SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses
Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and...
Saved in:
Published in | Cell Vol. 185; no. 5; pp. 872 - 880.e3 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.
[Display omitted]
•Breakthrough infections induce potent neutralizing antibody responses•Number of exposures (infection or vaccination) correlates with potency and breadth•Three-dose vaccination improves neutralization of the SARS-CoV-2 Omicron variant•SARS-CoV-2 infection or vaccination elicit moderate neutralization of SARS-CoV
Individuals with breakthrough COVID-19 infections, previously infected/vaccinated individuals, and those vaccinated thrice have potent serum-binding and -neutralizing antibody responses against variants of concern, including Omicron. Neutralization of SARS-CoV, however, was moderate, thus urging the need for developing broad vaccines for pandemic preparedness. |
---|---|
AbstractList | Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness. Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness. Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness. Individuals with breakthrough COVID-19 infections, previously infected/vaccinated individuals, and those vaccinated thrice have potent serum-binding and -neutralizing antibody responses against variants of concern, including Omicron. Neutralization of SARS-CoV, however, was moderate, thus urging the need for developing broad vaccines for pandemic preparedness. Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness. [Display omitted] •Breakthrough infections induce potent neutralizing antibody responses•Number of exposures (infection or vaccination) correlates with potency and breadth•Three-dose vaccination improves neutralization of the SARS-CoV-2 Omicron variant•SARS-CoV-2 infection or vaccination elicit moderate neutralization of SARS-CoV Individuals with breakthrough COVID-19 infections, previously infected/vaccinated individuals, and those vaccinated thrice have potent serum-binding and -neutralizing antibody responses against variants of concern, including Omicron. Neutralization of SARS-CoV, however, was moderate, thus urging the need for developing broad vaccines for pandemic preparedness. |
Author | Chu, Helen Y. Veesler, David Logue, Jenni McCallum, Matthew Cameroni, Elisabetta Walls, Alexandra C. Franko, Nicholas Joshi, Anshu Navarro, Mary Jane Greninger, Alex Bowen, John E. Degli-Angeli, Emily J. Corti, Davide Sprouse, Kaitlin R. Stewart, Cameron Goecker, Erin A. |
Author_xml | – sequence: 1 givenname: Alexandra C. surname: Walls fullname: Walls, Alexandra C. email: acwalls@uw.edu organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 2 givenname: Kaitlin R. surname: Sprouse fullname: Sprouse, Kaitlin R. organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 3 givenname: John E. surname: Bowen fullname: Bowen, John E. organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 4 givenname: Anshu surname: Joshi fullname: Joshi, Anshu organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 5 givenname: Nicholas surname: Franko fullname: Franko, Nicholas organization: Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA – sequence: 6 givenname: Mary Jane surname: Navarro fullname: Navarro, Mary Jane organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 7 givenname: Cameron surname: Stewart fullname: Stewart, Cameron organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 8 givenname: Elisabetta surname: Cameroni fullname: Cameroni, Elisabetta organization: Humabs Biomed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 9 givenname: Matthew surname: McCallum fullname: McCallum, Matthew organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 10 givenname: Erin A. surname: Goecker fullname: Goecker, Erin A. organization: Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA – sequence: 11 givenname: Emily J. surname: Degli-Angeli fullname: Degli-Angeli, Emily J. organization: Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA – sequence: 12 givenname: Jenni surname: Logue fullname: Logue, Jenni organization: Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA – sequence: 13 givenname: Alex surname: Greninger fullname: Greninger, Alex organization: Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA – sequence: 14 givenname: Davide surname: Corti fullname: Corti, Davide organization: Humabs Biomed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland – sequence: 15 givenname: Helen Y. surname: Chu fullname: Chu, Helen Y. organization: Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA – sequence: 16 givenname: David surname: Veesler fullname: Veesler, David email: dveesler@uw.edu organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35123650$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1rFDEYhYO02G31D3ghc-lFZ00yk0wGRCiLX1AotOptyMc7u1lnkzXJFOqvN8O2ol6UkkAu3nNOHt5zio588IDQK4KXBBP-drs0MI5LiildYlIueYYWBPdd3ZKOHqEFxj2tBe_aE3Sa0hZjLBhjz9FJwwhtOMMLZG8urm_qVfhe00pHUD_yJoZpvamcH8BkF3yqYHTG5WofMvh8XmRB2fNKeVvZKSo9QuVhylGN7pfz6zLITgd7V0VI--KH9AIdD2pM8PL-PUPfPn74uvpcX159-rK6uKwNY22uCQarOgCuTGcBa6OEHTRjg9UWNCZsEBQ3holW8aaloPggOHSUaUI7zUVzht4fcveT3oE1BbdQyX10OxXvZFBO_jvxbiPX4VaKjvc9pSXgzX1ADD8nSFnuXJqXrDyEKUnKWyF4yxvyBGk5tCH9jPX6b6w_PA8tFIE4CEwMKUUYZNm3mpdfKN0oCZZz4XIr5w_kXLjEpNwZg_5nfUh_1PTuYIJSxq2DKJNx4A1YF0vp0gb3mP03-anGZw |
CitedBy_id | crossref_primary_10_1016_j_celrep_2022_111299 crossref_primary_10_3389_fimmu_2024_1494432 crossref_primary_10_1093_ckj_sfac174 crossref_primary_10_1038_s41467_023_37541_6 crossref_primary_10_3390_vaccines12121413 crossref_primary_10_1038_s41467_023_39267_x crossref_primary_10_1002_jmv_28219 crossref_primary_10_3389_fimmu_2022_1026473 crossref_primary_10_3390_v16030339 crossref_primary_10_3390_microorganisms12030509 crossref_primary_10_1093_infdis_jiad045 crossref_primary_10_3389_fpubh_2023_1290187 crossref_primary_10_1111_trf_17089 crossref_primary_10_1093_infdis_jiad040 crossref_primary_10_1186_s12879_023_08272_2 crossref_primary_10_1038_d41586_022_00328_8 crossref_primary_10_1080_22221751_2023_2249121 crossref_primary_10_1126_science_adc9127 crossref_primary_10_1038_s41467_022_31838_8 crossref_primary_10_1016_j_snb_2023_133785 crossref_primary_10_1016_j_ebiom_2024_105438 crossref_primary_10_3390_vaccines10111815 crossref_primary_10_1016_j_ebiom_2024_105439 crossref_primary_10_1016_S2666_5247_22_00193_8 crossref_primary_10_1038_s43856_024_00457_3 crossref_primary_10_1002_rmv_2373 crossref_primary_10_1016_j_ijid_2024_107098 crossref_primary_10_1016_j_vaccine_2024_01_088 crossref_primary_10_3389_fimmu_2022_1062067 crossref_primary_10_3390_vaccines10091563 crossref_primary_10_1128_jvi_01140_22 crossref_primary_10_3390_vaccines10030450 crossref_primary_10_1186_s12985_022_01912_0 crossref_primary_10_1007_s12038_023_00355_1 crossref_primary_10_3389_fmed_2022_1019490 crossref_primary_10_1016_j_xcrm_2022_100910 crossref_primary_10_37394_23202_2023_22_59 crossref_primary_10_1007_s00253_022_12113_8 crossref_primary_10_1016_j_jgg_2023_10_003 crossref_primary_10_3390_v14091966 crossref_primary_10_1016_j_celrep_2023_112014 crossref_primary_10_1128_mbio_00902_23 crossref_primary_10_3390_vaccines11101578 crossref_primary_10_1016_j_ebiom_2024_105203 crossref_primary_10_3390_vaccines12070714 crossref_primary_10_1038_s41598_023_45718_8 crossref_primary_10_1073_pnas_2220948120 crossref_primary_10_1016_j_cell_2022_03_019 crossref_primary_10_1172_jci_insight_172488 crossref_primary_10_1126_science_abq0203 crossref_primary_10_1172_jci_insight_159944 crossref_primary_10_3390_medicines10040027 crossref_primary_10_1016_j_isci_2023_105969 crossref_primary_10_1016_j_jinf_2023_10_022 crossref_primary_10_1093_infdis_jiac332 crossref_primary_10_1093_jalm_jfad042 crossref_primary_10_3390_vaccines12080914 crossref_primary_10_1016_j_chom_2022_03_029 crossref_primary_10_1016_j_ebiom_2023_104475 crossref_primary_10_1038_s41467_023_36250_4 crossref_primary_10_3390_pharma2030017 crossref_primary_10_1016_j_focus_2023_100155 crossref_primary_10_1128_jvi_00678_24 crossref_primary_10_1371_journal_pone_0299304 crossref_primary_10_1126_sciimmunol_abn8590 crossref_primary_10_1017_S0950268824000219 crossref_primary_10_1016_j_isci_2022_105726 crossref_primary_10_1021_acs_jproteome_2c00514 crossref_primary_10_1007_s15010_024_02225_w crossref_primary_10_1146_annurev_immunol_101721_061120 crossref_primary_10_1038_s41467_023_36561_6 crossref_primary_10_1038_s41467_023_36761_0 crossref_primary_10_1016_j_vaccine_2023_01_049 crossref_primary_10_1136_bmjgh_2022_008710 crossref_primary_10_1111_imr_13089 crossref_primary_10_1016_j_xcrm_2022_100898 crossref_primary_10_1016_j_jshs_2023_06_006 crossref_primary_10_1038_s41591_023_02220_y crossref_primary_10_3389_fimmu_2022_916686 crossref_primary_10_1111_imr_13086 crossref_primary_10_1016_j_ijid_2022_11_028 crossref_primary_10_1128_mbio_01206_23 crossref_primary_10_1016_j_ijmmb_2024_100615 crossref_primary_10_1038_s41541_023_00756_1 crossref_primary_10_1016_j_isci_2024_110174 crossref_primary_10_1038_s41467_024_49656_5 crossref_primary_10_1126_sciimmunol_abq2427 crossref_primary_10_1073_pnas_2308655120 crossref_primary_10_1016_S2666_5247_22_00292_0 crossref_primary_10_1111_imr_13110 crossref_primary_10_1016_j_medj_2022_05_003 crossref_primary_10_3201_eid2811_220718 crossref_primary_10_1080_22221751_2022_2105261 crossref_primary_10_1093_oncolo_oyad003 crossref_primary_10_1371_journal_pgph_0003893 crossref_primary_10_1080_22221751_2022_2093135 crossref_primary_10_1093_ofid_ofad069 crossref_primary_10_1126_science_abq2679 crossref_primary_10_1038_s41409_023_01946_0 crossref_primary_10_1016_j_jinf_2023_09_009 crossref_primary_10_1126_sciimmunol_abq3511 crossref_primary_10_1002_eji_202451056 crossref_primary_10_3389_fimmu_2023_1083523 crossref_primary_10_1038_s41598_024_55989_4 crossref_primary_10_3390_bios12080621 crossref_primary_10_1186_s12916_022_02342_z crossref_primary_10_1126_scitranslmed_abq4130 crossref_primary_10_3389_fimmu_2023_1107803 crossref_primary_10_1016_j_jconrel_2023_11_004 crossref_primary_10_1016_j_ekir_2022_04_005 crossref_primary_10_4049_immunohorizons_2300041 crossref_primary_10_3390_biomedicines11020370 crossref_primary_10_1093_cid_ciae130 crossref_primary_10_3389_fimmu_2022_946318 crossref_primary_10_1016_j_isci_2022_105479 crossref_primary_10_3389_fimmu_2022_1075423 crossref_primary_10_1016_j_jamda_2023_02_105 crossref_primary_10_3390_hemato4020014 crossref_primary_10_1016_j_idnow_2022_09_010 crossref_primary_10_1016_j_micinf_2022_105077 crossref_primary_10_1186_s41232_023_00255_9 crossref_primary_10_3390_vaccines11030534 crossref_primary_10_1002_jmv_28163 crossref_primary_10_1371_journal_pmed_1004156 crossref_primary_10_1016_j_ijid_2024_107111 crossref_primary_10_1056_NEJMe2201812 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_3390_v14051042 crossref_primary_10_1371_journal_ppat_1010592 crossref_primary_10_2169_naika_111_2252 crossref_primary_10_1016_j_immuni_2024_02_016 crossref_primary_10_1016_j_lanwpc_2022_100660 crossref_primary_10_7554_eLife_80428 crossref_primary_10_3389_ti_2023_11153 crossref_primary_10_1038_s41541_024_00982_1 crossref_primary_10_1093_ofid_ofac625 crossref_primary_10_1186_s13073_022_01151_6 crossref_primary_10_1016_j_vaccine_2022_03_057 crossref_primary_10_1093_infdis_jiac384 crossref_primary_10_3389_fimmu_2022_845887 crossref_primary_10_3390_vaccines12101132 crossref_primary_10_1016_j_xcrm_2022_100579 crossref_primary_10_3389_fimmu_2023_1133225 crossref_primary_10_1093_cid_ciac976 |
Cites_doi | 10.1186/s12979-021-00246-9 10.1001/jama.2021.3341 10.1126/science.abg9175 10.1016/j.cell.2021.03.028 10.1038/s41591-021-01318-5 10.1126/science.abi4506 10.1126/science.abl8506 10.1038/s41594-019-0233-y 10.1056/NEJMoa2034577 10.1016/j.xcrm.2021.100230 10.1038/s41586-021-03237-4 10.1038/s41586-021-04388-0 10.1038/s41586-021-03530-2 10.1126/science.abf6840 10.1126/science.abc0523 10.3390/v12050513 10.1126/science.abd0826 10.1016/j.chom.2020.06.021 10.1126/science.abl6184 10.1016/j.cell.2020.11.031 10.1038/s41586-021-03925-1 10.1016/j.cell.2021.09.015 10.1038/s41591-021-01377-8 10.1038/s41591-021-01575-4 10.1016/j.chom.2021.10.003 10.1038/s41586-021-03944-y 10.1038/s41586-021-04386-2 10.1128/JVI.02519-09 10.1038/s41586-021-03471-w 10.1038/s41586-021-03738-2 10.1038/s41591-021-01285-x 10.1038/s41598-018-34171-7 10.1056/NEJMoa2108453 10.1073/pnas.1707304114 10.1056/NEJMoa2035389 10.1038/s41586-021-04385-3 10.1016/j.cell.2021.07.027 10.1056/NEJMoa2102214 10.1038/s41586-021-04060-7 10.1056/NEJMc2101667 10.1016/j.cell.2021.03.029 10.1128/JCM.01231-21 10.1126/science.abj0299 10.1038/s41586-021-03647-4 10.1126/science.abb2507 10.1038/s41586-020-03041-6 10.1016/j.chom.2020.07.018 10.1016/j.cell.2020.02.058 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. 2022 Elsevier Inc. 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. – notice: 2022 Elsevier Inc. 2022 Elsevier Inc. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2022.01.011 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 880.e3 |
ExternalDocumentID | PMC8769922 35123650 10_1016_j_cell_2022_01_011 S0092867422000691 |
Genre | Journal Article |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 62- 6J9 7-5 85S AACTN AAEDT AAEDW AAFWJ AAHBH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABCQX ABJNI ABMAC ABOCM ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AHHHB AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID HH5 IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A O-L O9- OK1 P2P RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT WH7 YZZ ZCA .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 5VS 6TJ 9M8 AAIKJ AAQFI AAQXK AAYJJ AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AETEA AEUPX AFPUW AGCQF AGHFR AGQPQ AI. AIDAL AIGII AKBMS AKYEP APXCP CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT OMK OZT PUQ R2- RIG UBW UHB VH1 X7M YYP YYQ ZGI ZHY ZKB ZY4 NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c554t-10eda7ee6ac7de0bca8dfb55fdbdeb015f8203c584a6342ea6f86e725b127b683 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 18:36:50 EDT 2025 Tue Aug 05 09:51:08 EDT 2025 Tue Aug 05 09:47:35 EDT 2025 Thu Apr 03 07:01:04 EDT 2025 Tue Jul 01 02:17:10 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 Sun Apr 06 06:54:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | COVID-19 SARS-CoV-2 vaccine neutralization breakthrough infection Delta variant antibodies |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c554t-10eda7ee6ac7de0bca8dfb55fdbdeb015f8203c584a6342ea6f86e725b127b683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8769922 |
PMID | 35123650 |
PQID | 2626223198 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8769922 proquest_miscellaneous_2648864631 proquest_miscellaneous_2626223198 pubmed_primary_35123650 crossref_citationtrail_10_1016_j_cell_2022_01_011 crossref_primary_10_1016_j_cell_2022_01_011 elsevier_sciencedirect_doi_10_1016_j_cell_2022_01_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-03 |
PublicationDateYYYYMMDD | 2022-03-03 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Cohen, Gnanapragasam, Lee, Hoffman, Ou, Kakutani, Keeffe, Wu, Howarth, West (bib11) 2021; 371 McCallum, Walls, Sprouse, Bowen, Rosen, Dang, De Marco, Franko, Tilles, Logue (bib32) 2021; 374 Polack, Thomas, Kitchin, Absalon, Gurtman, Lockhart, Perez, Pérez Marc, Moreira, Zerbini (bib40) 2020; 383 VanBlargan, Errico, Halfmann, Zost, Crowe, Purcell, Kawaoka, Corti, Fremont, Diamond (bib52) 2021 Johnson, Xie, Bailey, Kalveram, Lokugamage, Muruato, Zou, Zhang, Juelich, Smith (bib18) 2021; 591 Li, Deng, Li, Hu, Li, Xiong, Liu, Guo, Zou, Zhang (bib26) 2021 Bowen, Walls, Joshi, Sprouse, Stewart, Tortorici, Franko, Logue, Mazzitelli, Tiles (bib4) 2021 Cameroni, Bowen, Rosen, Saliba, Zepeda, Culap, Pinto, VanBlargan, De Marco, di Iulio (bib5) 2021 Saito, Irie, Suzuki, Maemura, Nasser, Uriu, Kosugi, Shirakawa, Sadamasu, Kimura (bib42) 2021 Kirchdoerfer, Wang, Pallesen, Wrapp, Turner, Cottrell, Corbett, Graham, McLellan, Ward (bib22) 2018; 8 Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib36) 2017; 114 Martinez, Schäfer, Leist, De la Cruz, West, Atochina-Vasserman, Lindesmith, Pardi, Parks, Barr (bib30) 2021; 373 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib58) 2020; 367 Tan, Collier, Liu, Yu, Wan, McMahan, He, Jacob-Dolan, Chandrashekar, Sellers (bib46) 2021 Keeton, Richardson, Moyo-Gwete, Hermanus, Tincho, Benede, Manamela, Baguma, Makhado, Ngomti (bib20) 2021; 29 Collier, Brown, Mcmahan, Yu, Liu, Jacob-Dolan, Chandrashekar, Tierney, Ansel, Rowe (bib12) 2021 Ying, Whitener, VanBlargan, Hassan, Shrihari, Liang, Karl, Mackin, Chen, Kafai (bib59) 2021 Mlcochova, Kemp, Dhar, Papa, Meng, Ferreira, Datir, Collier, Albecka, Singh (bib34) 2021; 599 Turner, Kim, Kalaidina, Goss, Rauseo, Schmitz, Hansen, Haile, Klebert, Pusic (bib50) 2021; 595 Planas, Bruel, Grzelak, Guivel-Benhassine, Staropoli, Porrot, Planchais, Buchrieser, Rajah, Bishop (bib38) 2021; 27 Suryadevara, Shrihari, Gilchuk, VanBlargan, Binshtein, Zost, Nargi, Sutton, Winkler, Chen (bib44) 2021; 184 Planas, Saunders, Maes, Guivel-Benhassine, Planchais, Buchrieser, Bolland, Porrot, Staropoli, Lemoine (bib39) 2021 Liu, Iketani, Guo, Chan, Wang, Liu, Luo, Chu, Huang, Nair (bib27) 2021 Cao, Wang, Jian, Xiao, Song, Yisimayi, Huang, Li, Wang, An (bib6) 2021 Crawford, Eguia, Dingens, Loes, Malone, Wolf, Chu, Torortici, Veesler, Murphy (bib61) 2020; 12 Levine-Tiefenbrun, Yelin, Alapi, Katz, Herzel, Kuint, Chodick, Gazit, Patalon, Kishony (bib25) 2021; 27 Liu, Liu, Johnson, Xia, Ku, Schindewolf, Widen, An, Weaver, Menachery (bib28) 2021 Stamatatos, Czartoski, Wan, Homad, Rubin, Glantz, Neradilek, Seydoux, Jennewein, Maccamy (bib43) 2021; 372 Wibmer, Ayres, Hermanus, Madzivhandila, Kgagudi, Oosthuysen, Lambson, de Oliveira, Vermeulen, van der Berg (bib56) 2021; 27 Winkler, Gilchuk, Yu, Bailey, Chen, Zost, Jang, Huang, Allen, Case (bib57) 2020 Arunachalam, Walls, Golden, Atyeo, Fischinger, Li, Aye, Navarro, Lai, Edara (bib1) 2021; 594 McCallum, De Marco, Lempp, Tortorici, Pinto, Walls, Beltramello, Chen, Liu, Zatta (bib31) 2021; 184 Corti, Purcell, Snell, Veesler (bib14) 2021; 184 Khoury, Cromer, Reynaldi, Schlub, Wheatley, Juno, Subbarao, Kent, Triccas, Davenport (bib21) 2021; 27 Lempp, Soriaga, Montiel-Ruiz, Benigni, Noack, Park, Bianchi, Walls, Bowen, Zhou (bib24) 2021; 598 McMahan, Yu, Mercado, Loos, Tostanoski, Chandrashekar, Liu, Peter, Atyeo, Zhu (bib33) 2021; 590 Garcia-Beltran, St Denis, Hoelzemer, Lam, Nitido, Sheehan, Berrios, Ofoman, Chang, Hauser (bib15) 2021 Corbett, Nason, Flach, Gagne, O’Connell, Johnston, Shah, Edara, Floyd, Lai (bib13) 2021; 373 Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia (bib55) 2020; 183 Bedford, Greninger, Roychoudhury, Starita, Famulare, Huang, Nalla, Pepper, Reinhardt, Xie (bib3) 2020; 370 Walls, Park, Tortorici, Wall, McGuire, Veesler (bib54) 2020; 181 Baden, El Sahly, Essink, Kotloff, Frey, Novak, Diemert, Spector, Rouphael, Creech (bib2) 2021; 384 Madhi, Baillie, Cutland, Voysey, Koen, Fairlie, Padayachee, Dheda, Barnabas, Bhorat (bib29) 2021; 384 Turner, O’Halloran, Kalaidina, Kim, Schmitz, Zhou, Lei, Thapa, Chen, Case (bib51) 2021; 596 Tortorici, Walls, Lang, Wang, Li, Koerhuis, Boons, Bosch, Rey, de Groot (bib49) 2019; 26 Cho, Muecksch, Schaefer-Babajew, Wang, Finkin, Gaebler, Ramos, Cipolla, Mendoza, Agudelo (bib10) 2021; 600 Parry, Bruton, Stephens, Brown, Amirthalingam, Otter, Hallis, Zuo, Moss (bib60) 2021; 18 Cele, Gazy, Jackson, Hwa, Tegally, Lustig, Giandhari, Pillay, Wilkinson, Naidoo (bib9) 2021; 593 Krammer, Srivastava, Alshammary, Amoako, Awawda, Beach, Bermúdez-González, Bielak, Carreño, Chernet (bib23) 2021; 384 Syed, Taha, Tabata, Chen, Ciling, Khalid, Sreekumar, Chen, Hayashi, Soczek (bib45) 2021; 374 Paredes, Lunn, Famulare, Frisbie, Painter, Burstein, Roychoudhury, Xie, Mohamed Bakhash, Perez (bib37) 2021 Saadat, Rikhtegaran Tehrani, Logue, Newman, Frieman, Harris, Sajadi (bib41) 2021; 325 Tan, Chia, Young, Zhu, Lim, Sia, Thein, Chen, Leo, Lye (bib47) 2021; 385 Case, Rothlauf, Chen, Kafai, Fox, Smith, Shrihari, McCune, Harvey, Keeler (bib7) 2020; 28 Kaname, Tani, Kataoka, Shiokawa, Taguwa, Abe, Moriishi, Kinoshita, Matsuura (bib19) 2010; 84 Walls, Miranda, Schäfer, Pham, Greaney, Arunachalam, Navarro, Tortorici, Rogers, O’Connor (bib53) 2021; 184 Case, Rothlauf, Chen, Liu, Zhao, Kim, Bloyet, Zeng, Tahan, Droit (bib8) 2020; 28 Hassan, Feldmann, Zhao, Curiel, Okumura, Tang-Huau, Case, Meade-White, Callison, Chen (bib16) 2021; 2 Theel, Johnson, Kunze, Wu, Gorsh, Granger, Roforth, Jerde, Lasho, Andersen (bib48) 2021; 59 Hsieh, Goldsmith, Schaub, DiVenere, Kuo, Javanmardi, Le, Wrapp, Lee, Liu (bib17) 2020; 369 Collier (10.1016/j.cell.2022.01.011_bib12) 2021 Pallesen (10.1016/j.cell.2022.01.011_bib36) 2017; 114 Parry (10.1016/j.cell.2022.01.011_bib60) 2021; 18 Madhi (10.1016/j.cell.2022.01.011_bib29) 2021; 384 McCallum (10.1016/j.cell.2022.01.011_bib32) 2021; 374 Ying (10.1016/j.cell.2022.01.011_bib59) 2021 Theel (10.1016/j.cell.2022.01.011_bib48) 2021; 59 Stamatatos (10.1016/j.cell.2022.01.011_bib43) 2021; 372 Corti (10.1016/j.cell.2022.01.011_bib14) 2021; 184 Li (10.1016/j.cell.2022.01.011_bib26) 2021 Liu (10.1016/j.cell.2022.01.011_bib28) 2021 Tan (10.1016/j.cell.2022.01.011_bib46) 2021 Hsieh (10.1016/j.cell.2022.01.011_bib17) 2020; 369 Turner (10.1016/j.cell.2022.01.011_bib51) 2021; 596 Winkler (10.1016/j.cell.2022.01.011_bib57) 2020 Garcia-Beltran (10.1016/j.cell.2022.01.011_bib15) 2021 Levine-Tiefenbrun (10.1016/j.cell.2022.01.011_bib25) 2021; 27 Tan (10.1016/j.cell.2022.01.011_bib47) 2021; 385 McMahan (10.1016/j.cell.2022.01.011_bib33) 2021; 590 Crawford (10.1016/j.cell.2022.01.011_bib61) 2020; 12 Cao (10.1016/j.cell.2022.01.011_bib6) 2021 Paredes (10.1016/j.cell.2022.01.011_bib37) 2021 Walls (10.1016/j.cell.2022.01.011_bib54) 2020; 181 Johnson (10.1016/j.cell.2022.01.011_bib18) 2021; 591 Bowen (10.1016/j.cell.2022.01.011_bib4) 2021 Keeton (10.1016/j.cell.2022.01.011_bib20) 2021; 29 Cameroni (10.1016/j.cell.2022.01.011_bib5) 2021 Planas (10.1016/j.cell.2022.01.011_bib38) 2021; 27 Suryadevara (10.1016/j.cell.2022.01.011_bib44) 2021; 184 Liu (10.1016/j.cell.2022.01.011_bib27) 2021 Saito (10.1016/j.cell.2022.01.011_bib42) 2021 Hassan (10.1016/j.cell.2022.01.011_bib16) 2021; 2 Kirchdoerfer (10.1016/j.cell.2022.01.011_bib22) 2018; 8 Arunachalam (10.1016/j.cell.2022.01.011_bib1) 2021; 594 Case (10.1016/j.cell.2022.01.011_bib8) 2020; 28 Walls (10.1016/j.cell.2022.01.011_bib53) 2021; 184 Tortorici (10.1016/j.cell.2022.01.011_bib49) 2019; 26 Turner (10.1016/j.cell.2022.01.011_bib50) 2021; 595 Wibmer (10.1016/j.cell.2022.01.011_bib56) 2021; 27 Khoury (10.1016/j.cell.2022.01.011_bib21) 2021; 27 Wrapp (10.1016/j.cell.2022.01.011_bib58) 2020; 367 Planas (10.1016/j.cell.2022.01.011_bib39) 2021 Walls (10.1016/j.cell.2022.01.011_bib55) 2020; 183 Cele (10.1016/j.cell.2022.01.011_bib9) 2021; 593 Kaname (10.1016/j.cell.2022.01.011_bib19) 2010; 84 VanBlargan (10.1016/j.cell.2022.01.011_bib52) 2021 Lempp (10.1016/j.cell.2022.01.011_bib24) 2021; 598 Mlcochova (10.1016/j.cell.2022.01.011_bib34) 2021; 599 Cohen (10.1016/j.cell.2022.01.011_bib11) 2021; 371 McCallum (10.1016/j.cell.2022.01.011_bib31) 2021; 184 Bedford (10.1016/j.cell.2022.01.011_bib3) 2020; 370 Syed (10.1016/j.cell.2022.01.011_bib45) 2021; 374 Cho (10.1016/j.cell.2022.01.011_bib10) 2021; 600 Corbett (10.1016/j.cell.2022.01.011_bib13) 2021; 373 Saadat (10.1016/j.cell.2022.01.011_bib41) 2021; 325 Krammer (10.1016/j.cell.2022.01.011_bib23) 2021; 384 Case (10.1016/j.cell.2022.01.011_bib7) 2020; 28 Polack (10.1016/j.cell.2022.01.011_bib40) 2020; 383 Martinez (10.1016/j.cell.2022.01.011_bib30) 2021; 373 Baden (10.1016/j.cell.2022.01.011_bib2) 2021; 384 34931192 - bioRxiv. 2021 Dec 13:2021.12.08.471707. doi: 10.1101/2021.12.08.471707 |
References_xml | – volume: 27 start-page: 622 year: 2021 end-page: 625 ident: bib56 article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma publication-title: Nat. Med. – year: 2021 ident: bib42 article-title: Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation publication-title: Nature – volume: 594 start-page: 253 year: 2021 end-page: 258 ident: bib1 article-title: Adjuvanting a subunit COVID-19 vaccine to induce protective immunity publication-title: Nature – year: 2021 ident: bib5 article-title: Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift publication-title: Nature – year: 2021 ident: bib52 article-title: An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by several therapeutic monoclonal antibodies publication-title: Nat. Med. – volume: 114 start-page: E7348 year: 2017 end-page: E7357 ident: bib36 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA – volume: 184 start-page: 2332 year: 2021 end-page: 2347.e16 ident: bib31 article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 publication-title: Cell – volume: 29 start-page: 1611 year: 2021 end-page: 1619.e5 ident: bib20 article-title: Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner publication-title: Cell Host Microbe – volume: 372 start-page: 1413 year: 2021 end-page: 1418 ident: bib43 article-title: mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Science – volume: 28 start-page: 475 year: 2020 end-page: 485.e5 ident: bib8 article-title: Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2 publication-title: Cell Host Microbe – volume: 184 start-page: 4593 year: 2021 end-page: 4595 ident: bib14 article-title: Tackling COVID-19 with neutralizing monoclonal antibodies publication-title: Cell – year: 2021 ident: bib59 article-title: Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains publication-title: bioRxiv – volume: 383 start-page: 2603 year: 2020 end-page: 2615 ident: bib40 article-title: Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine publication-title: N. Engl. J. Med. – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: bib54 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – volume: 27 start-page: 1205 year: 2021 end-page: 1211 ident: bib21 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection publication-title: Nat. Med. – year: 2021 ident: bib26 article-title: Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant publication-title: medRxiv – volume: 591 start-page: 293 year: 2021 end-page: 299 ident: bib18 article-title: Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis publication-title: Nature – volume: 374 start-page: 1626 year: 2021 end-page: 1632 ident: bib45 article-title: Rapid assessment of SARS-CoV-2 evolved variants using virus-like particles publication-title: Science – volume: 26 start-page: 481 year: 2019 end-page: 489 ident: bib49 article-title: Structural basis for human coronavirus attachment to sialic acid receptors publication-title: Nat. Struct. Mol. Biol. – volume: 371 start-page: 735 year: 2021 end-page: 741 ident: bib11 article-title: Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice publication-title: Science – volume: 18 start-page: 34 year: 2021 ident: bib60 article-title: Differential immunogenicity of BNT162b2 or ChAdOx1 vaccines after extended-interval homologous dual vaccination in older people publication-title: Immun. Ageing – volume: 28 start-page: 465 year: 2020 end-page: 474.e4 ident: bib7 article-title: Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice publication-title: Cell Host Microbe – volume: 184 start-page: 2316 year: 2021 end-page: 2331.e15 ident: bib44 article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein publication-title: Cell – volume: 599 start-page: 114 year: 2021 end-page: 119 ident: bib34 article-title: SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion publication-title: Nature – year: 2021 ident: bib12 article-title: Immune responses in fully vaccinated individuals following breakthrough infection with the SARS-CoV-2 delta variant in Provincetown, Massachusetts publication-title: medRxiv – year: 2021 ident: bib27 article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 publication-title: Nature – year: 2020 ident: bib57 article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions and monocytes for optimal therapeutic protection publication-title: bioRxiv – year: 2021 ident: bib28 article-title: Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant publication-title: bioRxiv – volume: 325 start-page: 1467 year: 2021 end-page: 1469 ident: bib41 article-title: Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected with SARS-CoV-2 publication-title: JAMA – volume: 184 start-page: 5432 year: 2021 end-page: 5447.e16 ident: bib53 article-title: Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines publication-title: Cell – volume: 373 start-page: 991 year: 2021 end-page: 998 ident: bib30 article-title: Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice publication-title: Science – volume: 384 start-page: 1372 year: 2021 end-page: 1374 ident: bib23 article-title: Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine publication-title: N. Engl. J. Med. – volume: 384 start-page: 403 year: 2021 end-page: 416 ident: bib2 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N. Engl. J. Med. – volume: 27 start-page: 917 year: 2021 end-page: 924 ident: bib38 article-title: Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies publication-title: Nat. Med. – volume: 595 start-page: 421 year: 2021 end-page: 425 ident: bib50 article-title: SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans publication-title: Nature – volume: 590 start-page: 630 year: 2021 end-page: 634 ident: bib33 article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques publication-title: Nature – volume: 385 start-page: 1401 year: 2021 end-page: 1406 ident: bib47 article-title: Pan-Sarbecovirus neutralizing antibodies in BNT162b2-immunized SARS-CoV-1 survivors publication-title: N. Engl. J. Med. – volume: 384 start-page: 1885 year: 2021 end-page: 1898 ident: bib29 article-title: Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B.1.351 variant publication-title: N. Engl. J. Med. – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib58 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 59 start-page: e0123121 year: 2021 ident: bib48 article-title: SARS-CoV-2 serologic assays dependent on dual-antigen binding demonstrate diverging kinetics relative to other antibody detection methods publication-title: J. Clin. Microbiol. – volume: 84 start-page: 3210 year: 2010 end-page: 3219 ident: bib19 article-title: Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64 publication-title: J. Virol. – volume: 598 start-page: 342 year: 2021 end-page: 347 ident: bib24 article-title: Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies publication-title: Nature – year: 2021 ident: bib39 article-title: Considerable escape of SARS-CoV-2 Omicron to antibody neutralization publication-title: Nature – volume: 8 start-page: 15701 year: 2018 ident: bib22 article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis publication-title: Sci. Rep. – volume: 373 start-page: eabj0299 year: 2021 ident: bib13 article-title: Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates publication-title: Science – volume: 374 start-page: 1621 year: 2021 end-page: 1626 ident: bib32 article-title: Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants publication-title: Science – volume: 370 start-page: 571 year: 2020 end-page: 575 ident: bib3 article-title: Cryptic transmission of SARS-CoV-2 in Washington state publication-title: Science – volume: 596 start-page: 109 year: 2021 end-page: 113 ident: bib51 article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses publication-title: Nature – volume: 183 start-page: 1732 year: 2020 ident: bib55 article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion publication-title: Cell – year: 2021 ident: bib4 article-title: SARS-CoV-2 spike conformation determines plasma neutralizing activity publication-title: bioRxiv – volume: 12 start-page: 513 year: 2020 ident: bib61 article-title: Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays publication-title: Viruses – year: 2021 ident: bib15 article-title: mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant publication-title: medRxiv – year: 2021 ident: bib46 article-title: Ad26.COV2.S or BNT162b2 boosting of BNT162b2 vaccinated individuals publication-title: medRxiv – volume: 27 start-page: 2108 year: 2021 end-page: 2110 ident: bib25 article-title: Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2 publication-title: Nat. Med. – volume: 593 start-page: 142 year: 2021 end-page: 146 ident: bib9 article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma publication-title: Nature – year: 2021 ident: bib6 article-title: Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies publication-title: Nature – volume: 600 start-page: 517 year: 2021 end-page: 522 ident: bib10 article-title: Anti-SARS-CoV-2 receptor binding domain antibody evolution after mRNA vaccination publication-title: Nature – year: 2021 ident: bib37 article-title: Associations between SARS-CoV-2 variants and risk of COVID-19 hospitalization among confirmed cases in Washington State: a retrospective cohort study publication-title: medRxiv – volume: 369 start-page: 1501 year: 2020 end-page: 1505 ident: bib17 article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes publication-title: Science – volume: 2 start-page: 100230 year: 2021 ident: bib16 article-title: A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques publication-title: Cell Rep. Med. – volume: 18 start-page: 34 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib60 article-title: Differential immunogenicity of BNT162b2 or ChAdOx1 vaccines after extended-interval homologous dual vaccination in older people publication-title: Immun. Ageing doi: 10.1186/s12979-021-00246-9 – year: 2020 ident: 10.1016/j.cell.2022.01.011_bib57 article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions and monocytes for optimal therapeutic protection publication-title: bioRxiv – volume: 325 start-page: 1467 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib41 article-title: Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected with SARS-CoV-2 publication-title: JAMA doi: 10.1001/jama.2021.3341 – volume: 372 start-page: 1413 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib43 article-title: mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Science doi: 10.1126/science.abg9175 – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib15 article-title: mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant publication-title: medRxiv – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib46 article-title: Ad26.COV2.S or BNT162b2 boosting of BNT162b2 vaccinated individuals publication-title: medRxiv – volume: 184 start-page: 2332 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib31 article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2021.03.028 – volume: 27 start-page: 917 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib38 article-title: Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies publication-title: Nat. Med. doi: 10.1038/s41591-021-01318-5 – volume: 373 start-page: 991 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib30 article-title: Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice publication-title: Science doi: 10.1126/science.abi4506 – volume: 374 start-page: 1621 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib32 article-title: Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants publication-title: Science doi: 10.1126/science.abl8506 – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib37 article-title: Associations between SARS-CoV-2 variants and risk of COVID-19 hospitalization among confirmed cases in Washington State: a retrospective cohort study publication-title: medRxiv – volume: 26 start-page: 481 year: 2019 ident: 10.1016/j.cell.2022.01.011_bib49 article-title: Structural basis for human coronavirus attachment to sialic acid receptors publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0233-y – volume: 383 start-page: 2603 year: 2020 ident: 10.1016/j.cell.2022.01.011_bib40 article-title: Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 2 start-page: 100230 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib16 article-title: A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2021.100230 – volume: 591 start-page: 293 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib18 article-title: Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis publication-title: Nature doi: 10.1038/s41586-021-03237-4 – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib27 article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-021-04388-0 – volume: 594 start-page: 253 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib1 article-title: Adjuvanting a subunit COVID-19 vaccine to induce protective immunity publication-title: Nature doi: 10.1038/s41586-021-03530-2 – volume: 371 start-page: 735 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib11 article-title: Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice publication-title: Science doi: 10.1126/science.abf6840 – volume: 370 start-page: 571 year: 2020 ident: 10.1016/j.cell.2022.01.011_bib3 article-title: Cryptic transmission of SARS-CoV-2 in Washington state publication-title: Science doi: 10.1126/science.abc0523 – volume: 12 start-page: 513 year: 2020 ident: 10.1016/j.cell.2022.01.011_bib61 article-title: Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays publication-title: Viruses doi: 10.3390/v12050513 – volume: 369 start-page: 1501 year: 2020 ident: 10.1016/j.cell.2022.01.011_bib17 article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes publication-title: Science doi: 10.1126/science.abd0826 – volume: 28 start-page: 475 year: 2020 ident: 10.1016/j.cell.2022.01.011_bib8 article-title: Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.06.021 – volume: 374 start-page: 1626 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib45 article-title: Rapid assessment of SARS-CoV-2 evolved variants using virus-like particles publication-title: Science doi: 10.1126/science.abl6184 – volume: 183 start-page: 1732 year: 2020 ident: 10.1016/j.cell.2022.01.011_bib55 article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion publication-title: Cell doi: 10.1016/j.cell.2020.11.031 – volume: 598 start-page: 342 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib24 article-title: Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies publication-title: Nature doi: 10.1038/s41586-021-03925-1 – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib28 article-title: Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant publication-title: bioRxiv – volume: 184 start-page: 5432 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib53 article-title: Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines publication-title: Cell doi: 10.1016/j.cell.2021.09.015 – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib12 article-title: Immune responses in fully vaccinated individuals following breakthrough infection with the SARS-CoV-2 delta variant in Provincetown, Massachusetts publication-title: medRxiv – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib4 article-title: SARS-CoV-2 spike conformation determines plasma neutralizing activity publication-title: bioRxiv – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib52 article-title: An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by several therapeutic monoclonal antibodies publication-title: Nat. Med. – volume: 27 start-page: 1205 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib21 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection publication-title: Nat. Med. doi: 10.1038/s41591-021-01377-8 – volume: 27 start-page: 2108 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib25 article-title: Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2 publication-title: Nat. Med. doi: 10.1038/s41591-021-01575-4 – volume: 29 start-page: 1611 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib20 article-title: Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.10.003 – volume: 599 start-page: 114 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib34 article-title: SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion publication-title: Nature doi: 10.1038/s41586-021-03944-y – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib5 article-title: Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift publication-title: Nature doi: 10.1038/s41586-021-04386-2 – volume: 84 start-page: 3210 year: 2010 ident: 10.1016/j.cell.2022.01.011_bib19 article-title: Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64 publication-title: J. Virol. doi: 10.1128/JVI.02519-09 – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib26 article-title: Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant publication-title: medRxiv – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib42 article-title: Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation publication-title: Nature – volume: 593 start-page: 142 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib9 article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma publication-title: Nature doi: 10.1038/s41586-021-03471-w – volume: 596 start-page: 109 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib51 article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses publication-title: Nature doi: 10.1038/s41586-021-03738-2 – volume: 27 start-page: 622 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib56 article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma publication-title: Nat. Med. doi: 10.1038/s41591-021-01285-x – volume: 8 start-page: 15701 year: 2018 ident: 10.1016/j.cell.2022.01.011_bib22 article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis publication-title: Sci. Rep. doi: 10.1038/s41598-018-34171-7 – volume: 385 start-page: 1401 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib47 article-title: Pan-Sarbecovirus neutralizing antibodies in BNT162b2-immunized SARS-CoV-1 survivors publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2108453 – volume: 114 start-page: E7348 year: 2017 ident: 10.1016/j.cell.2022.01.011_bib36 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1707304114 – volume: 384 start-page: 403 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib2 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib6 article-title: Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies publication-title: Nature doi: 10.1038/s41586-021-04385-3 – volume: 184 start-page: 4593 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib14 article-title: Tackling COVID-19 with neutralizing monoclonal antibodies publication-title: Cell doi: 10.1016/j.cell.2021.07.027 – volume: 384 start-page: 1885 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib29 article-title: Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B.1.351 variant publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2102214 – volume: 600 start-page: 517 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib10 article-title: Anti-SARS-CoV-2 receptor binding domain antibody evolution after mRNA vaccination publication-title: Nature doi: 10.1038/s41586-021-04060-7 – volume: 384 start-page: 1372 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib23 article-title: Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2101667 – volume: 184 start-page: 2316 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib44 article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein publication-title: Cell doi: 10.1016/j.cell.2021.03.029 – volume: 59 start-page: e0123121 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib48 article-title: SARS-CoV-2 serologic assays dependent on dual-antigen binding demonstrate diverging kinetics relative to other antibody detection methods publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.01231-21 – volume: 373 start-page: eabj0299 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib13 article-title: Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates publication-title: Science doi: 10.1126/science.abj0299 – volume: 595 start-page: 421 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib50 article-title: SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans publication-title: Nature doi: 10.1038/s41586-021-03647-4 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.cell.2022.01.011_bib58 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib39 article-title: Considerable escape of SARS-CoV-2 Omicron to antibody neutralization publication-title: Nature – volume: 590 start-page: 630 year: 2021 ident: 10.1016/j.cell.2022.01.011_bib33 article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques publication-title: Nature doi: 10.1038/s41586-020-03041-6 – volume: 28 start-page: 465 year: 2020 ident: 10.1016/j.cell.2022.01.011_bib7 article-title: Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.07.018 – volume: 181 start-page: 281 year: 2020 ident: 10.1016/j.cell.2022.01.011_bib54 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – year: 2021 ident: 10.1016/j.cell.2022.01.011_bib59 article-title: Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains publication-title: bioRxiv – reference: 34931192 - bioRxiv. 2021 Dec 13:2021.12.08.471707. doi: 10.1101/2021.12.08.471707 |
SSID | ssj0008555 |
Score | 2.6665542 |
Snippet | Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 872 |
SubjectTerms | antibodies antigens breakthrough infection COVID-19 COVID-19 infection Delta variant durability neutralization pandemic SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 vaccine vaccines |
Title | SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses |
URI | https://dx.doi.org/10.1016/j.cell.2022.01.011 https://www.ncbi.nlm.nih.gov/pubmed/35123650 https://www.proquest.com/docview/2626223198 https://www.proquest.com/docview/2648864631 https://pubmed.ncbi.nlm.nih.gov/PMC8769922 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN60uE02SXvURREPHnyxt5A0CValXXa7h_XXO0nbxVXcg1AKbSYlzSQz34R5IHRKNRjJvKsi7hwYKKCgoxRgUZRoKzIhnC-_570t7vntc-9uwAZLqN_Gwni3ykb21zI9SOvmzUUzmxfDPPcxvilJOJh2IdokRLDTXhKC-AZXM2mcMFZXMUhh5wN1EzhT-3j5w3GwEQkJqTvj-C_l9Bt8_vSh_KaUbtbRWoMm8WU94A20ZItNtFLXl5xuIfN4-fAY9cuXiGAwfdV7U5UHty5YxRjbjzzLKzwsATxX50BWKnOOVWGwmYx8XBUu7CQch3yCloOGKtelmeJR7Vxrx9vo-eb6qX8bNWUVogywQwWC1xolrOUqE8Z2daYS4zRjzmhjNcADB6iAZoBMFKc9YhV3CbeCMB0ToXlCd9ByURZ2D2GjmPb54w1NAXdZpxUAUBMT5aiAG--guJ1PmTU5x33piw_ZOpe9Sc8D6XkguzFccQedzfoM64wbC6lZyyY5t24kqISF_U5ankrYUL5ZFbacjCUBEw8wU5wmi2hA7vEep_Cd3XodzMZKmU9ow7odJOZWyIzAJ_Sebyny15DYGzSTTxO8_89_OkCr_il4yNFDtFyNJvYIIFOlj8Oe-AJMaRX_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQqGovqPS5LQ9X6q1EbOy1nRxhBVoe5VCg2ptlx7ZIQclqN3ugv56ZPFbdIvaAFOWQmUSOx575xpoHId-5BSdZ9k0kQwAHBQx0lAIsihLrVaZUwPZ7GG1xKUc3g7OxGK-RYZcLg2GVre5vdHqtrdsnB-1sHkzyHHN8U5ZIcO3qbBPMYN8ANKBwd56OjxbqOBGiaWOQwtYH9jZzpgnywtNxcBIZq2t3xvFz1ukp-vw_iPIfq3Tylmy2cJIeNiPeImu-eEdeNQ0mH94Td3X46yoalr8jRsH3NXdtWx7axWAVM-rv8yyv6KQE9FztA1tp3D41haNuPsXEKlr4eX0e8hfMHBCq3JbugU6b6Fo_-0BuTo6vh6Oo7asQZQAeKtC83hnlvTSZcr5vM5O4YIUIzjpvAR8EgAU8A2hiJB8wb2RIpFdM2JgpKxP-kawXZeE_E-qMsFhA3vEUgJcP1gACdTEzgSu4yR6Ju_nUWVt0HHtf3OsuuuyPRhlolIHux3DFPfJj8c6kKbmxklt0YtJLC0eDTVj53rdOphp2FJJN4cv5TDPw8QA0xWmyigcUnxxIDt_51KyDxVi5wIo2ot8jammFLBiwovcypchv68reYJqwTvCXF_7THnk9uv55oS9OL8-_kjdIqcPl-DZZr6ZzvwP4qbK79f54BELlGR8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+breakthrough+infections+elicit+potent%2C+broad%2C+and+durable+neutralizing+antibody+responses&rft.jtitle=Cell&rft.au=Walls%2C+Alexandra+C.&rft.au=Sprouse%2C+Kaitlin+R.&rft.au=Bowen%2C+John+E.&rft.au=Joshi%2C+Anshu&rft.date=2022-03-03&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.volume=185&rft.issue=5&rft.spage=872&rft.epage=880.e3&rft_id=info:doi/10.1016%2Fj.cell.2022.01.011&rft.externalDocID=S0092867422000691 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |