2019.01.006_bib51 – volume: 453 start-page: 519 year: 2008 ident: 10.1016/j.cell.2019.01.006_bib72 article-title: The ground state of embryonic stem cell self-renewal publication-title: Nature doi: 10.1038/nature06968 – volume: 409 start-page: 251 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib61 article-title: The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2015.10.015 – volume: 48 start-page: OA506 issue: Suppl 60 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib10 article-title: Mesenchyme associated transcription factor PRRX1: a key regulator of IPF fibroblast publication-title: Eur. Respir. J. – volume: 539 start-page: 309 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib60 article-title: Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma publication-title: Nature doi: 10.1038/nature20123 – volume: 237 start-page: 324 year: 2001 ident: 10.1016/j.cell.2019.01.006_bib42 article-title: Wnt7b regulates placental development in mice publication-title: Dev. Biol. doi: 10.1006/dbio.2001.0373 – volume: 43 start-page: 17 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib71 article-title: CXCR2 is decreased in preeclamptic placentas and promotes human trophoblast invasion through the Akt signaling pathway publication-title: Placenta doi: 10.1016/j.placenta.2016.04.016 – volume: 29 start-page: 1 year: 1998 ident: 10.1016/j.cell.2019.01.006_bib17 article-title: The variational formulation of the Fokker--Planck equation publication-title: SIAM J. Math. Anal. doi: 10.1137/S0036141096303359 – volume: 18 start-page: 1348 year: 2007 ident: 10.1016/j.cell.2019.01.006_bib27 article-title: Zic3 is required for maintenance of pluripotency in embryonic stem cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-07-0624 – year: 2017 ident: 10.1016/j.cell.2019.01.006_bib68 article-title: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells publication-title: bioRxiv – volume: 294 start-page: 67 year: 2006 ident: 10.1016/j.cell.2019.01.006_bib67 article-title: Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.02.025 – volume: 3 start-page: 867 year: 2000 ident: 10.1016/j.cell.2019.01.006_bib8 article-title: CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex publication-title: Nat. Neurosci. doi: 10.1038/78765 – volume: 26 start-page: 230 year: 2016 ident: 10.1016/j.cell.2019.01.006_bib13 article-title: Selective amplification of the genome surrounding key placental genes in trophoblast giant cells publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.11.060 – volume: 454 start-page: 49 year: 2008 ident: 10.1016/j.cell.2019.01.006_bib35 article-title: Dissecting direct reprogramming through integrative genomic analysis publication-title: Nature doi: 10.1038/nature07056 – year: 2008 ident: 10.1016/j.cell.2019.01.006_bib62 – volume: 20 start-page: 530 year: 2000 ident: 10.1016/j.cell.2019.01.006_bib53 article-title: The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.2.530-541.2000 – volume: 159 start-page: 1681 year: 2014 ident: 10.1016/j.cell.2019.01.006_bib43 article-title: X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency publication-title: Cell doi: 10.1016/j.cell.2014.11.040 – volume: 34 start-page: 1533 year: 2014 ident: 10.1016/j.cell.2019.01.006_bib25 article-title: A survey of the Schrödinger problem and some of its connections with optimal transport publication-title: DCDS-A doi: 10.3934/dcds.2014.34.1533 – volume: 2 start-page: 269 year: 1932 ident: 10.1016/j.cell.2019.01.006_bib52 article-title: Sur la theorie relativiste de l’electron et l’interpretation de la mecanique quan- tique publication-title: Ann. Inst. H. Poincare – volume: 360 start-page: 981 year: 2018 ident: 10.1016/j.cell.2019.01.006_bib65 article-title: Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo publication-title: Science doi: 10.1126/science.aar4362 – volume: 2 start-page: eaal2192 year: 2017 ident: 10.1016/j.cell.2019.01.006_bib30 article-title: Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aal2192 – volume: 20 start-page: 458 year: 2010 ident: 10.1016/j.cell.2019.01.006_bib20 article-title: Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance publication-title: Genome Res. doi: 10.1101/gr.101469.109 – volume: 151 start-page: 1617 year: 2012 ident: 10.1016/j.cell.2019.01.006_bib45 article-title: A molecular roadmap of reprogramming somatic cells into iPS cells publication-title: Cell doi: 10.1016/j.cell.2012.11.039 – volume: 126 start-page: 663 year: 2006 ident: 10.1016/j.cell.2019.01.006_bib57 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – reference: 30849376 - Cell. 2019 Mar 7;176(6):1517. doi: 10.1016/j.cell.2019.02.026 |
SSID | ssj0008555 |
Score | 2.700766 |
Snippet | Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for... Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 928 |
SubjectTerms | ancestors Animals Cell Differentiation - genetics Cells, Cultured Cellular Reprogramming - genetics cytokines descendants development Embryonic Stem Cells - metabolism Fibroblasts - metabolism Gene Expression Gene Expression Profiling - methods Gene Expression Regulation, Developmental - genetics Induced Pluripotent Stem Cells - metabolism iPSCs Mice optimal-transport paracrine interactions regulation reprogramming scRNA-seq sequence analysis Sequence Analysis, RNA - methods Single-Cell Analysis - methods trajectories transcription factors Transcription Factors - metabolism |
Title | Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming |
URI | https://dx.doi.org/10.1016/j.cell.2019.01.006 https://www.ncbi.nlm.nih.gov/pubmed/30712874 https://www.proquest.com/docview/2179492176 https://www.proquest.com/docview/2221036178 https://pubmed.ncbi.nlm.nih.gov/PMC6402800 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIHgR39ZHWcGbBJNsso-jlkpV0IMWeluyyQYrNS3agv57Z7JJaFV68BJIdpNsMrvzSL75hpBzhn4E-EGw0kTkRdwaL4ll4AnDDBLccZOWaIsH3h9Ed8N42CLdOhcGYZWV7nc6vdTW1ZHL6m1eTkcjzPFVoeRgERXDDNMh6GEWyTKJb3jdaGMZx66KgYKVD72rxBmH8cKP4wjvUiV1J1Y9-ts4_XY-f2IoF4zSzRbZrLxJeuUGvE1attgh666-5NcumT6CQnhLxl5DYU5rEhI6yekTmK2x9bowPIr007T3WcFiC-oSeHOIo-kCrgjuBZd6Lb_0Y9OooODBO4jXG1xtjwxues_dvleVWPBS8CNmHpN5aGSQRoaFaWxDwxUPEqvi2EBgZ0WYId2Pb00GflIkolwqnkhfWOSMCXLF9slaMSnsIaHcT0QufGEsBLo-7Blr8ozL3MpMsixsk6B-tzqt-MexDMZY10CzV43y0CgP7Qca5NEmF805U8e-sbJ3XItML80hDeZh5XlntXw1LC5sTgo7mX_oENWVgu2qPiFEzQwzLdvkwM2JZqygQAMsKNAmYmm2NB2Q3Hu5pRi9lCTfPMKf3v7RP5_pmGzgXokvFydkbfY-t6fgPs1MBwKH2_tOuUq-ATSgGqQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9pAEB6lRFF7qZKmD9o03Ui9RVb83MexRYkgpeRQInFbee21CgKDEpCSf98Zr22FpuLQC5LZtVl7dme-Nd98A_A1IhyBOAhXmoi9mFvjpYkMPGEiQwJ33GQV22LE-7fx9SSZ7EGvyYUhWmXt-51Pr7x1_c1F_TQvVtMp5fiqUHKMiCqiDNPJC9hHNCCofsNg8r11xzJJXBkDhUsfu9eZM47kRW_Hid-lKu1OKnv07-j0HH3-TaJ8EpWuDuF1DSfZNzfiI9iz5Rs4cAUmH49hdYMeYZHOvVbDnDUqJGxZsF8Yt-bW6-HwGOlPs8uHmhdbMpfBW-BGmj0hFuFv4aVm1at-apqWDCG843gt8Gpv4fbqctzre3WNBS9DILH2IlmERgZZbKIwS2xouOJBalWSGNzZWRHmpPfjW5MjUIpFXEjFU-kLS6IxQaGid9Apl6X9AIz7qSiEL4zFna6PR8aaIueysDKXUR52IWierc5qAXKqgzHXDdNspskemuyh_UCjPbpw3p6zcvIbO3snjcn01iTSGB92nnfW2Ffj6qLmtLTLzb0OyV8p_NzVJ8Rtc0Spll147-ZEO1b0oAFVFOiC2JotbQdS995uKae_K5VvHtO_3v7H_7ynL_CyP_451MPB6McneEUtFdlcnEBnfbexnxFLrc1ptVb-ALnKHMo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal-Transport+Analysis+of+Single-Cell+Gene+Expression+Identifies+Developmental+Trajectories+in+Reprogramming&rft.jtitle=Cell&rft.au=Schiebinger%2C+Geoffrey&rft.au=Shu%2C+Jian&rft.au=Tabaka%2C+Marcin&rft.au=Cleary%2C+Brian&rft.date=2019-02-07&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=176&rft.issue=4&rft.spage=928&rft_id=info:doi/10.1016%2Fj.cell.2019.01.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |