Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming

Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 176; no. 4; pp. 928 - 943.e22
Main Authors Schiebinger, Geoffrey, Shu, Jian, Tabaka, Marcin, Cleary, Brian, Subramanian, Vidya, Solomon, Aryeh, Gould, Joshua, Liu, Siyan, Lin, Stacie, Berube, Peter, Lee, Lia, Chen, Jenny, Brumbaugh, Justin, Rigollet, Philippe, Hochedlinger, Konrad, Jaenisch, Rudolf, Regev, Aviv, Lander, Eric S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology. [Display omitted] •Optimal transport analysis recovers trajectories from 315,000 scRNA-seq profiles•Induced pluripotent stem cell reprogramming produces diverse developmental programs•Regulatory analysis identifies a series of TFs predictive of specific cell fates•Transcription factor Obox6 and cytokine GDF9 increase reprogramming efficiency Application of a new analytical approach to examine developmental trajectories of single cells offers insight into how paracrine interactions shape reprogramming.
AbstractList Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology. [Display omitted] •Optimal transport analysis recovers trajectories from 315,000 scRNA-seq profiles•Induced pluripotent stem cell reprogramming produces diverse developmental programs•Regulatory analysis identifies a series of TFs predictive of specific cell fates•Transcription factor Obox6 and cytokine GDF9 increase reprogramming efficiency Application of a new analytical approach to examine developmental trajectories of single cells offers insight into how paracrine interactions shape reprogramming.
Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.
Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 scRNA-seq profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates, and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.
Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.
Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.
Author Tabaka, Marcin
Brumbaugh, Justin
Lee, Lia
Lander, Eric S.
Regev, Aviv
Cleary, Brian
Subramanian, Vidya
Gould, Joshua
Rigollet, Philippe
Solomon, Aryeh
Hochedlinger, Konrad
Jaenisch, Rudolf
Berube, Peter
Liu, Siyan
Lin, Stacie
Chen, Jenny
Schiebinger, Geoffrey
Shu, Jian
AuthorAffiliation 13 Howard Hughes Medical Institute, Chevy Chase, MD, USA
10 Harvard Medical School, Boston, MA 02115, USA
7 Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
9 Harvard Stem Cell Institute, Cambridge, MA 02138, USA
12 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
11 MIT Center for Statistics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139 USA
5 Cancer Center, Massachusetts General Hospital, Boston, MA 02114 USA
2 Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
3 Computational and Systems Biology Program, MIT, Cambridge, MA 02142, USA
6 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
1 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
14 Department of Systems Biology Harvard Med
AuthorAffiliation_xml – name: 8 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
– name: 9 Harvard Stem Cell Institute, Cambridge, MA 02138, USA
– name: 2 Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
– name: 4 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139 USA
– name: 1 Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– name: 3 Computational and Systems Biology Program, MIT, Cambridge, MA 02142, USA
– name: 7 Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
– name: 11 MIT Center for Statistics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– name: 12 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– name: 10 Harvard Medical School, Boston, MA 02115, USA
– name: 6 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– name: 5 Cancer Center, Massachusetts General Hospital, Boston, MA 02114 USA
– name: 13 Howard Hughes Medical Institute, Chevy Chase, MD, USA
– name: 14 Department of Systems Biology Harvard Medical School, Boston, MA 02125, USA
– name: 15 Biochemistry Program, Wellesley College, Wellesley, 02481, MA, USA
Author_xml – sequence: 1
  givenname: Geoffrey
  surname: Schiebinger
  fullname: Schiebinger, Geoffrey
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 2
  givenname: Jian
  surname: Shu
  fullname: Shu, Jian
  email: jianshu@broadinstitute.org
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 3
  givenname: Marcin
  surname: Tabaka
  fullname: Tabaka, Marcin
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 4
  givenname: Brian
  surname: Cleary
  fullname: Cleary, Brian
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 5
  givenname: Vidya
  surname: Subramanian
  fullname: Subramanian, Vidya
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 6
  givenname: Aryeh
  surname: Solomon
  fullname: Solomon, Aryeh
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 7
  givenname: Joshua
  surname: Gould
  fullname: Gould, Joshua
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 8
  givenname: Siyan
  surname: Liu
  fullname: Liu, Siyan
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 9
  givenname: Stacie
  surname: Lin
  fullname: Lin, Stacie
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 10
  givenname: Peter
  surname: Berube
  fullname: Berube, Peter
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 11
  givenname: Lia
  surname: Lee
  fullname: Lee, Lia
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 12
  givenname: Jenny
  surname: Chen
  fullname: Chen, Jenny
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 13
  givenname: Justin
  surname: Brumbaugh
  fullname: Brumbaugh, Justin
  organization: Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 14
  givenname: Philippe
  surname: Rigollet
  fullname: Rigollet, Philippe
  organization: MIT Center for Statistics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 15
  givenname: Konrad
  surname: Hochedlinger
  fullname: Hochedlinger, Konrad
  organization: Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 16
  givenname: Rudolf
  surname: Jaenisch
  fullname: Jaenisch, Rudolf
  organization: Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
– sequence: 17
  givenname: Aviv
  surname: Regev
  fullname: Regev, Aviv
  email: aregev@broadinstitute.org
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
– sequence: 18
  givenname: Eric S.
  surname: Lander
  fullname: Lander, Eric S.
  email: lander@broadinstitute.org
  organization: Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30712874$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVAR3Rb-AAeUI5eEsTf-iISQqqWUSpUqQTlbTjJZvHLsYGdX9N_jaFsEHMrFI3nee_Nm3hk58cEjIa8pVBSoeLerOnSuYkCbCmgFIJ6RFYVGljWV7ISsABpWKiHrU3KW0g4AFOf8BTldg6RMyXpFpttptqNx5V00Pk0hzsWFN-4-2VSEofhq_dZhuclziiv0WFz-nCKmZIMvrnv0sx0spuIjHtCFacwfxhVZaofdHOLSsr74glMM22jGMau9JM8H4xK-eqjn5Nuny7vN5_Lm9up6c3FTdpzXc7lWA2sV7ep2zTqOrBWNoAYbzlvKBUrWg5QCsO25YLWsB9UIo0BiI7iiQ7M-Jx-OutO-HbHvsrVonJ5i3jbe62Cs_rvj7Xe9DQctamAKIAu8fRCI4cce06xHm5aDG49hnzRjjMJaUKn-D6WyqZv8igx986et334eE8kAdQR0MaQUcdCdnc2cD55dWqcp6CV8vdPLAL2Er4HqHH6msn-oj-pPkt4fSZjDOFiMOnUWfYe9jTlE3Qf7FP0XggrJ2Q
CitedBy_id crossref_primary_10_1007_s10959_024_01349_x
crossref_primary_10_1016_j_conb_2023_102752
crossref_primary_10_1016_j_cels_2025_101194
crossref_primary_10_1002_qub2_86
crossref_primary_10_1214_22_AIHP1356
crossref_primary_10_1016_j_semcdb_2020_05_022
crossref_primary_10_1186_s13059_023_02989_8
crossref_primary_10_1038_s41467_024_46773_z
crossref_primary_10_1038_s41592_024_02303_9
crossref_primary_10_1101_gr_277960_123
crossref_primary_10_1186_s13059_024_03461_x
crossref_primary_10_1038_s41467_021_21808_x
crossref_primary_10_3389_fcell_2020_570107
crossref_primary_10_1016_j_molmed_2021_09_006
crossref_primary_10_1016_j_cels_2024_12_001
crossref_primary_10_1038_s41556_023_01193_x
crossref_primary_10_1126_sciadv_aba1190
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_1038_s41592_023_01969_x
crossref_primary_10_1103_PhysRevResearch_6_033239
crossref_primary_10_1016_j_engappai_2024_108938
crossref_primary_10_3390_biom13081242
crossref_primary_10_1016_j_coisb_2021_100355
crossref_primary_10_1137_22M149260X
crossref_primary_10_1038_d41586_025_00107_1
crossref_primary_10_1038_s41467_021_21810_3
crossref_primary_10_1073_pnas_2105859118
crossref_primary_10_2139_ssrn_4152682
crossref_primary_10_1111_cgf_14621
crossref_primary_10_3390_cells11091404
crossref_primary_10_1038_s41422_023_00802_6
crossref_primary_10_1016_j_devcel_2019_03_001
crossref_primary_10_1089_genbio_2022_0001
crossref_primary_10_1214_23_AAP1995
crossref_primary_10_1093_gbe_evae258
crossref_primary_10_7554_eLife_88742_3
crossref_primary_10_1038_d41586_019_01211_9
crossref_primary_10_1016_j_devcel_2024_11_022
crossref_primary_10_1186_s13046_021_01955_1
crossref_primary_10_1038_s41576_020_00292_x
crossref_primary_10_1042_BST20231488
crossref_primary_10_1159_000540352
crossref_primary_10_1038_s41556_019_0390_6
crossref_primary_10_1101_gr_249706_119
crossref_primary_10_1038_s43586_024_00334_2
crossref_primary_10_12677_ACM_2022_126742
crossref_primary_10_1038_s41576_025_00821_6
crossref_primary_10_1007_s11357_021_00426_x
crossref_primary_10_1016_j_devcel_2024_03_029
crossref_primary_10_1038_s41598_021_83395_7
crossref_primary_10_1016_j_gde_2021_04_004
crossref_primary_10_1016_j_devcel_2023_08_001
crossref_primary_10_7554_eLife_91597_3
crossref_primary_10_1038_s41592_023_02144_y
crossref_primary_10_1038_s41467_024_52846_w
crossref_primary_10_1038_s41587_023_02082_2
crossref_primary_10_1093_bib_bbaf071
crossref_primary_10_1016_j_bpj_2019_10_014
crossref_primary_10_3389_fnetp_2023_1225736
crossref_primary_10_1093_nar_gkaa506
crossref_primary_10_1371_journal_pcbi_1007828
crossref_primary_10_1016_j_molmed_2020_08_012
crossref_primary_10_3389_fcell_2022_865038
crossref_primary_10_1214_24_AOS2379
crossref_primary_10_1016_j_cell_2024_12_012
crossref_primary_10_1016_j_jocs_2023_101998
crossref_primary_10_1146_annurev_cancerbio_030419_033413
crossref_primary_10_7554_eLife_91597
crossref_primary_10_1016_j_stem_2019_06_010
crossref_primary_10_1038_s41586_023_06685_2
crossref_primary_10_1038_s41592_023_01968_y
crossref_primary_10_1038_s42256_023_00763_w
crossref_primary_10_1080_00268976_2023_2297818
crossref_primary_10_1016_j_celrep_2019_04_056
crossref_primary_10_21769_BioProtoc_3698
crossref_primary_10_1038_s42003_024_05988_y
crossref_primary_10_1089_cell_2022_0071
crossref_primary_10_1038_s41467_021_25133_1
crossref_primary_10_3390_ijms22115988
crossref_primary_10_1038_s41467_021_23518_w
crossref_primary_10_1016_j_tcb_2023_07_013
crossref_primary_10_1101_gr_253880_119
crossref_primary_10_1038_s41585_023_00805_3
crossref_primary_10_1088_1478_3975_ac8c16
crossref_primary_10_3390_jcm12123884
crossref_primary_10_1093_bioinformatics_btac171
crossref_primary_10_1109_JPROC_2022_3166132
crossref_primary_10_7554_eLife_88742
crossref_primary_10_1093_nsr_nwab029
crossref_primary_10_1016_j_cmet_2022_09_026
crossref_primary_10_1016_j_spa_2024_104462
crossref_primary_10_1073_pnas_2215155120
crossref_primary_10_1002_jcsm_13155
crossref_primary_10_1016_j_yexcr_2019_111645
crossref_primary_10_2174_0113894501279977231210170231
crossref_primary_10_1016_j_yamp_2023_01_002
crossref_primary_10_1016_j_jspi_2024_106185
crossref_primary_10_1098_rsfs_2022_0002
crossref_primary_10_1137_22M1518281
crossref_primary_10_1093_nargab_lqae144
crossref_primary_10_1016_j_stemcr_2019_10_009
crossref_primary_10_1093_bib_bbab573
crossref_primary_10_1089_cmb_2021_0446
crossref_primary_10_1016_j_semcdb_2019_12_004
crossref_primary_10_1016_j_stemcr_2022_07_009
crossref_primary_10_31083_FBL26200
crossref_primary_10_1016_j_jaip_2022_04_027
crossref_primary_10_1038_s41592_024_02302_w
crossref_primary_10_1093_bioinformatics_btae483
crossref_primary_10_1038_s41598_022_20089_8
crossref_primary_10_1093_bib_bbae713
crossref_primary_10_1126_sciadv_adj8862
crossref_primary_10_1103_Physics_14_12
crossref_primary_10_1016_j_crmeth_2021_100095
crossref_primary_10_1038_s44161_024_00570_5
crossref_primary_10_1063_5_0007316
crossref_primary_10_1073_pnas_2207824119
crossref_primary_10_7554_eLife_64819
crossref_primary_10_1016_j_cdev_2023_203849
crossref_primary_10_1242_dev_203090
crossref_primary_10_3389_fcell_2021_731402
crossref_primary_10_1038_s44318_024_00070_z
crossref_primary_10_1158_2159_8290_CD_21_0282
crossref_primary_10_1242_dev_173849
crossref_primary_10_1016_j_stem_2023_02_007
crossref_primary_10_1016_j_stem_2023_02_008
crossref_primary_10_1038_s41467_022_31131_8
crossref_primary_10_1186_s13059_020_02078_0
crossref_primary_10_1371_journal_pcbi_1010962
crossref_primary_10_3390_cimb44020035
crossref_primary_10_1038_s41587_024_02186_3
crossref_primary_10_1126_sciadv_adg8495
crossref_primary_10_1098_rsif_2023_0537
crossref_primary_10_1016_j_coisb_2021_02_002
crossref_primary_10_1016_j_heliyon_2023_e18133
crossref_primary_10_1186_s13059_020_02128_7
crossref_primary_10_1089_cell_2022_0160
crossref_primary_10_1016_j_stemcr_2021_12_017
crossref_primary_10_1016_j_cell_2023_04_020
crossref_primary_10_1042_BST20210135
crossref_primary_10_1371_journal_pcbi_1008205
crossref_primary_10_1371_journal_pcbi_1012015
crossref_primary_10_3389_fcell_2023_1328522
crossref_primary_10_1093_bioinformatics_btac084
crossref_primary_10_1038_s41419_020_2684_9
crossref_primary_10_1186_s13059_022_02667_1
crossref_primary_10_3934_mbe_2022395
crossref_primary_10_1021_acschembio_9b00714
crossref_primary_10_3150_21_BEJ1433
crossref_primary_10_1109_ACCESS_2021_3072613
crossref_primary_10_1093_nar_gkad262
crossref_primary_10_1038_s41590_023_01437_w
crossref_primary_10_1016_j_cell_2021_04_003
crossref_primary_10_1016_j_cell_2021_04_004
crossref_primary_10_1002_advs_202409642
crossref_primary_10_1137_23M1624403
crossref_primary_10_1016_j_jtbi_2021_110923
crossref_primary_10_1038_s41586_024_07171_z
crossref_primary_10_1093_nargab_lqad069
crossref_primary_10_1146_annurev_neuro_070918_050421
crossref_primary_10_1371_journal_pcbi_1012006
crossref_primary_10_1134_S1990519X23700104
crossref_primary_10_1093_bioinformatics_btae393
crossref_primary_10_3390_ijms24032266
crossref_primary_10_1093_nar_gkab1132
crossref_primary_10_1016_j_stem_2020_12_012
crossref_primary_10_1038_s41467_024_51382_x
crossref_primary_10_1038_s41587_022_01476_y
crossref_primary_10_1038_s41467_024_54466_w
crossref_primary_10_1186_s12915_024_02085_8
crossref_primary_10_1016_j_celrep_2023_112547
crossref_primary_10_1242_dev_177220
crossref_primary_10_1615_JMachLearnModelComput_2023047369
crossref_primary_10_1016_j_coph_2022_102312
crossref_primary_10_1016_j_devcel_2023_11_007
crossref_primary_10_1038_s41576_021_00444_7
crossref_primary_10_1137_22M1528847
crossref_primary_10_1093_imaiai_iaae006
crossref_primary_10_22331_q_2024_09_25_1483
crossref_primary_10_1016_j_cels_2021_08_013
crossref_primary_10_3389_fbinf_2023_1191961
crossref_primary_10_1007_s00440_025_01366_9
crossref_primary_10_1111_exd_14248
crossref_primary_10_1242_dev_188474
crossref_primary_10_1103_PhysRevX_13_011013
crossref_primary_10_1111_imcb_12787
crossref_primary_10_1182_blood_2018_08_835355
crossref_primary_10_1016_j_coisb_2021_03_006
crossref_primary_10_1038_s41585_023_00837_9
crossref_primary_10_1007_s10915_024_02766_0
crossref_primary_10_1038_s41586_019_1773_3
crossref_primary_10_1214_23_AIHP1369
crossref_primary_10_1016_j_ccell_2020_06_012
crossref_primary_10_34133_research_0118
crossref_primary_10_1038_s41467_019_09670_4
crossref_primary_10_1093_bib_bbae233
crossref_primary_10_1126_sciadv_ado9970
crossref_primary_10_1038_s41580_024_00768_2
crossref_primary_10_1214_20_AOS1997
crossref_primary_10_1016_j_devcel_2022_01_008
crossref_primary_10_1242_jcs_232223
crossref_primary_10_1093_bioinformatics_btaa482
crossref_primary_10_1007_s10851_020_00996_z
crossref_primary_10_3390_e23091134
crossref_primary_10_1126_sciimmunol_adk4893
crossref_primary_10_1371_journal_pcbi_1009821
crossref_primary_10_15252_embj_2020106785
crossref_primary_10_1016_j_gde_2020_05_016
crossref_primary_10_1016_j_patter_2023_100793
crossref_primary_10_3390_cancers15174357
crossref_primary_10_1016_j_jid_2023_11_008
crossref_primary_10_1038_s41587_022_01209_1
crossref_primary_10_1038_s41587_020_00801_7
crossref_primary_10_1051_e3sconf_202014501033
crossref_primary_10_1016_j_it_2019_06_006
crossref_primary_10_26508_lsa_202201706
crossref_primary_10_1038_s41540_024_00424_7
crossref_primary_10_1093_bib_bbaa342
crossref_primary_10_1038_s42003_024_06104_w
crossref_primary_10_1038_s41592_021_01171_x
crossref_primary_10_1038_s12276_020_0420_2
crossref_primary_10_1038_s41467_022_35094_8
crossref_primary_10_1103_PhysRevResearch_5_033213
crossref_primary_10_1371_journal_pgen_1010942
crossref_primary_10_1016_j_cels_2025_101205
crossref_primary_10_1038_s41556_022_00986_w
crossref_primary_10_1089_cell_2021_0037
crossref_primary_10_3390_cancers13184561
crossref_primary_10_1038_s41586_021_03626_9
crossref_primary_10_1146_annurev_genet_071719_023616
crossref_primary_10_1016_j_coisb_2021_06_002
crossref_primary_10_1016_j_omtn_2023_102044
crossref_primary_10_1186_s12859_024_05988_z
crossref_primary_10_1016_j_gde_2021_06_003
crossref_primary_10_1088_1361_6633_ac7a4a
crossref_primary_10_1093_nargab_lqad024
crossref_primary_10_1371_journal_pcbi_1010031
crossref_primary_10_1038_s41586_024_08453_2
crossref_primary_10_1103_PhysRevResearch_6_033070
crossref_primary_10_1242_dev_203152
crossref_primary_10_1016_j_devcel_2023_12_010
crossref_primary_10_1038_s42003_024_06564_0
crossref_primary_10_1038_s41467_020_18900_z
crossref_primary_10_1016_j_gde_2020_05_033
crossref_primary_10_1360_SSM_2024_0308
crossref_primary_10_1038_s41576_021_00341_z
crossref_primary_10_1038_s41592_022_01728_4
crossref_primary_10_1093_nar_gkac785
crossref_primary_10_1002_cyto_a_24928
crossref_primary_10_31857_S0041377123060093
crossref_primary_10_1016_j_cels_2022_05_002
crossref_primary_10_3390_ijms252313128
crossref_primary_10_1093_jrsssb_qkad008
crossref_primary_10_1016_j_coisb_2021_04_006
crossref_primary_10_1002_dvg_23591
crossref_primary_10_1103_PhysRevE_100_013310
crossref_primary_10_1093_bioinformatics_btae518
crossref_primary_10_1186_s13227_023_00214_y
crossref_primary_10_3389_fbioe_2021_748942
crossref_primary_10_1016_j_devcel_2023_08_023
crossref_primary_10_1089_cell_2024_0035
crossref_primary_10_1073_pnas_1913931118
crossref_primary_10_1038_s41467_024_53776_3
crossref_primary_10_1007_s00245_022_09911_x
crossref_primary_10_1073_pnas_2401540121
crossref_primary_10_1093_bioinformatics_btab488
crossref_primary_10_1111_cgf_14778
crossref_primary_10_1038_s41467_022_30633_9
crossref_primary_10_1016_j_cels_2024_11_001
crossref_primary_10_1186_s13059_021_02518_5
crossref_primary_10_3150_23_BEJ1697
crossref_primary_10_1093_bib_bbac017
crossref_primary_10_1038_s41467_023_40803_y
crossref_primary_10_1038_s41596_021_00534_0
crossref_primary_10_1016_j_jbc_2024_107824
crossref_primary_10_1242_dev_201867
crossref_primary_10_1016_j_cels_2021_09_012
crossref_primary_10_1038_s41556_023_01191_z
crossref_primary_10_1093_nar_gkac235
crossref_primary_10_1016_j_ailsci_2023_100068
crossref_primary_10_1093_bioinformatics_btac227
crossref_primary_10_1016_j_neuron_2023_10_039
crossref_primary_10_1038_s41467_020_17009_7
crossref_primary_10_1016_j_actbio_2022_08_049
crossref_primary_10_1093_bioinformatics_btae400
crossref_primary_10_1093_bioinformatics_btae520
crossref_primary_10_1103_PhysRevE_103_012113
crossref_primary_10_1007_s00439_020_02116_8
crossref_primary_10_1038_s41559_022_01884_y
crossref_primary_10_1242_dev_203015
crossref_primary_10_1016_j_trecan_2022_04_007
crossref_primary_10_1109_ACCESS_2023_3257427
crossref_primary_10_1242_dev_201873
crossref_primary_10_1002_JLB_6MR0720_131R
crossref_primary_10_1038_s41467_024_45199_x
crossref_primary_10_1016_j_cell_2024_04_039
crossref_primary_10_1371_journal_pcbi_1009466
crossref_primary_10_1101_cshperspect_a035733
crossref_primary_10_1016_j_inffus_2025_103108
crossref_primary_10_1038_s41586_022_04593_5
crossref_primary_10_1101_gr_257063_119
crossref_primary_10_3390_cells10113246
crossref_primary_10_1038_s44161_022_00205_7
crossref_primary_10_1186_s13059_024_03436_y
crossref_primary_10_1242_dev_179788
crossref_primary_10_1007_s10915_024_02586_2
crossref_primary_10_1038_s41467_023_37270_w
crossref_primary_10_1007_s10915_023_02396_y
crossref_primary_10_1016_j_patcog_2022_108795
crossref_primary_10_1038_s41587_019_0088_0
crossref_primary_10_1073_pnas_2406842121
crossref_primary_10_1093_bib_bbad130
crossref_primary_10_1016_j_asoc_2024_112599
crossref_primary_10_1021_acsphyschemau_3c00079
crossref_primary_10_1002_cpz1_261
crossref_primary_10_1146_annurev_chembioeng_011720_103410
crossref_primary_10_1101_gad_348678_121
crossref_primary_10_1038_s41598_022_21596_4
crossref_primary_10_1038_s41592_020_0905_x
crossref_primary_10_1038_s41587_021_01182_1
crossref_primary_10_1002_wics_1587
crossref_primary_10_1016_j_stem_2020_03_009
crossref_primary_10_1016_j_stem_2023_08_001
crossref_primary_10_1101_cshperspect_a035725
crossref_primary_10_1038_s41587_023_01657_3
crossref_primary_10_1103_PhysRevLett_130_010402
crossref_primary_10_1137_24M1658966
crossref_primary_10_3390_cancers16132354
crossref_primary_10_1007_s43670_021_00009_z
crossref_primary_10_1073_pnas_2005477117
crossref_primary_10_1093_gigascience_giaa126
crossref_primary_10_1016_j_csbj_2023_03_023
crossref_primary_10_1016_j_fmre_2024_01_020
crossref_primary_10_1103_PhysRevX_14_021032
crossref_primary_10_1126_sciadv_abk1239
crossref_primary_10_1016_j_tiv_2022_105424
crossref_primary_10_1038_s41593_023_01424_2
crossref_primary_10_1038_s43588_022_00251_y
crossref_primary_10_1016_j_coisb_2021_05_009
crossref_primary_10_1038_s41589_024_01799_8
Cites_doi 10.1016/j.stem.2014.11.005
10.1016/j.cellsig.2011.11.011
10.1371/journal.pone.0098679
10.1038/nmeth.1409
10.1371/journal.pone.0008055
10.1074/jbc.M704343200
10.1016/j.celrep.2017.06.016
10.1126/science.aar3131
10.1016/j.cell.2015.06.016
10.1016/j.stem.2008.01.004
10.1038/nmeth.4662
10.1093/bioinformatics/btx173
10.1006/geno.2002.6759
10.1038/nature12243
10.1038/nrm.2016.8
10.1073/pnas.1408993111
10.1126/science.1254745
10.1016/j.celrep.2016.11.080
10.3390/genes8100267
10.1038/nature21350
10.1007/s00441-007-0466-7
10.1126/science.aaf4445
10.1038/nbt.4096
10.1038/ncb3193
10.1016/j.stem.2018.04.014
10.1371/journal.pone.0153656
10.1038/srep20980
10.1016/j.molcel.2010.05.004
10.1016/j.stem.2015.09.011
10.1016/j.cell.2010.01.027
10.1242/dev.038828
10.1016/j.stem.2018.05.025
10.1090/mcom/3303
10.1016/j.semcancer.2014.08.003
10.1242/dev.133462
10.1038/nmeth.4402
10.1074/jbc.M601811200
10.1095/biolreprod.109.083097
10.1016/j.stemcr.2016.02.003
10.1016/j.stem.2015.01.015
10.1016/j.ydbio.2005.05.010
10.1038/nature06968
10.1016/j.ydbio.2015.10.015
10.1038/nature20123
10.1006/dbio.2001.0373
10.1016/j.placenta.2016.04.016
10.1137/S0036141096303359
10.1091/mbc.e06-07-0624
10.1016/j.ydbio.2006.02.025
10.1038/78765
10.1016/j.cub.2015.11.060
10.1038/nature07056
10.1128/MCB.20.2.530-541.2000
10.1016/j.cell.2014.11.040
10.3934/dcds.2014.34.1533
10.1126/science.aar4362
10.1126/sciimmunol.aal2192
10.1101/gr.101469.109
10.1016/j.cell.2012.11.039
10.1016/j.cell.2006.07.024
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2019.01.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 943.e22
ExternalDocumentID PMC6402800
30712874
10_1016_j_cell_2019_01_006
S009286741930039X
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD058013
– fundername: NICHD NIH HHS
  grantid: R01 HD045022
– fundername: NINDS NIH HHS
  grantid: R01 NS088538
– fundername: Howard Hughes Medical Institute
– fundername: NICHD NIH HHS
  grantid: K99 HD096049
– fundername: NIGMS NIH HHS
  grantid: T32 GM087237
– fundername: NIMH NIH HHS
  grantid: R01 MH111502
– fundername: NIMH NIH HHS
  grantid: R01 MH104610
– fundername: NIMH NIH HHS
  grantid: U19 MH114830
– fundername: NIAID NIH HHS
  grantid: U24 AI118672
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
7-5
85S
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YZZ
ZA5
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c554t-38f2b81c4b32c5e2b6961ae955b156e72d07760ebd562474f896a807e96581f93
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:22:43 EDT 2025
Mon Jul 21 10:28:52 EDT 2025
Sun Aug 24 04:10:09 EDT 2025
Mon Jul 21 06:04:30 EDT 2025
Thu Apr 24 23:09:34 EDT 2025
Tue Jul 01 02:17:02 EDT 2025
Fri Feb 23 02:49:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords reprogramming
iPSCs
optimal-transport
scRNA-seq
development
paracrine interactions
regulation
trajectories
ancestors
descendants
Language English
License This article is made available under the Elsevier license.
Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-38f2b81c4b32c5e2b6961ae955b156e72d07760ebd562474f896a807e96581f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present Address: Weizmann Institute of Science, Rehovot, Israel
Lead contact.
Author Contributions
JS and ESL conceived and designed the study of reprogramming in single-cell resolution. GS and ESL conceived the application of optimal transport; PR, AR, MT, and BC provided input on the development of the approach. MT, GS, BC, and JG developed WADDINGTON-OT. MT, GS, BC, ESL and A.R. analyzed the data, with assistance from J.S. All experiments were designed and performed by JS, with input from RJ and assistance from AS, SL, SL, PB, LL, JB, KH and VS. The manuscript was written by ESL, AR, GS, BC, MT, JS, and VS.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S009286741930039X
PMID 30712874
PQID 2179492176
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6402800
proquest_miscellaneous_2221036178
proquest_miscellaneous_2179492176
pubmed_primary_30712874
crossref_citationtrail_10_1016_j_cell_2019_01_006
crossref_primary_10_1016_j_cell_2019_01_006
elsevier_sciencedirect_doi_10_1016_j_cell_2019_01_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-07
PublicationDateYYYYMMDD 2019-02-07
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Villani (bib62) 2008
Withington, Scott, Saunders, Lopes Floro, Preis, Michalicek, Maclean, Sparrow, Barbera, Dunwoodie (bib67) 2006; 294
Chizat, Peyré, Schmitzer, Vialard (bib6) 2018; 87
Liu, Han, Peng, Peng, Wei, Li, Wang, Yu, Yang, Cao (bib28) 2015; 17
Mosteiro, Pantoja, Alcazar, Marión, Chondronasiou, Rovira, Fernandez-Marcos, Muñoz-Martin, Blanco-Aparicio, Pastor (bib37) 2016; 354
Kim, Marinov, Pepke, Singer, He, Williams, Schroth, Elowitz, Wold (bib21) 2015; 16
Froidure, Marchal-Duval, Ghanem, Gerish, Jaillet, Crestani, Mailleux (bib10) 2016; 48
Klauzinska, Castro, Rangel, Spike, Gray, Bertolette, Cuttitta, Salomon (bib22) 2014; 29
Latos, Hemberger (bib24) 2016; 143
Takahashi, Yamanaka (bib57) 2006; 126
Hannibal, Baker (bib13) 2016; 26
Mertins, Przybylski, Yosef, Qiao, Clauser, Raychowdhury, Eisenhaure, Maritzen, Haucke, Satoh (bib33) 2017; 19
Scott, Anson-Cartwright, Riley, Reda, Cross (bib53) 2000; 20
Kolodziejczyk, Kim, Tsang, Ilicic, Henriksson, Natarajan, Tuck, Gao, Bühler, Liu (bib23) 2015; 17
Takahashi, Yamanaka (bib58) 2016; 17
Ralston, Cox, Nishioka, Sasaki, Chea, Rugg-Gunn, Guo, Robson, Draper, Rossant (bib48) 2010; 137
Elson, Lelièvre, Guillet, Chevalier, Plun-Favreau, Froger, Suard, de Coignac, Delneste, Bonnefoy (bib8) 2000; 3
Santambrogio (bib51) 2015
Cacchiarelli, Trapnell, Ziller, Soumillon, Cesana, Karnik, Donaghey, Smith, Ratanasirintrawoot, Zhang (bib5) 2015; 162
Parr, Cornish, Cybulsky, McMahon (bib42) 2001; 237
Léonard (bib25) 2014; 34
Zhao, Fu, Zhu, Liu, Zhang, Yi, Chen, Jiao, Xu, Xu (bib73) 2018; 23
Rashid, Kotton, Bar-Joseph (bib49) 2017; 33
Marco, Karp, Guo, Robson, Hart, Trippa, Yuan (bib32) 2014; 111
Herman, Sagar, Grün (bib15) 2018; 15
Mikkelsen, Hanna, Zhang, Ku, Wernig, Schorderet, Bernstein, Jaenisch, Lander, Meissner (bib35) 2008; 454
Lim, Loh, Zhang, Li, Chen, Wang, Bakre, Ng, Stanton (bib27) 2007; 18
Zunder, Lujan, Goltsev, Wernig, Nolan (bib74) 2015; 16
Stadtfeld, Maherali, Borkent, Hochedlinger (bib56) 2010; 7
Tunster, Creeth, John (bib61) 2016; 409
Liu, Brumbaugh, Bar-Nur, Smith, Stadtfeld, Meissner, Hochedlinger, Michor (bib29) 2016; 17
Pei, Grishin (bib44) 2012; 24
Pasque, Tchieu, Karnik, Uyeda, Sadhu Dimashkie, Case, Papp, Bonora, Patel, Ho (bib43) 2014; 159
Butler, Hoffman, Smibert, Papalexi, Satija (bib4) 2018; 36
Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib14) 2010; 38
Kantorovich, L. (1942). On the translocation of masses. Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS
Kester, van Oudenaarden (bib19) 2018; 23
Rajkovic, Yan, Yan, Klysik, Matzuk (bib47) 2002; 79
Wu, Oatley, Oatley, Kaucher, Avarbock, Brinster (bib70) 2010; 82
Tanay, Regev (bib59) 2017; 541
Ambrosio, Gigli, Savaré (bib2) 2008
Lönnberg, Svensson, James, Fernandez-Ruiz, Sebina, Montandon, Soon, Fogg, Nair, Liligeto (bib30) 2017; 2
Gonzalez-Muñoz, Arboleda-Estudillo, Otu, Cibelli (bib12) 2014; 345
Park, Lee, Jang, Lee, Park, Kim, Hong, Song, Park, Park (bib41) 2016; 6
Waddington (bib63) 1936
199–201.
Woo, Kim, Jun, Kim, Haar, Lee, Hegg, Bandhakavi, Griffin, Kim (bib69) 2007; 282
Saelens, Cannoodt, Todorov, Saeys (bib50) 2018
Ma, Roth, Groskopf, Tsai, Orkin, Grosveld, Engel, Linzer (bib31) 1997; 124
Gegenschatz-Schmid, Verkauskas, Demougin, Bilius, Dasevicius, Stadler, Hadziselimovic (bib11) 2017; 8
Polo, Anderssen, Walsh, Schwarz, Nefzger, Lim, Borkent, Apostolou, Alaei, Cloutier (bib45) 2012; 151
Shi, Wang, Pan, Geng, Guo, Pei (bib54) 2006; 281
Waddington (bib64) 1957
Jacomy, Venturini, Heymann, Bastian (bib16) 2014; 9
Tirosh, Venteicher, Hebert, Escalante, Patel, Yizhak, Fisher, Rodman, Mount, Filbin (bib60) 2016; 539
Wu, Hong, Huang, Huang, He, Fang, Luo (bib71) 2016; 43
O’Malley, Skylaki, Iwabuchi, Chantzoura, Ruetz, Johnsson, Tomlinson, Linnarsson, Kaji (bib38) 2013; 499
Parenti, Halbisen, Wang, Latham, Ralston (bib40) 2016; 6
Simmons, Cross (bib55) 2005; 284
Brambrink, Foreman, Welstead, Lengner, Wernig, Suh, Jaenisch (bib3) 2008; 2
Jordan, Kinderlehrer, Otto (bib17) 1998; 29
Schrodinger (bib52) 1932; 2
Wolf, Hamey, Plass, Solana, Dahlin, Gottgens, Rajewsky, Simon, Theis (bib68) 2017
Aigner, Bogdahn (bib1) 2008; 331
Cuturi (bib7) 2013
Liang, Zhang, Lu, Yang, Tian, Wang, Tan, Tan (bib26) 2016; 11
Parast, Yu, Ciric, Salata, Davis, Milstone (bib39) 2009; 4
Wagner, Weinreb, Collins, Briggs, Megason, Klein (bib65) 2018; 360
Kidder, Palmer (bib20) 2010; 20
Qiu, Mao, Tang, Wang, Chawla, Pliner, Trapnell (bib46) 2017; 14
Messina, Biressi, Monteverde, Magli, Cassano, Perani, Roncaglia, Tagliafico, Starnes, Campbell (bib34) 2010; 140
Ying, Wray, Nichols, Batlle-Morera, Doble, Woodgett, Cohen, Smith (bib72) 2008; 453
Weinreb, Wolock, Klein (bib66) 2016
Farrell, Wang, Riesenfeld, Shekhar, Regev, Schier (bib9) 2018; 360
Monge (bib36) 1781
Mosteiro (10.1016/j.cell.2019.01.006_bib37) 2016; 354
Aigner (10.1016/j.cell.2019.01.006_bib1) 2008; 331
Marco (10.1016/j.cell.2019.01.006_bib32) 2014; 111
Zhao (10.1016/j.cell.2019.01.006_bib73) 2018; 23
Jordan (10.1016/j.cell.2019.01.006_bib17) 1998; 29
Liu (10.1016/j.cell.2019.01.006_bib28) 2015; 17
Klauzinska (10.1016/j.cell.2019.01.006_bib22) 2014; 29
Stadtfeld (10.1016/j.cell.2019.01.006_bib56) 2010; 7
Froidure (10.1016/j.cell.2019.01.006_bib10) 2016; 48
Qiu (10.1016/j.cell.2019.01.006_bib46) 2017; 14
Herman (10.1016/j.cell.2019.01.006_bib15) 2018; 15
Waddington (10.1016/j.cell.2019.01.006_bib64) 1957
Zunder (10.1016/j.cell.2019.01.006_bib74) 2015; 16
Farrell (10.1016/j.cell.2019.01.006_bib9) 2018; 360
Ralston (10.1016/j.cell.2019.01.006_bib48) 2010; 137
O’Malley (10.1016/j.cell.2019.01.006_bib38) 2013; 499
Parr (10.1016/j.cell.2019.01.006_bib42) 2001; 237
Parast (10.1016/j.cell.2019.01.006_bib39) 2009; 4
Lönnberg (10.1016/j.cell.2019.01.006_bib30) 2017; 2
Cacchiarelli (10.1016/j.cell.2019.01.006_bib5) 2015; 162
Ying (10.1016/j.cell.2019.01.006_bib72) 2008; 453
10.1016/j.cell.2019.01.006_bib18
Rajkovic (10.1016/j.cell.2019.01.006_bib47) 2002; 79
Park (10.1016/j.cell.2019.01.006_bib41) 2016; 6
Simmons (10.1016/j.cell.2019.01.006_bib55) 2005; 284
Chizat (10.1016/j.cell.2019.01.006_bib6) 2018; 87
Liu (10.1016/j.cell.2019.01.006_bib29) 2016; 17
Takahashi (10.1016/j.cell.2019.01.006_bib58) 2016; 17
Kim (10.1016/j.cell.2019.01.006_bib21) 2015; 16
Saelens (10.1016/j.cell.2019.01.006_bib50) 2018
Schrodinger (10.1016/j.cell.2019.01.006_bib52) 1932; 2
Parenti (10.1016/j.cell.2019.01.006_bib40) 2016; 6
Cuturi (10.1016/j.cell.2019.01.006_bib7) 2013
Butler (10.1016/j.cell.2019.01.006_bib4) 2018; 36
Mertins (10.1016/j.cell.2019.01.006_bib33) 2017; 19
Mikkelsen (10.1016/j.cell.2019.01.006_bib35) 2008; 454
Elson (10.1016/j.cell.2019.01.006_bib8) 2000; 3
Wagner (10.1016/j.cell.2019.01.006_bib65) 2018; 360
Gonzalez-Muñoz (10.1016/j.cell.2019.01.006_bib12) 2014; 345
Scott (10.1016/j.cell.2019.01.006_bib53) 2000; 20
Heinz (10.1016/j.cell.2019.01.006_bib14) 2010; 38
Polo (10.1016/j.cell.2019.01.006_bib45) 2012; 151
Wu (10.1016/j.cell.2019.01.006_bib70) 2010; 82
Santambrogio (10.1016/j.cell.2019.01.006_bib51) 2015
Villani (10.1016/j.cell.2019.01.006_bib62) 2008
Latos (10.1016/j.cell.2019.01.006_bib24) 2016; 143
Messina (10.1016/j.cell.2019.01.006_bib34) 2010; 140
Lim (10.1016/j.cell.2019.01.006_bib27) 2007; 18
Tirosh (10.1016/j.cell.2019.01.006_bib60) 2016; 539
Ambrosio (10.1016/j.cell.2019.01.006_bib2) 2008
Rashid (10.1016/j.cell.2019.01.006_bib49) 2017; 33
Tanay (10.1016/j.cell.2019.01.006_bib59) 2017; 541
Takahashi (10.1016/j.cell.2019.01.006_bib57) 2006; 126
Kidder (10.1016/j.cell.2019.01.006_bib20) 2010; 20
Withington (10.1016/j.cell.2019.01.006_bib67) 2006; 294
Wolf (10.1016/j.cell.2019.01.006_bib68) 2017
Kester (10.1016/j.cell.2019.01.006_bib19) 2018; 23
Léonard (10.1016/j.cell.2019.01.006_bib25) 2014; 34
Wu (10.1016/j.cell.2019.01.006_bib71) 2016; 43
Liang (10.1016/j.cell.2019.01.006_bib26) 2016; 11
Waddington (10.1016/j.cell.2019.01.006_bib63) 1936
Ma (10.1016/j.cell.2019.01.006_bib31) 1997; 124
Hannibal (10.1016/j.cell.2019.01.006_bib13) 2016; 26
Weinreb (10.1016/j.cell.2019.01.006_bib66) 2016
Brambrink (10.1016/j.cell.2019.01.006_bib3) 2008; 2
Pei (10.1016/j.cell.2019.01.006_bib44) 2012; 24
Monge (10.1016/j.cell.2019.01.006_bib36) 1781
Pasque (10.1016/j.cell.2019.01.006_bib43) 2014; 159
Tunster (10.1016/j.cell.2019.01.006_bib61) 2016; 409
Gegenschatz-Schmid (10.1016/j.cell.2019.01.006_bib11) 2017; 8
Shi (10.1016/j.cell.2019.01.006_bib54) 2006; 281
Jacomy (10.1016/j.cell.2019.01.006_bib16) 2014; 9
Woo (10.1016/j.cell.2019.01.006_bib69) 2007; 282
Kolodziejczyk (10.1016/j.cell.2019.01.006_bib23) 2015; 17
30849376 - Cell. 2019 Mar 7;176(6):1517. doi: 10.1016/j.cell.2019.02.026
References_xml – volume: 124
  start-page: 907
  year: 1997
  end-page: 914
  ident: bib31
  article-title: GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo
  publication-title: Development
– volume: 2
  start-page: 269
  year: 1932
  end-page: 310
  ident: bib52
  article-title: Sur la theorie relativiste de l’electron et l’interpretation de la mecanique quan- tique
  publication-title: Ann. Inst. H. Poincare
– volume: 499
  start-page: 88
  year: 2013
  end-page: 91
  ident: bib38
  article-title: High-resolution analysis with novel cell-surface markers identifies routes to iPS cells
  publication-title: Nature
– volume: 9
  start-page: e98679
  year: 2014
  ident: bib16
  article-title: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software
  publication-title: PLoS ONE
– year: 1936
  ident: bib63
  article-title: How Animals Develop
– volume: 16
  start-page: 88
  year: 2015
  end-page: 101
  ident: bib21
  article-title: Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming
  publication-title: Cell Stem Cell
– year: 2016
  ident: bib66
  article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data
  publication-title: bioRxiv
– volume: 137
  start-page: 395
  year: 2010
  end-page: 403
  ident: bib48
  article-title: Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2
  publication-title: Development
– volume: 162
  start-page: 412
  year: 2015
  end-page: 424
  ident: bib5
  article-title: Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency
  publication-title: Cell
– volume: 8
  start-page: 267
  year: 2017
  ident: bib11
  article-title: DMRTC2, PAX7, BRACHYURY/T and TERT are implicated in male germ cell development following curative hormone treatment for cryptorchidism-induced infertility
  publication-title: Genes (Basel)
– volume: 281
  start-page: 23319
  year: 2006
  end-page: 23325
  ident: bib54
  article-title: Regulation of the pluripotency marker Rex-1 by Nanog and Sox2
  publication-title: J. Biol. Chem.
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  ident: bib57
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 409
  start-page: 251
  year: 2016
  end-page: 260
  ident: bib61
  article-title: The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources
  publication-title: Dev. Biol.
– volume: 2
  start-page: 151
  year: 2008
  end-page: 159
  ident: bib3
  article-title: Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells
  publication-title: Cell Stem Cell
– volume: 284
  start-page: 12
  year: 2005
  end-page: 24
  ident: bib55
  article-title: Determinants of trophoblast lineage and cell subtype specification in the mouse placenta
  publication-title: Dev. Biol.
– volume: 539
  start-page: 309
  year: 2016
  end-page: 313
  ident: bib60
  article-title: Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma
  publication-title: Nature
– volume: 48
  start-page: OA506
  year: 2016
  ident: bib10
  article-title: Mesenchyme associated transcription factor PRRX1: a key regulator of IPF fibroblast
  publication-title: Eur. Respir. J.
– volume: 20
  start-page: 530
  year: 2000
  end-page: 541
  ident: bib53
  article-title: The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms
  publication-title: Mol. Cell. Biol.
– volume: 17
  start-page: 856
  year: 2015
  end-page: 867
  ident: bib28
  article-title: The oncogene c-Jun impedes somatic cell reprogramming
  publication-title: Nat. Cell Biol.
– year: 2017
  ident: bib68
  article-title: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells
  publication-title: bioRxiv
– volume: 111
  start-page: E5643
  year: 2014
  end-page: E5650
  ident: bib32
  article-title: Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 53
  year: 2010
  end-page: 55
  ident: bib56
  article-title: A reprogrammable mouse strain from gene-targeted embryonic stem cells
  publication-title: Nat. Methods
– year: 2008
  ident: bib62
  article-title: Optimal Transport Old and New
– volume: 17
  start-page: 183
  year: 2016
  end-page: 193
  ident: bib58
  article-title: A decade of transcription factor-mediated reprogramming to pluripotency
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 454
  start-page: 49
  year: 2008
  end-page: 55
  ident: bib35
  article-title: Dissecting direct reprogramming through integrative genomic analysis
  publication-title: Nature
– volume: 331
  start-page: 225
  year: 2008
  end-page: 241
  ident: bib1
  article-title: TGF-beta in neural stem cells and in tumors of the central nervous system
  publication-title: Cell Tissue Res.
– start-page: 666
  year: 1781
  end-page: 704
  ident: bib36
  article-title: Mémoire sur la théorie des déblais et des remblais
  publication-title: Mém de l’Ac R des Sc
– volume: 11
  start-page: e0153656
  year: 2016
  ident: bib26
  article-title: MSX2 induces trophoblast invasion in human placenta
  publication-title: PLoS ONE
– year: 2008
  ident: bib2
  article-title: Gradient Flows in Metric Spaces and in the Space of Probability Measures
– volume: 6
  start-page: 447
  year: 2016
  end-page: 455
  ident: bib40
  article-title: OSKM induce extraembryonic endoderm stem cells in parallel to induced pluripotent stem cells
  publication-title: Stem Cell Reports
– volume: 2
  start-page: eaal2192
  year: 2017
  ident: bib30
  article-title: Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria
  publication-title: Sci. Immunol.
– year: 2018
  ident: bib50
  article-title: A comparison of single-cell trajectory inference methods: towards more accurate and robust tools
  publication-title: bioRxiv
– year: 1957
  ident: bib64
  article-title: The Strategy of the Genes; a Discussion of Some Aspects of Theoretical Biology
– volume: 15
  start-page: 379
  year: 2018
  end-page: 386
  ident: bib15
  article-title: FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data
  publication-title: Nat. Methods
– volume: 17
  start-page: 3395
  year: 2016
  end-page: 3406
  ident: bib29
  article-title: Probabilistic modeling of reprogramming to induced pluripotent stem cells
  publication-title: Cell Rep.
– volume: 19
  start-page: 2853
  year: 2017
  end-page: 2866
  ident: bib33
  article-title: An integrative framework reveals signaling-to-transcription events in Toll-like receptor signaling
  publication-title: Cell Rep.
– volume: 33
  start-page: 2504
  year: 2017
  end-page: 2512
  ident: bib49
  article-title: TASIC: determining branching models from time series single cell data
  publication-title: Bioinformatics
– volume: 294
  start-page: 67
  year: 2006
  end-page: 82
  ident: bib67
  article-title: Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta
  publication-title: Dev. Biol.
– volume: 282
  start-page: 25604
  year: 2007
  end-page: 25612
  ident: bib69
  article-title: PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling
  publication-title: J. Biol. Chem.
– volume: 345
  start-page: 822
  year: 2014
  end-page: 825
  ident: bib12
  article-title: Cell reprogramming. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming
  publication-title: Science
– volume: 20
  start-page: 458
  year: 2010
  end-page: 472
  ident: bib20
  article-title: Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance
  publication-title: Genome Res.
– volume: 16
  start-page: 323
  year: 2015
  end-page: 337
  ident: bib74
  article-title: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry
  publication-title: Cell Stem Cell
– volume: 79
  start-page: 711
  year: 2002
  end-page: 717
  ident: bib47
  article-title: Obox, a family of homeobox genes preferentially expressed in germ cells
  publication-title: Genomics
– volume: 24
  start-page: 758
  year: 2012
  end-page: 769
  ident: bib44
  article-title: Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors
  publication-title: Cell. Signal.
– volume: 3
  start-page: 867
  year: 2000
  end-page: 872
  ident: bib8
  article-title: CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex
  publication-title: Nat. Neurosci.
– volume: 23
  start-page: 166
  year: 2018
  end-page: 179
  ident: bib19
  article-title: Single-cell transcriptomics meets lineage tracing
  publication-title: Cell Stem Cell
– volume: 453
  start-page: 519
  year: 2008
  end-page: 523
  ident: bib72
  article-title: The ground state of embryonic stem cell self-renewal
  publication-title: Nature
– volume: 14
  start-page: 979
  year: 2017
  end-page: 982
  ident: bib46
  article-title: Reversed graph embedding resolves complex single-cell trajectories
  publication-title: Nat. Methods
– volume: 82
  start-page: 1103
  year: 2010
  end-page: 1111
  ident: bib70
  article-title: The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells
  publication-title: Biol. Reprod.
– volume: 140
  start-page: 554
  year: 2010
  end-page: 566
  ident: bib34
  article-title: Nfix regulates fetal-specific transcription in developing skeletal muscle
  publication-title: Cell
– volume: 360
  start-page: 981
  year: 2018
  end-page: 987
  ident: bib65
  article-title: Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo
  publication-title: Science
– volume: 151
  start-page: 1617
  year: 2012
  end-page: 1632
  ident: bib45
  article-title: A molecular roadmap of reprogramming somatic cells into iPS cells
  publication-title: Cell
– volume: 29
  start-page: 51
  year: 2014
  end-page: 58
  ident: bib22
  article-title: The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition
  publication-title: Semin. Cancer Biol.
– volume: 43
  start-page: 17
  year: 2016
  end-page: 25
  ident: bib71
  article-title: CXCR2 is decreased in preeclamptic placentas and promotes human trophoblast invasion through the Akt signaling pathway
  publication-title: Placenta
– volume: 38
  start-page: 576
  year: 2010
  end-page: 589
  ident: bib14
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: bib4
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
– volume: 87
  start-page: 2563
  year: 2018
  end-page: 2609
  ident: bib6
  article-title: Scaling algorithms for unbalanced transport problems
  publication-title: Math. Comp.
– volume: 34
  start-page: 1533
  year: 2014
  end-page: 1574
  ident: bib25
  article-title: A survey of the Schrödinger problem and some of its connections with optimal transport
  publication-title: DCDS-A
– volume: 29
  start-page: 1
  year: 1998
  end-page: 17
  ident: bib17
  article-title: The variational formulation of the Fokker--Planck equation
  publication-title: SIAM J. Math. Anal.
– volume: 159
  start-page: 1681
  year: 2014
  end-page: 1697
  ident: bib43
  article-title: X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency
  publication-title: Cell
– volume: 354
  start-page: aaf4445
  year: 2016
  ident: bib37
  article-title: Tissue damage and senescence provide critical signals for cellular reprogramming in vivo
  publication-title: Science
– volume: 17
  start-page: 471
  year: 2015
  end-page: 485
  ident: bib23
  article-title: Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation
  publication-title: Cell Stem Cell
– volume: 143
  start-page: 3650
  year: 2016
  end-page: 3660
  ident: bib24
  article-title: From the stem of the placental tree: trophoblast stem cells and their progeny
  publication-title: Development
– reference: Kantorovich, L. (1942). On the translocation of masses. Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS
– volume: 26
  start-page: 230
  year: 2016
  end-page: 236
  ident: bib13
  article-title: Selective amplification of the genome surrounding key placental genes in trophoblast giant cells
  publication-title: Curr. Biol.
– year: 2013
  ident: bib7
  article-title: Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
– volume: 360
  start-page: eaar3131
  year: 2018
  ident: bib9
  article-title: Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis
  publication-title: Science
– volume: 18
  start-page: 1348
  year: 2007
  end-page: 1358
  ident: bib27
  article-title: Zic3 is required for maintenance of pluripotency in embryonic stem cells
  publication-title: Mol. Biol. Cell
– start-page: 99
  year: 2015
  end-page: 102
  ident: bib51
  article-title: Optimal Transport for Applied Mathematicians
– volume: 541
  start-page: 331
  year: 2017
  end-page: 338
  ident: bib59
  article-title: Scaling single-cell genomics from phenomenology to mechanism
  publication-title: Nature
– volume: 4
  start-page: e8055
  year: 2009
  ident: bib39
  article-title: PPARgamma regulates trophoblast proliferation and promotes labyrinthine trilineage differentiation
  publication-title: PLoS ONE
– volume: 237
  start-page: 324
  year: 2001
  end-page: 332
  ident: bib42
  article-title: Wnt7b regulates placental development in mice
  publication-title: Dev. Biol.
– reference: , 199–201.
– volume: 23
  start-page: 31
  year: 2018
  end-page: 45
  ident: bib73
  article-title: Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming
  publication-title: Cell Stem Cell
– volume: 6
  start-page: 20980
  year: 2016
  ident: bib41
  article-title: SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes
  publication-title: Sci. Rep.
– volume: 16
  start-page: 88
  year: 2015
  ident: 10.1016/j.cell.2019.01.006_bib21
  article-title: Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.11.005
– start-page: 666
  year: 1781
  ident: 10.1016/j.cell.2019.01.006_bib36
  article-title: Mémoire sur la théorie des déblais et des remblais
  publication-title: Mém de l’Ac R des Sc
– volume: 24
  start-page: 758
  year: 2012
  ident: 10.1016/j.cell.2019.01.006_bib44
  article-title: Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2011.11.011
– volume: 9
  start-page: e98679
  year: 2014
  ident: 10.1016/j.cell.2019.01.006_bib16
  article-title: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098679
– volume: 7
  start-page: 53
  year: 2010
  ident: 10.1016/j.cell.2019.01.006_bib56
  article-title: A reprogrammable mouse strain from gene-targeted embryonic stem cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1409
– volume: 4
  start-page: e8055
  year: 2009
  ident: 10.1016/j.cell.2019.01.006_bib39
  article-title: PPARgamma regulates trophoblast proliferation and promotes labyrinthine trilineage differentiation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008055
– volume: 282
  start-page: 25604
  year: 2007
  ident: 10.1016/j.cell.2019.01.006_bib69
  article-title: PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704343200
– volume: 19
  start-page: 2853
  year: 2017
  ident: 10.1016/j.cell.2019.01.006_bib33
  article-title: An integrative framework reveals signaling-to-transcription events in Toll-like receptor signaling
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.06.016
– year: 1936
  ident: 10.1016/j.cell.2019.01.006_bib63
– volume: 360
  start-page: eaar3131
  year: 2018
  ident: 10.1016/j.cell.2019.01.006_bib9
  article-title: Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis
  publication-title: Science
  doi: 10.1126/science.aar3131
– volume: 124
  start-page: 907
  year: 1997
  ident: 10.1016/j.cell.2019.01.006_bib31
  article-title: GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo
  publication-title: Development
– volume: 162
  start-page: 412
  year: 2015
  ident: 10.1016/j.cell.2019.01.006_bib5
  article-title: Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2015.06.016
– volume: 2
  start-page: 151
  year: 2008
  ident: 10.1016/j.cell.2019.01.006_bib3
  article-title: Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.01.004
– volume: 15
  start-page: 379
  year: 2018
  ident: 10.1016/j.cell.2019.01.006_bib15
  article-title: FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4662
– volume: 33
  start-page: 2504
  year: 2017
  ident: 10.1016/j.cell.2019.01.006_bib49
  article-title: TASIC: determining branching models from time series single cell data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx173
– volume: 79
  start-page: 711
  year: 2002
  ident: 10.1016/j.cell.2019.01.006_bib47
  article-title: Obox, a family of homeobox genes preferentially expressed in germ cells
  publication-title: Genomics
  doi: 10.1006/geno.2002.6759
– year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib66
  article-title: SPRING: a kinetic interface for visualizing high dimensional single-cell expression data
  publication-title: bioRxiv
– volume: 499
  start-page: 88
  year: 2013
  ident: 10.1016/j.cell.2019.01.006_bib38
  article-title: High-resolution analysis with novel cell-surface markers identifies routes to iPS cells
  publication-title: Nature
  doi: 10.1038/nature12243
– volume: 17
  start-page: 183
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib58
  article-title: A decade of transcription factor-mediated reprogramming to pluripotency
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.8
– volume: 111
  start-page: E5643
  year: 2014
  ident: 10.1016/j.cell.2019.01.006_bib32
  article-title: Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1408993111
– volume: 345
  start-page: 822
  year: 2014
  ident: 10.1016/j.cell.2019.01.006_bib12
  article-title: Cell reprogramming. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming
  publication-title: Science
  doi: 10.1126/science.1254745
– ident: 10.1016/j.cell.2019.01.006_bib18
– volume: 17
  start-page: 3395
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib29
  article-title: Probabilistic modeling of reprogramming to induced pluripotent stem cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.11.080
– volume: 8
  start-page: 267
  year: 2017
  ident: 10.1016/j.cell.2019.01.006_bib11
  article-title: DMRTC2, PAX7, BRACHYURY/T and TERT are implicated in male germ cell development following curative hormone treatment for cryptorchidism-induced infertility
  publication-title: Genes (Basel)
  doi: 10.3390/genes8100267
– volume: 541
  start-page: 331
  year: 2017
  ident: 10.1016/j.cell.2019.01.006_bib59
  article-title: Scaling single-cell genomics from phenomenology to mechanism
  publication-title: Nature
  doi: 10.1038/nature21350
– volume: 331
  start-page: 225
  year: 2008
  ident: 10.1016/j.cell.2019.01.006_bib1
  article-title: TGF-beta in neural stem cells and in tumors of the central nervous system
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-007-0466-7
– volume: 354
  start-page: aaf4445
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib37
  article-title: Tissue damage and senescence provide critical signals for cellular reprogramming in vivo
  publication-title: Science
  doi: 10.1126/science.aaf4445
– volume: 36
  start-page: 411
  year: 2018
  ident: 10.1016/j.cell.2019.01.006_bib4
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 17
  start-page: 856
  year: 2015
  ident: 10.1016/j.cell.2019.01.006_bib28
  article-title: The oncogene c-Jun impedes somatic cell reprogramming
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3193
– volume: 23
  start-page: 166
  year: 2018
  ident: 10.1016/j.cell.2019.01.006_bib19
  article-title: Single-cell transcriptomics meets lineage tracing
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.04.014
– year: 1957
  ident: 10.1016/j.cell.2019.01.006_bib64
– volume: 11
  start-page: e0153656
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib26
  article-title: MSX2 induces trophoblast invasion in human placenta
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0153656
– volume: 6
  start-page: 20980
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib41
  article-title: SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes
  publication-title: Sci. Rep.
  doi: 10.1038/srep20980
– volume: 38
  start-page: 576
  year: 2010
  ident: 10.1016/j.cell.2019.01.006_bib14
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 17
  start-page: 471
  year: 2015
  ident: 10.1016/j.cell.2019.01.006_bib23
  article-title: Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.09.011
– year: 2008
  ident: 10.1016/j.cell.2019.01.006_bib2
– volume: 140
  start-page: 554
  year: 2010
  ident: 10.1016/j.cell.2019.01.006_bib34
  article-title: Nfix regulates fetal-specific transcription in developing skeletal muscle
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.027
– volume: 137
  start-page: 395
  year: 2010
  ident: 10.1016/j.cell.2019.01.006_bib48
  article-title: Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2
  publication-title: Development
  doi: 10.1242/dev.038828
– volume: 23
  start-page: 31
  year: 2018
  ident: 10.1016/j.cell.2019.01.006_bib73
  article-title: Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.05.025
– volume: 87
  start-page: 2563
  year: 2018
  ident: 10.1016/j.cell.2019.01.006_bib6
  article-title: Scaling algorithms for unbalanced transport problems
  publication-title: Math. Comp.
  doi: 10.1090/mcom/3303
– volume: 29
  start-page: 51
  year: 2014
  ident: 10.1016/j.cell.2019.01.006_bib22
  article-title: The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2014.08.003
– year: 2013
  ident: 10.1016/j.cell.2019.01.006_bib7
– volume: 143
  start-page: 3650
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib24
  article-title: From the stem of the placental tree: trophoblast stem cells and their progeny
  publication-title: Development
  doi: 10.1242/dev.133462
– volume: 14
  start-page: 979
  year: 2017
  ident: 10.1016/j.cell.2019.01.006_bib46
  article-title: Reversed graph embedding resolves complex single-cell trajectories
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4402
– year: 2018
  ident: 10.1016/j.cell.2019.01.006_bib50
  article-title: A comparison of single-cell trajectory inference methods: towards more accurate and robust tools
  publication-title: bioRxiv
– volume: 281
  start-page: 23319
  year: 2006
  ident: 10.1016/j.cell.2019.01.006_bib54
  article-title: Regulation of the pluripotency marker Rex-1 by Nanog and Sox2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M601811200
– volume: 82
  start-page: 1103
  year: 2010
  ident: 10.1016/j.cell.2019.01.006_bib70
  article-title: The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.109.083097
– volume: 6
  start-page: 447
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib40
  article-title: OSKM induce extraembryonic endoderm stem cells in parallel to induced pluripotent stem cells
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2016.02.003
– volume: 16
  start-page: 323
  year: 2015
  ident: 10.1016/j.cell.2019.01.006_bib74
  article-title: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.01.015
– volume: 284
  start-page: 12
  year: 2005
  ident: 10.1016/j.cell.2019.01.006_bib55
  article-title: Determinants of trophoblast lineage and cell subtype specification in the mouse placenta
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2005.05.010
– start-page: 99
  year: 2015
  ident: 10.1016/j.cell.2019.01.006_bib51
– volume: 453
  start-page: 519
  year: 2008
  ident: 10.1016/j.cell.2019.01.006_bib72
  article-title: The ground state of embryonic stem cell self-renewal
  publication-title: Nature
  doi: 10.1038/nature06968
– volume: 409
  start-page: 251
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib61
  article-title: The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2015.10.015
– volume: 48
  start-page: OA506
  issue: Suppl 60
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib10
  article-title: Mesenchyme associated transcription factor PRRX1: a key regulator of IPF fibroblast
  publication-title: Eur. Respir. J.
– volume: 539
  start-page: 309
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib60
  article-title: Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma
  publication-title: Nature
  doi: 10.1038/nature20123
– volume: 237
  start-page: 324
  year: 2001
  ident: 10.1016/j.cell.2019.01.006_bib42
  article-title: Wnt7b regulates placental development in mice
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2001.0373
– volume: 43
  start-page: 17
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib71
  article-title: CXCR2 is decreased in preeclamptic placentas and promotes human trophoblast invasion through the Akt signaling pathway
  publication-title: Placenta
  doi: 10.1016/j.placenta.2016.04.016
– volume: 29
  start-page: 1
  year: 1998
  ident: 10.1016/j.cell.2019.01.006_bib17
  article-title: The variational formulation of the Fokker--Planck equation
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141096303359
– volume: 18
  start-page: 1348
  year: 2007
  ident: 10.1016/j.cell.2019.01.006_bib27
  article-title: Zic3 is required for maintenance of pluripotency in embryonic stem cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-07-0624
– year: 2017
  ident: 10.1016/j.cell.2019.01.006_bib68
  article-title: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells
  publication-title: bioRxiv
– volume: 294
  start-page: 67
  year: 2006
  ident: 10.1016/j.cell.2019.01.006_bib67
  article-title: Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2006.02.025
– volume: 3
  start-page: 867
  year: 2000
  ident: 10.1016/j.cell.2019.01.006_bib8
  article-title: CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex
  publication-title: Nat. Neurosci.
  doi: 10.1038/78765
– volume: 26
  start-page: 230
  year: 2016
  ident: 10.1016/j.cell.2019.01.006_bib13
  article-title: Selective amplification of the genome surrounding key placental genes in trophoblast giant cells
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.11.060
– volume: 454
  start-page: 49
  year: 2008
  ident: 10.1016/j.cell.2019.01.006_bib35
  article-title: Dissecting direct reprogramming through integrative genomic analysis
  publication-title: Nature
  doi: 10.1038/nature07056
– year: 2008
  ident: 10.1016/j.cell.2019.01.006_bib62
– volume: 20
  start-page: 530
  year: 2000
  ident: 10.1016/j.cell.2019.01.006_bib53
  article-title: The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.2.530-541.2000
– volume: 159
  start-page: 1681
  year: 2014
  ident: 10.1016/j.cell.2019.01.006_bib43
  article-title: X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.040
– volume: 34
  start-page: 1533
  year: 2014
  ident: 10.1016/j.cell.2019.01.006_bib25
  article-title: A survey of the Schrödinger problem and some of its connections with optimal transport
  publication-title: DCDS-A
  doi: 10.3934/dcds.2014.34.1533
– volume: 2
  start-page: 269
  year: 1932
  ident: 10.1016/j.cell.2019.01.006_bib52
  article-title: Sur la theorie relativiste de l’electron et l’interpretation de la mecanique quan- tique
  publication-title: Ann. Inst. H. Poincare
– volume: 360
  start-page: 981
  year: 2018
  ident: 10.1016/j.cell.2019.01.006_bib65
  article-title: Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo
  publication-title: Science
  doi: 10.1126/science.aar4362
– volume: 2
  start-page: eaal2192
  year: 2017
  ident: 10.1016/j.cell.2019.01.006_bib30
  article-title: Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aal2192
– volume: 20
  start-page: 458
  year: 2010
  ident: 10.1016/j.cell.2019.01.006_bib20
  article-title: Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance
  publication-title: Genome Res.
  doi: 10.1101/gr.101469.109
– volume: 151
  start-page: 1617
  year: 2012
  ident: 10.1016/j.cell.2019.01.006_bib45
  article-title: A molecular roadmap of reprogramming somatic cells into iPS cells
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.039
– volume: 126
  start-page: 663
  year: 2006
  ident: 10.1016/j.cell.2019.01.006_bib57
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– reference: 30849376 - Cell. 2019 Mar 7;176(6):1517. doi: 10.1016/j.cell.2019.02.026
SSID ssj0008555
Score 2.700766
Snippet Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for...
Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 928
SubjectTerms ancestors
Animals
Cell Differentiation - genetics
Cells, Cultured
Cellular Reprogramming - genetics
cytokines
descendants
development
Embryonic Stem Cells - metabolism
Fibroblasts - metabolism
Gene Expression
Gene Expression Profiling - methods
Gene Expression Regulation, Developmental - genetics
Induced Pluripotent Stem Cells - metabolism
iPSCs
Mice
optimal-transport
paracrine interactions
regulation
reprogramming
scRNA-seq
sequence analysis
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
trajectories
transcription factors
Transcription Factors - metabolism
Title Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming
URI https://dx.doi.org/10.1016/j.cell.2019.01.006
https://www.ncbi.nlm.nih.gov/pubmed/30712874
https://www.proquest.com/docview/2179492176
https://www.proquest.com/docview/2221036178
https://pubmed.ncbi.nlm.nih.gov/PMC6402800
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIHgR39ZHWcGbBJNsso-jlkpV0IMWeluyyQYrNS3agv57Z7JJaFV68BJIdpNsMrvzSL75hpBzhn4E-EGw0kTkRdwaL4ll4AnDDBLccZOWaIsH3h9Ed8N42CLdOhcGYZWV7nc6vdTW1ZHL6m1eTkcjzPFVoeRgERXDDNMh6GEWyTKJb3jdaGMZx66KgYKVD72rxBmH8cKP4wjvUiV1J1Y9-ts4_XY-f2IoF4zSzRbZrLxJeuUGvE1attgh666-5NcumT6CQnhLxl5DYU5rEhI6yekTmK2x9bowPIr007T3WcFiC-oSeHOIo-kCrgjuBZd6Lb_0Y9OooODBO4jXG1xtjwxues_dvleVWPBS8CNmHpN5aGSQRoaFaWxDwxUPEqvi2EBgZ0WYId2Pb00GflIkolwqnkhfWOSMCXLF9slaMSnsIaHcT0QufGEsBLo-7Blr8ozL3MpMsixsk6B-tzqt-MexDMZY10CzV43y0CgP7Qca5NEmF805U8e-sbJ3XItML80hDeZh5XlntXw1LC5sTgo7mX_oENWVgu2qPiFEzQwzLdvkwM2JZqygQAMsKNAmYmm2NB2Q3Hu5pRi9lCTfPMKf3v7RP5_pmGzgXokvFydkbfY-t6fgPs1MBwKH2_tOuUq-ATSgGqQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9pAEB6lRFF7qZKmD9o03Ui9RVb83MexRYkgpeRQInFbee21CgKDEpCSf98Zr22FpuLQC5LZtVl7dme-Nd98A_A1IhyBOAhXmoi9mFvjpYkMPGEiQwJ33GQV22LE-7fx9SSZ7EGvyYUhWmXt-51Pr7x1_c1F_TQvVtMp5fiqUHKMiCqiDNPJC9hHNCCofsNg8r11xzJJXBkDhUsfu9eZM47kRW_Hid-lKu1OKnv07-j0HH3-TaJ8EpWuDuF1DSfZNzfiI9iz5Rs4cAUmH49hdYMeYZHOvVbDnDUqJGxZsF8Yt-bW6-HwGOlPs8uHmhdbMpfBW-BGmj0hFuFv4aVm1at-apqWDCG843gt8Gpv4fbqctzre3WNBS9DILH2IlmERgZZbKIwS2xouOJBalWSGNzZWRHmpPfjW5MjUIpFXEjFU-kLS6IxQaGid9Apl6X9AIz7qSiEL4zFna6PR8aaIueysDKXUR52IWierc5qAXKqgzHXDdNspskemuyh_UCjPbpw3p6zcvIbO3snjcn01iTSGB92nnfW2Ffj6qLmtLTLzb0OyV8p_NzVJ8Rtc0Spll147-ZEO1b0oAFVFOiC2JotbQdS995uKae_K5VvHtO_3v7H_7ynL_CyP_451MPB6McneEUtFdlcnEBnfbexnxFLrc1ptVb-ALnKHMo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal-Transport+Analysis+of+Single-Cell+Gene+Expression+Identifies+Developmental+Trajectories+in+Reprogramming&rft.jtitle=Cell&rft.au=Schiebinger%2C+Geoffrey&rft.au=Shu%2C+Jian&rft.au=Tabaka%2C+Marcin&rft.au=Cleary%2C+Brian&rft.date=2019-02-07&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=176&rft.issue=4&rft.spage=928&rft_id=info:doi/10.1016%2Fj.cell.2019.01.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon