SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses

Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 185; no. 5; pp. 872 - 880.e3
Main Authors Walls, Alexandra C., Sprouse, Kaitlin R., Bowen, John E., Joshi, Anshu, Franko, Nicholas, Navarro, Mary Jane, Stewart, Cameron, Cameroni, Elisabetta, McCallum, Matthew, Goecker, Erin A., Degli-Angeli, Emily J., Logue, Jenni, Greninger, Alex, Corti, Davide, Chu, Helen Y., Veesler, David
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness. [Display omitted] •Breakthrough infections induce potent neutralizing antibody responses•Number of exposures (infection or vaccination) correlates with potency and breadth•Three-dose vaccination improves neutralization of the SARS-CoV-2 Omicron variant•SARS-CoV-2 infection or vaccination elicit moderate neutralization of SARS-CoV Individuals with breakthrough COVID-19 infections, previously infected/vaccinated individuals, and those vaccinated thrice have potent serum-binding and -neutralizing antibody responses against variants of concern, including Omicron. Neutralization of SARS-CoV, however, was moderate, thus urging the need for developing broad vaccines for pandemic preparedness.
AbstractList Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.
Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.
Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness. Individuals with breakthrough COVID-19 infections, previously infected/vaccinated individuals, and those vaccinated thrice have potent serum-binding and -neutralizing antibody responses against variants of concern, including Omicron. Neutralization of SARS-CoV, however, was moderate, thus urging the need for developing broad vaccines for pandemic preparedness.
Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness. [Display omitted] •Breakthrough infections induce potent neutralizing antibody responses•Number of exposures (infection or vaccination) correlates with potency and breadth•Three-dose vaccination improves neutralization of the SARS-CoV-2 Omicron variant•SARS-CoV-2 infection or vaccination elicit moderate neutralization of SARS-CoV Individuals with breakthrough COVID-19 infections, previously infected/vaccinated individuals, and those vaccinated thrice have potent serum-binding and -neutralizing antibody responses against variants of concern, including Omicron. Neutralization of SARS-CoV, however, was moderate, thus urging the need for developing broad vaccines for pandemic preparedness.
Author Chu, Helen Y.
Veesler, David
Logue, Jenni
McCallum, Matthew
Cameroni, Elisabetta
Walls, Alexandra C.
Franko, Nicholas
Joshi, Anshu
Navarro, Mary Jane
Greninger, Alex
Bowen, John E.
Degli-Angeli, Emily J.
Corti, Davide
Sprouse, Kaitlin R.
Stewart, Cameron
Goecker, Erin A.
Author_xml – sequence: 1
  givenname: Alexandra C.
  surname: Walls
  fullname: Walls, Alexandra C.
  email: acwalls@uw.edu
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 2
  givenname: Kaitlin R.
  surname: Sprouse
  fullname: Sprouse, Kaitlin R.
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 3
  givenname: John E.
  surname: Bowen
  fullname: Bowen, John E.
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 4
  givenname: Anshu
  surname: Joshi
  fullname: Joshi, Anshu
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 5
  givenname: Nicholas
  surname: Franko
  fullname: Franko, Nicholas
  organization: Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
– sequence: 6
  givenname: Mary Jane
  surname: Navarro
  fullname: Navarro, Mary Jane
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 7
  givenname: Cameron
  surname: Stewart
  fullname: Stewart, Cameron
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 8
  givenname: Elisabetta
  surname: Cameroni
  fullname: Cameroni, Elisabetta
  organization: Humabs Biomed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 9
  givenname: Matthew
  surname: McCallum
  fullname: McCallum, Matthew
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 10
  givenname: Erin A.
  surname: Goecker
  fullname: Goecker, Erin A.
  organization: Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
– sequence: 11
  givenname: Emily J.
  surname: Degli-Angeli
  fullname: Degli-Angeli, Emily J.
  organization: Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
– sequence: 12
  givenname: Jenni
  surname: Logue
  fullname: Logue, Jenni
  organization: Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
– sequence: 13
  givenname: Alex
  surname: Greninger
  fullname: Greninger, Alex
  organization: Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
– sequence: 14
  givenname: Davide
  surname: Corti
  fullname: Corti, Davide
  organization: Humabs Biomed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
– sequence: 15
  givenname: Helen Y.
  surname: Chu
  fullname: Chu, Helen Y.
  organization: Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
– sequence: 16
  givenname: David
  surname: Veesler
  fullname: Veesler, David
  email: dveesler@uw.edu
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35123650$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEYhYO02G31D3ghc-lFZ00yk0wGRCiLX1AotOptyMc7u1lnkzXJFOqvN8O2ol6UkkAu3nNOHt5zio588IDQK4KXBBP-drs0MI5LiildYlIueYYWBPdd3ZKOHqEFxj2tBe_aE3Sa0hZjLBhjz9FJwwhtOMMLZG8urm_qVfhe00pHUD_yJoZpvamcH8BkF3yqYHTG5WofMvh8XmRB2fNKeVvZKSo9QuVhylGN7pfz6zLITgd7V0VI--KH9AIdD2pM8PL-PUPfPn74uvpcX159-rK6uKwNY22uCQarOgCuTGcBa6OEHTRjg9UWNCZsEBQ3holW8aaloPggOHSUaUI7zUVzht4fcveT3oE1BbdQyX10OxXvZFBO_jvxbiPX4VaKjvc9pSXgzX1ADD8nSFnuXJqXrDyEKUnKWyF4yxvyBGk5tCH9jPX6b6w_PA8tFIE4CEwMKUUYZNm3mpdfKN0oCZZz4XIr5w_kXLjEpNwZg_5nfUh_1PTuYIJSxq2DKJNx4A1YF0vp0gb3mP03-anGZw
CitedBy_id crossref_primary_10_1016_j_celrep_2022_111299
crossref_primary_10_3389_fimmu_2024_1494432
crossref_primary_10_1093_ckj_sfac174
crossref_primary_10_1038_s41467_023_37541_6
crossref_primary_10_3390_vaccines12121413
crossref_primary_10_1038_s41467_023_39267_x
crossref_primary_10_1002_jmv_28219
crossref_primary_10_3389_fimmu_2022_1026473
crossref_primary_10_3390_v16030339
crossref_primary_10_3390_microorganisms12030509
crossref_primary_10_1093_infdis_jiad045
crossref_primary_10_3389_fpubh_2023_1290187
crossref_primary_10_1111_trf_17089
crossref_primary_10_1093_infdis_jiad040
crossref_primary_10_1186_s12879_023_08272_2
crossref_primary_10_1038_d41586_022_00328_8
crossref_primary_10_1080_22221751_2023_2249121
crossref_primary_10_1126_science_adc9127
crossref_primary_10_1038_s41467_022_31838_8
crossref_primary_10_1016_j_snb_2023_133785
crossref_primary_10_1016_j_ebiom_2024_105438
crossref_primary_10_3390_vaccines10111815
crossref_primary_10_1016_j_ebiom_2024_105439
crossref_primary_10_1016_S2666_5247_22_00193_8
crossref_primary_10_1038_s43856_024_00457_3
crossref_primary_10_1002_rmv_2373
crossref_primary_10_1016_j_ijid_2024_107098
crossref_primary_10_1016_j_vaccine_2024_01_088
crossref_primary_10_3389_fimmu_2022_1062067
crossref_primary_10_3390_vaccines10091563
crossref_primary_10_1128_jvi_01140_22
crossref_primary_10_3390_vaccines10030450
crossref_primary_10_1186_s12985_022_01912_0
crossref_primary_10_1007_s12038_023_00355_1
crossref_primary_10_3389_fmed_2022_1019490
crossref_primary_10_1016_j_xcrm_2022_100910
crossref_primary_10_37394_23202_2023_22_59
crossref_primary_10_1007_s00253_022_12113_8
crossref_primary_10_1016_j_jgg_2023_10_003
crossref_primary_10_3390_v14091966
crossref_primary_10_1016_j_celrep_2023_112014
crossref_primary_10_1128_mbio_00902_23
crossref_primary_10_3390_vaccines11101578
crossref_primary_10_1016_j_ebiom_2024_105203
crossref_primary_10_3390_vaccines12070714
crossref_primary_10_1038_s41598_023_45718_8
crossref_primary_10_1073_pnas_2220948120
crossref_primary_10_1016_j_cell_2022_03_019
crossref_primary_10_1172_jci_insight_172488
crossref_primary_10_1126_science_abq0203
crossref_primary_10_1172_jci_insight_159944
crossref_primary_10_3390_medicines10040027
crossref_primary_10_1016_j_isci_2023_105969
crossref_primary_10_1016_j_jinf_2023_10_022
crossref_primary_10_1093_infdis_jiac332
crossref_primary_10_1093_jalm_jfad042
crossref_primary_10_3390_vaccines12080914
crossref_primary_10_1016_j_chom_2022_03_029
crossref_primary_10_1016_j_ebiom_2023_104475
crossref_primary_10_1038_s41467_023_36250_4
crossref_primary_10_3390_pharma2030017
crossref_primary_10_1016_j_focus_2023_100155
crossref_primary_10_1128_jvi_00678_24
crossref_primary_10_1371_journal_pone_0299304
crossref_primary_10_1126_sciimmunol_abn8590
crossref_primary_10_1017_S0950268824000219
crossref_primary_10_1016_j_isci_2022_105726
crossref_primary_10_1021_acs_jproteome_2c00514
crossref_primary_10_1007_s15010_024_02225_w
crossref_primary_10_1146_annurev_immunol_101721_061120
crossref_primary_10_1038_s41467_023_36561_6
crossref_primary_10_1038_s41467_023_36761_0
crossref_primary_10_1016_j_vaccine_2023_01_049
crossref_primary_10_1136_bmjgh_2022_008710
crossref_primary_10_1111_imr_13089
crossref_primary_10_1016_j_xcrm_2022_100898
crossref_primary_10_1016_j_jshs_2023_06_006
crossref_primary_10_1038_s41591_023_02220_y
crossref_primary_10_3389_fimmu_2022_916686
crossref_primary_10_1111_imr_13086
crossref_primary_10_1016_j_ijid_2022_11_028
crossref_primary_10_1128_mbio_01206_23
crossref_primary_10_1016_j_ijmmb_2024_100615
crossref_primary_10_1038_s41541_023_00756_1
crossref_primary_10_1016_j_isci_2024_110174
crossref_primary_10_1038_s41467_024_49656_5
crossref_primary_10_1126_sciimmunol_abq2427
crossref_primary_10_1073_pnas_2308655120
crossref_primary_10_1016_S2666_5247_22_00292_0
crossref_primary_10_1111_imr_13110
crossref_primary_10_1016_j_medj_2022_05_003
crossref_primary_10_3201_eid2811_220718
crossref_primary_10_1080_22221751_2022_2105261
crossref_primary_10_1093_oncolo_oyad003
crossref_primary_10_1371_journal_pgph_0003893
crossref_primary_10_1080_22221751_2022_2093135
crossref_primary_10_1093_ofid_ofad069
crossref_primary_10_1126_science_abq2679
crossref_primary_10_1038_s41409_023_01946_0
crossref_primary_10_1016_j_jinf_2023_09_009
crossref_primary_10_1126_sciimmunol_abq3511
crossref_primary_10_1002_eji_202451056
crossref_primary_10_3389_fimmu_2023_1083523
crossref_primary_10_1038_s41598_024_55989_4
crossref_primary_10_3390_bios12080621
crossref_primary_10_1186_s12916_022_02342_z
crossref_primary_10_1126_scitranslmed_abq4130
crossref_primary_10_3389_fimmu_2023_1107803
crossref_primary_10_1016_j_jconrel_2023_11_004
crossref_primary_10_1016_j_ekir_2022_04_005
crossref_primary_10_4049_immunohorizons_2300041
crossref_primary_10_3390_biomedicines11020370
crossref_primary_10_1093_cid_ciae130
crossref_primary_10_3389_fimmu_2022_946318
crossref_primary_10_1016_j_isci_2022_105479
crossref_primary_10_3389_fimmu_2022_1075423
crossref_primary_10_1016_j_jamda_2023_02_105
crossref_primary_10_3390_hemato4020014
crossref_primary_10_1016_j_idnow_2022_09_010
crossref_primary_10_1016_j_micinf_2022_105077
crossref_primary_10_1186_s41232_023_00255_9
crossref_primary_10_3390_vaccines11030534
crossref_primary_10_1002_jmv_28163
crossref_primary_10_1371_journal_pmed_1004156
crossref_primary_10_1016_j_ijid_2024_107111
crossref_primary_10_1056_NEJMe2201812
crossref_primary_10_1016_j_immuni_2022_05_005
crossref_primary_10_3390_v14051042
crossref_primary_10_1371_journal_ppat_1010592
crossref_primary_10_2169_naika_111_2252
crossref_primary_10_1016_j_immuni_2024_02_016
crossref_primary_10_1016_j_lanwpc_2022_100660
crossref_primary_10_7554_eLife_80428
crossref_primary_10_3389_ti_2023_11153
crossref_primary_10_1038_s41541_024_00982_1
crossref_primary_10_1093_ofid_ofac625
crossref_primary_10_1186_s13073_022_01151_6
crossref_primary_10_1016_j_vaccine_2022_03_057
crossref_primary_10_1093_infdis_jiac384
crossref_primary_10_3389_fimmu_2022_845887
crossref_primary_10_3390_vaccines12101132
crossref_primary_10_1016_j_xcrm_2022_100579
crossref_primary_10_3389_fimmu_2023_1133225
crossref_primary_10_1093_cid_ciac976
Cites_doi 10.1186/s12979-021-00246-9
10.1001/jama.2021.3341
10.1126/science.abg9175
10.1016/j.cell.2021.03.028
10.1038/s41591-021-01318-5
10.1126/science.abi4506
10.1126/science.abl8506
10.1038/s41594-019-0233-y
10.1056/NEJMoa2034577
10.1016/j.xcrm.2021.100230
10.1038/s41586-021-03237-4
10.1038/s41586-021-04388-0
10.1038/s41586-021-03530-2
10.1126/science.abf6840
10.1126/science.abc0523
10.3390/v12050513
10.1126/science.abd0826
10.1016/j.chom.2020.06.021
10.1126/science.abl6184
10.1016/j.cell.2020.11.031
10.1038/s41586-021-03925-1
10.1016/j.cell.2021.09.015
10.1038/s41591-021-01377-8
10.1038/s41591-021-01575-4
10.1016/j.chom.2021.10.003
10.1038/s41586-021-03944-y
10.1038/s41586-021-04386-2
10.1128/JVI.02519-09
10.1038/s41586-021-03471-w
10.1038/s41586-021-03738-2
10.1038/s41591-021-01285-x
10.1038/s41598-018-34171-7
10.1056/NEJMoa2108453
10.1073/pnas.1707304114
10.1056/NEJMoa2035389
10.1038/s41586-021-04385-3
10.1016/j.cell.2021.07.027
10.1056/NEJMoa2102214
10.1038/s41586-021-04060-7
10.1056/NEJMc2101667
10.1016/j.cell.2021.03.029
10.1128/JCM.01231-21
10.1126/science.abj0299
10.1038/s41586-021-03647-4
10.1126/science.abb2507
10.1038/s41586-020-03041-6
10.1016/j.chom.2020.07.018
10.1016/j.cell.2020.02.058
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
2022 Elsevier Inc. 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
– notice: 2022 Elsevier Inc. 2022 Elsevier Inc.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2022.01.011
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 880.e3
ExternalDocumentID PMC8769922
35123650
10_1016_j_cell_2022_01_011
S0092867422000691
Genre Journal Article
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
62-
6J9
7-5
85S
AACTN
AAEDT
AAEDW
AAFWJ
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABCQX
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AHHHB
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YZZ
ZCA
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
5VS
6TJ
9M8
AAIKJ
AAQFI
AAQXK
AAYJJ
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIDAL
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
RIG
UBW
UHB
VH1
X7M
YYP
YYQ
ZGI
ZHY
ZKB
ZY4
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c554t-10eda7ee6ac7de0bca8dfb55fdbdeb015f8203c584a6342ea6f86e725b127b683
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:36:50 EDT 2025
Tue Aug 05 09:51:08 EDT 2025
Tue Aug 05 09:47:35 EDT 2025
Thu Apr 03 07:01:04 EDT 2025
Tue Jul 01 02:17:10 EDT 2025
Thu Apr 24 23:09:34 EDT 2025
Sun Apr 06 06:54:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords COVID-19
SARS-CoV-2
vaccine
neutralization
breakthrough infection
Delta variant
antibodies
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-10eda7ee6ac7de0bca8dfb55fdbdeb015f8203c584a6342ea6f86e725b127b683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8769922
PMID 35123650
PQID 2626223198
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8769922
proquest_miscellaneous_2648864631
proquest_miscellaneous_2626223198
pubmed_primary_35123650
crossref_citationtrail_10_1016_j_cell_2022_01_011
crossref_primary_10_1016_j_cell_2022_01_011
elsevier_sciencedirect_doi_10_1016_j_cell_2022_01_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-03
PublicationDateYYYYMMDD 2022-03-03
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Cohen, Gnanapragasam, Lee, Hoffman, Ou, Kakutani, Keeffe, Wu, Howarth, West (bib11) 2021; 371
McCallum, Walls, Sprouse, Bowen, Rosen, Dang, De Marco, Franko, Tilles, Logue (bib32) 2021; 374
Polack, Thomas, Kitchin, Absalon, Gurtman, Lockhart, Perez, Pérez Marc, Moreira, Zerbini (bib40) 2020; 383
VanBlargan, Errico, Halfmann, Zost, Crowe, Purcell, Kawaoka, Corti, Fremont, Diamond (bib52) 2021
Johnson, Xie, Bailey, Kalveram, Lokugamage, Muruato, Zou, Zhang, Juelich, Smith (bib18) 2021; 591
Li, Deng, Li, Hu, Li, Xiong, Liu, Guo, Zou, Zhang (bib26) 2021
Bowen, Walls, Joshi, Sprouse, Stewart, Tortorici, Franko, Logue, Mazzitelli, Tiles (bib4) 2021
Cameroni, Bowen, Rosen, Saliba, Zepeda, Culap, Pinto, VanBlargan, De Marco, di Iulio (bib5) 2021
Saito, Irie, Suzuki, Maemura, Nasser, Uriu, Kosugi, Shirakawa, Sadamasu, Kimura (bib42) 2021
Kirchdoerfer, Wang, Pallesen, Wrapp, Turner, Cottrell, Corbett, Graham, McLellan, Ward (bib22) 2018; 8
Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib36) 2017; 114
Martinez, Schäfer, Leist, De la Cruz, West, Atochina-Vasserman, Lindesmith, Pardi, Parks, Barr (bib30) 2021; 373
Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib58) 2020; 367
Tan, Collier, Liu, Yu, Wan, McMahan, He, Jacob-Dolan, Chandrashekar, Sellers (bib46) 2021
Keeton, Richardson, Moyo-Gwete, Hermanus, Tincho, Benede, Manamela, Baguma, Makhado, Ngomti (bib20) 2021; 29
Collier, Brown, Mcmahan, Yu, Liu, Jacob-Dolan, Chandrashekar, Tierney, Ansel, Rowe (bib12) 2021
Ying, Whitener, VanBlargan, Hassan, Shrihari, Liang, Karl, Mackin, Chen, Kafai (bib59) 2021
Mlcochova, Kemp, Dhar, Papa, Meng, Ferreira, Datir, Collier, Albecka, Singh (bib34) 2021; 599
Turner, Kim, Kalaidina, Goss, Rauseo, Schmitz, Hansen, Haile, Klebert, Pusic (bib50) 2021; 595
Planas, Bruel, Grzelak, Guivel-Benhassine, Staropoli, Porrot, Planchais, Buchrieser, Rajah, Bishop (bib38) 2021; 27
Suryadevara, Shrihari, Gilchuk, VanBlargan, Binshtein, Zost, Nargi, Sutton, Winkler, Chen (bib44) 2021; 184
Planas, Saunders, Maes, Guivel-Benhassine, Planchais, Buchrieser, Bolland, Porrot, Staropoli, Lemoine (bib39) 2021
Liu, Iketani, Guo, Chan, Wang, Liu, Luo, Chu, Huang, Nair (bib27) 2021
Cao, Wang, Jian, Xiao, Song, Yisimayi, Huang, Li, Wang, An (bib6) 2021
Crawford, Eguia, Dingens, Loes, Malone, Wolf, Chu, Torortici, Veesler, Murphy (bib61) 2020; 12
Levine-Tiefenbrun, Yelin, Alapi, Katz, Herzel, Kuint, Chodick, Gazit, Patalon, Kishony (bib25) 2021; 27
Liu, Liu, Johnson, Xia, Ku, Schindewolf, Widen, An, Weaver, Menachery (bib28) 2021
Stamatatos, Czartoski, Wan, Homad, Rubin, Glantz, Neradilek, Seydoux, Jennewein, Maccamy (bib43) 2021; 372
Wibmer, Ayres, Hermanus, Madzivhandila, Kgagudi, Oosthuysen, Lambson, de Oliveira, Vermeulen, van der Berg (bib56) 2021; 27
Winkler, Gilchuk, Yu, Bailey, Chen, Zost, Jang, Huang, Allen, Case (bib57) 2020
Arunachalam, Walls, Golden, Atyeo, Fischinger, Li, Aye, Navarro, Lai, Edara (bib1) 2021; 594
McCallum, De Marco, Lempp, Tortorici, Pinto, Walls, Beltramello, Chen, Liu, Zatta (bib31) 2021; 184
Corti, Purcell, Snell, Veesler (bib14) 2021; 184
Khoury, Cromer, Reynaldi, Schlub, Wheatley, Juno, Subbarao, Kent, Triccas, Davenport (bib21) 2021; 27
Lempp, Soriaga, Montiel-Ruiz, Benigni, Noack, Park, Bianchi, Walls, Bowen, Zhou (bib24) 2021; 598
McMahan, Yu, Mercado, Loos, Tostanoski, Chandrashekar, Liu, Peter, Atyeo, Zhu (bib33) 2021; 590
Garcia-Beltran, St Denis, Hoelzemer, Lam, Nitido, Sheehan, Berrios, Ofoman, Chang, Hauser (bib15) 2021
Corbett, Nason, Flach, Gagne, O’Connell, Johnston, Shah, Edara, Floyd, Lai (bib13) 2021; 373
Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia (bib55) 2020; 183
Bedford, Greninger, Roychoudhury, Starita, Famulare, Huang, Nalla, Pepper, Reinhardt, Xie (bib3) 2020; 370
Walls, Park, Tortorici, Wall, McGuire, Veesler (bib54) 2020; 181
Baden, El Sahly, Essink, Kotloff, Frey, Novak, Diemert, Spector, Rouphael, Creech (bib2) 2021; 384
Madhi, Baillie, Cutland, Voysey, Koen, Fairlie, Padayachee, Dheda, Barnabas, Bhorat (bib29) 2021; 384
Turner, O’Halloran, Kalaidina, Kim, Schmitz, Zhou, Lei, Thapa, Chen, Case (bib51) 2021; 596
Tortorici, Walls, Lang, Wang, Li, Koerhuis, Boons, Bosch, Rey, de Groot (bib49) 2019; 26
Cho, Muecksch, Schaefer-Babajew, Wang, Finkin, Gaebler, Ramos, Cipolla, Mendoza, Agudelo (bib10) 2021; 600
Parry, Bruton, Stephens, Brown, Amirthalingam, Otter, Hallis, Zuo, Moss (bib60) 2021; 18
Cele, Gazy, Jackson, Hwa, Tegally, Lustig, Giandhari, Pillay, Wilkinson, Naidoo (bib9) 2021; 593
Krammer, Srivastava, Alshammary, Amoako, Awawda, Beach, Bermúdez-González, Bielak, Carreño, Chernet (bib23) 2021; 384
Syed, Taha, Tabata, Chen, Ciling, Khalid, Sreekumar, Chen, Hayashi, Soczek (bib45) 2021; 374
Paredes, Lunn, Famulare, Frisbie, Painter, Burstein, Roychoudhury, Xie, Mohamed Bakhash, Perez (bib37) 2021
Saadat, Rikhtegaran Tehrani, Logue, Newman, Frieman, Harris, Sajadi (bib41) 2021; 325
Tan, Chia, Young, Zhu, Lim, Sia, Thein, Chen, Leo, Lye (bib47) 2021; 385
Case, Rothlauf, Chen, Kafai, Fox, Smith, Shrihari, McCune, Harvey, Keeler (bib7) 2020; 28
Kaname, Tani, Kataoka, Shiokawa, Taguwa, Abe, Moriishi, Kinoshita, Matsuura (bib19) 2010; 84
Walls, Miranda, Schäfer, Pham, Greaney, Arunachalam, Navarro, Tortorici, Rogers, O’Connor (bib53) 2021; 184
Case, Rothlauf, Chen, Liu, Zhao, Kim, Bloyet, Zeng, Tahan, Droit (bib8) 2020; 28
Hassan, Feldmann, Zhao, Curiel, Okumura, Tang-Huau, Case, Meade-White, Callison, Chen (bib16) 2021; 2
Theel, Johnson, Kunze, Wu, Gorsh, Granger, Roforth, Jerde, Lasho, Andersen (bib48) 2021; 59
Hsieh, Goldsmith, Schaub, DiVenere, Kuo, Javanmardi, Le, Wrapp, Lee, Liu (bib17) 2020; 369
Collier (10.1016/j.cell.2022.01.011_bib12) 2021
Pallesen (10.1016/j.cell.2022.01.011_bib36) 2017; 114
Parry (10.1016/j.cell.2022.01.011_bib60) 2021; 18
Madhi (10.1016/j.cell.2022.01.011_bib29) 2021; 384
McCallum (10.1016/j.cell.2022.01.011_bib32) 2021; 374
Ying (10.1016/j.cell.2022.01.011_bib59) 2021
Theel (10.1016/j.cell.2022.01.011_bib48) 2021; 59
Stamatatos (10.1016/j.cell.2022.01.011_bib43) 2021; 372
Corti (10.1016/j.cell.2022.01.011_bib14) 2021; 184
Li (10.1016/j.cell.2022.01.011_bib26) 2021
Liu (10.1016/j.cell.2022.01.011_bib28) 2021
Tan (10.1016/j.cell.2022.01.011_bib46) 2021
Hsieh (10.1016/j.cell.2022.01.011_bib17) 2020; 369
Turner (10.1016/j.cell.2022.01.011_bib51) 2021; 596
Winkler (10.1016/j.cell.2022.01.011_bib57) 2020
Garcia-Beltran (10.1016/j.cell.2022.01.011_bib15) 2021
Levine-Tiefenbrun (10.1016/j.cell.2022.01.011_bib25) 2021; 27
Tan (10.1016/j.cell.2022.01.011_bib47) 2021; 385
McMahan (10.1016/j.cell.2022.01.011_bib33) 2021; 590
Crawford (10.1016/j.cell.2022.01.011_bib61) 2020; 12
Cao (10.1016/j.cell.2022.01.011_bib6) 2021
Paredes (10.1016/j.cell.2022.01.011_bib37) 2021
Walls (10.1016/j.cell.2022.01.011_bib54) 2020; 181
Johnson (10.1016/j.cell.2022.01.011_bib18) 2021; 591
Bowen (10.1016/j.cell.2022.01.011_bib4) 2021
Keeton (10.1016/j.cell.2022.01.011_bib20) 2021; 29
Cameroni (10.1016/j.cell.2022.01.011_bib5) 2021
Planas (10.1016/j.cell.2022.01.011_bib38) 2021; 27
Suryadevara (10.1016/j.cell.2022.01.011_bib44) 2021; 184
Liu (10.1016/j.cell.2022.01.011_bib27) 2021
Saito (10.1016/j.cell.2022.01.011_bib42) 2021
Hassan (10.1016/j.cell.2022.01.011_bib16) 2021; 2
Kirchdoerfer (10.1016/j.cell.2022.01.011_bib22) 2018; 8
Arunachalam (10.1016/j.cell.2022.01.011_bib1) 2021; 594
Case (10.1016/j.cell.2022.01.011_bib8) 2020; 28
Walls (10.1016/j.cell.2022.01.011_bib53) 2021; 184
Tortorici (10.1016/j.cell.2022.01.011_bib49) 2019; 26
Turner (10.1016/j.cell.2022.01.011_bib50) 2021; 595
Wibmer (10.1016/j.cell.2022.01.011_bib56) 2021; 27
Khoury (10.1016/j.cell.2022.01.011_bib21) 2021; 27
Wrapp (10.1016/j.cell.2022.01.011_bib58) 2020; 367
Planas (10.1016/j.cell.2022.01.011_bib39) 2021
Walls (10.1016/j.cell.2022.01.011_bib55) 2020; 183
Cele (10.1016/j.cell.2022.01.011_bib9) 2021; 593
Kaname (10.1016/j.cell.2022.01.011_bib19) 2010; 84
VanBlargan (10.1016/j.cell.2022.01.011_bib52) 2021
Lempp (10.1016/j.cell.2022.01.011_bib24) 2021; 598
Mlcochova (10.1016/j.cell.2022.01.011_bib34) 2021; 599
Cohen (10.1016/j.cell.2022.01.011_bib11) 2021; 371
McCallum (10.1016/j.cell.2022.01.011_bib31) 2021; 184
Bedford (10.1016/j.cell.2022.01.011_bib3) 2020; 370
Syed (10.1016/j.cell.2022.01.011_bib45) 2021; 374
Cho (10.1016/j.cell.2022.01.011_bib10) 2021; 600
Corbett (10.1016/j.cell.2022.01.011_bib13) 2021; 373
Saadat (10.1016/j.cell.2022.01.011_bib41) 2021; 325
Krammer (10.1016/j.cell.2022.01.011_bib23) 2021; 384
Case (10.1016/j.cell.2022.01.011_bib7) 2020; 28
Polack (10.1016/j.cell.2022.01.011_bib40) 2020; 383
Martinez (10.1016/j.cell.2022.01.011_bib30) 2021; 373
Baden (10.1016/j.cell.2022.01.011_bib2) 2021; 384
34931192 - bioRxiv. 2021 Dec 13:2021.12.08.471707. doi: 10.1101/2021.12.08.471707
References_xml – volume: 27
  start-page: 622
  year: 2021
  end-page: 625
  ident: bib56
  article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma
  publication-title: Nat. Med.
– year: 2021
  ident: bib42
  article-title: Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation
  publication-title: Nature
– volume: 594
  start-page: 253
  year: 2021
  end-page: 258
  ident: bib1
  article-title: Adjuvanting a subunit COVID-19 vaccine to induce protective immunity
  publication-title: Nature
– year: 2021
  ident: bib5
  article-title: Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift
  publication-title: Nature
– year: 2021
  ident: bib52
  article-title: An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by several therapeutic monoclonal antibodies
  publication-title: Nat. Med.
– volume: 114
  start-page: E7348
  year: 2017
  end-page: E7357
  ident: bib36
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 184
  start-page: 2332
  year: 2021
  end-page: 2347.e16
  ident: bib31
  article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2
  publication-title: Cell
– volume: 29
  start-page: 1611
  year: 2021
  end-page: 1619.e5
  ident: bib20
  article-title: Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner
  publication-title: Cell Host Microbe
– volume: 372
  start-page: 1413
  year: 2021
  end-page: 1418
  ident: bib43
  article-title: mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection
  publication-title: Science
– volume: 28
  start-page: 475
  year: 2020
  end-page: 485.e5
  ident: bib8
  article-title: Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2
  publication-title: Cell Host Microbe
– volume: 184
  start-page: 4593
  year: 2021
  end-page: 4595
  ident: bib14
  article-title: Tackling COVID-19 with neutralizing monoclonal antibodies
  publication-title: Cell
– year: 2021
  ident: bib59
  article-title: Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains
  publication-title: bioRxiv
– volume: 383
  start-page: 2603
  year: 2020
  end-page: 2615
  ident: bib40
  article-title: Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine
  publication-title: N. Engl. J. Med.
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292.e6
  ident: bib54
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
– volume: 27
  start-page: 1205
  year: 2021
  end-page: 1211
  ident: bib21
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat. Med.
– year: 2021
  ident: bib26
  article-title: Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant
  publication-title: medRxiv
– volume: 591
  start-page: 293
  year: 2021
  end-page: 299
  ident: bib18
  article-title: Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis
  publication-title: Nature
– volume: 374
  start-page: 1626
  year: 2021
  end-page: 1632
  ident: bib45
  article-title: Rapid assessment of SARS-CoV-2 evolved variants using virus-like particles
  publication-title: Science
– volume: 26
  start-page: 481
  year: 2019
  end-page: 489
  ident: bib49
  article-title: Structural basis for human coronavirus attachment to sialic acid receptors
  publication-title: Nat. Struct. Mol. Biol.
– volume: 371
  start-page: 735
  year: 2021
  end-page: 741
  ident: bib11
  article-title: Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice
  publication-title: Science
– volume: 18
  start-page: 34
  year: 2021
  ident: bib60
  article-title: Differential immunogenicity of BNT162b2 or ChAdOx1 vaccines after extended-interval homologous dual vaccination in older people
  publication-title: Immun. Ageing
– volume: 28
  start-page: 465
  year: 2020
  end-page: 474.e4
  ident: bib7
  article-title: Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice
  publication-title: Cell Host Microbe
– volume: 184
  start-page: 2316
  year: 2021
  end-page: 2331.e15
  ident: bib44
  article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein
  publication-title: Cell
– volume: 599
  start-page: 114
  year: 2021
  end-page: 119
  ident: bib34
  article-title: SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion
  publication-title: Nature
– year: 2021
  ident: bib12
  article-title: Immune responses in fully vaccinated individuals following breakthrough infection with the SARS-CoV-2 delta variant in Provincetown, Massachusetts
  publication-title: medRxiv
– year: 2021
  ident: bib27
  article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2
  publication-title: Nature
– year: 2020
  ident: bib57
  article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions and monocytes for optimal therapeutic protection
  publication-title: bioRxiv
– year: 2021
  ident: bib28
  article-title: Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant
  publication-title: bioRxiv
– volume: 325
  start-page: 1467
  year: 2021
  end-page: 1469
  ident: bib41
  article-title: Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected with SARS-CoV-2
  publication-title: JAMA
– volume: 184
  start-page: 5432
  year: 2021
  end-page: 5447.e16
  ident: bib53
  article-title: Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines
  publication-title: Cell
– volume: 373
  start-page: 991
  year: 2021
  end-page: 998
  ident: bib30
  article-title: Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice
  publication-title: Science
– volume: 384
  start-page: 1372
  year: 2021
  end-page: 1374
  ident: bib23
  article-title: Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine
  publication-title: N. Engl. J. Med.
– volume: 384
  start-page: 403
  year: 2021
  end-page: 416
  ident: bib2
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N. Engl. J. Med.
– volume: 27
  start-page: 917
  year: 2021
  end-page: 924
  ident: bib38
  article-title: Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies
  publication-title: Nat. Med.
– volume: 595
  start-page: 421
  year: 2021
  end-page: 425
  ident: bib50
  article-title: SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans
  publication-title: Nature
– volume: 590
  start-page: 630
  year: 2021
  end-page: 634
  ident: bib33
  article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques
  publication-title: Nature
– volume: 385
  start-page: 1401
  year: 2021
  end-page: 1406
  ident: bib47
  article-title: Pan-Sarbecovirus neutralizing antibodies in BNT162b2-immunized SARS-CoV-1 survivors
  publication-title: N. Engl. J. Med.
– volume: 384
  start-page: 1885
  year: 2021
  end-page: 1898
  ident: bib29
  article-title: Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B.1.351 variant
  publication-title: N. Engl. J. Med.
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: bib58
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 59
  start-page: e0123121
  year: 2021
  ident: bib48
  article-title: SARS-CoV-2 serologic assays dependent on dual-antigen binding demonstrate diverging kinetics relative to other antibody detection methods
  publication-title: J. Clin. Microbiol.
– volume: 84
  start-page: 3210
  year: 2010
  end-page: 3219
  ident: bib19
  article-title: Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64
  publication-title: J. Virol.
– volume: 598
  start-page: 342
  year: 2021
  end-page: 347
  ident: bib24
  article-title: Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies
  publication-title: Nature
– year: 2021
  ident: bib39
  article-title: Considerable escape of SARS-CoV-2 Omicron to antibody neutralization
  publication-title: Nature
– volume: 8
  start-page: 15701
  year: 2018
  ident: bib22
  article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis
  publication-title: Sci. Rep.
– volume: 373
  start-page: eabj0299
  year: 2021
  ident: bib13
  article-title: Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates
  publication-title: Science
– volume: 374
  start-page: 1621
  year: 2021
  end-page: 1626
  ident: bib32
  article-title: Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants
  publication-title: Science
– volume: 370
  start-page: 571
  year: 2020
  end-page: 575
  ident: bib3
  article-title: Cryptic transmission of SARS-CoV-2 in Washington state
  publication-title: Science
– volume: 596
  start-page: 109
  year: 2021
  end-page: 113
  ident: bib51
  article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses
  publication-title: Nature
– volume: 183
  start-page: 1732
  year: 2020
  ident: bib55
  article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion
  publication-title: Cell
– year: 2021
  ident: bib4
  article-title: SARS-CoV-2 spike conformation determines plasma neutralizing activity
  publication-title: bioRxiv
– volume: 12
  start-page: 513
  year: 2020
  ident: bib61
  article-title: Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays
  publication-title: Viruses
– year: 2021
  ident: bib15
  article-title: mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant
  publication-title: medRxiv
– year: 2021
  ident: bib46
  article-title: Ad26.COV2.S or BNT162b2 boosting of BNT162b2 vaccinated individuals
  publication-title: medRxiv
– volume: 27
  start-page: 2108
  year: 2021
  end-page: 2110
  ident: bib25
  article-title: Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2
  publication-title: Nat. Med.
– volume: 593
  start-page: 142
  year: 2021
  end-page: 146
  ident: bib9
  article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma
  publication-title: Nature
– year: 2021
  ident: bib6
  article-title: Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies
  publication-title: Nature
– volume: 600
  start-page: 517
  year: 2021
  end-page: 522
  ident: bib10
  article-title: Anti-SARS-CoV-2 receptor binding domain antibody evolution after mRNA vaccination
  publication-title: Nature
– year: 2021
  ident: bib37
  article-title: Associations between SARS-CoV-2 variants and risk of COVID-19 hospitalization among confirmed cases in Washington State: a retrospective cohort study
  publication-title: medRxiv
– volume: 369
  start-page: 1501
  year: 2020
  end-page: 1505
  ident: bib17
  article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes
  publication-title: Science
– volume: 2
  start-page: 100230
  year: 2021
  ident: bib16
  article-title: A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques
  publication-title: Cell Rep. Med.
– volume: 18
  start-page: 34
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib60
  article-title: Differential immunogenicity of BNT162b2 or ChAdOx1 vaccines after extended-interval homologous dual vaccination in older people
  publication-title: Immun. Ageing
  doi: 10.1186/s12979-021-00246-9
– year: 2020
  ident: 10.1016/j.cell.2022.01.011_bib57
  article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions and monocytes for optimal therapeutic protection
  publication-title: bioRxiv
– volume: 325
  start-page: 1467
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib41
  article-title: Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected with SARS-CoV-2
  publication-title: JAMA
  doi: 10.1001/jama.2021.3341
– volume: 372
  start-page: 1413
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib43
  article-title: mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection
  publication-title: Science
  doi: 10.1126/science.abg9175
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib15
  article-title: mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant
  publication-title: medRxiv
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib46
  article-title: Ad26.COV2.S or BNT162b2 boosting of BNT162b2 vaccinated individuals
  publication-title: medRxiv
– volume: 184
  start-page: 2332
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib31
  article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.028
– volume: 27
  start-page: 917
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib38
  article-title: Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01318-5
– volume: 373
  start-page: 991
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib30
  article-title: Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice
  publication-title: Science
  doi: 10.1126/science.abi4506
– volume: 374
  start-page: 1621
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib32
  article-title: Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants
  publication-title: Science
  doi: 10.1126/science.abl8506
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib37
  article-title: Associations between SARS-CoV-2 variants and risk of COVID-19 hospitalization among confirmed cases in Washington State: a retrospective cohort study
  publication-title: medRxiv
– volume: 26
  start-page: 481
  year: 2019
  ident: 10.1016/j.cell.2022.01.011_bib49
  article-title: Structural basis for human coronavirus attachment to sialic acid receptors
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0233-y
– volume: 383
  start-page: 2603
  year: 2020
  ident: 10.1016/j.cell.2022.01.011_bib40
  article-title: Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– volume: 2
  start-page: 100230
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib16
  article-title: A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100230
– volume: 591
  start-page: 293
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib18
  article-title: Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis
  publication-title: Nature
  doi: 10.1038/s41586-021-03237-4
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib27
  article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-021-04388-0
– volume: 594
  start-page: 253
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib1
  article-title: Adjuvanting a subunit COVID-19 vaccine to induce protective immunity
  publication-title: Nature
  doi: 10.1038/s41586-021-03530-2
– volume: 371
  start-page: 735
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib11
  article-title: Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice
  publication-title: Science
  doi: 10.1126/science.abf6840
– volume: 370
  start-page: 571
  year: 2020
  ident: 10.1016/j.cell.2022.01.011_bib3
  article-title: Cryptic transmission of SARS-CoV-2 in Washington state
  publication-title: Science
  doi: 10.1126/science.abc0523
– volume: 12
  start-page: 513
  year: 2020
  ident: 10.1016/j.cell.2022.01.011_bib61
  article-title: Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays
  publication-title: Viruses
  doi: 10.3390/v12050513
– volume: 369
  start-page: 1501
  year: 2020
  ident: 10.1016/j.cell.2022.01.011_bib17
  article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes
  publication-title: Science
  doi: 10.1126/science.abd0826
– volume: 28
  start-page: 475
  year: 2020
  ident: 10.1016/j.cell.2022.01.011_bib8
  article-title: Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.06.021
– volume: 374
  start-page: 1626
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib45
  article-title: Rapid assessment of SARS-CoV-2 evolved variants using virus-like particles
  publication-title: Science
  doi: 10.1126/science.abl6184
– volume: 183
  start-page: 1732
  year: 2020
  ident: 10.1016/j.cell.2022.01.011_bib55
  article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.031
– volume: 598
  start-page: 342
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib24
  article-title: Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies
  publication-title: Nature
  doi: 10.1038/s41586-021-03925-1
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib28
  article-title: Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant
  publication-title: bioRxiv
– volume: 184
  start-page: 5432
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib53
  article-title: Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines
  publication-title: Cell
  doi: 10.1016/j.cell.2021.09.015
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib12
  article-title: Immune responses in fully vaccinated individuals following breakthrough infection with the SARS-CoV-2 delta variant in Provincetown, Massachusetts
  publication-title: medRxiv
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib4
  article-title: SARS-CoV-2 spike conformation determines plasma neutralizing activity
  publication-title: bioRxiv
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib52
  article-title: An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by several therapeutic monoclonal antibodies
  publication-title: Nat. Med.
– volume: 27
  start-page: 1205
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib21
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01377-8
– volume: 27
  start-page: 2108
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib25
  article-title: Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01575-4
– volume: 29
  start-page: 1611
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib20
  article-title: Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.10.003
– volume: 599
  start-page: 114
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib34
  article-title: SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion
  publication-title: Nature
  doi: 10.1038/s41586-021-03944-y
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib5
  article-title: Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift
  publication-title: Nature
  doi: 10.1038/s41586-021-04386-2
– volume: 84
  start-page: 3210
  year: 2010
  ident: 10.1016/j.cell.2022.01.011_bib19
  article-title: Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64
  publication-title: J. Virol.
  doi: 10.1128/JVI.02519-09
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib26
  article-title: Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant
  publication-title: medRxiv
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib42
  article-title: Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation
  publication-title: Nature
– volume: 593
  start-page: 142
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib9
  article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma
  publication-title: Nature
  doi: 10.1038/s41586-021-03471-w
– volume: 596
  start-page: 109
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib51
  article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses
  publication-title: Nature
  doi: 10.1038/s41586-021-03738-2
– volume: 27
  start-page: 622
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib56
  article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01285-x
– volume: 8
  start-page: 15701
  year: 2018
  ident: 10.1016/j.cell.2022.01.011_bib22
  article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34171-7
– volume: 385
  start-page: 1401
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib47
  article-title: Pan-Sarbecovirus neutralizing antibodies in BNT162b2-immunized SARS-CoV-1 survivors
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2108453
– volume: 114
  start-page: E7348
  year: 2017
  ident: 10.1016/j.cell.2022.01.011_bib36
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1707304114
– volume: 384
  start-page: 403
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib2
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035389
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib6
  article-title: Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies
  publication-title: Nature
  doi: 10.1038/s41586-021-04385-3
– volume: 184
  start-page: 4593
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib14
  article-title: Tackling COVID-19 with neutralizing monoclonal antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2021.07.027
– volume: 384
  start-page: 1885
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib29
  article-title: Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B.1.351 variant
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2102214
– volume: 600
  start-page: 517
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib10
  article-title: Anti-SARS-CoV-2 receptor binding domain antibody evolution after mRNA vaccination
  publication-title: Nature
  doi: 10.1038/s41586-021-04060-7
– volume: 384
  start-page: 1372
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib23
  article-title: Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2101667
– volume: 184
  start-page: 2316
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib44
  article-title: Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.029
– volume: 59
  start-page: e0123121
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib48
  article-title: SARS-CoV-2 serologic assays dependent on dual-antigen binding demonstrate diverging kinetics relative to other antibody detection methods
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.01231-21
– volume: 373
  start-page: eabj0299
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib13
  article-title: Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates
  publication-title: Science
  doi: 10.1126/science.abj0299
– volume: 595
  start-page: 421
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib50
  article-title: SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans
  publication-title: Nature
  doi: 10.1038/s41586-021-03647-4
– volume: 367
  start-page: 1260
  year: 2020
  ident: 10.1016/j.cell.2022.01.011_bib58
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib39
  article-title: Considerable escape of SARS-CoV-2 Omicron to antibody neutralization
  publication-title: Nature
– volume: 590
  start-page: 630
  year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib33
  article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques
  publication-title: Nature
  doi: 10.1038/s41586-020-03041-6
– volume: 28
  start-page: 465
  year: 2020
  ident: 10.1016/j.cell.2022.01.011_bib7
  article-title: Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.07.018
– volume: 181
  start-page: 281
  year: 2020
  ident: 10.1016/j.cell.2022.01.011_bib54
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– year: 2021
  ident: 10.1016/j.cell.2022.01.011_bib59
  article-title: Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains
  publication-title: bioRxiv
– reference: 34931192 - bioRxiv. 2021 Dec 13:2021.12.08.471707. doi: 10.1101/2021.12.08.471707
SSID ssj0008555
Score 2.6665542
Snippet Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 872
SubjectTerms antibodies
antigens
breakthrough infection
COVID-19
COVID-19 infection
Delta variant
durability
neutralization
pandemic
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
vaccine
vaccines
Title SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses
URI https://dx.doi.org/10.1016/j.cell.2022.01.011
https://www.ncbi.nlm.nih.gov/pubmed/35123650
https://www.proquest.com/docview/2626223198
https://www.proquest.com/docview/2648864631
https://pubmed.ncbi.nlm.nih.gov/PMC8769922
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCN60uE02SXvURREPHnyxt5A0CValXXa7h_XXO0nbxVXcg1AKbSYlzSQz34R5IHRKNRjJvKsi7hwYKKCgoxRgUZRoKzIhnC-_570t7vntc-9uwAZLqN_Gwni3ykb21zI9SOvmzUUzmxfDPPcxvilJOJh2IdokRLDTXhKC-AZXM2mcMFZXMUhh5wN1EzhT-3j5w3GwEQkJqTvj-C_l9Bt8_vSh_KaUbtbRWoMm8WU94A20ZItNtFLXl5xuIfN4-fAY9cuXiGAwfdV7U5UHty5YxRjbjzzLKzwsATxX50BWKnOOVWGwmYx8XBUu7CQch3yCloOGKtelmeJR7Vxrx9vo-eb6qX8bNWUVogywQwWC1xolrOUqE8Z2daYS4zRjzmhjNcADB6iAZoBMFKc9YhV3CbeCMB0ToXlCd9ByURZ2D2GjmPb54w1NAXdZpxUAUBMT5aiAG--guJ1PmTU5x33piw_ZOpe9Sc8D6XkguzFccQedzfoM64wbC6lZyyY5t24kqISF_U5ankrYUL5ZFbacjCUBEw8wU5wmi2hA7vEep_Cd3XodzMZKmU9ow7odJOZWyIzAJ_Sebyny15DYGzSTTxO8_89_OkCr_il4yNFDtFyNJvYIIFOlj8Oe-AJMaRX_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQqGovqPS5LQ9X6q1EbOy1nRxhBVoe5VCg2ptlx7ZIQclqN3ugv56ZPFbdIvaAFOWQmUSOx575xpoHId-5BSdZ9k0kQwAHBQx0lAIsihLrVaZUwPZ7GG1xKUc3g7OxGK-RYZcLg2GVre5vdHqtrdsnB-1sHkzyHHN8U5ZIcO3qbBPMYN8ANKBwd56OjxbqOBGiaWOQwtYH9jZzpgnywtNxcBIZq2t3xvFz1ukp-vw_iPIfq3Tylmy2cJIeNiPeImu-eEdeNQ0mH94Td3X46yoalr8jRsH3NXdtWx7axWAVM-rv8yyv6KQE9FztA1tp3D41haNuPsXEKlr4eX0e8hfMHBCq3JbugU6b6Fo_-0BuTo6vh6Oo7asQZQAeKtC83hnlvTSZcr5vM5O4YIUIzjpvAR8EgAU8A2hiJB8wb2RIpFdM2JgpKxP-kawXZeE_E-qMsFhA3vEUgJcP1gACdTEzgSu4yR6Ju_nUWVt0HHtf3OsuuuyPRhlolIHux3DFPfJj8c6kKbmxklt0YtJLC0eDTVj53rdOphp2FJJN4cv5TDPw8QA0xWmyigcUnxxIDt_51KyDxVi5wIo2ot8jammFLBiwovcypchv68reYJqwTvCXF_7THnk9uv55oS9OL8-_kjdIqcPl-DZZr6ZzvwP4qbK79f54BELlGR8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+breakthrough+infections+elicit+potent%2C+broad%2C+and+durable+neutralizing+antibody+responses&rft.jtitle=Cell&rft.au=Walls%2C+Alexandra+C.&rft.au=Sprouse%2C+Kaitlin+R.&rft.au=Bowen%2C+John+E.&rft.au=Joshi%2C+Anshu&rft.date=2022-03-03&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.volume=185&rft.issue=5&rft.spage=872&rft.epage=880.e3&rft_id=info:doi/10.1016%2Fj.cell.2022.01.011&rft.externalDocID=S0092867422000691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon