A comparative study of multiple instance learning methods for cancer detection using T-cell receptor sequences

[Display omitted] •We applied multiple instance learning (MIL) for cancer detection using TCR sequences.•An updated review of MIL methods and their categorization are provided.•Bag-space MIL methods tend to outperform instance-space and embedded-space methods.•Future development is needed for MIL me...

Full description

Saved in:
Bibliographic Details
Published inComputational and structural biotechnology journal Vol. 19; pp. 3255 - 3268
Main Authors Xiong, Danyi, Zhang, Ze, Wang, Tao, Wang, Xinlei
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2021
Research Network of Computational and Structural Biotechnology
Elsevier
Subjects
Online AccessGet full text
ISSN2001-0370
2001-0370
DOI10.1016/j.csbj.2021.05.038

Cover

Loading…
Abstract [Display omitted] •We applied multiple instance learning (MIL) for cancer detection using TCR sequences.•An updated review of MIL methods and their categorization are provided.•Bag-space MIL methods tend to outperform instance-space and embedded-space methods.•Future development is needed for MIL methods using the primary instance assumption. As a branch of machine learning, multiple instance learning (MIL) learns from a collection of labeled bags, each containing a set of instances. The learning process is weakly supervised due to ambiguous instance labels. Since its emergence, MIL has been applied to solve various problems including content-based image retrieval, object tracking/detection, and computer-aided diagnosis. In biomedical research, the use of MIL has been focused on medical image analysis and molecule activity prediction. We review and apply 16 methods to investigate the applicability of MIL to a novel biomedical application, cancer detection using T-cell receptor (TCR) sequences. This important application can be a viable approach for large-scale cancer screening, as TCRs can be easily profiled from a subject’s peripheral blood. We consider two feasible data-generating mechanisms, and for the purpose of performance evaluation, we simulate data under each mechanism, where we vary potentially important factors to mimic realistic situations. We also apply the methods to sequencing data of ten cancer types from The Cancer Genome Atlas, as an early proof of concept for distinguishing tumor patients from healthy individuals via TCR sequencing of peripheral blood. We find that given an appropriate MIL method is used, satisfactory performance with Area Under the Receiver Operating Characteristic Curve above 80% can be achieved for five in the ten cancers. Based on our numerical results, we make suggestions about selection of a proper method and avoidance of any method with poor performance. We further point out directions of future research as well as identify a pressing need of new MIL methodologies for improved performance (for some cancer types) and more explainable outcomes.
AbstractList As a branch of machine learning, multiple instance learning (MIL) learns from a collection of labeled bags, each containing a set of instances. The learning process is weakly supervised due to ambiguous instance labels. Since its emergence, MIL has been applied to solve various problems including content-based image retrieval, object tracking/detection, and computer-aided diagnosis. In biomedical research, the use of MIL has been focused on medical image analysis and molecule activity prediction. We review and apply 16 methods to investigate the applicability of MIL to a novel biomedical application, cancer detection using T-cell receptor (TCR) sequences. This important application can be a viable approach for large-scale cancer screening, as TCRs can be easily profiled from a subject's peripheral blood. We consider two feasible data-generating mechanisms, and for the purpose of performance evaluation, we simulate data under each mechanism, where we vary potentially important factors to mimic realistic situations. We also apply the methods to sequencing data of ten cancer types from The Cancer Genome Atlas, as an early proof of concept for distinguishing tumor patients from healthy individuals via TCR sequencing of peripheral blood. We find that given an appropriate MIL method is used, satisfactory performance with Area Under the Receiver Operating Characteristic Curve above 80% can be achieved for five in the ten cancers. Based on our numerical results, we make suggestions about selection of a proper method and avoidance of any method with poor performance. We further point out directions of future research as well as identify a pressing need of new MIL methodologies for improved performance (for some cancer types) and more explainable outcomes.As a branch of machine learning, multiple instance learning (MIL) learns from a collection of labeled bags, each containing a set of instances. The learning process is weakly supervised due to ambiguous instance labels. Since its emergence, MIL has been applied to solve various problems including content-based image retrieval, object tracking/detection, and computer-aided diagnosis. In biomedical research, the use of MIL has been focused on medical image analysis and molecule activity prediction. We review and apply 16 methods to investigate the applicability of MIL to a novel biomedical application, cancer detection using T-cell receptor (TCR) sequences. This important application can be a viable approach for large-scale cancer screening, as TCRs can be easily profiled from a subject's peripheral blood. We consider two feasible data-generating mechanisms, and for the purpose of performance evaluation, we simulate data under each mechanism, where we vary potentially important factors to mimic realistic situations. We also apply the methods to sequencing data of ten cancer types from The Cancer Genome Atlas, as an early proof of concept for distinguishing tumor patients from healthy individuals via TCR sequencing of peripheral blood. We find that given an appropriate MIL method is used, satisfactory performance with Area Under the Receiver Operating Characteristic Curve above 80% can be achieved for five in the ten cancers. Based on our numerical results, we make suggestions about selection of a proper method and avoidance of any method with poor performance. We further point out directions of future research as well as identify a pressing need of new MIL methodologies for improved performance (for some cancer types) and more explainable outcomes.
As a branch of machine learning, multiple instance learning (MIL) learns from a collection of labeled bags, each containing a set of instances. The learning process is weakly supervised due to ambiguous instance labels. Since its emergence, MIL has been applied to solve various problems including content-based image retrieval, object tracking/detection, and computer-aided diagnosis. In biomedical research, the use of MIL has been focused on medical image analysis and molecule activity prediction. We review and apply 16 methods to investigate the applicability of MIL to a novel biomedical application, cancer detection using T-cell receptor (TCR) sequences. This important application can be a viable approach for large-scale cancer screening, as TCRs can be easily profiled from a subject’s peripheral blood. We consider two feasible data-generating mechanisms, and for the purpose of performance evaluation, we simulate data under each mechanism, where we vary potentially important factors to mimic realistic situations. We also apply the methods to sequencing data of ten cancer types from The Cancer Genome Atlas, as an early proof of concept for distinguishing tumor patients from healthy individuals via TCR sequencing of peripheral blood. We find that given an appropriate MIL method is used, satisfactory performance with Area Under the Receiver Operating Characteristic Curve above 80% can be achieved for five in the ten cancers. Based on our numerical results, we make suggestions about selection of a proper method and avoidance of any method with poor performance. We further point out directions of future research as well as identify a pressing need of new MIL methodologies for improved performance (for some cancer types) and more explainable outcomes.
• We applied multiple instance learning (MIL) for cancer detection using TCR sequences. • An updated review of MIL methods and their categorization are provided. • Bag-space MIL methods tend to outperform instance-space and embedded-space methods. • Future development is needed for MIL methods using the primary instance assumption. As a branch of machine learning, multiple instance learning (MIL) learns from a collection of labeled bags, each containing a set of instances. The learning process is weakly supervised due to ambiguous instance labels. Since its emergence, MIL has been applied to solve various problems including content-based image retrieval, object tracking/detection, and computer-aided diagnosis. In biomedical research, the use of MIL has been focused on medical image analysis and molecule activity prediction. We review and apply 16 methods to investigate the applicability of MIL to a novel biomedical application, cancer detection using T-cell receptor (TCR) sequences. This important application can be a viable approach for large-scale cancer screening, as TCRs can be easily profiled from a subject’s peripheral blood. We consider two feasible data-generating mechanisms, and for the purpose of performance evaluation, we simulate data under each mechanism, where we vary potentially important factors to mimic realistic situations. We also apply the methods to sequencing data of ten cancer types from The Cancer Genome Atlas, as an early proof of concept for distinguishing tumor patients from healthy individuals via TCR sequencing of peripheral blood. We find that given an appropriate MIL method is used, satisfactory performance with Area Under the Receiver Operating Characteristic Curve above 80% can be achieved for five in the ten cancers. Based on our numerical results, we make suggestions about selection of a proper method and avoidance of any method with poor performance. We further point out directions of future research as well as identify a pressing need of new MIL methodologies for improved performance (for some cancer types) and more explainable outcomes.
[Display omitted] •We applied multiple instance learning (MIL) for cancer detection using TCR sequences.•An updated review of MIL methods and their categorization are provided.•Bag-space MIL methods tend to outperform instance-space and embedded-space methods.•Future development is needed for MIL methods using the primary instance assumption. As a branch of machine learning, multiple instance learning (MIL) learns from a collection of labeled bags, each containing a set of instances. The learning process is weakly supervised due to ambiguous instance labels. Since its emergence, MIL has been applied to solve various problems including content-based image retrieval, object tracking/detection, and computer-aided diagnosis. In biomedical research, the use of MIL has been focused on medical image analysis and molecule activity prediction. We review and apply 16 methods to investigate the applicability of MIL to a novel biomedical application, cancer detection using T-cell receptor (TCR) sequences. This important application can be a viable approach for large-scale cancer screening, as TCRs can be easily profiled from a subject’s peripheral blood. We consider two feasible data-generating mechanisms, and for the purpose of performance evaluation, we simulate data under each mechanism, where we vary potentially important factors to mimic realistic situations. We also apply the methods to sequencing data of ten cancer types from The Cancer Genome Atlas, as an early proof of concept for distinguishing tumor patients from healthy individuals via TCR sequencing of peripheral blood. We find that given an appropriate MIL method is used, satisfactory performance with Area Under the Receiver Operating Characteristic Curve above 80% can be achieved for five in the ten cancers. Based on our numerical results, we make suggestions about selection of a proper method and avoidance of any method with poor performance. We further point out directions of future research as well as identify a pressing need of new MIL methodologies for improved performance (for some cancer types) and more explainable outcomes.
Author Zhang, Ze
Wang, Tao
Wang, Xinlei
Xiong, Danyi
Author_xml – sequence: 1
  givenname: Danyi
  surname: Xiong
  fullname: Xiong, Danyi
  organization: Department of Statistical Science, Southern Methodist University, 3225 Daniel Avenue, Dallas 75275, TX, USA
– sequence: 2
  givenname: Ze
  surname: Zhang
  fullname: Zhang, Ze
  organization: Department of Population and Data Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390, TX, USA
– sequence: 3
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  email: Tao.Wang@UTSouthwestern.edu
  organization: Department of Population and Data Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390, TX, USA
– sequence: 4
  givenname: Xinlei
  surname: Wang
  fullname: Wang, Xinlei
  email: swang@smu.edu
  organization: Department of Statistical Science, Southern Methodist University, 3225 Daniel Avenue, Dallas 75275, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34141144$$D View this record in MEDLINE/PubMed
BookMark eNqNUstqHDEQHIJD7Dj-gRyCjrnspvWaB4SAMbFjMOTinIVG01prmZE2kmbBf29N1g52Dia6SKiriqKr3ldHPnisqo8U1hRo_WW7Nqnfrhkwuga5Bt6-qU4YAF0Bb-Do2fu4OktpC-W0tO44vKuOuaCCUiFOKn9OTJh2Ours9khSnod7EiyZ5jG73YjE-ZS1N0hG1NE7vyET5rswJGJDJGYZRTJgRpNd8GROC-R2ZXAcSUSDu1xgCX_PWJDpQ_XW6jHh2eN9Wv26_H578WN18_Pq-uL8ZmWkFHnFTNP2A0Owogfbo8W2kxQ042hM3xvadLWVwCXthGGS9Y1smJRg0NYDryU_ra4PukPQW7WLbtLxXgXt1J-PEDdKx-zMiKpGIXXX9Y1ppbC0a6ngjGKLLRvQQl20vh20dnM_4WDQ56jHF6IvJ97dqU3Yq5Z2TDZQBD4_CsRQ9pCymlxaFqQ9hjmpAhJcCOjof0ALUoqaL7Y-Pbf1189TtgXQHgAmhpQiWmVc1ktKxaUbFQW1NElt1dIktTRJgVSlSYXK_qE-qb9K-nogYQl27zCqZNyS-uBKEXLZvHuN_gA1xeL6
CitedBy_id crossref_primary_10_1016_j_ajpath_2024_01_012
crossref_primary_10_1093_bib_bbae420
crossref_primary_10_1002_sim_10202
crossref_primary_10_1016_j_isci_2023_108014
crossref_primary_10_1038_s41592_024_02408_1
crossref_primary_10_1186_s12859_022_05012_2
crossref_primary_10_1214_23_AOAS1780
crossref_primary_10_1038_s41598_025_88477_4
crossref_primary_10_3390_a14120344
crossref_primary_10_1007_s00439_022_02439_8
crossref_primary_10_1080_10255842_2024_2436909
crossref_primary_10_3389_fimmu_2024_1345586
crossref_primary_10_3390_electronics12204323
crossref_primary_10_3390_cancers15102704
crossref_primary_10_1016_j_csda_2024_107954
crossref_primary_10_1021_acs_jcim_2c01161
Cites_doi 10.1038/ng.3820
10.1007/s00500-019-04255-1
10.1016/j.artint.2013.06.003
10.1038/mt.2014.156
10.1146/annurev.immunol.23.021704.115658
10.1016/j.patcog.2017.10.009
10.1158/0008-5472.CAN-18-2292
10.1158/2159-8290.CD-17-1246
10.1080/01621459.1993.10476321
10.1007/s10115-006-0029-3
10.1038/nri2604
10.1038/nrc3565
10.1016/j.artint.2011.10.002
10.1121/1.4707424
10.1109/ICMLA51294.2020.00217
10.1126/scitranslmed.aaz3738
10.1158/0008-5472.CAN-09-1450
10.1016/j.it.2018.10.003
10.1017/S026988890999035X
10.1073/pnas.0408677102
10.1016/S0004-3702(96)00034-3
10.1038/s41592-020-01020-3
10.7551/mitpress/7503.003.0206
10.1109/TNN.2011.2109011
10.1056/NEJMcp0901926
10.1016/j.cell.2018.02.052
10.1177/0962280220914321
10.1016/j.patcog.2017.08.026
10.1007/s11263-006-9794-4
10.1023/A:1026543900054
10.1016/j.patcog.2014.07.022
10.1038/nature12222
10.1016/j.cell.2010.01.025
10.1038/s41591-018-0096-5
10.1146/annurev.immunol.21.120601.141135
10.1038/nmeth.2555
10.1016/j.jmgm.2010.09.006
10.1007/s10489-007-0111-x
10.1053/j.gastro.2019.01.259
10.1002/cncr.29098
10.1109/TNNLS.2018.2885852
10.1109/TPAMI.2006.248
10.1109/RBME.2017.2651164
10.1007/s00262-018-2237-6
ContentType Journal Article
Copyright 2021 The Author(s)
2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.csbj.2021.05.038
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2001-0370
EndPage 3268
ExternalDocumentID oai_doaj_org_article_6e45a99b7c854f19814321e8e82def06
PMC8192570
34141144
10_1016_j_csbj_2021_05_038
S2001037021002191
Genre Journal Article
Review
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R15 GM131390
– fundername: NCI NIH HHS
  grantid: P30 CA142543
– fundername: NCI NIH HHS
  grantid: R01 CA258584
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c554t-2c78bd2e0f4b0fbefe89510a23eccbbc1796f5035194c252b7572550cef6d3653
IEDL.DBID M48
ISSN 2001-0370
IngestDate Wed Aug 27 01:30:39 EDT 2025
Thu Aug 21 17:56:46 EDT 2025
Fri Jul 11 03:30:05 EDT 2025
Thu Jul 10 17:54:05 EDT 2025
Mon Jul 21 06:07:14 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Tue Jul 01 03:42:55 EDT 2025
Sat Aug 31 16:00:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords T-cell receptor
Witness rate
Primary instance
Weakly supervised learning
Binary classification
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-2c78bd2e0f4b0fbefe89510a23eccbbc1796f5035194c252b7572550cef6d3653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.csbj.2021.05.038
PMID 34141144
PQID 2543454636
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_6e45a99b7c854f19814321e8e82def06
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8192570
proquest_miscellaneous_2574344091
proquest_miscellaneous_2543454636
pubmed_primary_34141144
crossref_citationtrail_10_1016_j_csbj_2021_05_038
crossref_primary_10_1016_j_csbj_2021_05_038
elsevier_sciencedirect_doi_10_1016_j_csbj_2021_05_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computational and structural biotechnology journal
PublicationTitleAlternate Comput Struct Biotechnol J
PublicationYear 2021
Publisher Elsevier B.V
Research Network of Computational and Structural Biotechnology
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Research Network of Computational and Structural Biotechnology
– name: Elsevier
References Zhang Z-L, Zhang M-L. Multi-instance multi-label learning with application to scene classification. In: Advances in neural information processing systems 2007;1609–1616.
Organization WH, et al. Wha58. 22 cancer prevention and control, World Health Assembly [Internet] 2005;1–5.
Zhang, Xiong, Wang, Liu, Wang (b0190) 2021; 18
Beshnova, Ye, Onabolu, Moon, Zheng, Fu, Brugarolas, Lea, Li (b0170) 2020; 12
Astorino, Fuduli, Gaudioso (b0105) 2019; 30
Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning. In: International conference on machine learning, PMLR, 2018. p. 2127–36.
Gaudioso, Giallombardo, Miglionico, Vocaturo (b0115) 2020; 24
Singhi, Koay, Chari, Maitra (b0145) 2019; 156
Rubner, Tomasi, Guibas (b0250) 2000; 40
Zhou, Sun, Li (b0255) 2009
Quellec, Cazuguel, Cochener, Lamard (b0085) 2017; 10
Carbonneau, Cheplygina, Granger, Gagnon (b0110) 2018; 77
Hu, Li, Yu (b0070) 2008
Network (b0310) 2013; 499
Gärtner T, Flach PA, Kowalczyk A, Smola AJ. Multi-instance kernels. In: ICML, vol. 2; 2002. p. 7.
Bergeron, Zaretzki, Breneman, Bennett (b0065) 2008
Zhang, Wang, Si, Li (b0080) 2011; 22
Zhou, Zhang (b0265) 2007; 11
Wang J, Zucker J-D. Solving multiple-instance problem: A lazy learning approach, 2000.
Liu, Lichtenberg, Hoadley, Poisson, Lazar, Cherniack, Kovatich, Benz, Levine, Lee (b0320) 2018; 173
Wang, Radosavljevic, Han, Obradovic, Vucetic (b0050) 2008
Frank E, Xu X. Applying propositional learning algorithms to multi-instance data. 2003.
Dietterich, Lathrop, Lozano-Pérez (b0005) 1997; 89
Pathak D, Shelhamer E, Long J, Darrell T. Fully convolutional multi-class multiple instance learning. arXiv preprint arXiv:1412.7144; 2014.
Babenko, Dollár, Tu, Belongie (b0220) 2008
Atchley, Zhao, Fernandes, Drüke (b0195) 2005; 102
Raulet, Guerra (b0155) 2009; 9
Ostmeyer, Christley, Toby, Cowell (b0175) 2019; 79
Cheplygina, Tax, Loog (b0100) 2015; 48
Byers, Rudin (b0140) 2015; 121
Foulds, Frank (b0090) 2010; 25
Zha Z-J, Hua X-S, Mei T, Wang J, Qi G-J, Wang Z. Joint multi-label multi-instance learning for image classification. In: 2008 ieee conference on computer vision and pattern recognition, IEEE. 2008;1–8.
Amar RA, Dooly DR, Goldman SA, Zhang Q. Multiple-instance learning of real-valued data. In: ICML, Citeseer. 2001, p. 3–10.
Chen, Bi, Wang (b0270) 2006; 28
Okamoto, Mineno, Ikeda, Fujiwara, Yasukawa, Shiku, Kato (b0305) 2009; 69
Whiteside, Snook, Williams, Weis (b0335) 2018; 39
Zhang, Zhou (b0075) 2009; 31
Pardoll (b0150) 2003; 21
Wang, Lu, Kapur, Jaiswal, Hannan, Zhang, Pedrosa, Luke, Zhang, Goldstein (b0330) 2018; 8
Amores (b0095) 2013; 201
Raffel C, Ellis DP. Feed-forward networks with attention can solve some long-term memory problems, arXiv preprint arXiv:1512.08756; 2015.
Maron O, Lozano-Pérez T. A framework for multiple-instance learning. In: Advances in neural information processing systems 1998;570–576.
Grivennikov, Greten, Karin (b0160) 2010; 140
Vocaturo E, Zumpano E. Multiple instance learning approaches for melanoma and dysplastic nevi images classification. In: 2020 19th IEEE international conference on machine learning and applications (ICMLA). IEEE. 2020, p. 1396–401.
Rudolph, Stanfield, Wilson (b0300) 2006; 24
Teramoto, Kashima (b0055) 2010; 29
Zhang Q, Goldman SA. Em-dd: An improved multiple-instance learning technique. In: Advances in neural information processing systems. 2002. p. 1073–80.
Bolotin, Shugay, Mamedov, Putintseva, Turchaninova, Zvyagin, Britanova, Chudakov (b0185) 2013; 10
Andrews S, Tsochantaridis I, Hofmann T. Support vector machines for multiple-instance learning. In: Advances in neural information processing systems 2003;577–584.
Zhou, Xu (b0260) 2007
Vocaturo, Zumpano, Giallombardo, Miglionico (b0125) 2020
Albert, Chib (b0355) 1993; 88
Zhou, Zhang, Huang, Li (b0030) 2012; 176
Clarke-Pearson (b0135) 2009; 361
He, Zhang, Ren, Sun (b0285) 2016
Kershaw, Westwood, Darcy (b0200) 2013; 13
Park S, Wang X, Lim J, Xiao G, Lu T, Wang T. Bayesian multiple instance regression for modeling immunogenic neoantigens. Stat Meth Med Res 2020;0962280220914321.
Wang, Yan, Tang, Bai, Liu (b0230) 2018; 74
Cawley, Talbot (b0325) 2010; 11
Li, Li, Wang, Dou, Zhang, Liu, Liu (b0180) 2017; 49
Jin, Luo, Zhang, Lin, Cui, Chen, Pan, Mao, Tang, Wang (b0165) 2018; 67
Friedman (b0225) 2001
Zhang, Marszałek, Lazebnik, Schmid (b0245) 2007; 73
Zhu J, Rosset S, Tibshirani R, Hastie TJ. 1-norm support vector machines. In: Advances in neural information processing systems, 2004. p. 49–56.
Iwahori, Kakarla, Velasquez, Yu, Yi, Gerken, Song, Gottschalk (b0340) 2015; 23
Harris, Croce, Xie (b0345) 2015; 4
Briggs, Lakshminarayanan, Neal, Fern, Raich, Hadley, Hadley, Betts (b0035) 2012; 131
Lee C-Y, Xie S, Gallagher P, Zhang Z, Tu Z. Deeply-supervised nets. In: Artificial intelligence and statistics, PMLR, 2015. p. 562–70.
Ray, Craven (b0215) 2005
Wang, Xiong, Liang, Chen, Li, Zhang (b0350) 2020; 20
Lambrechts, Wauters, Boeckx, Aibar, Nittner, Burton, Bassez, Decaluwé, Pircher, Van den Eynde (b0315) 2018; 24
Ostmeyer (10.1016/j.csbj.2021.05.038_b0175) 2019; 79
Okamoto (10.1016/j.csbj.2021.05.038_b0305) 2009; 69
Cawley (10.1016/j.csbj.2021.05.038_b0325) 2010; 11
Foulds (10.1016/j.csbj.2021.05.038_b0090) 2010; 25
Rudolph (10.1016/j.csbj.2021.05.038_b0300) 2006; 24
Zhou (10.1016/j.csbj.2021.05.038_b0260) 2007
Atchley (10.1016/j.csbj.2021.05.038_b0195) 2005; 102
Gaudioso (10.1016/j.csbj.2021.05.038_b0115) 2020; 24
Beshnova (10.1016/j.csbj.2021.05.038_b0170) 2020; 12
Raulet (10.1016/j.csbj.2021.05.038_b0155) 2009; 9
Quellec (10.1016/j.csbj.2021.05.038_b0085) 2017; 10
10.1016/j.csbj.2021.05.038_b0275
10.1016/j.csbj.2021.05.038_b0235
He (10.1016/j.csbj.2021.05.038_b0285) 2016
Clarke-Pearson (10.1016/j.csbj.2021.05.038_b0135) 2009; 361
Babenko (10.1016/j.csbj.2021.05.038_b0220) 2008
Wang (10.1016/j.csbj.2021.05.038_b0330) 2018; 8
Pardoll (10.1016/j.csbj.2021.05.038_b0150) 2003; 21
Whiteside (10.1016/j.csbj.2021.05.038_b0335) 2018; 39
Carbonneau (10.1016/j.csbj.2021.05.038_b0110) 2018; 77
Li (10.1016/j.csbj.2021.05.038_b0180) 2017; 49
Ray (10.1016/j.csbj.2021.05.038_b0215) 2005
Zhou (10.1016/j.csbj.2021.05.038_b0255) 2009
10.1016/j.csbj.2021.05.038_b0060
Astorino (10.1016/j.csbj.2021.05.038_b0105) 2019; 30
Albert (10.1016/j.csbj.2021.05.038_b0355) 1993; 88
10.1016/j.csbj.2021.05.038_b0020
Hu (10.1016/j.csbj.2021.05.038_b0070) 2008
Zhang (10.1016/j.csbj.2021.05.038_b0075) 2009; 31
10.1016/j.csbj.2021.05.038_b0025
Friedman (10.1016/j.csbj.2021.05.038_b0225) 2001
Kershaw (10.1016/j.csbj.2021.05.038_b0200) 2013; 13
Zhang (10.1016/j.csbj.2021.05.038_b0245) 2007; 73
Network (10.1016/j.csbj.2021.05.038_b0310) 2013; 499
Chen (10.1016/j.csbj.2021.05.038_b0270) 2006; 28
Briggs (10.1016/j.csbj.2021.05.038_b0035) 2012; 131
Zhou (10.1016/j.csbj.2021.05.038_b0030) 2012; 176
10.1016/j.csbj.2021.05.038_b0290
Liu (10.1016/j.csbj.2021.05.038_b0320) 2018; 173
Wang (10.1016/j.csbj.2021.05.038_b0230) 2018; 74
Zhang (10.1016/j.csbj.2021.05.038_b0080) 2011; 22
Rubner (10.1016/j.csbj.2021.05.038_b0250) 2000; 40
Zhang (10.1016/j.csbj.2021.05.038_b0190) 2021; 18
Dietterich (10.1016/j.csbj.2021.05.038_b0005) 1997; 89
10.1016/j.csbj.2021.05.038_b0210
10.1016/j.csbj.2021.05.038_b0130
10.1016/j.csbj.2021.05.038_b0295
10.1016/j.csbj.2021.05.038_b0010
Teramoto (10.1016/j.csbj.2021.05.038_b0055) 2010; 29
10.1016/j.csbj.2021.05.038_b0015
Wang (10.1016/j.csbj.2021.05.038_b0050) 2008
Jin (10.1016/j.csbj.2021.05.038_b0165) 2018; 67
Lambrechts (10.1016/j.csbj.2021.05.038_b0315) 2018; 24
Harris (10.1016/j.csbj.2021.05.038_b0345) 2015; 4
Vocaturo (10.1016/j.csbj.2021.05.038_b0125) 2020
10.1016/j.csbj.2021.05.038_b0205
Wang (10.1016/j.csbj.2021.05.038_b0350) 2020; 20
Bergeron (10.1016/j.csbj.2021.05.038_b0065) 2008
Cheplygina (10.1016/j.csbj.2021.05.038_b0100) 2015; 48
Zhou (10.1016/j.csbj.2021.05.038_b0265) 2007; 11
Singhi (10.1016/j.csbj.2021.05.038_b0145) 2019; 156
Grivennikov (10.1016/j.csbj.2021.05.038_b0160) 2010; 140
10.1016/j.csbj.2021.05.038_b0040
Bolotin (10.1016/j.csbj.2021.05.038_b0185) 2013; 10
10.1016/j.csbj.2021.05.038_b0280
10.1016/j.csbj.2021.05.038_b0045
Iwahori (10.1016/j.csbj.2021.05.038_b0340) 2015; 23
10.1016/j.csbj.2021.05.038_b0240
10.1016/j.csbj.2021.05.038_b0120
Amores (10.1016/j.csbj.2021.05.038_b0095) 2013; 201
Byers (10.1016/j.csbj.2021.05.038_b0140) 2015; 121
References_xml – volume: 24
  start-page: 5071
  year: 2020
  end-page: 5077
  ident: b0115
  article-title: Classification in the multiple instance learning framework via spherical separation
  publication-title: Soft Comput
– volume: 28
  start-page: 1931
  year: 2006
  end-page: 1947
  ident: b0270
  article-title: Miles: Multiple-instance learning via embedded instance selection
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 48
  year: 2008
  end-page: 55
  ident: b0065
  article-title: Multiple instance ranking
  publication-title: Proceedings of the 25th international conference on machine learning
– volume: 48
  start-page: 264
  year: 2015
  end-page: 275
  ident: b0100
  article-title: Multiple instance learning with bag dissimilarities
  publication-title: Pattern Recogn
– volume: 499
  start-page: 43
  year: 2013
  end-page: 49
  ident: b0310
  article-title: Comprehensive molecular characterization of clear cell renal cell carcinoma
  publication-title: Nature
– reference: Zhu J, Rosset S, Tibshirani R, Hastie TJ. 1-norm support vector machines. In: Advances in neural information processing systems, 2004. p. 49–56.
– reference: Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning. In: International conference on machine learning, PMLR, 2018. p. 2127–36.
– volume: 74
  start-page: 15
  year: 2018
  end-page: 24
  ident: b0230
  article-title: Revisiting multiple instance neural networks
  publication-title: Pattern Recogn
– volume: 69
  start-page: 9003
  year: 2009
  end-page: 9011
  ident: b0305
  article-title: Improved expression and reactivity of transduced tumor-specific tcrs in human lymphocytes by specific silencing of endogenous tcr
  publication-title: Cancer Res
– start-page: 1
  year: 2020
  end-page: 9
  ident: b0125
  article-title: Dc-smil: A multiple instance learning solution via spherical separation for automated detection of displastyc nevi
  publication-title: Proceedings of the 24th symposium on international database engineering & applications
– start-page: 1167
  year: 2007
  end-page: 1174
  ident: b0260
  article-title: On the relation between multi-instance learning and semi-supervised learning, in
  publication-title: Proceedings of the 24th international conference on machine learning
– volume: 73
  start-page: 213
  year: 2007
  end-page: 238
  ident: b0245
  article-title: Local features and kernels for classification of texture and object categories: A comprehensive study
  publication-title: Int J Comput Vision
– reference: Gärtner T, Flach PA, Kowalczyk A, Smola AJ. Multi-instance kernels. In: ICML, vol. 2; 2002. p. 7.
– reference: Wang J, Zucker J-D. Solving multiple-instance problem: A lazy learning approach, 2000.
– volume: 23
  start-page: 171
  year: 2015
  end-page: 178
  ident: b0340
  article-title: Engager t cells: a new class of antigen-specific t cells that redirect bystander t cells
  publication-title: Mol Ther
– reference: Amar RA, Dooly DR, Goldman SA, Zhang Q. Multiple-instance learning of real-valued data. In: ICML, Citeseer. 2001, p. 3–10.
– volume: 13
  start-page: 525
  year: 2013
  end-page: 541
  ident: b0200
  article-title: Gene-engineered t cells for cancer therapy
  publication-title: Nat Rev Cancer
– volume: 4
  start-page: 576
  year: 2015
  ident: b0345
  article-title: Thymoma
  publication-title: Ann Cardiothor Surgery
– volume: 176
  start-page: 2291
  year: 2012
  end-page: 2320
  ident: b0030
  article-title: Multi-instance multi-label learning
  publication-title: Artif Intell
– volume: 25
  start-page: 1
  year: 2010
  end-page: 25
  ident: b0090
  article-title: A review of multi-instance learning assumptions
  publication-title: Knowl Eng Rev
– volume: 18
  start-page: 92
  year: 2021
  end-page: 99
  ident: b0190
  article-title: Mapping the functional landscape of t cell receptor repertoires by single-t cell transcriptomics
  publication-title: Nat Meth
– reference: Zhang Q, Goldman SA. Em-dd: An improved multiple-instance learning technique. In: Advances in neural information processing systems. 2002. p. 1073–80.
– volume: 30
  start-page: 2662
  year: 2019
  end-page: 2671
  ident: b0105
  article-title: A lagrangian relaxation approach for binary multiple instance classification
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 20
  start-page: 1
  year: 2020
  end-page: 8
  ident: b0350
  article-title: The role of srgn in the survival and immune infiltrates of skin cutaneous melanoma (skcm) and skcm-metastasis patients
  publication-title: BMC Cancer
– volume: 121
  start-page: 664
  year: 2015
  end-page: 672
  ident: b0140
  article-title: Small cell lung cancer: where do we go from here?
  publication-title: Cancer
– year: 2008
  ident: b0220
  article-title: Simultaneous learning and alignment: Multi-instance and multi-pose learning, in
  publication-title: Workshop on Faces in’Real-Life’Images: Detection, Alignment, and Recognition
– volume: 9
  start-page: 568
  year: 2009
  end-page: 580
  ident: b0155
  article-title: Oncogenic stress sensed by the immune system: role of natural killer cell receptors
  publication-title: Nat Rev Immunol
– volume: 31
  start-page: 47
  year: 2009
  end-page: 68
  ident: b0075
  article-title: Multi-instance clustering with applications to multi-instance prediction
  publication-title: Appl Intell
– reference: Andrews S, Tsochantaridis I, Hofmann T. Support vector machines for multiple-instance learning. In: Advances in neural information processing systems 2003;577–584.
– volume: 49
  start-page: 482
  year: 2017
  end-page: 483
  ident: b0180
  article-title: Ultrasensitive detection of tcr hypervariable-region sequences in solid-tissue rna–seq data
  publication-title: Nat Genet
– reference: Raffel C, Ellis DP. Feed-forward networks with attention can solve some long-term memory problems, arXiv preprint arXiv:1512.08756; 2015.
– volume: 361
  start-page: 170
  year: 2009
  end-page: 177
  ident: b0135
  article-title: Screening for ovarian cancer
  publication-title: N Engl J Med
– volume: 77
  start-page: 329
  year: 2018
  end-page: 353
  ident: b0110
  article-title: Multiple instance learning: A survey of problem characteristics and applications
  publication-title: Pattern Recogn
– volume: 11
  start-page: 155
  year: 2007
  end-page: 170
  ident: b0265
  article-title: Solving multi-instance problems with classifier ensemble based on constructive clustering
  publication-title: Knowl Inf Syst
– volume: 79
  start-page: 1671
  year: 2019
  end-page: 1680
  ident: b0175
  article-title: Biophysicochemical motifs in t-cell receptor sequences distinguish repertoires from tumor-infiltrating lymphocyte and adjacent healthy tissue
  publication-title: Cancer Res
– start-page: 1249
  year: 2009
  end-page: 1256
  ident: b0255
  article-title: Multi-instance learning by treating instances as non-iid samples
  publication-title: Proceedings of the 26th annual international conference on machine learning, ACM
– volume: 10
  start-page: 213
  year: 2017
  end-page: 234
  ident: b0085
  article-title: Multiple-instance learning for medical image and video analysis
  publication-title: IEEE Rev Biomed Eng
– volume: 12
  year: 2020
  ident: b0170
  article-title: De novo prediction of cancer-associated t cell receptors for noninvasive cancer detection
  publication-title: Sci Trans Med
– reference: Maron O, Lozano-Pérez T. A framework for multiple-instance learning. In: Advances in neural information processing systems 1998;570–576.
– volume: 39
  start-page: 1021
  year: 2018
  end-page: 1035
  ident: b0335
  article-title: Bystander t cells: a balancing act of friends and foes
  publication-title: Trends Immunol
– volume: 201
  start-page: 81
  year: 2013
  end-page: 105
  ident: b0095
  article-title: Multiple instance classification: Review, taxonomy and comparative study
  publication-title: Artif Intell
– volume: 40
  start-page: 99
  year: 2000
  end-page: 121
  ident: b0250
  article-title: The earth mover’s distance as a metric for image retrieval
  publication-title: Int J Comput Vision
– reference: Pathak D, Shelhamer E, Long J, Darrell T. Fully convolutional multi-class multiple instance learning. arXiv preprint arXiv:1412.7144; 2014.
– volume: 8
  start-page: 1142
  year: 2018
  end-page: 1155
  ident: b0330
  article-title: An empirical approach leveraging tumorgrafts to dissect the tumor microenvironment in renal cell carcinoma identifies missing link to prognostic inflammatory factors
  publication-title: Cancer Discov
– volume: 21
  start-page: 807
  year: 2003
  end-page: 839
  ident: b0150
  article-title: Does the immune system see tumors as foreign or self?
  publication-title: Ann Rev Immunol
– volume: 29
  start-page: 492
  year: 2010
  end-page: 497
  ident: b0055
  article-title: Prediction of protein–ligand binding affinities using multiple instance learning
  publication-title: J Mol Graph Model
– volume: 22
  start-page: 739
  year: 2011
  end-page: 751
  ident: b0080
  article-title: Maximum margin multiple instance clustering with applications to image and text clustering
  publication-title: IEEE Trans Neural Netw
– volume: 10
  start-page: 813
  year: 2013
  ident: b0185
  article-title: Mitcr: software for t-cell receptor sequencing data analysis
  publication-title: Nat Meth
– start-page: 1
  year: 2008
  end-page: 8
  ident: b0070
  article-title: Multiple-instance ranking: Learning to rank images for image retrieval
  publication-title: 2008 IEEE conference on computer vision and pattern recognition, IEEE
– reference: Vocaturo E, Zumpano E. Multiple instance learning approaches for melanoma and dysplastic nevi images classification. In: 2020 19th IEEE international conference on machine learning and applications (ICMLA). IEEE. 2020, p. 1396–401.
– reference: Organization WH, et al. Wha58. 22 cancer prevention and control, World Health Assembly [Internet] 2005;1–5.
– volume: 156
  start-page: 2024
  year: 2019
  end-page: 2040
  ident: b0145
  article-title: Early detection of pancreatic cancer: opportunities and challenges
  publication-title: Gastroenterology
– reference: Frank E, Xu X. Applying propositional learning algorithms to multi-instance data. 2003.
– reference: Lee C-Y, Xie S, Gallagher P, Zhang Z, Tu Z. Deeply-supervised nets. In: Artificial intelligence and statistics, PMLR, 2015. p. 562–70.
– volume: 173
  start-page: 400
  year: 2018
  end-page: 416
  ident: b0320
  article-title: An integrated tcga pan-cancer clinical data resource to drive high-quality survival outcome analytics
  publication-title: Cell
– volume: 88
  start-page: 669
  year: 1993
  end-page: 679
  ident: b0355
  article-title: Bayesian analysis of binary and polychotomous response data
  publication-title: J Am Stat Assoc
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0225
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– reference: Zhang Z-L, Zhang M-L. Multi-instance multi-label learning with application to scene classification. In: Advances in neural information processing systems 2007;1609–1616.
– start-page: 697
  year: 2005
  end-page: 704
  ident: b0215
  article-title: Supervised versus multiple instance learning: An empirical comparison, in
  publication-title: Proceedings of the 22nd international conference on machine learning, ACM
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0285
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 131
  start-page: 4640
  year: 2012
  end-page: 4650
  ident: b0035
  article-title: Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach
  publication-title: J Acoust Soc Am
– reference: Park S, Wang X, Lim J, Xiao G, Lu T, Wang T. Bayesian multiple instance regression for modeling immunogenic neoantigens. Stat Meth Med Res 2020;0962280220914321.
– start-page: 165
  year: 2008
  end-page: 176
  ident: b0050
  article-title: Aerosol optical depth prediction from satellite observations by multiple instance regression
  publication-title: Proceedings of the 2008 SIAM international conference on data mining, SIAM
– volume: 140
  start-page: 883
  year: 2010
  end-page: 899
  ident: b0160
  article-title: Immunity, inflammation, and cancer
  publication-title: Cell
– volume: 67
  start-page: 1719
  year: 2018
  end-page: 1730
  ident: b0165
  article-title: Tcr repertoire profiling of tumors, adjacent normal tissues, and peripheral blood predicts survival in nasopharyngeal carcinoma
  publication-title: Cancer Immunol Immunother
– volume: 24
  start-page: 1277
  year: 2018
  end-page: 1289
  ident: b0315
  article-title: Phenotype molding of stromal cells in the lung tumor microenvironment
  publication-title: Nat Med
– reference: Zha Z-J, Hua X-S, Mei T, Wang J, Qi G-J, Wang Z. Joint multi-label multi-instance learning for image classification. In: 2008 ieee conference on computer vision and pattern recognition, IEEE. 2008;1–8.
– volume: 89
  start-page: 31
  year: 1997
  end-page: 71
  ident: b0005
  article-title: Solving the multiple instance problem with axis-parallel rectangles
  publication-title: Artif Intell
– volume: 11
  start-page: 2079
  year: 2010
  end-page: 2107
  ident: b0325
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J Mach Learn Res
– volume: 102
  start-page: 6395
  year: 2005
  end-page: 6400
  ident: b0195
  article-title: Solving the protein sequence metric problem
  publication-title: Proc Nat Acad Sci
– volume: 24
  start-page: 419
  year: 2006
  end-page: 466
  ident: b0300
  article-title: How tcrs bind mhcs, peptides, and coreceptors
  publication-title: Annu Rev Immunol
– volume: 49
  start-page: 482
  year: 2017
  ident: 10.1016/j.csbj.2021.05.038_b0180
  article-title: Ultrasensitive detection of tcr hypervariable-region sequences in solid-tissue rna–seq data
  publication-title: Nat Genet
  doi: 10.1038/ng.3820
– volume: 24
  start-page: 5071
  year: 2020
  ident: 10.1016/j.csbj.2021.05.038_b0115
  article-title: Classification in the multiple instance learning framework via spherical separation
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04255-1
– volume: 201
  start-page: 81
  year: 2013
  ident: 10.1016/j.csbj.2021.05.038_b0095
  article-title: Multiple instance classification: Review, taxonomy and comparative study
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2013.06.003
– volume: 20
  start-page: 1
  year: 2020
  ident: 10.1016/j.csbj.2021.05.038_b0350
  article-title: The role of srgn in the survival and immune infiltrates of skin cutaneous melanoma (skcm) and skcm-metastasis patients
  publication-title: BMC Cancer
– volume: 23
  start-page: 171
  year: 2015
  ident: 10.1016/j.csbj.2021.05.038_b0340
  article-title: Engager t cells: a new class of antigen-specific t cells that redirect bystander t cells
  publication-title: Mol Ther
  doi: 10.1038/mt.2014.156
– volume: 24
  start-page: 419
  year: 2006
  ident: 10.1016/j.csbj.2021.05.038_b0300
  article-title: How tcrs bind mhcs, peptides, and coreceptors
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.23.021704.115658
– volume: 77
  start-page: 329
  year: 2018
  ident: 10.1016/j.csbj.2021.05.038_b0110
  article-title: Multiple instance learning: A survey of problem characteristics and applications
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.10.009
– volume: 79
  start-page: 1671
  year: 2019
  ident: 10.1016/j.csbj.2021.05.038_b0175
  article-title: Biophysicochemical motifs in t-cell receptor sequences distinguish repertoires from tumor-infiltrating lymphocyte and adjacent healthy tissue
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-2292
– ident: 10.1016/j.csbj.2021.05.038_b0130
– ident: 10.1016/j.csbj.2021.05.038_b0210
– volume: 8
  start-page: 1142
  year: 2018
  ident: 10.1016/j.csbj.2021.05.038_b0330
  article-title: An empirical approach leveraging tumorgrafts to dissect the tumor microenvironment in renal cell carcinoma identifies missing link to prognostic inflammatory factors
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-17-1246
– volume: 88
  start-page: 669
  year: 1993
  ident: 10.1016/j.csbj.2021.05.038_b0355
  article-title: Bayesian analysis of binary and polychotomous response data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1993.10476321
– ident: 10.1016/j.csbj.2021.05.038_b0025
– ident: 10.1016/j.csbj.2021.05.038_b0040
– volume: 11
  start-page: 155
  year: 2007
  ident: 10.1016/j.csbj.2021.05.038_b0265
  article-title: Solving multi-instance problems with classifier ensemble based on constructive clustering
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-006-0029-3
– volume: 9
  start-page: 568
  year: 2009
  ident: 10.1016/j.csbj.2021.05.038_b0155
  article-title: Oncogenic stress sensed by the immune system: role of natural killer cell receptors
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2604
– volume: 13
  start-page: 525
  year: 2013
  ident: 10.1016/j.csbj.2021.05.038_b0200
  article-title: Gene-engineered t cells for cancer therapy
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3565
– volume: 176
  start-page: 2291
  year: 2012
  ident: 10.1016/j.csbj.2021.05.038_b0030
  article-title: Multi-instance multi-label learning
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2011.10.002
– ident: 10.1016/j.csbj.2021.05.038_b0295
– volume: 131
  start-page: 4640
  year: 2012
  ident: 10.1016/j.csbj.2021.05.038_b0035
  article-title: Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.4707424
– ident: 10.1016/j.csbj.2021.05.038_b0120
  doi: 10.1109/ICMLA51294.2020.00217
– ident: 10.1016/j.csbj.2021.05.038_b0280
– volume: 12
  year: 2020
  ident: 10.1016/j.csbj.2021.05.038_b0170
  article-title: De novo prediction of cancer-associated t cell receptors for noninvasive cancer detection
  publication-title: Sci Trans Med
  doi: 10.1126/scitranslmed.aaz3738
– volume: 69
  start-page: 9003
  year: 2009
  ident: 10.1016/j.csbj.2021.05.038_b0305
  article-title: Improved expression and reactivity of transduced tumor-specific tcrs in human lymphocytes by specific silencing of endogenous tcr
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-1450
– volume: 39
  start-page: 1021
  year: 2018
  ident: 10.1016/j.csbj.2021.05.038_b0335
  article-title: Bystander t cells: a balancing act of friends and foes
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2018.10.003
– ident: 10.1016/j.csbj.2021.05.038_b0045
– volume: 25
  start-page: 1
  year: 2010
  ident: 10.1016/j.csbj.2021.05.038_b0090
  article-title: A review of multi-instance learning assumptions
  publication-title: Knowl Eng Rev
  doi: 10.1017/S026988890999035X
– volume: 102
  start-page: 6395
  year: 2005
  ident: 10.1016/j.csbj.2021.05.038_b0195
  article-title: Solving the protein sequence metric problem
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.0408677102
– start-page: 1
  year: 2008
  ident: 10.1016/j.csbj.2021.05.038_b0070
  article-title: Multiple-instance ranking: Learning to rank images for image retrieval
– ident: 10.1016/j.csbj.2021.05.038_b0290
– start-page: 770
  year: 2016
  ident: 10.1016/j.csbj.2021.05.038_b0285
  article-title: Deep residual learning for image recognition
– volume: 89
  start-page: 31
  year: 1997
  ident: 10.1016/j.csbj.2021.05.038_b0005
  article-title: Solving the multiple instance problem with axis-parallel rectangles
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(96)00034-3
– ident: 10.1016/j.csbj.2021.05.038_b0235
– start-page: 1189
  year: 2001
  ident: 10.1016/j.csbj.2021.05.038_b0225
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– volume: 18
  start-page: 92
  year: 2021
  ident: 10.1016/j.csbj.2021.05.038_b0190
  article-title: Mapping the functional landscape of t cell receptor repertoires by single-t cell transcriptomics
  publication-title: Nat Meth
  doi: 10.1038/s41592-020-01020-3
– start-page: 697
  year: 2005
  ident: 10.1016/j.csbj.2021.05.038_b0215
  article-title: Supervised versus multiple instance learning: An empirical comparison, in
– ident: 10.1016/j.csbj.2021.05.038_b0020
  doi: 10.7551/mitpress/7503.003.0206
– volume: 22
  start-page: 739
  year: 2011
  ident: 10.1016/j.csbj.2021.05.038_b0080
  article-title: Maximum margin multiple instance clustering with applications to image and text clustering
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2109011
– volume: 361
  start-page: 170
  year: 2009
  ident: 10.1016/j.csbj.2021.05.038_b0135
  article-title: Screening for ovarian cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMcp0901926
– volume: 173
  start-page: 400
  year: 2018
  ident: 10.1016/j.csbj.2021.05.038_b0320
  article-title: An integrated tcga pan-cancer clinical data resource to drive high-quality survival outcome analytics
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.052
– volume: 11
  start-page: 2079
  year: 2010
  ident: 10.1016/j.csbj.2021.05.038_b0325
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J Mach Learn Res
– start-page: 48
  year: 2008
  ident: 10.1016/j.csbj.2021.05.038_b0065
  article-title: Multiple instance ranking
– ident: 10.1016/j.csbj.2021.05.038_b0060
  doi: 10.1177/0962280220914321
– volume: 74
  start-page: 15
  year: 2018
  ident: 10.1016/j.csbj.2021.05.038_b0230
  article-title: Revisiting multiple instance neural networks
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.08.026
– volume: 73
  start-page: 213
  year: 2007
  ident: 10.1016/j.csbj.2021.05.038_b0245
  article-title: Local features and kernels for classification of texture and object categories: A comprehensive study
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-006-9794-4
– volume: 40
  start-page: 99
  year: 2000
  ident: 10.1016/j.csbj.2021.05.038_b0250
  article-title: The earth mover’s distance as a metric for image retrieval
  publication-title: Int J Comput Vision
  doi: 10.1023/A:1026543900054
– volume: 48
  start-page: 264
  year: 2015
  ident: 10.1016/j.csbj.2021.05.038_b0100
  article-title: Multiple instance learning with bag dissimilarities
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.07.022
– volume: 4
  start-page: 576
  year: 2015
  ident: 10.1016/j.csbj.2021.05.038_b0345
  article-title: Thymoma
  publication-title: Ann Cardiothor Surgery
– ident: 10.1016/j.csbj.2021.05.038_b0010
– start-page: 1249
  year: 2009
  ident: 10.1016/j.csbj.2021.05.038_b0255
  article-title: Multi-instance learning by treating instances as non-iid samples
– ident: 10.1016/j.csbj.2021.05.038_b0205
– volume: 499
  start-page: 43
  year: 2013
  ident: 10.1016/j.csbj.2021.05.038_b0310
  article-title: Comprehensive molecular characterization of clear cell renal cell carcinoma
  publication-title: Nature
  doi: 10.1038/nature12222
– volume: 140
  start-page: 883
  year: 2010
  ident: 10.1016/j.csbj.2021.05.038_b0160
  article-title: Immunity, inflammation, and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.025
– volume: 24
  start-page: 1277
  year: 2018
  ident: 10.1016/j.csbj.2021.05.038_b0315
  article-title: Phenotype molding of stromal cells in the lung tumor microenvironment
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0096-5
– year: 2008
  ident: 10.1016/j.csbj.2021.05.038_b0220
  article-title: Simultaneous learning and alignment: Multi-instance and multi-pose learning, in
  publication-title: Workshop on Faces in’Real-Life’Images: Detection, Alignment, and Recognition
– volume: 21
  start-page: 807
  year: 2003
  ident: 10.1016/j.csbj.2021.05.038_b0150
  article-title: Does the immune system see tumors as foreign or self?
  publication-title: Ann Rev Immunol
  doi: 10.1146/annurev.immunol.21.120601.141135
– volume: 10
  start-page: 813
  year: 2013
  ident: 10.1016/j.csbj.2021.05.038_b0185
  article-title: Mitcr: software for t-cell receptor sequencing data analysis
  publication-title: Nat Meth
  doi: 10.1038/nmeth.2555
– start-page: 1
  year: 2020
  ident: 10.1016/j.csbj.2021.05.038_b0125
  article-title: Dc-smil: A multiple instance learning solution via spherical separation for automated detection of displastyc nevi
– start-page: 1167
  year: 2007
  ident: 10.1016/j.csbj.2021.05.038_b0260
  article-title: On the relation between multi-instance learning and semi-supervised learning, in
– volume: 29
  start-page: 492
  year: 2010
  ident: 10.1016/j.csbj.2021.05.038_b0055
  article-title: Prediction of protein–ligand binding affinities using multiple instance learning
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2010.09.006
– volume: 31
  start-page: 47
  year: 2009
  ident: 10.1016/j.csbj.2021.05.038_b0075
  article-title: Multi-instance clustering with applications to multi-instance prediction
  publication-title: Appl Intell
  doi: 10.1007/s10489-007-0111-x
– volume: 156
  start-page: 2024
  year: 2019
  ident: 10.1016/j.csbj.2021.05.038_b0145
  article-title: Early detection of pancreatic cancer: opportunities and challenges
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.01.259
– start-page: 165
  year: 2008
  ident: 10.1016/j.csbj.2021.05.038_b0050
  article-title: Aerosol optical depth prediction from satellite observations by multiple instance regression
– ident: 10.1016/j.csbj.2021.05.038_b0240
– volume: 121
  start-page: 664
  year: 2015
  ident: 10.1016/j.csbj.2021.05.038_b0140
  article-title: Small cell lung cancer: where do we go from here?
  publication-title: Cancer
  doi: 10.1002/cncr.29098
– volume: 30
  start-page: 2662
  year: 2019
  ident: 10.1016/j.csbj.2021.05.038_b0105
  article-title: A lagrangian relaxation approach for binary multiple instance classification
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2885852
– volume: 28
  start-page: 1931
  year: 2006
  ident: 10.1016/j.csbj.2021.05.038_b0270
  article-title: Miles: Multiple-instance learning via embedded instance selection
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2006.248
– ident: 10.1016/j.csbj.2021.05.038_b0275
– ident: 10.1016/j.csbj.2021.05.038_b0015
– volume: 10
  start-page: 213
  year: 2017
  ident: 10.1016/j.csbj.2021.05.038_b0085
  article-title: Multiple-instance learning for medical image and video analysis
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2017.2651164
– volume: 67
  start-page: 1719
  year: 2018
  ident: 10.1016/j.csbj.2021.05.038_b0165
  article-title: Tcr repertoire profiling of tumors, adjacent normal tissues, and peripheral blood predicts survival in nasopharyngeal carcinoma
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-018-2237-6
SSID ssj0000816930
Score 2.3036482
SecondaryResourceType review_article
Snippet [Display omitted] •We applied multiple instance learning (MIL) for cancer detection using TCR sequences.•An updated review of MIL methods and their...
As a branch of machine learning, multiple instance learning (MIL) learns from a collection of labeled bags, each containing a set of instances. The learning...
• We applied multiple instance learning (MIL) for cancer detection using TCR sequences. • An updated review of MIL methods and their categorization are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3255
SubjectTerms Binary classification
biomedical research
biotechnology
comparative study
genome
image analysis
neoplasms
prediction
Primary instance
Review
T-cell receptor
T-lymphocytes
Weakly supervised learning
Witness rate
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-YQ-khTpw9U6K2Y2nrrmJaGUGhPCeQmLFlKNhRvyG7-f2cke-NtYHvp1ZJtpBl5vpE_fUPIp57zrpVe1RD9-1r03NbG9mAQLbxMTBvZYaL485c6vxQ_ruTVrNQXcsKKPHCZuC8qCtlZ63UwUiRIkSHAszaaaFgfUxHbhpg3S6byN9igyAhusIycId2MJ2YKuSus_C0kh6zNsp14OGUWlbJ4_1Zwego-_-ZQzoLS2XNyOKJJelpG8YLsxeElOZhpDL4iwykNjwrfNMvJ0mWiE5OQLjJADJGOBSSuaakqvaKAZ2nApnvax3XmbA0UifLX9KLGHX8Kn8t4B1k73TCyj8jl2feLb-f1WGShDoAk1jUL2viexSYJ3yQfUzQIujrGwbjeB1iwKkn832hFYJJ5LTWkIU2ISfVcSf6a7A_LIb4hVKJ8m7KGcW5FmyDwCa20lVxay3TgFWmnSXZhVCDHQhi_3UQ1u3VoGIeGcY10YJiKfN7cc1f0N3b2_oq22_RE7ex8ATzKjR7l_uVRFZGT5d0IQwq8gEctdr784-QmDtYomqEb4vJh5VBwQGDdAbWrD2A5Adl2W5Hj4lqbYQDSEJC3ioroLafbGud2y7C4yVrhqHcndXPyPybmLXmGwy0bUO_I_vr-Ib4HSLb2H_Lq-wOF2TFz
  priority: 102
  providerName: Directory of Open Access Journals
Title A comparative study of multiple instance learning methods for cancer detection using T-cell receptor sequences
URI https://dx.doi.org/10.1016/j.csbj.2021.05.038
https://www.ncbi.nlm.nih.gov/pubmed/34141144
https://www.proquest.com/docview/2543454636
https://www.proquest.com/docview/2574344091
https://pubmed.ncbi.nlm.nih.gov/PMC8192570
https://doaj.org/article/6e45a99b7c854f19814321e8e82def06
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKK6FyQLwJj5WRuKGgxG8fEFoQVUVVDqgrerPWjrPdqsqW3a0E_56ZxNk2UPaaOI6SmfF840y-j5C3FefTUnqVQ_avclFxmxtbgUG08LJm2sgpForH39ThRHw9lac7pJc7Si9wdWtph3pSk-XF-18_f3-EgP9w3asVVv4caj1Wtiyc3Nwhe5CZNEo5HCe4367MBqlHcNsldRLpIv1Hc_s0--QuLPICSgYxSFstu_8ge_2LTv9usryRtQ4ekPsJbtJx5x8PyU5sHpF7N0gIH5NmTMM1BTht-WbpoqZ9qyGdtwgyRJoUJma0k51eUQC8NOCpJa3ium3qaih20s_oSY6fBCisp_ESynq6adl-QiYHX04-H-ZJhSEPADXWOQva-IrFoha-qH2so0FUNmUcrO99gIhWtcQPklYEJpnXUkOdUoRYq4oryZ-S3WbRxOeESuR3U9Ywzq0oa8iMQittJZfWMh14Rsr-JbuQKMpRKePC9b1o5w5t5NBGrpAObJSRd5trLjuCjq2jP6HtNiORXLs9sFjOXIpVp6KQU2u9DkaKurQGMCUro4mGVbEuVEZkb3mXcEqHP2Cq-dabv-ndxEEQoxmmTVxcrRwyEggUJlDbxgDYE1COlxl51rnW5jF6L82IHjjd4DmHZ5r5WUsmjoR4Uhcv_jvnS7LPUPMYAoYVr8juenkVXwMQW_sR2Rsfff9xNGo3MkZtrP0BSnQvrg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+multiple+instance+learning+methods+for+cancer+detection+using+T-cell+receptor+sequences&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Xiong%2C+Danyi&rft.au=Zhang%2C+Ze&rft.au=Wang%2C+Tao&rft.au=Wang%2C+Xinlei&rft.date=2021-01-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=19&rft.spage=3255&rft_id=info:doi/10.1016%2Fj.csbj.2021.05.038&rft_id=info%3Apmid%2F34141144&rft.externalDocID=34141144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon