Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies
Immediately from the outset of the COVID-19 pandemic, researchers from diverse biomedical and biological disciplines have united to study the novel pandemic virus, SARS-CoV-2. The antibody response to SARS-CoV-2 has been a major focus of COVID-19 research due to its clinical relevance and importance...
Saved in:
Published in | Biochemical and biophysical research communications Vol. 538; pp. 192 - 203 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
29.01.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immediately from the outset of the COVID-19 pandemic, researchers from diverse biomedical and biological disciplines have united to study the novel pandemic virus, SARS-CoV-2. The antibody response to SARS-CoV-2 has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Isolation and characterization of antibodies to SARS-CoV-2 have been accumulating at an unprecedented pace. Most of the SARS-CoV-2 neutralizing antibodies to date target the spike (S) protein receptor binding domain (RBD), which engages the host receptor ACE2 for viral entry. Here we review the binding sites and molecular features of monoclonal antibodies that target the SARS-CoV-2 RBD, including a few that also cross-neutralize SARS-CoV.
•The receptor binding domain is a major target of antibodies to SARS-CoV-2.•Neutralizing antibodies target various epitopes on the receptor binding domain.•Convergent antibody responses to SARS-CoV-2 are observed.•Cross-neutralization of SARS-CoV-2 and SARS-CoV maps to two RBD epitopes.•Antibody avidity can be crucial for neutralization potency against SARS-CoV-2. |
---|---|
AbstractList | Immediately from the outset of the COVID-19 pandemic, researchers from diverse biomedical and biological disciplines have united to study the novel pandemic virus, SARS-CoV-2. The antibody response to SARS-CoV-2 has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Isolation and characterization of antibodies to SARS-CoV-2 have been accumulating at an unprecedented pace. Most of the SARS-CoV-2 neutralizing antibodies to date target the spike (S) protein receptor binding domain (RBD), which engages the host receptor ACE2 for viral entry. Here we review the binding sites and molecular features of monoclonal antibodies that target the SARS-CoV-2 RBD, including a few that also cross-neutralize SARS-CoV.
•
The receptor binding domain is a major target of antibodies to SARS-CoV-2.
•
Neutralizing antibodies target various epitopes on the receptor binding domain.
•
Convergent antibody responses to SARS-CoV-2 are observed.
•
Cross-neutralization of SARS-CoV-2 and SARS-CoV maps to two RBD epitopes.
•
Antibody avidity can be crucial for neutralization potency against SARS-CoV-2. Immediately from the outset of the COVID-19 pandemic, researchers from diverse biomedical and biological disciplines have united to study the novel pandemic virus, SARS-CoV-2. The antibody response to SARS-CoV-2 has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Isolation and characterization of antibodies to SARS-CoV-2 have been accumulating at an unprecedented pace. Most of the SARS-CoV-2 neutralizing antibodies to date target the spike (S) protein receptor binding domain (RBD), which engages the host receptor ACE2 for viral entry. Here we review the binding sites and molecular features of monoclonal antibodies that target the SARS-CoV-2 RBD, including a few that also cross-neutralize SARS-CoV.Immediately from the outset of the COVID-19 pandemic, researchers from diverse biomedical and biological disciplines have united to study the novel pandemic virus, SARS-CoV-2. The antibody response to SARS-CoV-2 has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Isolation and characterization of antibodies to SARS-CoV-2 have been accumulating at an unprecedented pace. Most of the SARS-CoV-2 neutralizing antibodies to date target the spike (S) protein receptor binding domain (RBD), which engages the host receptor ACE2 for viral entry. Here we review the binding sites and molecular features of monoclonal antibodies that target the SARS-CoV-2 RBD, including a few that also cross-neutralize SARS-CoV. Immediately from the outset of the COVID-19 pandemic, researchers from diverse biomedical and biological disciplines have united to study the novel pandemic virus, SARS-CoV-2. The antibody response to SARS-CoV-2 has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Isolation and characterization of antibodies to SARS-CoV-2 have been accumulating at an unprecedented pace. Most of the SARS-CoV-2 neutralizing antibodies to date target the spike (S) protein receptor binding domain (RBD), which engages the host receptor ACE2 for viral entry. Here we review the binding sites and molecular features of monoclonal antibodies that target the SARS-CoV-2 RBD, including a few that also cross-neutralize SARS-CoV. Immediately from the outset of the COVID-19 pandemic, researchers from diverse biomedical and biological disciplines have united to study the novel pandemic virus, SARS-CoV-2. The antibody response to SARS-CoV-2 has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Isolation and characterization of antibodies to SARS-CoV-2 have been accumulating at an unprecedented pace. Most of the SARS-CoV-2 neutralizing antibodies to date target the spike (S) protein receptor binding domain (RBD), which engages the host receptor ACE2 for viral entry. Here we review the binding sites and molecular features of monoclonal antibodies that target the SARS-CoV-2 RBD, including a few that also cross-neutralize SARS-CoV. •The receptor binding domain is a major target of antibodies to SARS-CoV-2.•Neutralizing antibodies target various epitopes on the receptor binding domain.•Convergent antibody responses to SARS-CoV-2 are observed.•Cross-neutralization of SARS-CoV-2 and SARS-CoV maps to two RBD epitopes.•Antibody avidity can be crucial for neutralization potency against SARS-CoV-2. |
Author | Wilson, Ian A. Wu, Nicholas C. Yuan, Meng Liu, Hejun |
Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0001-9754-4503 surname: Yuan fullname: Yuan, Meng organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA – sequence: 2 givenname: Hejun orcidid: 0000-0002-2412-7853 surname: Liu fullname: Liu, Hejun organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA – sequence: 3 givenname: Nicholas C. surname: Wu fullname: Wu, Nicholas C. organization: Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA – sequence: 4 givenname: Ian A. orcidid: 0000-0002-6469-2419 surname: Wilson fullname: Wilson, Ian A. email: wilson@scripps.edu organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33069360$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV9rFDEUxYNU7Lb6BXyQefRl1ptMkp2ACGWpf6BgaW3xLSSZO9sss8maZAv10zvj1qI-lD4FTs453Ht_R-QgxICEvKYwp0Dlu_Xc2uTmDNgkzIGyZ2RGQUHNKPADMgMAWTNFvx-So5zXAJRyqV6Qw6YBqRoJM3J-gS6ugi8-hir2VbnB6vLk4rJexuuaVQkdbktMlfWh82FVdXFjfKjsXRVwV5IZ_M9JNqF4GzuP-SV53psh46v795hcfTz9tvxcn3399GV5clY7IXipmVVMKo6OO6nQcNWItl3Y1hlFWxBMUtuzvseOGzDGCSms6Y1jzKISagHNMfmw793u7AY7h2GaRm-T35h0p6Px-t-f4G_0Kt7qheAL8bvg7X1Bij92mIve-OxwGEzAuMuaCcYbaFv1BCsX48WBKTla3_w91sM8fy4-Gtje4FLMOWH_YKGgJ6x6rSesesI6aSPWMdT-F3K-mInZuJofHo--30dxhHHrMensPAaHnR_hFt1F_1j8F2Kiva0 |
CitedBy_id | crossref_primary_10_1128_Spectrum_00341_21 crossref_primary_10_1093_abt_tbab015 crossref_primary_10_1016_j_pep_2024_106450 crossref_primary_10_1021_acsanm_4c06252 crossref_primary_10_1038_s41467_024_48104_8 crossref_primary_10_1080_0889311X_2024_2363756 crossref_primary_10_1073_pnas_2317222121 crossref_primary_10_3390_vaccines12101089 crossref_primary_10_1111_imr_13431 crossref_primary_10_1038_s41467_023_37786_1 crossref_primary_10_3389_fmed_2022_905798 crossref_primary_10_3389_fimmu_2021_780594 crossref_primary_10_1093_immadv_ltab027 crossref_primary_10_3389_fimmu_2022_820336 crossref_primary_10_1016_j_xcrm_2022_100520 crossref_primary_10_1016_j_cell_2022_01_018 crossref_primary_10_3390_v14112346 crossref_primary_10_7554_eLife_83710 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_1128_jvi_00531_24 crossref_primary_10_1021_acscentsci_1c00216 crossref_primary_10_1038_s41421_021_00300_2 crossref_primary_10_1038_s41576_021_00408_x crossref_primary_10_3389_fimmu_2022_801522 crossref_primary_10_3389_fmolb_2022_770775 crossref_primary_10_1016_S1473_3099_22_00311_5 crossref_primary_10_1128_Spectrum_01352_21 crossref_primary_10_1073_pnas_2120976119 crossref_primary_10_1016_j_immuni_2021_08_025 crossref_primary_10_1007_s00216_023_04548_3 crossref_primary_10_1016_j_immuni_2022_12_005 crossref_primary_10_1371_journal_pcbi_1009380 crossref_primary_10_1016_j_diagmicrobio_2021_115561 crossref_primary_10_1016_j_csbj_2021_04_059 crossref_primary_10_1016_j_arabjc_2021_103600 crossref_primary_10_1016_j_sjbs_2022_103372 crossref_primary_10_1038_s41598_024_55852_6 crossref_primary_10_1098_rsfs_2021_0019 crossref_primary_10_47184_td_2023_04_05 crossref_primary_10_1007_s00436_024_08317_8 crossref_primary_10_1016_j_isci_2022_103939 crossref_primary_10_1016_j_diagmicrobio_2024_116298 crossref_primary_10_1038_s41541_024_00961_6 crossref_primary_10_1002_cti2_1227 crossref_primary_10_1111_joim_13372 crossref_primary_10_1126_science_abh1139 crossref_primary_10_1128_jvi_01070_23 crossref_primary_10_1016_j_pep_2022_106075 crossref_primary_10_3998_umurj_5509 crossref_primary_10_3389_fmolb_2021_791642 crossref_primary_10_1038_s41590_022_01248_5 crossref_primary_10_1371_journal_ppat_1011804 crossref_primary_10_1371_journal_ppat_1010155 crossref_primary_10_3390_v13112295 crossref_primary_10_1016_j_biochi_2021_10_013 crossref_primary_10_1016_j_bpj_2021_11_009 crossref_primary_10_3389_fimmu_2021_647934 crossref_primary_10_1016_j_isci_2022_104914 crossref_primary_10_1016_j_chembiol_2023_05_011 crossref_primary_10_1016_j_antiviral_2024_105987 crossref_primary_10_1016_j_snb_2022_132427 crossref_primary_10_1016_j_celrep_2022_110318 crossref_primary_10_1016_j_celrep_2022_111528 crossref_primary_10_1016_j_micres_2022_127204 crossref_primary_10_1016_j_isci_2022_105044 crossref_primary_10_1111_imr_13084 crossref_primary_10_1111_jam_15340 crossref_primary_10_1021_acs_jcim_1c00766 crossref_primary_10_2139_ssrn_3924605 crossref_primary_10_1016_j_csbj_2022_04_038 crossref_primary_10_1080_22221751_2023_2290841 crossref_primary_10_1111_all_15252 crossref_primary_10_1016_j_hlife_2024_12_006 crossref_primary_10_1371_journal_ppat_1010260 crossref_primary_10_1007_s12033_024_01288_2 crossref_primary_10_1038_s41421_021_00340_8 crossref_primary_10_3390_pathogens13040272 crossref_primary_10_1073_pnas_2205784119 crossref_primary_10_1016_j_chom_2021_04_005 crossref_primary_10_1093_oxfimm_iqab018 crossref_primary_10_1038_s42003_022_03700_6 crossref_primary_10_3390_v14030515 crossref_primary_10_1038_s41467_021_24123_7 crossref_primary_10_2139_ssrn_4092998 crossref_primary_10_3390_diagnostics12020393 crossref_primary_10_1172_JCI166844 crossref_primary_10_1021_acs_jpcb_1c00395 crossref_primary_10_1016_j_pbiomolbio_2023_02_004 crossref_primary_10_1038_s41598_022_10230_y crossref_primary_10_3389_fmolb_2021_670815 crossref_primary_10_1016_j_vaccine_2024_03_034 crossref_primary_10_1002_jmv_28673 crossref_primary_10_1080_22221751_2024_2447615 crossref_primary_10_1038_s41577_020_00480_0 crossref_primary_10_1126_science_abm5835 crossref_primary_10_1128_spectrum_00926_22 crossref_primary_10_3389_fimmu_2021_691715 crossref_primary_10_1128_mSphere_00170_21 crossref_primary_10_3390_ijms23126394 crossref_primary_10_1186_s13073_021_00985_w crossref_primary_10_3389_fimmu_2023_1188392 crossref_primary_10_1016_j_jmii_2022_03_007 crossref_primary_10_1016_j_celrep_2022_111276 crossref_primary_10_1128_jvi_00383_22 crossref_primary_10_1007_s40259_022_00529_7 crossref_primary_10_1111_pbi_14458 crossref_primary_10_1016_j_isci_2024_110354 crossref_primary_10_3390_medicina59030507 crossref_primary_10_1039_D2TB00849A crossref_primary_10_3390_biomedicines10051143 crossref_primary_10_1002_advs_202102181 crossref_primary_10_1038_s41598_021_04673_y crossref_primary_10_1016_j_msard_2022_104195 crossref_primary_10_1016_j_immuni_2022_03_019 crossref_primary_10_1126_sciadv_add7221 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_1038_s41467_023_37972_1 crossref_primary_10_1021_acs_jpcb_3c01467 crossref_primary_10_1016_j_csbj_2021_10_010 crossref_primary_10_3389_fmed_2022_916241 crossref_primary_10_1016_j_isci_2023_108009 crossref_primary_10_1016_j_celrep_2021_109109 crossref_primary_10_3390_vaccines11040864 crossref_primary_10_1002_cbic_202200303 crossref_primary_10_1016_j_compbiomed_2022_105758 crossref_primary_10_1107_S2059798323005041 crossref_primary_10_1016_j_cell_2021_07_025 crossref_primary_10_1016_j_immuni_2021_10_019 crossref_primary_10_1021_jacs_1c03945 crossref_primary_10_1080_21645515_2024_2388344 crossref_primary_10_1016_j_immuni_2021_06_015 crossref_primary_10_3390_ijms24054398 crossref_primary_10_1016_j_celrep_2022_110757 crossref_primary_10_1016_j_jbc_2021_100745 crossref_primary_10_1021_acscentsci_1c01080 crossref_primary_10_1038_s41401_021_00851_w crossref_primary_10_1128_mBio_02975_21 crossref_primary_10_1002_mco2_110 |
Cites_doi | 10.1016/j.cell.2020.06.044 10.3389/fimmu.2018.01315 10.1016/j.coi.2020.03.013 10.1016/j.jmb.2005.04.049 10.1016/j.cell.2020.09.018 10.1016/j.cell.2020.07.012 10.1038/s41586-020-2381-y 10.3389/fimmu.2019.02778 10.1016/j.jsb.2010.11.021 10.1038/s41594-018-0025-9 10.1016/j.cell.2020.06.043 10.1038/s41423-020-0458-z 10.1016/j.immuni.2018.04.029 10.1126/science.abd0831 10.1371/journal.ppat.1007236 10.1126/science.abb7269 10.1126/science.abc0870 10.1016/j.immuni.2020.01.001 10.1038/s41586-020-2571-7 10.1007/s11427-020-1637-5 10.1016/j.cell.2020.09.032 10.1016/j.cell.2020.02.058 10.1016/j.cell.2020.09.007 10.1038/s41586-020-2380-z 10.1126/science.abc5902 10.1126/science.abc6952 10.1016/j.jmb.2007.05.022 10.1126/science.abb2507 10.1038/s41586-020-2180-5 10.1038/s41594-020-0480-y 10.1126/science.abc2241 10.1080/22221751.2020.1729069 10.1126/science.abd4251 10.1016/j.immuni.2020.06.001 10.1016/j.chom.2020.06.010 10.1016/j.cell.2020.09.049 10.1016/j.celrep.2020.108274 10.1126/sciimmunol.abc8413 10.4049/jimmunol.1000445 10.1126/science.abd2321 10.1016/j.cell.2020.06.025 10.1016/j.celrep.2020.107918 10.1073/pnas.1212371109 10.1371/journal.pmed.0030237 10.1093/bioinformatics/btaa739 10.1038/s41467-020-16256-y 10.1126/science.abd5223 10.1016/j.cell.2020.04.031 10.1371/journal.ppat.1000908 10.1016/j.cell.2020.09.035 10.1038/s41586-020-2349-y 10.1038/s41591-020-0998-x 10.1038/s41586-020-2456-9 10.1016/j.chom.2020.05.010 10.1016/j.celrep.2020.107725 10.1038/s41586-020-2012-7 10.1016/j.cell.2020.05.025 10.1038/nature11414 10.1038/s41423-020-0426-7 10.1126/science.abc7424 10.1126/science.abc7520 10.1016/j.celrep.2018.10.031 10.1126/science.abd0827 10.1038/s41594-020-0469-6 10.1038/s41586-020-2665-2 10.1126/science.abc5881 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.bbrc.2020.10.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1090-2104 |
EndPage | 203 |
ExternalDocumentID | PMC7547570 33069360 10_1016_j_bbrc_2020_10_012 S0006291X20319215 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: K01 AG044462 – fundername: NIAID NIH HHS grantid: P01 AI110657 – fundername: NIAID NIH HHS grantid: R00 AI139445 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 D0L DM4 DOVZS EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K TWZ WH7 XPP XSW ZA5 ZMT ~02 ~G- .55 .GJ .HR 1CY 3O- 9M8 AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM OHT R2- RIG SBG SEW SSH UQL WUQ X7M Y6R ZGI ZKB ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c554t-2b92694ec4c69ea4935887b8ca91805261bf2ffed4a0aac565bafac22be959703 |
IEDL.DBID | .~1 |
ISSN | 0006-291X 1090-2104 |
IngestDate | Thu Aug 21 18:19:14 EDT 2025 Fri Jul 11 12:01:35 EDT 2025 Fri Jul 11 04:37:07 EDT 2025 Wed Feb 19 02:29:25 EST 2025 Thu Apr 24 23:02:45 EDT 2025 Tue Jul 01 01:44:14 EDT 2025 Fri Feb 23 02:45:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Receptor binding domain (RBD) SARS-CoV-2 Germline-encoded motifs Cross-neutralization Antibody avidity Neutralizing antibodies SARS-CoV RBD natural mutations Epitopes |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-2b92694ec4c69ea4935887b8ca91805261bf2ffed4a0aac565bafac22be959703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9754-4503 0000-0002-6469-2419 0000-0002-2412-7853 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006291X20319215 |
PMID | 33069360 |
PQID | 2452100296 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7547570 proquest_miscellaneous_2524308890 proquest_miscellaneous_2452100296 pubmed_primary_33069360 crossref_primary_10_1016_j_bbrc_2020_10_012 crossref_citationtrail_10_1016_j_bbrc_2020_10_012 elsevier_sciencedirect_doi_10_1016_j_bbrc_2020_10_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-29 |
PublicationDateYYYYMMDD | 2021-01-29 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemical and biophysical research communications |
PublicationTitleAlternate | Biochem Biophys Res Commun |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Lv, Deng, Ye, Cao, Sun, Fan, Huang, Sun, Sun, Zhu, Chen, Wang, Nie, Cui, Zhu, Shaw, Li, Li, Xie, Wang, Rao, Qin, Wang (bib45) 2020; 369 Xu, Chen, Wang, Feng, Zhou, Li, Zhong, Hao (bib2) 2020; 63 Ju, Zhang, Ge, Wang, Sun, Ge, Yu, Shan, Zhou, Song, Tang, Yu, Lan, Yuan, Wang, Zhao, Zhang, Wang, Shi, Liu, Zhao, Wang, Zhang, Zhang (bib17) 2020; 584 Wu, Wang, Shen, Peng, Li, Zhao, Li, Li, Bi, Yang, Gong, Xiao, Fan, Tan, Wu, Tan, Lu, Fan, Wang, Liu, Zhang, Qi, Gao, Gao, Liu (bib23) 2020; 368 Huo, Zhao, Ren, Zhou, Duyvesteyn, Ginn, Carrique, Malinauskas, Ruza, Shah, Tan, Rijal, Coombes, Bewley, Tree, Radecke, Paterson, Supasa, Mongkolsapaya, Screaton, Carroll, Townsend, Fry, Owens, Stuart (bib39) 2020; 28 Rogers, Zhao, Huang, Beutler, Burns, He, Limbo, Smith, Song, Woehl, Yang, Abbott, Callaghan, Garcia, Hurtado, Parren, Peng, Ramirez, Ricketts, Ricciardi, Rawlings, Wu, Yuan, Smith, Nemazee, Teijaro, Voss, Wilson, Andrabi, Briney, Landais, Sok, Jardine, Burton (bib21) 2020; 369 Krissinel, Henrick (bib83) 2007; 372 Wu, Pfarr, Tang, An, Patel, Watkins, Huse, Kiener, Young (bib54) 2005; 350 Kim, Noh, Kim, Choi, Yoo, Lee, Lee, Jung, Kang, Song, Choe, Kim, Kim, Kim, Seong, Park, Oh, Kwon, Chung (bib19) 2020 Raybould, Kovaltsuk, Marks, Deane (bib25) 2020 Mok, Cremin, Lau, Deng, Chen, Zhang, Lee, Liu, Liu, Ng, Lao, Lee, Leung, Wang, To, Chan, Chan, Yuen, Siu, Chen (bib65) 2020 Kwong, Mascola (bib78) 2018; 48 Turonova, Sikora, Schurmann, Hagen, Welsch, Blanc, von Bulow, Gecht, Bagola, Horner, van Zandbergen, Landry, de Azevedo, Mosalaganti, Schwarz, Covino, Muhlebach, Hummer, Krijnse Locker, Beck (bib47) 2020; 370 Cai, Zhang, Xiao, Peng, Sterling, Walsh, Rawson, Rits-Volloch, Chen (bib49) 2020; 369 Chan, Dorosky, Sharma, Abbasi, Dye, Kranz, Herbert, Procko (bib63) 2020; 369 Wu, Wilson (bib79) 2018; 25 Yuan, Wu, Zhu, Lee, So, Lv, Mok, Wilson (bib31) 2020; 368 Hansen, Baum, Pascal, Russo, Giordano, Wloga, Fulton, Yan, Koon, Patel, Chung, Hermann, Ullman, Cruz, Rafique, Huang, Fairhurst, Libertiny, Malbec, Lee, Welsh, Farr, Pennington, Deshpande, Cheng, Watty, Bouffard, Babb, Levenkova, Chen, Zhang, Romero Hernandez, Saotome, Zhou, Franklin, Sivapalasingam, Lye, Weston, Logue, Haupt, Frieman, Chen, Olson, Murphy, Stahl, Yancopoulos, Kyratsous (bib12) 2020; 369 Bracken, Lim, Solomon, Rettko, Nguyen, Zha, Schaefer, Byrnes, Zhou, Lui, Liu, Pance, Zhou, Leung, Wells (bib60) 2020 Hurlburt, Wan, Stuart, Feng, McGuire, Stamatatos, Pancera (bib29) 2020 Weissman, Alameh, de Silva, Collini, Hornsby, Brown, LaBranche, Edwards, Sutherland, Santra, Mansouri, Gobeil, McDanal, Pardi, Hengartner, Lin, Tam, Shaw, Lewis, Boesler, Sahin, Acharya, Haynes, Korber, Montefiori (bib71) 2020 Lee, Yoshida, Ekiert, Sakai, Suzuki, Takada, Wilson (bib56) 2012; 109 Wu, Yuan, Liu, Lee, Zhu, Bangaru, Torres, Caniels, Brouwer, van Gils, Sanders, Ward, Wilson (bib28) 2020; 33 Tzarum, Wilson, Law (bib82) 2018; 9 Greaney, Starr, Gilchuk, Zost, Binshtein, Loes, Hilton, Huddleston, Eguia, Crawford, Dingens, Nargi, Sutton, Suryadevara, Rothlauf, Liu, Whelan, Carnahan, Crowe, Bloom (bib73) 2020 Liu, Wu, Yuan, Bangaru, Torres, Caniels, van Schooten, Zhu, Lee, Brouwer, van Gils, Sanders, Ward, Wilson (bib32) 2020 ter Meulen, van den Brink, Poon, Marissen, Leung, Cox, Cheung, Bakker, Bogaards, van Deventer, Preiser, Doerr, Chow, de Kruif, Peiris, Goudsmit (bib37) 2006; 3 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang, Chen, Chen, Luo, Guo, Jiang, Liu, Chen, Shen, Wang, Zheng, Zhao, Chen, Deng, Liu, Yan, Zhan, Wang, Xiao, Shi (bib3) 2020; 579 Pinto, Park, Beltramello, Walls, Tortorici, Bianchi, Jaconi, Culap, Zatta, De Marco, Peter, Guarino, Spreafico, Cameroni, Case, Chen, Havenar-Daughton, Snell, Telenti, Virgin, Lanzavecchia, Diamond, Fink, Veesler, Corti (bib33) 2020; 583 Walls, Park, Tortorici, Wall, McGuire, Veesler (bib36) 2020; 181 Chi, Yan, Zhang, Zhang, Zhang, Hao, Zhang, Fan, Dong, Yang, Chen, Guo, Zhang, Li, Song, Chen, Xia, Fu, Hou, Xu, Yu, Li, Zhou, Chen (bib11) 2020; 369 Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib34) 2020; 581 Hu, He, Gao, Zhang, Cao, Long, Deng, Huang, Chen, Wang, Tang, Huang (bib70) 2020 Han, Wang, Li, Hu, Li, Gu, Wang, Shen, Wang, Hu, Wu, Mu, Gong, Chen, Gao, Huang, Long, Luo, Song, Long, Hao, Li, Wu, Xu, Cai, Gao, Zhang, He, Deng, Du, Nai, Wang, Xie, Qu, Huang, Tang, Jin (bib5) 2020 Wec, Wrapp, Herbert, Maurer, Haslwanter, Sakharkar, Jangra, Dieterle, Lilov, Huang, Tse, Johnson, Hsieh, Wang, Nett, Champney, Burnina, Brown, Lin, Sinclair, Johnson, Pudi, Bortz, Wirchnianski, Laudermilch, Florez, Fels, O’Brien, Graham, Nemazee, Burton, Baric, Voss, Chandran, Dye, McLellan, Walker (bib44) 2020; 369 Zhang, Jackson, Mou, Ojha, Rangarajan, Izard, Farzan, Choe (bib67) 2020 Kreye, Reincke, Kornau, Sanchez-Sendin, Corman, Liu, Yuan, Wu, Zhu, Lee, Trimpert, Hoeltje, Dietert, Stoeffler, von Wardenburg, van Hoof, Homeyer, Hoffmann, Abdelgawad, Gruber, Bertzbach, Vladimirova, Li, Barthel, Skriner, Hocke, Hippenstiel, Witzenrath, Suttorp, Kurth, Franke, Endres, Schmitz, Jeworowski, Richter, Schmidt, Schwarz, Mueller, Drosten, Wendisch, Sander, Osterrieder, Wilson, Pruess (bib6) 2020 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib46) 2020; 367 Huo, Le Bas, Ruza, Duyvesteyn, Mikolajek, Malinauskas, Tan, Rijal, Dumoux, Ward, Ren, Zhou, Harrison, Weckener, Clare, Vogirala, Radecke, Moynie, Zhao, Gilbert-Jaramillo, Knight, Tree, Buttigieg, Coombes, Elmore, Carroll, Carrique, Shah, James, Townsend, Stuart, Owens, Naismith (bib62) 2020; 27 Joyce, Sankhala, Chen, Choe, Bai, Hajduczki, Yan, Sterling, Peterson, Green, Smith, de Val, Amare, Scott, Laing, Broder, Rolland, Michael, Modjarrad (bib40) 2020 Wang, Michailidis, Yu, Wang, Hurley, Oren, Mayer, Gazumyan, Liu, Zhou, Schoofs, Yao, Nieke, Wu, Jiang, Zou, Kabbani, Quirk, Oliveira, Chhosphel, Zhang, Schneider, Jahan, Ying, Horowitz, Caskey, Jankovic, Robbiani, Wen, de Jong, Rice, Nussenzweig (bib76) 2020; 28 Wu, Yuan, Bangaru, Huang, Zhu, Lee, Turner, Peng, Yang, Nemazee, Ward, Wilson (bib42) 2020 Lv, Wu, Tsang, Yuan, Perera, Leung, So, Chan, Yip, Chik, Wang, Choi, Lin, Ng, Zhao, Poon, Peiris, Wilson, Mok (bib51) 2020; 31 Yurkovetskiy, Wang, Pascal, Tomkins-Tinch, Nyalile, Wang, Baum, Diehl, Dauphin, Carbone, Veinotte, Egri, Schaffner, Lemieux, Munro, Rafique, Barve, Sabeti, Kyratsous, Dudkina, Shen, Luban (bib68) 2020 Ogawa, Zhu, Tonnu, Singer, Hunter, Ryan, Pao (bib69) 2020 Boyd, Gaeta, Jackson, Fire, Marshall, Merker, Maniar, Zhang, Sahaf, Jones, Simen, Hanczaruk, Nguyen, Nadeau, Egholm, Miklos, Zehnder, Collins (bib26) 2010; 184 Song, Gui, Wang, Xiang (bib48) 2018; 14 Zhou, Duyvesteyn, Chen, Huang, Chen, Shih, Lin, Cheng, Cheng, Huang, Lin, Ma, Huo, Carrique, Malinauskas, Ruza, Shah, Tan, Rijal, Donat, Godwin, Buttigieg, Tree, Radecke, Paterson, Supasa, Mongkolsapaya, Screaton, Carroll, Gilbert-Jaramillo, Knight, James, Owens, Naismith, Townsend, Fry, Zhao, Ren, Stuart, Huang (bib14) 2020; 27 Li, Schäfer, Kulkarni, Liu, Martinez, Chen, Sun, Leist, Drelich, Zhang, Ura, Berezuk, Chittori, Leopold, Mannar, Srivastava, Zhu, Peterson, Tseng, Mellors, Falzarano, Subramaniam, Baric, Dimitrov (bib61) 2020 Gilchuk, Murin, Milligan, Cross, Mire, Ilinykh, Huang, Kuzmina, Altman, Hui, Gunn, Bryan, Davidson, Doranz, Turner, Alkutkar, Flinko, Orlandi, Carnahan, Nargi, Bombardi, Vodzak, Li, Okoli, Ibeawuchi, Ohiaeri, Lewis, Alter, Bukreyev, Saphire, Geisbert, Ward, Crowe (bib77) 2020; 52 Korber, Fischer, Gnanakaran, Yoon, Theiler, Abfalterer, Hengartner, Giorgi, Bhattacharya, Foley, Hastie, Parker, Partridge, Evans, Freeman, de Silva, Sheffield, McDanal, Perez, Tang, Moon-Walker, Whelan, LaBranche, Saphire, Montefiori (bib64) 2020; 182 Wan, Xing, Ding, Wang, Gu, Wu, Rong, Li, Wang, Chen, He, Zhu, Yuan, Qiu, Zhao, Nie, Gao, Jiao, Zhang, Wang, Ying, Wang, Xie, Lu, Xu, Lan (bib10) 2020; 32 Zost, Gilchuk, Chen, Case, Reidy, Trivette, Nargi, Sutton, Suryadevara, Chen, Binshtein, Shrihari, Ostrowski, Chu, Didier, MacRenaris, Jones, Day, Myers, Eun-Hyung Lee, Nguyen, Sanz, Martinez, Rothlauf, Bloyet, Whelan, Baric, Thackray, Diamond, Carnahan, Crowe (bib8) 2020; 26 Klein, Bjorkman (bib53) 2010; 6 Yuan, Liu, Wu, Lee, Zhu, Zhao, Huang, Yu, Hua, Tien, Rogers, Landais, Sok, Jardine, Burton, Wilson (bib27) 2020; 369 Ward, Wilson (bib80) 2020; 65 WHO (bib1) 2020 Chen, Li, Pan, Qian, Yang, You, Zhao, Liu, Gao, Li, Huang, Xu, Tang, Tian, Yao, Hu, Yan, Zhou, Wu, Deng, Zhang, Qian, Chen, Ye (bib24) 2020; 17 Baum, Fulton, Wloga, Copin, Pascal, Russo, Giordano, Lanza, Negron, Ni, Wei, Atwal, Murphy, Stahl, Yancopoulos, Kyratsous (bib74) 2020; 369 Li, Wu, Nie, Zhang, Hao, Liu, Zhao, Zhang, Liu, Nie, Qin, Wang, Lu, Li, Sun, Liu, Zhang, Li, Huang, Wang (bib72) 2020; 182 Barnes, West, Huey-Tubman, Hoffmann, Sharaf, Hoffman, Koranda, Gristick, Gaebler, Muecksch, Lorenzi, Finkin, Hagglof, Hurley, Millard, Weisblum, Schmidt, Hatziioannou, Bieniasz, Caskey, Robbiani, Nussenzweig, Bjorkman (bib30) 2020; 182 Barnes, Jette, Abernathy, Dam, Esswein, Gristick, Malyutin, Sharaf, Huey-Tubman, Lee, Robbiani, Nussenzweig, West, Bjorkman (bib35) 2020 Wrapp, De Vlieger, Corbett, Torres, Wang, Van Breedam, Roose, van Schie, Team, Hoffmann, Pohlmann, Graham, Callewaert, Schepens, Saelens, McLellan (bib52) 2020; 181 Neuman, Kiss, Kunding, Bhella, Baksh, Connelly, Droese, Klaus, Makino, Sawicki, Siddell, Stamou, Wilson, Kuhn, Buchmeier (bib58) 2011; 174 Wang, Li, Drabek, Okba, van Haperen, Osterhaus, van Kuppeveld, Haagmans, Grosveld, Bosch (bib43) 2020; 11 Cao, Su, Guo, Sun, Deng, Bao, Zhu, Zhang, Zheng, Geng, Chai, He, Li, Lv, Zhu, Deng, Xu, Wang, Qiao, Tan, Song, Wang, Du, Gao, Liu, Xiao, Su, Du, Feng, Qin, Qin, Jin, Xie (bib16) 2020; 182 Seydoux, Homad, MacCamy, Parks, Hurlburt, Jennewein, Akins, Stuart, Wan, Feng, Whaley, Singh, Boeckh, Cohen, McElrath, Englund, Chu, Pancera, McGuire, Stamatatos (bib22) 2020; 53 Plante, Liu, Liu, Xia, Johnson, Lokugamage, Zhang, Muruato, Zou, Fontes-Garfias, Mirchandani, Scharton, Bilello, Ku, An, Kalveram, Freiberg, Menachery, Xie, Plant Huo (10.1016/j.bbrc.2020.10.012_bib39) 2020; 28 Huo (10.1016/j.bbrc.2020.10.012_bib62) 2020; 27 Gilchuk (10.1016/j.bbrc.2020.10.012_bib77) 2020; 52 Korber (10.1016/j.bbrc.2020.10.012_bib64) 2020; 182 Weissman (10.1016/j.bbrc.2020.10.012_bib71) 2020 Zhang (10.1016/j.bbrc.2020.10.012_bib67) 2020 Seydoux (10.1016/j.bbrc.2020.10.012_bib22) 2020; 53 Wu (10.1016/j.bbrc.2020.10.012_bib54) 2005; 350 Xu (10.1016/j.bbrc.2020.10.012_bib2) 2020; 63 Ogawa (10.1016/j.bbrc.2020.10.012_bib69) 2020 Wrapp (10.1016/j.bbrc.2020.10.012_bib46) 2020; 367 Joyce (10.1016/j.bbrc.2020.10.012_bib40) 2020 Wu (10.1016/j.bbrc.2020.10.012_bib79) 2018; 25 Premkumar (10.1016/j.bbrc.2020.10.012_bib4) 2020; 5 Ju (10.1016/j.bbrc.2020.10.012_bib17) 2020; 584 Han (10.1016/j.bbrc.2020.10.012_bib5) 2020 Hu (10.1016/j.bbrc.2020.10.012_bib70) 2020 Wrapp (10.1016/j.bbrc.2020.10.012_bib52) 2020; 181 Krissinel (10.1016/j.bbrc.2020.10.012_bib83) 2007; 372 Brouwer (10.1016/j.bbrc.2020.10.012_bib18) 2020; 369 Lv (10.1016/j.bbrc.2020.10.012_bib45) 2020; 369 Wang (10.1016/j.bbrc.2020.10.012_bib43) 2020; 11 Zhou (10.1016/j.bbrc.2020.10.012_bib3) 2020; 579 Turonova (10.1016/j.bbrc.2020.10.012_bib47) 2020; 370 Greaney (10.1016/j.bbrc.2020.10.012_bib73) 2020 Ward (10.1016/j.bbrc.2020.10.012_bib80) 2020; 65 Kwong (10.1016/j.bbrc.2020.10.012_bib78) 2018; 48 Boyd (10.1016/j.bbrc.2020.10.012_bib26) 2010; 184 Walls (10.1016/j.bbrc.2020.10.012_bib36) 2020; 181 Wec (10.1016/j.bbrc.2020.10.012_bib44) 2020; 369 Yurkovetskiy (10.1016/j.bbrc.2020.10.012_bib68) 2020 Song (10.1016/j.bbrc.2020.10.012_bib48) 2018; 14 Lv (10.1016/j.bbrc.2020.10.012_bib51) 2020; 31 Baum (10.1016/j.bbrc.2020.10.012_bib74) 2020; 369 Wan (10.1016/j.bbrc.2020.10.012_bib10) 2020; 32 Tzarum (10.1016/j.bbrc.2020.10.012_bib82) 2018; 9 WHO (10.1016/j.bbrc.2020.10.012_bib1) Pinto (10.1016/j.bbrc.2020.10.012_bib33) 2020; 583 Barnes (10.1016/j.bbrc.2020.10.012_bib30) 2020; 182 ter Meulen (10.1016/j.bbrc.2020.10.012_bib37) 2006; 3 Chen (10.1016/j.bbrc.2020.10.012_bib24) 2020; 17 Lan (10.1016/j.bbrc.2020.10.012_bib34) 2020; 581 Yao (10.1016/j.bbrc.2020.10.012_bib57) 2020 Liu (10.1016/j.bbrc.2020.10.012_bib15) 2020; 584 Wu (10.1016/j.bbrc.2020.10.012_bib28) 2020; 33 Li (10.1016/j.bbrc.2020.10.012_bib61) 2020 Plante (10.1016/j.bbrc.2020.10.012_bib66) 2020 Mok (10.1016/j.bbrc.2020.10.012_bib65) 2020 Li (10.1016/j.bbrc.2020.10.012_bib72) 2020; 182 Klein (10.1016/j.bbrc.2020.10.012_bib53) 2010; 6 Neuman (10.1016/j.bbrc.2020.10.012_bib58) 2011; 174 Yuan (10.1016/j.bbrc.2020.10.012_bib31) 2020; 368 Huang (10.1016/j.bbrc.2020.10.012_bib81) 2019; 10 Zhou (10.1016/j.bbrc.2020.10.012_bib14) 2020; 27 Ke (10.1016/j.bbrc.2020.10.012_bib50) 2020 Wang (10.1016/j.bbrc.2020.10.012_bib59) 2020 Chan (10.1016/j.bbrc.2020.10.012_bib63) 2020; 369 Hansen (10.1016/j.bbrc.2020.10.012_bib12) 2020; 369 Ekiert (10.1016/j.bbrc.2020.10.012_bib55) 2012; 489 Lee (10.1016/j.bbrc.2020.10.012_bib56) 2012; 109 Kreer (10.1016/j.bbrc.2020.10.012_bib9) 2020; 182 Wu (10.1016/j.bbrc.2020.10.012_bib42) 2020 Kreye (10.1016/j.bbrc.2020.10.012_bib6) 2020 Du (10.1016/j.bbrc.2020.10.012_bib7) 2020 Yi (10.1016/j.bbrc.2020.10.012_bib41) 2020; 17 Robbiani (10.1016/j.bbrc.2020.10.012_bib20) 2020; 584 Barnes (10.1016/j.bbrc.2020.10.012_bib35) 2020 Wang (10.1016/j.bbrc.2020.10.012_bib76) 2020; 28 Wu (10.1016/j.bbrc.2020.10.012_bib23) 2020; 368 Raybould (10.1016/j.bbrc.2020.10.012_bib25) 2020 Zost (10.1016/j.bbrc.2020.10.012_bib8) 2020; 26 Kim (10.1016/j.bbrc.2020.10.012_bib19) 2020 Rogers (10.1016/j.bbrc.2020.10.012_bib21) 2020; 369 Yuan (10.1016/j.bbrc.2020.10.012_bib27) 2020; 369 Hurlburt (10.1016/j.bbrc.2020.10.012_bib29) 2020 Liu (10.1016/j.bbrc.2020.10.012_bib32) 2020 Bracken (10.1016/j.bbrc.2020.10.012_bib60) 2020 Keeffe (10.1016/j.bbrc.2020.10.012_bib75) 2018; 25 Tian (10.1016/j.bbrc.2020.10.012_bib38) 2020; 9 Cao (10.1016/j.bbrc.2020.10.012_bib16) 2020; 182 Chi (10.1016/j.bbrc.2020.10.012_bib11) 2020; 369 Cai (10.1016/j.bbrc.2020.10.012_bib49) 2020; 369 Shi (10.1016/j.bbrc.2020.10.012_bib13) 2020; 584 |
References_xml | – volume: 6 year: 2010 ident: bib53 article-title: Few and far between: how HIV may be evading antibody avidity publication-title: PLoS Pathog. – volume: 584 start-page: 115 year: 2020 end-page: 119 ident: bib17 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature – year: 2020 ident: bib7 article-title: Structurally resolved SARS-CoV-2 antibody shows high efficacy in severely infected hamsters and provides a potent cocktail pairing strategy publication-title: Cell – volume: 369 start-page: 643 year: 2020 end-page: 650 ident: bib18 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science – year: 2020 ident: bib68 article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant publication-title: Cell – year: 2020 ident: bib73 article-title: Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition – volume: 181 start-page: 1004 year: 2020 end-page: 1015 ident: bib52 article-title: Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies publication-title: Cell – year: 2020 ident: bib50 article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions publication-title: Nature – volume: 584 start-page: 450 year: 2020 end-page: 456 ident: bib15 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature – volume: 489 start-page: 526 year: 2012 end-page: 532 ident: bib55 article-title: Cross-neutralization of influenza A viruses mediated by a single antibody loop publication-title: Nature – volume: 369 start-page: 1261 year: 2020 end-page: 1265 ident: bib63 article-title: Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2 publication-title: Science – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: bib34 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 182 start-page: 1284 year: 2020 end-page: 1294 ident: bib72 article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity publication-title: Cell – year: 2020 ident: bib67 article-title: The D614G Mutation in the SARS-CoV-2 Spike Protein Reduces S1 Shedding and Increases Infectivity – volume: 31 start-page: 107725 year: 2020 ident: bib51 article-title: Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections publication-title: Cell Rep. – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib46 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: bib83 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. – volume: 369 start-page: 1119 year: 2020 end-page: 1123 ident: bib27 article-title: Structural basis of a shared antibody response to SARS-CoV-2 publication-title: Science – volume: 584 start-page: 120 year: 2020 end-page: 124 ident: bib13 article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 publication-title: Nature – volume: 584 start-page: 437 year: 2020 end-page: 442 ident: bib20 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature – volume: 3 start-page: e237 year: 2006 ident: bib37 article-title: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants publication-title: PLoS Med. – year: 2020 ident: bib40 article-title: A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein – year: 2020 ident: bib35 article-title: Structural Classification of Neutralizing Antibodies against the SARS-CoV-2 Spike Receptor-Binding Domain Suggests Vaccine and Therapeutic Strategies – volume: 14 year: 2018 ident: bib48 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. – year: 2020 ident: bib5 article-title: A Rapid and Efficient Screening System for Neutralizing Antibodies and its Application for the Discovery of Potent Neutralizing Antibodies to SARS-CoV-2 S-RBD – volume: 182 start-page: 73 year: 2020 end-page: 84 ident: bib16 article-title: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells publication-title: Cell – volume: 368 start-page: 1274 year: 2020 end-page: 1278 ident: bib23 article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 publication-title: Science – volume: 17 start-page: 647 year: 2020 end-page: 649 ident: bib24 article-title: Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor publication-title: Cell. Mol. Immunol. – volume: 368 start-page: 630 year: 2020 end-page: 633 ident: bib31 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science – volume: 369 start-page: 956 year: 2020 end-page: 963 ident: bib21 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science – volume: 33 start-page: 108274 year: 2020 ident: bib28 article-title: An alternative binding mode of IGHV3-53 antibodies to the SARS-CoV-2 receptor binding domain publication-title: Cell Rep. – volume: 350 start-page: 126 year: 2005 end-page: 144 ident: bib54 article-title: Ultra-potent antibodies against respiratory syncytial virus: effects of binding kinetics and binding valence on viral neutralization publication-title: J. Mol. Biol. – volume: 10 start-page: 2778 year: 2019 ident: bib81 article-title: Antibody epitopes of pneumovirus fusion proteins publication-title: Front. Immunol. – volume: 32 start-page: 107918 year: 2020 ident: bib10 article-title: Human-IgG-neutralizing monoclonal antibodies block the SARS-CoV-2 infection publication-title: Cell Rep. – year: 2020 ident: bib61 article-title: High potency of a bivalent human V publication-title: Cell – volume: 63 start-page: 457 year: 2020 end-page: 460 ident: bib2 article-title: Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission publication-title: Sci. China Life Sci. – year: 2020 ident: bib6 article-title: A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model publication-title: Cell – year: 2020 ident: bib29 article-title: Structural Basis for Potent Neutralization of SARS-CoV-2 and Role of Antibody Affinity Maturation – volume: 369 start-page: 731 year: 2020 end-page: 736 ident: bib44 article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies publication-title: Science – volume: 369 start-page: 1586 year: 2020 end-page: 1592 ident: bib49 article-title: Distinct conformational states of SARS-CoV-2 spike protein publication-title: Science – year: 2020 ident: bib25 article-title: CoV-AbDab: the coronavirus antibody database publication-title: Bioinformatics – volume: 65 start-page: 50 year: 2020 end-page: 56 ident: bib80 article-title: Innovations in structure-based antigen design and immune monitoring for next generation vaccines publication-title: Curr. Opin. Immunol. – year: 2020 ident: bib57 article-title: Molecular architecture of the SARS-CoV-2 virus publication-title: Cell – year: 2020 ident: bib32 article-title: Cross-neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity – year: 2020 ident: bib69 article-title: The D614G Mutation in the SARS-CoV2 Spike Protein Increases Infectivity in an ACE2 Receptor Dependent Manner – volume: 27 start-page: 950 year: 2020 end-page: 958 ident: bib14 article-title: Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient publication-title: Nat. Struct. Mol. Biol. – year: 2020 ident: bib1 article-title: Novel coronavirus – China. Jan 12, 2020 – volume: 184 start-page: 6986 year: 2010 end-page: 6992 ident: bib26 article-title: Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements publication-title: J. Immunol. – volume: 11 start-page: 2251 year: 2020 ident: bib43 article-title: A human monoclonal antibody blocking SARS-CoV-2 infection publication-title: Nat. Commun. – year: 2020 ident: bib60 article-title: Bi-paratopic and Multivalent Human VH Domains Neutralize SARS-CoV-2 by Targeting Distinct Epitopes within the ACE2 Binding Interface of Spike – volume: 26 start-page: 1422 year: 2020 end-page: 1427 ident: bib8 article-title: Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein publication-title: Nat. Med. – volume: 182 start-page: 843 year: 2020 end-page: 854 ident: bib9 article-title: Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients publication-title: Cell – volume: 48 start-page: 855 year: 2018 end-page: 871 ident: bib78 article-title: HIV-1 vaccines based on antibody identification, B cell ontogeny, and epitope structure publication-title: Immunity – year: 2020 ident: bib19 article-title: Stereotypic Neutralizing VH Clonotypes against SARS-CoV-2 RBD in COVID-19 Patients and the Healthy Population – volume: 25 start-page: 115 year: 2018 end-page: 121 ident: bib79 article-title: Structural insights into the design of novel anti-influenza therapies publication-title: Nat. Struct. Mol. Biol. – volume: 53 start-page: 98 year: 2020 end-page: 105 ident: bib22 article-title: Analysis of a SARS-CoV-2-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation publication-title: Immunity – volume: 9 start-page: 382 year: 2020 end-page: 385 ident: bib38 article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody publication-title: Emerg. Microb. Infect. – volume: 182 start-page: 812 year: 2020 end-page: 827 ident: bib64 article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus publication-title: Cell – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib3 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – year: 2020 ident: bib71 article-title: D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization – year: 2020 ident: bib59 article-title: Bivalent Binding of a Fully Human IgG to the SARS-CoV-2 Spike Proteins Reveals Mechanisms of Potent Neutralization – volume: 9 start-page: 1315 year: 2018 ident: bib82 article-title: The neutralizing face of Hepatitis C virus E2 envelope glycoprotein publication-title: Front. Immunol. – volume: 52 start-page: 388 year: 2020 end-page: 403 ident: bib77 article-title: Analysis of a therapeutic antibody cocktail reveals determinants for cooperative and broad ebolavirus neutralization publication-title: Immunity – year: 2020 ident: bib66 article-title: Spike Mutation D614G Alters SARS-CoV-2 Fitness and Neutralization Susceptibility – volume: 5 year: 2020 ident: bib4 article-title: The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients publication-title: Sci. Immunol. – volume: 27 start-page: 846 year: 2020 end-page: 854 ident: bib62 article-title: Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2 publication-title: Nat. Struct. Mol. Biol. – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: bib33 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature – volume: 369 start-page: 650 year: 2020 end-page: 655 ident: bib11 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science – volume: 174 start-page: 11 year: 2011 end-page: 22 ident: bib58 article-title: A structural analysis of M protein in coronavirus assembly and morphology publication-title: J. Struct. Biol. – volume: 182 start-page: 828 year: 2020 end-page: 842 ident: bib30 article-title: Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies publication-title: Cell – volume: 109 start-page: 17040 year: 2012 end-page: 17045 ident: bib56 article-title: Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 369 start-page: 1505 year: 2020 end-page: 1509 ident: bib45 article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody publication-title: Science – volume: 369 start-page: 1014 year: 2020 end-page: 1018 ident: bib74 article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies publication-title: Science – volume: 28 start-page: 335 year: 2020 end-page: 349 ident: bib76 article-title: A combination of human broadly neutralizing antibodies against hepatitis B virus HBsAg with distinct epitopes suppresses escape mutations publication-title: Cell Host Microbe – volume: 369 start-page: 1010 year: 2020 end-page: 1014 ident: bib12 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science – volume: 28 start-page: 445 year: 2020 end-page: 454 ident: bib39 article-title: Neutralization of SARS-CoV-2 by destruction of the prefusion spike publication-title: Cell Host Microbe – volume: 25 start-page: 1385 year: 2018 end-page: 1394 ident: bib75 article-title: A combination of two human monoclonal antibodies prevents Zika virus escape mutations in non-human primates publication-title: Cell Rep. – volume: 17 start-page: 621 year: 2020 end-page: 630 ident: bib41 article-title: Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies publication-title: Cell. Mol. Immunol. – volume: 181 start-page: 281 year: 2020 end-page: 292 ident: bib36 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – volume: 370 start-page: 203 year: 2020 end-page: 208 ident: bib47 article-title: In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges publication-title: Science – year: 2020 ident: bib65 article-title: SARS-CoV-2 Spike D614G Variant Exhibits Highly Efficient Replication and Transmission in Hamsters – year: 2020 ident: bib70 article-title: D614G Mutation of SARS-CoV-2 Spike Protein Enhances Viral Infectivity – year: 2020 ident: bib42 article-title: A Natural Mutation between SARS-CoV-2 and SARS-CoV Determines Neutralization by a Cross-Reactive Antibody – volume: 182 start-page: 843 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib9 article-title: Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients publication-title: Cell doi: 10.1016/j.cell.2020.06.044 – volume: 9 start-page: 1315 year: 2018 ident: 10.1016/j.bbrc.2020.10.012_bib82 article-title: The neutralizing face of Hepatitis C virus E2 envelope glycoprotein publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01315 – volume: 65 start-page: 50 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib80 article-title: Innovations in structure-based antigen design and immune monitoring for next generation vaccines publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2020.03.013 – volume: 350 start-page: 126 year: 2005 ident: 10.1016/j.bbrc.2020.10.012_bib54 article-title: Ultra-potent antibodies against respiratory syncytial virus: effects of binding kinetics and binding valence on viral neutralization publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.04.049 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib57 article-title: Molecular architecture of the SARS-CoV-2 virus publication-title: Cell doi: 10.1016/j.cell.2020.09.018 – volume: 182 start-page: 1284 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib72 article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity publication-title: Cell doi: 10.1016/j.cell.2020.07.012 – volume: 584 start-page: 120 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib13 article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2381-y – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib67 – volume: 10 start-page: 2778 year: 2019 ident: 10.1016/j.bbrc.2020.10.012_bib81 article-title: Antibody epitopes of pneumovirus fusion proteins publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02778 – volume: 174 start-page: 11 year: 2011 ident: 10.1016/j.bbrc.2020.10.012_bib58 article-title: A structural analysis of M protein in coronavirus assembly and morphology publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2010.11.021 – volume: 25 start-page: 115 year: 2018 ident: 10.1016/j.bbrc.2020.10.012_bib79 article-title: Structural insights into the design of novel anti-influenza therapies publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0025-9 – volume: 182 start-page: 812 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib64 article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – volume: 17 start-page: 621 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib41 article-title: Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-020-0458-z – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib69 – volume: 48 start-page: 855 year: 2018 ident: 10.1016/j.bbrc.2020.10.012_bib78 article-title: HIV-1 vaccines based on antibody identification, B cell ontogeny, and epitope structure publication-title: Immunity doi: 10.1016/j.immuni.2018.04.029 – volume: 369 start-page: 1014 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib74 article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies publication-title: Science doi: 10.1126/science.abd0831 – volume: 14 year: 2018 ident: 10.1016/j.bbrc.2020.10.012_bib48 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007236 – volume: 368 start-page: 630 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib31 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science doi: 10.1126/science.abb7269 – volume: 369 start-page: 1261 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib63 article-title: Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2 publication-title: Science doi: 10.1126/science.abc0870 – volume: 52 start-page: 388 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib77 article-title: Analysis of a therapeutic antibody cocktail reveals determinants for cooperative and broad ebolavirus neutralization publication-title: Immunity doi: 10.1016/j.immuni.2020.01.001 – volume: 584 start-page: 450 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib15 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature doi: 10.1038/s41586-020-2571-7 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib32 – volume: 63 start-page: 457 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib2 article-title: Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission publication-title: Sci. China Life Sci. doi: 10.1007/s11427-020-1637-5 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib68 article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant publication-title: Cell doi: 10.1016/j.cell.2020.09.032 – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib36 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib61 article-title: High potency of a bivalent human VH domain in SARS-CoV-2 animal models publication-title: Cell doi: 10.1016/j.cell.2020.09.007 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib65 – volume: 584 start-page: 115 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib17 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature doi: 10.1038/s41586-020-2380-z – volume: 369 start-page: 643 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib18 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science doi: 10.1126/science.abc5902 – volume: 369 start-page: 650 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib11 article-title: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 publication-title: Science doi: 10.1126/science.abc6952 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib70 – volume: 372 start-page: 774 year: 2007 ident: 10.1016/j.bbrc.2020.10.012_bib83 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib46 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 581 start-page: 215 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib34 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 27 start-page: 950 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib14 article-title: Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0480-y – volume: 368 start-page: 1274 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib23 article-title: A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 publication-title: Science doi: 10.1126/science.abc2241 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib35 – volume: 9 start-page: 382 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib38 article-title: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody publication-title: Emerg. Microb. Infect. doi: 10.1080/22221751.2020.1729069 – volume: 369 start-page: 1586 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib49 article-title: Distinct conformational states of SARS-CoV-2 spike protein publication-title: Science doi: 10.1126/science.abd4251 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib5 – volume: 53 start-page: 98 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib22 article-title: Analysis of a SARS-CoV-2-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation publication-title: Immunity doi: 10.1016/j.immuni.2020.06.001 – volume: 28 start-page: 445 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib39 article-title: Neutralization of SARS-CoV-2 by destruction of the prefusion spike publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.06.010 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib6 article-title: A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model publication-title: Cell doi: 10.1016/j.cell.2020.09.049 – volume: 33 start-page: 108274 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib28 article-title: An alternative binding mode of IGHV3-53 antibodies to the SARS-CoV-2 receptor binding domain publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108274 – volume: 5 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib4 article-title: The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abc8413 – volume: 184 start-page: 6986 year: 2010 ident: 10.1016/j.bbrc.2020.10.012_bib26 article-title: Individual variation in the germline Ig gene repertoire inferred from variable region gene rearrangements publication-title: J. Immunol. doi: 10.4049/jimmunol.1000445 – volume: 369 start-page: 1119 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib27 article-title: Structural basis of a shared antibody response to SARS-CoV-2 publication-title: Science doi: 10.1126/science.abd2321 – volume: 182 start-page: 828 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib30 article-title: Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies publication-title: Cell doi: 10.1016/j.cell.2020.06.025 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib73 – volume: 32 start-page: 107918 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib10 article-title: Human-IgG-neutralizing monoclonal antibodies block the SARS-CoV-2 infection publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107918 – volume: 109 start-page: 17040 year: 2012 ident: 10.1016/j.bbrc.2020.10.012_bib56 article-title: Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1212371109 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib60 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib66 – volume: 3 start-page: e237 year: 2006 ident: 10.1016/j.bbrc.2020.10.012_bib37 article-title: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants publication-title: PLoS Med. doi: 10.1371/journal.pmed.0030237 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib25 article-title: CoV-AbDab: the coronavirus antibody database publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa739 – volume: 11 start-page: 2251 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib43 article-title: A human monoclonal antibody blocking SARS-CoV-2 infection publication-title: Nat. Commun. doi: 10.1038/s41467-020-16256-y – volume: 370 start-page: 203 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib47 article-title: In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges publication-title: Science doi: 10.1126/science.abd5223 – volume: 181 start-page: 1004 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib52 article-title: Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies publication-title: Cell doi: 10.1016/j.cell.2020.04.031 – volume: 6 year: 2010 ident: 10.1016/j.bbrc.2020.10.012_bib53 article-title: Few and far between: how HIV may be evading antibody avidity publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000908 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib19 – ident: 10.1016/j.bbrc.2020.10.012_bib1 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib7 article-title: Structurally resolved SARS-CoV-2 antibody shows high efficacy in severely infected hamsters and provides a potent cocktail pairing strategy publication-title: Cell doi: 10.1016/j.cell.2020.09.035 – volume: 583 start-page: 290 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib33 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 26 start-page: 1422 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib8 article-title: Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein publication-title: Nat. Med. doi: 10.1038/s41591-020-0998-x – volume: 584 start-page: 437 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib20 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature doi: 10.1038/s41586-020-2456-9 – volume: 28 start-page: 335 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib76 article-title: A combination of human broadly neutralizing antibodies against hepatitis B virus HBsAg with distinct epitopes suppresses escape mutations publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.05.010 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib42 – volume: 31 start-page: 107725 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib51 article-title: Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107725 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib3 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 182 start-page: 73 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib16 article-title: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells publication-title: Cell doi: 10.1016/j.cell.2020.05.025 – volume: 489 start-page: 526 year: 2012 ident: 10.1016/j.bbrc.2020.10.012_bib55 article-title: Cross-neutralization of influenza A viruses mediated by a single antibody loop publication-title: Nature doi: 10.1038/nature11414 – volume: 17 start-page: 647 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib24 article-title: Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-020-0426-7 – volume: 369 start-page: 731 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib44 article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies publication-title: Science doi: 10.1126/science.abc7424 – volume: 369 start-page: 956 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib21 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science doi: 10.1126/science.abc7520 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib29 – volume: 25 start-page: 1385 year: 2018 ident: 10.1016/j.bbrc.2020.10.012_bib75 article-title: A combination of two human monoclonal antibodies prevents Zika virus escape mutations in non-human primates publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.10.031 – volume: 369 start-page: 1010 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib12 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science doi: 10.1126/science.abd0827 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib59 – volume: 27 start-page: 846 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib62 article-title: Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0469-6 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib50 article-title: Structures and distributions of SARS-CoV-2 spike proteins on intact virions publication-title: Nature doi: 10.1038/s41586-020-2665-2 – volume: 369 start-page: 1505 year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib45 article-title: Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody publication-title: Science doi: 10.1126/science.abc5881 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib40 – year: 2020 ident: 10.1016/j.bbrc.2020.10.012_bib71 |
SSID | ssj0011469 |
Score | 2.6444798 |
SecondaryResourceType | review_article |
Snippet | Immediately from the outset of the COVID-19 pandemic, researchers from diverse biomedical and biological disciplines have united to study the novel pandemic... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 192 |
SubjectTerms | Angiotensin-Converting Enzyme 2 - chemistry Angiotensin-Converting Enzyme 2 - immunology Antibodies, Neutralizing - immunology Antibodies, Viral - immunology Antibody avidity antibody formation Binding Sites - immunology COVID-19 infection Cross-neutralization Epitopes Germline-encoded motifs Humans Neutralizing antibodies pandemic Protein Binding - immunology Protein Domains - immunology RBD natural mutations Receptor binding domain (RBD) Receptors, Virus - chemistry Receptors, Virus - immunology SARS-CoV SARS-CoV-2 SARS-CoV-2 - immunology Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - immunology therapeutics vaccines viruses |
Title | Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies |
URI | https://dx.doi.org/10.1016/j.bbrc.2020.10.012 https://www.ncbi.nlm.nih.gov/pubmed/33069360 https://www.proquest.com/docview/2452100296 https://www.proquest.com/docview/2524308890 https://pubmed.ncbi.nlm.nih.gov/PMC7547570 |
Volume | 538 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgSXCloeC6UyEuKC0jqO48THZUW1gKhQS9HeIr8iUrXOqt09lAO_vTNOsmJB7IFbZI8lxzO2ZzzfzBDypnBOpOgatCA-iVClgz3HNNg8TkmupXOx2MSXEzk9F59m-WyLTIZYGIRV9md_d6bH07pvOepX82jeNBjjyyRX6YxjIA6PgeZCFCjlh79WMA8Muu1VYJkgdR8402G8jLnGNIYcGw5Zyv91Of2tfP6JofztUjp-RHZ6bZKOuwk_Jls-7JK9cQBL-uqWvqUR3xkfznfJ_ffD14PJUOVtj3w9HRBEbaBtTUEfpGfj07Nk0n5POIW18XMwy6lpYvgLde2VbgI1tzT4ZXwl-YnNwJ_GtIhIfELOjz98m0yTvspCYkGVWCTcKIxm9VZYqbwW6BgtC1NarVKsdyBTU_O69k5oprUFBdDoWlvOjVdgjbDsKdkObfDPCS21EgozAVueiTy3JnXagCh4hln583JE0mF5K9unIMdKGJfVgDW7qJAlFbIE24AlI_JuNWbeJeDYSJ0PXKvWxKiCG2LjuNcDiytgADpNdPDt8qZCzzSmqVVyA03ORYZ4MTYizzqxWM01A5tMZRJ6ijWBWRFgfu_1ntD8iHm-i1wUecFe_Oc_vSQPOQJwWAqCv0-2F9dL_wo0qIU5iFvkgNwbf_w8PbkDAQMZbg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqrVC5INryWKBgJMQFhTqO8_Bxu2q1pe0K9YH2FvkVEUSdVdk9lF_PTOKsWBB74BY5tpR4xvaM55tvCHmXWytiDA0aUJ9IyMLCmmMKfB4rM64ya9tiExfTbHIjPs3S2RYZ97kwCKsMe3-3p7e7dWg5DLN5OK9rzPFlGZfxjGMiDsdE821kp0oHZHt0ejaZroIJsBkEKziLcEDInelgXlrfIZMhx4aPLOb_Op_-tj__hFH-di6dPCaPgkFJR90375It5_fI_siDM317T9_TFuLZ3p3vkQdH_dPOuC_0tk8-X_YgosbTpqJgEtKr0eVVNG6-RJzC9Lg5eOZU120GDLXNrao91ffUu2V7UfITm0FEtW4QlPiE3JwcX48nUSi0EBmwJhYR1xITWp0RJpNOCYyNFrkujJIxljzIYl3xqnJWKKaUARtQq0oZzrWT4JCw5CkZ-Ma754QWSgqJZMCGJyJNjY6t0qANjiExf1oMSdxPb2kCCzkWw_he9nCzbyWKpESRYBuIZEg-rMbMOw6Ojb3TXmrlmiaVcEhsHPe2F3EJAsC4ifKuWf4oMTiNTLUy29An5SJByBgbkmedWqy-NQG3TCYZvMnXFGbVASm-19_4-mtL9Z2jQufsxX_-0xuyM7m-OC_PT6dnL8lDjngcFsMieEUGi7ulOwCDaqFfhwXzC5ZSHB8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+the+SARS-CoV-2+receptor+binding+domain+by+neutralizing+antibodies&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Yuan%2C+Meng&rft.au=Liu%2C+Hejun&rft.au=Wu%2C+Nicholas+C.&rft.au=Wilson%2C+Ian+A.&rft.date=2021-01-29&rft.pub=Elsevier+Inc&rft.issn=0006-291X&rft.eissn=1090-2104&rft.volume=538&rft.spage=192&rft.epage=203&rft_id=info:doi/10.1016%2Fj.bbrc.2020.10.012&rft.externalDocID=S0006291X20319215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon |