Recycling of the actin monomer pool limits the lifetime of network turnover

Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural sta...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 42; no. 9; pp. e112717 - n/a
Main Authors Colin, Alexandra, Kotila, Tommi, Guérin, Christophe, Orhant‐Prioux, Magali, Vianay, Benoit, Mogilner, Alex, Lappalainen, Pekka, Théry, Manuel, Blanchoin, Laurent
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.05.2023
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase‐associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long‐term network assembly with a limited amount of building blocks. Synopsis Mechanisms enabling the maintenance of cellular structural stability during the constant turnover of a limited actin monomer pool are poorly understood. Here, reconstitution of actin in a dynamic steady state using a combination of purified proteins and cell‐sized compartments reveals the parameters influencing actin lifetime. Sustained actin turnover over multiple hours was reconstituted in cell‐sized microwells containing a limited amount of components A recycling step is required for reuse of actin monomers and other actin‐binding proteins in multiple assembly cycles Actin monomers age and limit the lifetime of the reconstituted system Changes in the availability of actin monomers enable a feedback loop between assembly and disassembly Graphical Abstract Reconstitution of actin in a dynamic steady state using cell‐sized compartments reveals the parameters influencing long‐term assembly upon limited component availability.
AbstractList Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase‐associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long‐term network assembly with a limited amount of building blocks. image Mechanisms enabling the maintenance of cellular structural stability during the constant turnover of a limited actin monomer pool are poorly understood. Here, reconstitution of actin in a dynamic steady state using a combination of purified proteins and cell‐sized compartments reveals the parameters influencing actin lifetime. Sustained actin turnover over multiple hours was reconstituted in cell‐sized microwells containing a limited amount of components A recycling step is required for reuse of actin monomers and other actin‐binding proteins in multiple assembly cycles Actin monomers age and limit the lifetime of the reconstituted system Changes in the availability of actin monomers enable a feedback loop between assembly and disassembly
Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase‐associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long‐term network assembly with a limited amount of building blocks. Synopsis Mechanisms enabling the maintenance of cellular structural stability during the constant turnover of a limited actin monomer pool are poorly understood. Here, reconstitution of actin in a dynamic steady state using a combination of purified proteins and cell‐sized compartments reveals the parameters influencing actin lifetime. Sustained actin turnover over multiple hours was reconstituted in cell‐sized microwells containing a limited amount of components A recycling step is required for reuse of actin monomers and other actin‐binding proteins in multiple assembly cycles Actin monomers age and limit the lifetime of the reconstituted system Changes in the availability of actin monomers enable a feedback loop between assembly and disassembly Reconstitution of actin in a dynamic steady state using cell‐sized compartments reveals the parameters influencing long‐term assembly upon limited component availability.
Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.
Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.
Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase‐associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long‐term network assembly with a limited amount of building blocks. Synopsis Mechanisms enabling the maintenance of cellular structural stability during the constant turnover of a limited actin monomer pool are poorly understood. Here, reconstitution of actin in a dynamic steady state using a combination of purified proteins and cell‐sized compartments reveals the parameters influencing actin lifetime. Sustained actin turnover over multiple hours was reconstituted in cell‐sized microwells containing a limited amount of components A recycling step is required for reuse of actin monomers and other actin‐binding proteins in multiple assembly cycles Actin monomers age and limit the lifetime of the reconstituted system Changes in the availability of actin monomers enable a feedback loop between assembly and disassembly Graphical Abstract Reconstitution of actin in a dynamic steady state using cell‐sized compartments reveals the parameters influencing long‐term assembly upon limited component availability.
Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase‐associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long‐term network assembly with a limited amount of building blocks. Reconstitution of actin in a dynamic steady state using cell‐sized compartments reveals the parameters influencing long‐term assembly upon limited component availability.
Author Mogilner, Alex
Vianay, Benoit
Lappalainen, Pekka
Théry, Manuel
Kotila, Tommi
Colin, Alexandra
Guérin, Christophe
Orhant‐Prioux, Magali
Blanchoin, Laurent
AuthorAffiliation 5 Department of Biology New York University New York NY USA
3 CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI) University of Paris, INSERM, CEA Paris France
4 Courant Institute of Mathematical Sciences New York University New York NY USA
1 CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble University of Grenoble‐Alpes, CEA, CNRS, INRA Grenoble France
2 Institute of Biotechnology and Helsinki Institute of Life Science University of Helsinki Helsinki Finland
AuthorAffiliation_xml – name: 4 Courant Institute of Mathematical Sciences New York University New York NY USA
– name: 1 CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble University of Grenoble‐Alpes, CEA, CNRS, INRA Grenoble France
– name: 2 Institute of Biotechnology and Helsinki Institute of Life Science University of Helsinki Helsinki Finland
– name: 5 Department of Biology New York University New York NY USA
– name: 3 CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI) University of Paris, INSERM, CEA Paris France
Author_xml – sequence: 1
  givenname: Alexandra
  orcidid: 0000-0002-9144-3282
  surname: Colin
  fullname: Colin, Alexandra
  organization: CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble‐Alpes, CEA, CNRS, INRA
– sequence: 2
  givenname: Tommi
  orcidid: 0000-0002-9046-5834
  surname: Kotila
  fullname: Kotila, Tommi
  organization: Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki
– sequence: 3
  givenname: Christophe
  surname: Guérin
  fullname: Guérin, Christophe
  organization: CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble‐Alpes, CEA, CNRS, INRA
– sequence: 4
  givenname: Magali
  surname: Orhant‐Prioux
  fullname: Orhant‐Prioux, Magali
  organization: CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble‐Alpes, CEA, CNRS, INRA
– sequence: 5
  givenname: Benoit
  surname: Vianay
  fullname: Vianay, Benoit
  organization: CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA
– sequence: 6
  givenname: Alex
  surname: Mogilner
  fullname: Mogilner, Alex
  organization: Courant Institute of Mathematical Sciences, New York University, Department of Biology, New York University
– sequence: 7
  givenname: Pekka
  surname: Lappalainen
  fullname: Lappalainen, Pekka
  organization: Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki
– sequence: 8
  givenname: Manuel
  orcidid: 0000-0002-9968-1779
  surname: Théry
  fullname: Théry, Manuel
  email: manuel.thery@cea.fr
  organization: CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble‐Alpes, CEA, CNRS, INRA, CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA
– sequence: 9
  givenname: Laurent
  orcidid: 0000-0001-8146-9254
  surname: Blanchoin
  fullname: Blanchoin, Laurent
  email: laurent.blanchoin@cea.fr
  organization: CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble‐Alpes, CEA, CNRS, INRA, CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36912152$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04054219$$DView record in HAL
BookMark eNqFkc1v1DAQxS1URLeFOycUiQscUjyOHScSEipVP4BFSAjOlpNMdr0k9uJ4t9r_HqcpLV0JOFmyf-89z7wjcmCdRUKeAz0BwQR7g321OmGUMQAmQT4iM-A5TRmV4oDMKMsh5VCUh-RoGFaUUlFIeEIOs7wEFh1m5NNXrHd1Z-wicW0SlpjoOhib9M66Hn2ydq5LOtObMNy8dqbFYHocaYvh2vkfSdh467bon5LHre4GfHZ7HpPvF-ffzq7S-ZfLD2en87QWgstUai20yHLNKWtFW4qKStlgkVWyosiwAuDYCpBYtnVWlpBJzThteNM2LSsxOybvJt_1puqxqdEGrzu19qbXfqecNurhizVLtXBbBTTODLyMDq8nh-We7up0rsY7yqngDMotRPbVbZp3Pzc4BNWbocau0xbdZlBMFrmALC9ERF_uoSsXdxN3oVhBixHKeKRe_Pn9u_zfpUSATkDt3TB4bO8QoOqmdzX2ru57j5J8T1KboINx4wJM9y_h20l4bTrc_TdInX9-__GBHCb5EJV2gf5-4r9G_gI8QtKM
CitedBy_id crossref_primary_10_1016_j_cub_2024_12_036
crossref_primary_10_1038_s41467_024_52251_3
crossref_primary_10_1016_j_cub_2024_11_067
crossref_primary_10_1016_j_ejcb_2023_151383
crossref_primary_10_1083_jcb_202309021
crossref_primary_10_1038_s41556_024_01379_x
crossref_primary_10_1126_sciadv_ado5788
crossref_primary_10_1016_j_ejcb_2023_151368
crossref_primary_10_1016_j_jbc_2023_105367
crossref_primary_10_1073_pnas_2300416120
crossref_primary_10_1091_mbc_E23_09_0370
crossref_primary_10_3389_fmolb_2024_1423503
crossref_primary_10_1016_j_tcb_2024_12_009
Cites_doi 10.1016/j.cub.2015.04.011
10.1083/jcb.130.2.331
10.1152/physrev.00018.2013
10.1083/jcb.101.2.597
10.1073/pnas.2112799119
10.1006/jmbi.1994.1200
10.1038/s41467-019-13268-1
10.1074/jbc.273.39.25106
10.1038/ncomms5778
10.1016/j.cdev.2021.203736
10.1016/j.cub.2017.08.066
10.1242/jcs.107623
10.1016/j.cell.2008.04.011
10.1038/s41592-022-01507-1
10.1038/ncb3284
10.1126/science.1223539
10.7554/eLife.50963
10.1073/pnas.95.11.6181
10.1242/jcs.115.8.1591
10.1073/pnas.96.9.4908
10.3390/biology10111166
10.1038/nrm2890
10.1016/j.cell.2015.11.057
10.1091/mbc.e11-01-0052
10.1016/j.cell.2017.07.051
10.1038/417308a
10.1091/mbc.e04-01-0048
10.1038/44183
10.1073/pnas.1117096109
10.1002/cm.20458
10.1038/nrm2460
10.1016/S0960-9822(01)00022-7
10.1016/S0092-8674(03)00120-X
10.1091/mbc.E19-10-0576
10.1016/S0960-9822(03)00040-X
10.3389/fcell.2020.586631
10.1007/BF01766455
10.1002/cm.21098
10.1016/S0021-9258(18)62016-2
10.1371/journal.pbio.3000317
10.1073/pnas.1121238109
10.1016/j.cub.2021.03.038
10.1016/j.tcb.2021.06.006
10.7554/eLife.68712
10.1126/science.1221708
10.1016/j.cub.2018.06.028
10.1016/j.copbio.2019.05.008
10.1083/jcb.200909176
10.1016/j.cub.2017.05.048
10.3389/fgene.2020.00172
10.1146/annurev.biochem.73.011303.073844
10.1038/s41467-022-30128-7
10.1242/jcs.219832
10.1016/j.ejcb.2022.151249
10.1016/S0891-5849(01)00749-3
10.1038/ncb3246
10.1038/s41598-020-62942-8
10.1038/s41586-022-05241-8
10.1038/352126a0
10.1083/jcb.146.6.1319
10.1126/sciadv.1501337
10.1091/mbc.e13-03-0156
10.1038/s41467-018-04231-7
10.1074/jbc.M112.396051
10.1016/j.devcel.2014.10.027
10.1038/ncb1007-1110
10.1038/d41586-022-03343-x
10.1091/mbc.e12-06-0485
10.1073/pnas.1121583109
10.1038/40418
10.1016/j.ceb.2011.07.003
10.1002/cm.20429
10.1038/nmeth.2019
10.1016/j.cub.2012.03.046
10.1016/j.biocel.2012.05.024
10.15252/embj.2022111631
10.1039/c1sm06060k
10.1002/cm.21170
10.7554/eLife.42413
10.1016/j.cub.2011.03.064
10.1146/annurev-conmatphys-031218-013231
10.1016/j.bpj.2012.11.3819
10.1091/mbc.e12-08-0589
10.1083/jcb.200106157
10.1126/science.aaf1709
10.1038/s41580-022-00508-4
10.1016/j.cub.2007.04.037
10.1242/jcs.219899
10.1038/ncb3142
10.1091/mbc.e11-06-0584
10.1038/s41467-017-00455-1
10.1038/ncb2205
10.1083/jcb.200511093
10.1016/j.celrep.2015.03.033
10.1074/jbc.274.22.15538
10.1126/sciadv.aar2847
10.1038/s42003-021-02653-6
10.1146/annurev.biophys.29.1.545
10.1074/jbc.270.19.11437
10.1038/emboj.2008.34
10.1016/j.molcel.2006.08.006
10.1038/s41467-021-25682-5
10.1016/j.pneurobio.2021.102050
10.1038/s41467-019-13213-2
10.7554/eLife.06126
10.1039/C3SM52421C
10.1016/j.tcb.2004.05.002
10.1126/science.1067470
10.1038/s41567-018-0413-4
ContentType Journal Article
Copyright The Author(s) 2023
2023 The Authors. Published under the terms of the CC BY 4.0 license
2023 The Authors. Published under the terms of the CC BY 4.0 license.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2023
– notice: 2023 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2023 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.15252/embj.2022112717
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Virology and AIDS Abstracts
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Alexandra Colin et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC10152149
oai_HAL_hal_04054219v1
36912152
10_15252_embj_2022112717
EMBJ2022112717
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Academy of Finland (AKA)
  grantid: 302161
– fundername: EC|European Research Council (ERC)
  grantid: 741773; 771599
– fundername: National Science Foundation (NSF)
  grantid: DMS 2052515; DMS 1953430
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR‐17‐EURE‐0003
  funderid: 10.13039/501100001665
– fundername: Agence Nationale de la Recherche (ANR)
  funderid: ANR‐17‐EURE‐0003
– fundername: EC|European Research Council (ERC)
  funderid: 741773; 771599
– fundername: National Science Foundation (NSF)
  funderid: DMS 2052515; DMS 1953430
– fundername: Academy of Finland (AKA)
  funderid: 302161
– fundername: ;
  grantid: ANR‐17‐EURE‐0003
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
AASML
AAYXX
ABZEH
CITATION
NAO
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c5547-7aa5a536a402f5f95b077de83b7b0e2eb114ef517e9fc399137a240d4dfdf29e3
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:37:28 EDT 2025
Fri May 09 12:13:01 EDT 2025
Fri Jul 11 04:14:34 EDT 2025
Fri Jul 25 10:20:15 EDT 2025
Wed Feb 19 02:23:46 EST 2025
Tue Jul 01 01:47:24 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Wed Jan 22 16:23:15 EST 2025
Fri Feb 21 02:36:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords lifetime
actin turnover
aging
reconstituted system
microwells
actin turnover aging lifetime microwells reconstituted system Subject Category Cell Adhesion
reconstituted system Subject Category Cell Adhesion
Polarity & Cytoskeleton
Language English
License Attribution
2023 The Authors. Published under the terms of the CC BY 4.0 license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5547-7aa5a536a402f5f95b077de83b7b0e2eb114ef517e9fc399137a240d4dfdf29e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9968-1779
0000-0002-9144-3282
0000-0002-9046-5834
0000-0001-8146-9254
OpenAccessLink https://doi.org/10.15252/embj.2022112717
PMID 36912152
PQID 2808136834
PQPubID 35985
PageCount 30
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10152149
hal_primary_oai_HAL_hal_04054219v1
proquest_miscellaneous_2786513685
proquest_journals_2808136834
pubmed_primary_36912152
crossref_primary_10_15252_embj_2022112717
crossref_citationtrail_10_15252_embj_2022112717
wiley_primary_10_15252_embj_2022112717_EMBJ2022112717
springer_journals_10_15252_embj_2022112717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 02 May 2023
PublicationDateYYYYMMDD 2023-05-02
PublicationDate_xml – month: 05
  year: 2023
  text: 02 May 2023
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2023
Publisher Nature Publishing Group UK
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: EMBO Press
– name: John Wiley and Sons Inc
References Pinot, Steiner, Dehapiot, Yoo, Chesnel, Blanchoin, Kervrann, Gueroui (CR73) 2012; 109
Rottner, Stradal (CR84) 2011; 23
Lacayo, Soneral, Zhu, Tsuchida, Footer, Soo, Lu, Xia, Mogilner, Theriot (CR50) 2012; 23
Marchand, Moreau, Paoletti, Cossart, Carlier, Pantaloni (CR59) 1995; 130
Wang, Robinson, Burtnick (CR105) 2010; 67
Akin, Mullins (CR1) 2008; 133
Okreglak, Drubin (CR68) 2010; 188
Cameron, Svitkina, Vignjevic, Theriot, Borisy (CR19) 2001; 11
Moriyama, Yahara (CR63) 2002; 115
Chaudhry, Jansen, Little, Suarez, Boujemaa‐Paterski, Blanchoin, Goode (CR24) 2014; 71
Kotila, Wioland, Enkavi, Kogan, Vattulainen, Jégou, Romet‐Lemonne, Lappalainen (CR49) 2019; 10
Vitriol, McMillen, Kapustina, Gomez, Vavylonis, Zheng (CR103) 2015; 11
Cossio, Hocky (CR27) 2022; 611
Blanchoin, Boujemaa‐Paterski, Sykes, Plastino (CR14) 2014; 94
Fritzsche, Lewalle, Duke, Kruse, Charras (CR33) 2013; 24
Wang (CR104) 1985; 101
Andrianantoandro, Pollard (CR5) 2006; 24
Chakrabarti, Lee, Higgs (CR20) 2021; 31
Miyoshi, Watanabe (CR62) 2013; 70
Chhabra, Higgs (CR25) 2007; 9
Pollard, Garabedian, Alioto, Shekhar, Goode (CR77) 2020; 31
Kotila, Kogan, Enkavi, Guo, Vattulainen, Goode, Lappalainen (CR48) 2018; 9
Schneider, Duong, Metz, Winkelmeier, Hübner, Endesfelder, Rust (CR88) 2021; 202
Soares e Silva, Alvarado, Nguyen, Georgoulia, Mulder, Koenderink (CR91) 2011; 7
Rust, Khudayberdiev, Pelucchi, Marcello (CR86) 2020; 8
Watanabe, Mitchison (CR106) 2002; 295
Rouyère, Serrano, Frémont, Echard (CR85) 2022; 101
Dalle‐Donne, Rossi, Milzani, Di Simplicio, Colombo (CR28) 2001; 31
Funk, Merino, Venkova, Heydenreich, Kierfeld, Vargas, Raunser, Piel, Bieling (CR35) 2019; 8
Henty‐Ridilla, Rankova, Eskin, Kenny, Goode (CR41) 2016; 352
Nishimura, Shi, Li, Bershadsky, Viasnoff (CR66) 2021; 168
Estes, Selden, Kinosian, Gershman (CR32) 1992; 13
Funk, Merino, Schaks, Rottner, Raunser, Bieling (CR36) 2021; 12
Reymann, Suarez, Guérin, Martiel, Staiger, Blanchoin, Boujemaa‐Paterski (CR82) 2011; 22
Manhart, Icheva, Guerin, Klar, Boujemaa‐Paterski, Thery, Blanchoin, Mogilner (CR58) 2019; 8
Wettstein, Bellaye, Micheau, Bonniaud (CR107) 2012; 44
Tojkander, Gateva, Husain, Krishnan, Lappalainen (CR98) 2015; 4
Wioland, Guichard, Senju, Myram, Lappalainen, Jégou, Romet‐Lemonne (CR108) 2017; 27
Lai, Szczodrak, Block, Faix, Breitsprecher, Mannherz, Stradal, Dunn, Small, Rottner (CR51) 2008; 27
Shekhar, Chung, Kondev, Gelles, Goode (CR89) 2019; 10
Antkowiak, Guillotin, Sanders, Colombo, Vincentelli, Michelot (CR6) 2019; 17
Lappalainen, Drubin (CR52) 1997; 388
Gressin, Guillotin, Guérin, Blanchoin, Michelot (CR40) 2015; 25
López, Huber, Grigoriev, Steinmetz, Akhmanova, Koenderink, Dogterom (CR56) 2014; 5
Ganzinger, Vogel, Mücksch, Blumhardt, Schwille (CR92) 2019; 132
Cameron, Footer, van Oudenaarden, Theriot (CR18) 1999; 96
Alvarado, Mulder, Koenderink (CR4) 2014; 10
Reymann, Boujemaa‐Paterski, Martiel, Guerin, Cao, Chin, De La Cruz, Thery, Blanchoin (CR83) 2012; 336
Jia, Schwille (CR46) 2019; 60
Bieling, Li, Weichsel, McGorty, Jreij, Huang, Fletcher, Mullins (CR11) 2016; 164
Ershov, Phan, Pylvänäinen, Rigaud, Le Blanc, Charles‐Orszag, Conway, Laine, Roy, Bonazzi (CR31) 2022; 19
Fritzsche, Erlenkämper, Moeendarbary, Charras, Kruse (CR34) 2016; 2
Bernheim‐Groswasser, Wiesner, Golsteyn, Carlier, Sykes (CR9) 2002; 417
Vinzenz, Nemethova, Schur, Mueller, Narita, Urban, Winkler, Schmeiser, Koestler, Rottner (CR101) 2012; 125
Oosterheert, Klink, Belyy, Pospich, Raunser (CR70) 2022; 611
Isambert, Venier, Maggs, Fattoum, Kassab, Pantaloni, Carlier (CR44) 1995; 270
Loisel, Boujemaa, Pantaloni, Carlier (CR54) 1999; 401
Hotulainen, Lappalainen (CR42) 2006; 173
Suarez, Carroll, Burke, Christensen, Bestul, Sees, James, Sirotkin, Kovar (CR95) 2015; 32
Plastino, Blanchoin (CR74) 2019; 132
Vargas, Maiuri, Bretou, Sáez, Pierobon, Maurin, Chabaud, Lankar, Obino, Terriac (CR99) 2016; 18
Raz‐Ben Aroush, Ofer, Abu‐Shah, Allard, Krichevsky, Mogilner, Keren (CR81) 2017; 27
Greiner, Glonek (CR39) 2021; 10
Yamamoto, Gaillard, Vianay, Guerin, Orhant‐Prioux, Blanchoin, Théry (CR109) 2022; 41
Pollard, Blanchoin, Mullins (CR76) 2000; 29
Mueller, Szep, Nemethova, de Vries, Lieber, Winkler, Kruse, Small, Schmeiser, Keren (CR64) 2017; 171
Mullins, Heuser, Pollard (CR65) 1998; 95
Alkemade, Wierenga, Volkov, Preciado López, Akhmanova, ten Wolde, Dogterom, Koenderink (CR2) 2022; 119
Normoyle, Brieher (CR67) 2012; 287
Spudich, Watt (CR93) 1971; 246
Hsu, Sciortino, de la Trobe, Bausch (CR43) 2022; 13
Chaudhry, Breitsprecher, Little, Sharov, Sokolova, Goode (CR23) 2013; 24
Pujol, du Roure, Fermigier, Heuvingh (CR78) 2012; 109
Chaudhry, Little, Talarico, Quintero‐Monzon, Goode (CR22) 2010; 67
Paavilainen, Bertling, Falck, Lappalainen (CR71) 2004; 14
Vitriol, Wise, Berginski, Bamburg, Zheng (CR102) 2013; 24
Banerjee, Gardel, Schwarz (CR7) 2019; 11
Palmgren, Ojala, Wear, Cooper, Lappalainen (CR72) 2001; 155
Blanchoin, Pollard (CR12) 1998; 273
Dawe, Minamide, Bamburg, Cramer (CR29) 2003; 13
Bleicher, Sciortino, Bausch (CR15) 2020; 10
Smith, Kiuchi, Watanabe, Vavylonis (CR90) 2013; 104
Boujemaa‐Paterski, Suarez, Klar, Zhu, Guérin, Mogilner, Théry, Blanchoin (CR16) 2017; 8
Blanchoin, Pollard (CR13) 1999; 274
Malik‐Garbi, Ierushalmi, Jansen, Abu‐Shah, Goode, Mogilner, Keren (CR57) 2019; 15
Rafelski, Theriot (CR80) 2004; 73
Burnette, Manley, Sengupta, Sougrat, Davidson, Kachar, Lippincott‐Schwartz (CR17) 2011; 13
Theriot, Mitchison (CR97) 1991; 352
Bertling, Hotulainen, Mattila, Matilainen, Salminen, Lappalainen (CR10) 2004; 15
Suarez, Roland, Boujemaa‐Paterski, Kang, McCullough, Reymann, Guérin, Martiel, De La Cruz, Blanchoin (CR94) 2011; 21
Almo, Pollard, Way, Lattman (CR3) 1994; 236
Lomakin, Lee, Han, Bui, Davidson, Mogilner, Danuser (CR55) 2015; 17
Pollard, Borisy (CR75) 2003; 112
Bashirzadeh, Redford, Lorpaiboon, Groaz, Moghimianavval, Litschel, Schwille, Hocky, Dinner, Liu (CR8) 2021; 4
Rafelski, Marshall (CR79) 2008; 9
Grantham (CR38) 2020; 11
Vedula, Kurosaka, MacTaggart, Ni, Papoian, Jiang, Dong, Kashina (CR100) 2021; 10
Iwanski, Gregorio, Colpan (CR45) 2021; 31
Olson, Nordheim (CR69) 2010; 11
Egile, Loisel, Laurent, Li, Pantaloni, Sansonetti, Carlier (CR30) 1999; 146
Tan, Malik‐Garbi, Abu‐Shah, Li, Sharma, MacKintosh, Keren, Schmidt, Fakhri (CR96) 2018; 4
Chan, Marshall (CR21) 2012; 337
Schindelin, Arganda‐Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (CR87) 2012; 9
Miyazaki, Chiba, Eguchi, Ohki, Ishiwata (CR61) 2015; 17
Kawska, Carvalho, Manzi, Boujemaa‐Paterski, Blanchoin, Martiel, Sykes (CR47) 2012; 109
Lappalainen, Kotila, Jégou, Romet‐Lemonne (CR53) 2022; 23
Colin, Singaravelu, Théry, Blanchoin, Gueroui (CR26) 2018; 28
Goehring, Hyman (CR37) 2012; 22
Michelot, Berro, Guérin, Boujemaa‐Paterski, Staiger, Martiel, Blanchoin (CR60) 2007; 17
1991; 352
2010; 11
2017; 8
2012; 287
2021; 168
2019; 11
2013; 24
2019; 10
2021; 202
2019; 15
2015; 32
2019; 17
2003; 13
2022; 23
2008; 9
2006; 173
2010; 188
2002; 115
1971; 246
2013; 70
2011; 13
1992; 13
2020; 11
2020; 10
2012; 125
1999; 401
1995; 130
2003; 112
2022; 611
1998; 273
2010; 67
1997; 388
2020; 8
2018; 9
2019; 60
2014; 5
2021; 31
2004; 73
2018; 4
2006; 24
2008; 27
2007; 9
2011; 22
2016; 352
2011; 21
1999; 96
2011; 23
2001; 11
1998; 95
2014; 94
2012; 23
2012; 336
2012; 337
2012; 22
2014; 10
2019; 8
2007; 17
2018; 28
2015; 17
2000; 29
2021; 4
2015; 4
1994; 236
2017; 27
2002; 295
2013; 104
2015; 11
1985; 101
2017; 171
1999; 146
2022; 41
2002; 417
2022; 119
2016; 18
2016; 164
1995; 270
2011; 7
2012; 109
2001; 155
2022; 101
2015; 25
2021; 10
2016; 2
2021; 12
2020; 31
2004; 14
2004; 15
1999; 274
2022; 13
2008; 133
2014; 71
2012; 44
2001; 31
2022; 19
2019; 132
2012; 9
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 23
  start-page: 569
  year: 2011
  end-page: 578
  ident: CR84
  article-title: Actin dynamics and turnover in cell motility
  publication-title: Curr Opin Cell Biol
– volume: 132
  year: 2019
  ident: CR92
  article-title: Myosin‐II activity generates a dynamic steady state with continuous actin turnover in a minimal actin cortex
  publication-title: J Cell Sci
– volume: 417
  start-page: 308
  year: 2002
  end-page: 311
  ident: CR9
  article-title: The dynamics of actin‐based motility depend on surface parameters
  publication-title: Nature
– volume: 23
  start-page: 836
  year: 2022
  end-page: 852
  ident: CR53
  article-title: Biochemical and mechanical regulation of actin dynamics
  publication-title: Nat Rev Mol Cell Biol
– volume: 31
  start-page: 1624
  year: 2001
  end-page: 1632
  ident: CR28
  article-title: The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself
  publication-title: Free Radic Biol Med
– volume: 246
  start-page: 4866
  year: 1971
  end-page: 4871
  ident: CR93
  article-title: The regulation of rabbit skeletal muscle contraction
  publication-title: J Biol Chem
– volume: 7
  year: 2011
  ident: CR91
  article-title: Self‐organized patterns of actin filaments in cell‐sized confinement
  publication-title: Soft Matter
– volume: 274
  start-page: 15538
  year: 1999
  end-page: 15546
  ident: CR13
  article-title: Mechanism of interaction of acanthamoeba actophorin (ADF/cofilin) with actin filaments
  publication-title: J Biol Chem
– volume: 4
  year: 2018
  ident: CR96
  article-title: Self‐organized stress patterns drive state transitions in actin cortices
  publication-title: Sci Adv
– volume: 11
  start-page: 421
  year: 2019
  end-page: 439
  ident: CR7
  article-title: The actin cytoskeleton as an active adaptive material
  publication-title: Annu Rev Condens Matter Phys
– volume: 73
  start-page: 209
  year: 2004
  end-page: 239
  ident: CR80
  article-title: Crawling toward a unified model of cell motility: spatial and temporal regulation of actin dynamics
  publication-title: Annu Rev Biochem
– volume: 164
  start-page: 115
  year: 2016
  end-page: 127
  ident: CR11
  article-title: Force feedback controls motor activity and mechanical properties of self‐assembling branched actin networks
  publication-title: Cell
– volume: 336
  start-page: 1310
  year: 2012
  end-page: 1314
  ident: CR83
  article-title: Actin network architecture can determine myosin motor activity
  publication-title: Science
– volume: 2
  year: 2016
  ident: CR34
  article-title: Actin kinetics shapes cortical network structure and mechanics
  publication-title: Sci Adv
– volume: 109
  start-page: 14440
  year: 2012
  end-page: 14445
  ident: CR47
  article-title: How actin network dynamics control the onset of actin‐based motility
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 5319
  year: 2019
  ident: CR89
  article-title: Synergy between cyclase‐associated protein and cofilin accelerates actin filament depolymerization by two orders of magnitude
  publication-title: Nat Commun
– volume: 11
  start-page: 353
  year: 2010
  end-page: 365
  ident: CR69
  article-title: Linking actin dynamics and gene transcription to drive cellular motile functions
  publication-title: Nat Rev Mol Cell Biol
– volume: 146
  start-page: 1319
  year: 1999
  end-page: 1332
  ident: CR30
  article-title: Activation of the Cdc42 effector N‐wasp by the shigella flexneri Icsa protein promotes actin nucleation by Arp2/3 complex and bacterial actin‐based motility
  publication-title: J Cell Biol
– volume: 130
  start-page: 331
  year: 1995
  end-page: 343
  ident: CR59
  article-title: Actin‐based movement of listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface
  publication-title: J Cell Biol
– volume: 24
  start-page: 2238
  year: 2013
  end-page: 2247
  ident: CR102
  article-title: Instantaneous inactivation of cofilin reveals its function of F‐actin disassembly in lamellipodia
  publication-title: Mol Biol Cell
– volume: 8
  year: 2019
  ident: CR35
  article-title: Profilin and formin constitute a pacemaker system for robust actin filament growth
  publication-title: Elife
– volume: 13
  start-page: 2579
  year: 2022
  ident: CR43
  article-title: Activity‐induced polar patterns of filaments gliding on a sphere
  publication-title: Nat Commun
– volume: 109
  start-page: 10364
  year: 2012
  end-page: 10369
  ident: CR78
  article-title: Impact of branching on the elasticity of actin networks
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: R330
  year: 2012
  end-page: R339
  ident: CR37
  article-title: Organelle growth control through limiting pools of cytoplasmic components
  publication-title: Curr Biol
– volume: 10
  start-page: 5320
  year: 2019
  ident: CR49
  article-title: Mechanism of synergistic actin filament pointed end depolymerization by cyclase‐associated protein and cofilin
  publication-title: Nat Commun
– volume: 388
  start-page: 78
  year: 1997
  end-page: 82
  ident: CR52
  article-title: Cofilin promotes rapid actin filament turnover
  publication-title: Nature
– volume: 13
  start-page: 252
  year: 2003
  end-page: 257
  ident: CR29
  article-title: ADF/cofilin controls cell polarity during fibroblast migration
  publication-title: Curr Biol
– volume: 5
  start-page: 4778
  year: 2014
  ident: CR56
  article-title: Actin–microtubule coordination at growing microtubule ends
  publication-title: Nat Commun
– volume: 168
  year: 2021
  ident: CR66
  article-title: Crosstalk between myosin II and formin functions in the regulation of force generation and actomyosin dynamics in stress fibers
  publication-title: Cells Dev
– volume: 9
  start-page: 1110
  year: 2007
  end-page: 1121
  ident: CR25
  article-title: The many faces of actin: matching assembly factors with cellular structures
  publication-title: Nat Cell Biol
– volume: 14
  start-page: 386
  year: 2004
  end-page: 394
  ident: CR71
  article-title: Regulation of cytoskeletal dynamics by actin‐monomer‐binding proteins
  publication-title: Trends Cell Biol
– volume: 22
  start-page: 2541
  year: 2011
  end-page: 2550
  ident: CR82
  article-title: Turnover of branched actin filament networks by stochastic fragmentation with ADF/cofilin
  publication-title: Mol Biol Cell
– volume: 94
  start-page: 235
  year: 2014
  end-page: 263
  ident: CR14
  article-title: Actin dynamics, architecture, and mechanics in cell motility
  publication-title: Physiol Rev
– volume: 112
  start-page: 453
  year: 2003
  end-page: 465
  ident: CR75
  article-title: Cellular motility driven by assembly and disassembly of actin filaments
  publication-title: Cell
– volume: 21
  start-page: 862
  year: 2011
  end-page: 868
  ident: CR94
  article-title: Cofilin tunes the nucleotide state of actin filaments and severs at bare and decorated segment boundaries
  publication-title: Curr Biol
– volume: 270
  start-page: 11437
  year: 1995
  end-page: 11444
  ident: CR44
  article-title: Flexibility of actin filaments derived from thermal fluctuations
  publication-title: J Biol Chem
– volume: 611
  start-page: 374
  year: 2022
  end-page: 379
  ident: CR70
  article-title: Structural basis of actin filament assembly and aging
  publication-title: Nature
– volume: 202
  year: 2021
  ident: CR88
  article-title: Mutual functional dependence of cyclase‐associated protein 1 (CAP1) and cofilin1 in neuronal actin dynamics and growth cone function
  publication-title: Prog Neurobiol
– volume: 25
  start-page: 1437
  year: 2015
  end-page: 1447
  ident: CR40
  article-title: Architecture dependence of actin filament network disassembly
  publication-title: Curr Biol
– volume: 29
  start-page: 545
  year: 2000
  end-page: 576
  ident: CR76
  article-title: Molecular mechanisms controlling actin filament dynamics in nonmuscle cells
  publication-title: Annu Rev Biophys Biomol Struct
– volume: 96
  start-page: 4908
  year: 1999
  end-page: 4913
  ident: CR18
  article-title: Motility of ActA protein‐coated microspheres driven by actin polymerization
  publication-title: Proc Natl Acad Sci USA
– volume: 95
  start-page: 6181
  year: 1998
  end-page: 6186
  ident: CR65
  article-title: The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments
  publication-title: Proc Natl Acad Sci USA
– volume: 27
  start-page: 2963
  year: 2017
  end-page: 2973.e14
  ident: CR81
  article-title: Actin turnover in lamellipodial fragments
  publication-title: Curr Biol
– volume: 31
  start-page: R603
  year: 2021
  end-page: R618
  ident: CR20
  article-title: Multiple roles for actin in secretory and endocytic pathways
  publication-title: Curr Biol
– volume: 101
  start-page: 597
  year: 1985
  end-page: 602
  ident: CR104
  article-title: Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling
  publication-title: J Cell Biol
– volume: 104
  start-page: 247
  year: 2013
  end-page: 257
  ident: CR90
  article-title: Distributed actin turnover in the lamellipodium and FRAP kinetics
  publication-title: Biophys J
– volume: 17
  start-page: 825
  year: 2007
  end-page: 833
  ident: CR60
  article-title: Actin‐filament stochastic dynamics mediated by ADF/cofilin
  publication-title: Curr Biol
– volume: 18
  start-page: 43
  year: 2016
  end-page: 53
  ident: CR99
  article-title: Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells
  publication-title: Nat Cell Biol
– volume: 31
  start-page: 708
  year: 2021
  end-page: 711
  ident: CR45
  article-title: Redefining actin dynamics of the pointed‐end complex in striated muscle
  publication-title: Trends Cell Biol
– volume: 337
  start-page: 1186
  year: 2012
  end-page: 1189
  ident: CR21
  article-title: How cells know the size of their organelles
  publication-title: Science
– volume: 70
  start-page: 179
  year: 2013
  end-page: 190
  ident: CR62
  article-title: Can filament treadmilling alone account for the F‐actin turnover in lamellipodia?
  publication-title: Cytoskeleton
– volume: 31
  start-page: 335
  year: 2020
  end-page: 347
  ident: CR77
  article-title: Genetically inspired reconstitution of actin cables from seven purified proteins
  publication-title: Mol Biol Cell
– volume: 115
  start-page: 1591
  year: 2002
  end-page: 1601
  ident: CR63
  article-title: Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover
  publication-title: J Cell Sci
– volume: 133
  start-page: 841
  year: 2008
  end-page: 851
  ident: CR1
  article-title: Capping protein increases the rate of actin‐based motility by promoting filament nucleation by the Arp2/3 complex
  publication-title: Cell
– volume: 171
  start-page: 188
  year: 2017
  end-page: 200.e16
  ident: CR64
  article-title: Load adaptation of lamellipodial actin networks
  publication-title: Cell
– volume: 71
  start-page: 351
  year: 2014
  end-page: 360
  ident: CR24
  article-title: Autonomous and in trans functions for the two halves of Srv2/CAP in promoting actin turnover
  publication-title: Cytoskeleton
– volume: 23
  start-page: 614
  year: 2012
  end-page: 629
  ident: CR50
  article-title: Choosing orientation: influence of cargo geometry and ActA polarization on actin comet tails
  publication-title: Mol Biol Cell
– volume: 109
  start-page: 11705
  year: 2012
  end-page: 11710
  ident: CR73
  article-title: Confinement induces actin flow in a meiotic cytoplasm
  publication-title: Proc Natl Acad Sci USA
– volume: 67
  start-page: 456
  year: 2010
  end-page: 465
  ident: CR105
  article-title: The structure of native G‐actin
  publication-title: Cytoskeleton
– volume: 19
  start-page: 829
  year: 2022
  end-page: 832
  ident: CR31
  article-title: TrackMate 7: integrating state‐of‐the‐art segmentation algorithms into tracking pipelines
  publication-title: Nat Methods
– volume: 32
  start-page: 43
  year: 2015
  end-page: 53
  ident: CR95
  article-title: Profilin regulates F‐actin network homeostasis by favoring formin over Arp2/3 complex
  publication-title: Dev Cell
– volume: 15
  start-page: 2324
  year: 2004
  end-page: 2334
  ident: CR10
  article-title: Cyclase‐associated protein 1 (CAP1) promotes cofilin‐ induced actin dynamics in mammalian nonmuscle cells
  publication-title: Mol Biol Cell
– volume: 67
  start-page: 120
  year: 2010
  end-page: 133
  ident: CR22
  article-title: A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover and
  publication-title: Cytoskeleton
– volume: 9
  start-page: 593
  year: 2008
  end-page: 602
  ident: CR79
  article-title: Building the cell: design principles of cellular architecture
  publication-title: Nat Rev Mol Cell Biol
– volume: 17
  year: 2019
  ident: CR6
  article-title: Sizes of actin networks sharing a common environment are determined by the relative rates of assembly
  publication-title: PLoS Biol
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: CR87
  article-title: Fiji: an open‐source platform for biological‐image analysis
  publication-title: Nat Methods
– volume: 28
  start-page: 2647
  year: 2018
  end-page: 2656.e4
  ident: CR26
  article-title: Actin‐network architecture regulates microtubule dynamics
  publication-title: Curr Biol
– volume: 24
  start-page: 31
  year: 2013
  end-page: 41
  ident: CR23
  article-title: Srv2/Cyclase‐associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin
  publication-title: Mol Biol Cell
– volume: 10
  year: 2021
  ident: CR100
  article-title: Different translation dynamics of β‐ and γ‐actin regulates cell migration
  publication-title: Elife
– volume: 352
  start-page: 1004
  year: 2016
  end-page: 1009
  ident: CR41
  article-title: Accelerated actin filament polymerization from microtubule plus ends
  publication-title: Science
– volume: 119
  year: 2022
  ident: CR2
  article-title: Cross‐linkers at growing microtubule ends generate forces that drive actin transport
  publication-title: Proc Natl Acad Sci USA
– volume: 101
  year: 2022
  ident: CR85
  article-title: Oxidation and reduction of actin: origin, impact and functional consequences
  publication-title: Eur J Cell Biol
– volume: 41
  start-page: e111631
  year: 2022
  ident: CR109
  article-title: Actin network architecture can ensure robust centering or sensitive decentering of the centrosome
  publication-title: EMBO J
– volume: 13
  start-page: 272
  year: 1992
  end-page: 284
  ident: CR32
  article-title: Tightly‐bound divalent cation of actin
  publication-title: J Muscle Res Cell Motil
– volume: 24
  start-page: 757
  year: 2013
  end-page: 767
  ident: CR33
  article-title: Analysis of turnover dynamics of the submembranous actin cortex
  publication-title: Mol Biol Cell
– volume: 60
  start-page: 179
  year: 2019
  end-page: 187
  ident: CR46
  article-title: Bottom‐up synthetic biology: reconstitution in space and time
  publication-title: Curr Opin Biotechnol
– volume: 10
  start-page: 1166
  year: 2021
  ident: CR39
  article-title: Intracellular ATP concentration and implication for cellular evolution
  publication-title: Biology
– volume: 8
  year: 2019
  ident: CR58
  article-title: Quantitative regulation of the dynamic steady state of actin networks
  publication-title: Elife
– volume: 17
  start-page: 1435
  year: 2015
  end-page: 1445
  ident: CR55
  article-title: Competition for actin between two distinct F‐actin networks defines a bistable switch for cell polarization
  publication-title: Nat Cell Biol
– volume: 401
  start-page: 613
  year: 1999
  end-page: 616
  ident: CR54
  article-title: Reconstitution of actin‐based motility of listeria and shigella using pure proteins
  publication-title: Nature
– volume: 24
  start-page: 13
  year: 2006
  end-page: 23
  ident: CR5
  article-title: Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin
  publication-title: Mol Cell
– volume: 352
  start-page: 126
  year: 1991
  end-page: 131
  ident: CR97
  article-title: Actin microfilaments dynamics in locomoting cells
  publication-title: Nature
– volume: 10
  start-page: 6215
  year: 2020
  ident: CR15
  article-title: The dynamics of actin network turnover is self‐organized by a growth‐depletion feedback
  publication-title: Sci Rep
– volume: 13
  start-page: 371
  year: 2011
  end-page: 382
  ident: CR17
  article-title: A role for actin arcs in the leading‐edge advance of migrating cells
  publication-title: Nat Cell Biol
– volume: 173
  start-page: 383
  year: 2006
  end-page: 394
  ident: CR42
  article-title: Stress fibers are generated by two distinct actin assembly mechanisms in motile cells
  publication-title: J Cell Biol
– volume: 12
  start-page: 5329
  year: 2021
  ident: CR36
  article-title: A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks
  publication-title: Nat Commun
– volume: 10
  start-page: 2354
  year: 2014
  end-page: 2364
  ident: CR4
  article-title: Alignment of nematic and bundled semiflexible polymers in cell‐sized confinement
  publication-title: Soft Matter
– volume: 11
  start-page: 130
  year: 2001
  end-page: 135
  ident: CR19
  article-title: Dendritic organization of actin comet tails
  publication-title: Curr Biol
– volume: 8
  year: 2020
  ident: CR86
  article-title: CAPt'n of actin dynamics: recent advances in the molecular, developmental and physiological functions of cyclase‐associated protein (CAP)
  publication-title: Front Cell Dev Biol
– volume: 15
  start-page: 509
  year: 2019
  end-page: 516
  ident: CR57
  article-title: Scaling behaviour in steady‐state contracting actomyosin networks
  publication-title: Nat Phys
– volume: 4
  year: 2015
  ident: CR98
  article-title: Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly
  publication-title: Elife
– volume: 611
  start-page: 241
  year: 2022
  end-page: 243
  ident: CR27
  article-title: Catching actin proteins in action
  publication-title: Nature
– volume: 295
  start-page: 1083
  year: 2002
  end-page: 1086
  ident: CR106
  article-title: Single‐molecule speckle analysis of actin filament turnover in lamellipodia
  publication-title: Science
– volume: 11
  start-page: 433
  year: 2015
  end-page: 445
  ident: CR103
  article-title: Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia
  publication-title: Cell Rep
– volume: 11
  start-page: 172
  year: 2020
  ident: CR38
  article-title: The molecular chaperone CCT/TRiC: an essential component of proteostasis and a potential modulator of protein aggregation
  publication-title: Front Genet
– volume: 125
  start-page: 2775
  year: 2012
  end-page: 2785
  ident: CR101
  article-title: Actin branching in the initiation and maintenance of lamellipodia
  publication-title: J Cell Sci
– volume: 9
  start-page: 1892
  year: 2018
  ident: CR48
  article-title: Structural basis of actin monomer re‐charging by cyclase‐associated protein
  publication-title: Nat Commun
– volume: 27
  start-page: 1956
  year: 2017
  end-page: 1967.e7
  ident: CR108
  article-title: ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends
  publication-title: Curr Biol
– volume: 8
  start-page: 655
  year: 2017
  ident: CR16
  article-title: Network heterogeneity regulates steering in actin‐based motility
  publication-title: Nat Commun
– volume: 4
  start-page: 1136
  year: 2021
  ident: CR8
  article-title: Actin crosslinker competition and sorting drive emergent GUV size‐dependent actin network architecture
  publication-title: Commun Biol
– volume: 188
  start-page: 769
  year: 2010
  end-page: 777
  ident: CR68
  article-title: Loss of Aip1 reveals a role in maintaining the actin monomer pool and an oligomer assembly pathway
  publication-title: J Cell Biol
– volume: 273
  start-page: 25106
  year: 1998
  end-page: 25111
  ident: CR12
  article-title: Interaction of actin monomers with acanthamoeba Actophorin (ADF/cofilin) and profilin
  publication-title: J Biol Chem
– volume: 236
  start-page: 950
  year: 1994
  end-page: 952
  ident: CR3
  article-title: Purification, characterization and crystallization of acanthamoeba profilin expressed in
  publication-title: J Mol Biol
– volume: 132
  year: 2019
  ident: CR74
  article-title: Dynamic stability of the actin ecosystem
  publication-title: J Cell Sci
– volume: 27
  start-page: 982
  year: 2008
  end-page: 992
  ident: CR51
  article-title: Arp2/3 Complex interactions and actin network turnover in lamellipodia
  publication-title: EMBO J
– volume: 44
  start-page: 1680
  year: 2012
  end-page: 1686
  ident: CR107
  article-title: Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity?
  publication-title: Int J Biochem
– volume: 287
  start-page: 35722
  year: 2012
  end-page: 35732
  ident: CR67
  article-title: Cyclase‐associated protein (CAP) acts directly on F‐actin to accelerate cofilin‐mediated actin severing across the range of physiological pH
  publication-title: J Biol Chem
– volume: 155
  start-page: 251
  year: 2001
  end-page: 260
  ident: CR72
  article-title: Interactions with PIP2, ADP‐actin monomers, and capping protein regulate the activity and localization of yeast twinfilin
  publication-title: J Cell Biol
– volume: 17
  start-page: 480
  year: 2015
  end-page: 489
  ident: CR61
  article-title: Cell‐sized spherical confinement induces the spontaneous formation of contractile actomyosin rings
  publication-title: Nat Cell Biol
– volume: 125
  start-page: 2775
  year: 2012
  end-page: 2785
  article-title: Actin branching in the initiation and maintenance of lamellipodia
  publication-title: J Cell Sci
– volume: 273
  start-page: 25106
  year: 1998
  end-page: 25111
  article-title: Interaction of actin monomers with acanthamoeba Actophorin (ADF/cofilin) and profilin
  publication-title: J Biol Chem
– volume: 11
  start-page: 433
  year: 2015
  end-page: 445
  article-title: Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia
  publication-title: Cell Rep
– volume: 17
  start-page: 1435
  year: 2015
  end-page: 1445
  article-title: Competition for actin between two distinct F‐actin networks defines a bistable switch for cell polarization
  publication-title: Nat Cell Biol
– volume: 21
  start-page: 862
  year: 2011
  end-page: 868
  article-title: Cofilin tunes the nucleotide state of actin filaments and severs at bare and decorated segment boundaries
  publication-title: Curr Biol
– volume: 11
  start-page: 172
  year: 2020
  article-title: The molecular chaperone CCT/TRiC: an essential component of proteostasis and a potential modulator of protein aggregation
  publication-title: Front Genet
– volume: 173
  start-page: 383
  year: 2006
  end-page: 394
  article-title: Stress fibers are generated by two distinct actin assembly mechanisms in motile cells
  publication-title: J Cell Biol
– volume: 287
  start-page: 35722
  year: 2012
  end-page: 35732
  article-title: Cyclase‐associated protein (CAP) acts directly on F‐actin to accelerate cofilin‐mediated actin severing across the range of physiological pH
  publication-title: J Biol Chem
– volume: 44
  start-page: 1680
  year: 2012
  end-page: 1686
  article-title: Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity?
  publication-title: Int J Biochem
– volume: 155
  start-page: 251
  year: 2001
  end-page: 260
  article-title: Interactions with PIP2, ADP‐actin monomers, and capping protein regulate the activity and localization of yeast twinfilin
  publication-title: J Cell Biol
– volume: 10
  start-page: 5319
  year: 2019
  article-title: Synergy between cyclase‐associated protein and cofilin accelerates actin filament depolymerization by two orders of magnitude
  publication-title: Nat Commun
– volume: 388
  start-page: 78
  year: 1997
  end-page: 82
  article-title: Cofilin promotes rapid actin filament turnover
  publication-title: Nature
– volume: 31
  start-page: 335
  year: 2020
  end-page: 347
  article-title: Genetically inspired reconstitution of actin cables from seven purified proteins
  publication-title: Mol Biol Cell
– volume: 31
  start-page: 1624
  year: 2001
  end-page: 1632
  article-title: The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself
  publication-title: Free Radic Biol Med
– volume: 71
  start-page: 351
  year: 2014
  end-page: 360
  article-title: Autonomous and in trans functions for the two halves of Srv2/CAP in promoting actin turnover
  publication-title: Cytoskeleton
– volume: 15
  start-page: 509
  year: 2019
  end-page: 516
  article-title: Scaling behaviour in steady‐state contracting actomyosin networks
  publication-title: Nat Phys
– volume: 10
  start-page: 1166
  year: 2021
  article-title: Intracellular ATP concentration and implication for cellular evolution
  publication-title: Biology
– volume: 10
  start-page: 2354
  year: 2014
  end-page: 2364
  article-title: Alignment of nematic and bundled semiflexible polymers in cell‐sized confinement
  publication-title: Soft Matter
– volume: 13
  start-page: 272
  year: 1992
  end-page: 284
  article-title: Tightly‐bound divalent cation of actin
  publication-title: J Muscle Res Cell Motil
– volume: 7
  year: 2011
  article-title: Self‐organized patterns of actin filaments in cell‐sized confinement
  publication-title: Soft Matter
– volume: 352
  start-page: 126
  year: 1991
  end-page: 131
  article-title: Actin microfilaments dynamics in locomoting cells
  publication-title: Nature
– volume: 11
  start-page: 421
  year: 2019
  end-page: 439
  article-title: The actin cytoskeleton as an active adaptive material
  publication-title: Annu Rev Condens Matter Phys
– volume: 11
  start-page: 353
  year: 2010
  end-page: 365
  article-title: Linking actin dynamics and gene transcription to drive cellular motile functions
  publication-title: Nat Rev Mol Cell Biol
– volume: 109
  start-page: 10364
  year: 2012
  end-page: 10369
  article-title: Impact of branching on the elasticity of actin networks
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 836
  year: 2022
  end-page: 852
  article-title: Biochemical and mechanical regulation of actin dynamics
  publication-title: Nat Rev Mol Cell Biol
– volume: 12
  start-page: 5329
  year: 2021
  article-title: A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks
  publication-title: Nat Commun
– volume: 4
  year: 2018
  article-title: Self‐organized stress patterns drive state transitions in actin cortices
  publication-title: Sci Adv
– volume: 4
  start-page: 1136
  year: 2021
  article-title: Actin crosslinker competition and sorting drive emergent GUV size‐dependent actin network architecture
  publication-title: Commun Biol
– volume: 32
  start-page: 43
  year: 2015
  end-page: 53
  article-title: Profilin regulates F‐actin network homeostasis by favoring formin over Arp2/3 complex
  publication-title: Dev Cell
– volume: 5
  start-page: 4778
  year: 2014
  article-title: Actin–microtubule coordination at growing microtubule ends
  publication-title: Nat Commun
– volume: 8
  year: 2020
  article-title: CAPt'n of actin dynamics: recent advances in the molecular, developmental and physiological functions of cyclase‐associated protein (CAP)
  publication-title: Front Cell Dev Biol
– volume: 67
  start-page: 120
  year: 2010
  end-page: 133
  article-title: A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover and
  publication-title: Cytoskeleton
– volume: 2
  year: 2016
  article-title: Actin kinetics shapes cortical network structure and mechanics
  publication-title: Sci Adv
– volume: 109
  start-page: 11705
  year: 2012
  end-page: 11710
  article-title: Confinement induces actin flow in a meiotic cytoplasm
  publication-title: Proc Natl Acad Sci USA
– volume: 246
  start-page: 4866
  year: 1971
  end-page: 4871
  article-title: The regulation of rabbit skeletal muscle contraction
  publication-title: J Biol Chem
– volume: 17
  year: 2019
  article-title: Sizes of actin networks sharing a common environment are determined by the relative rates of assembly
  publication-title: PLoS Biol
– volume: 67
  start-page: 456
  year: 2010
  end-page: 465
  article-title: The structure of native G‐actin
  publication-title: Cytoskeleton
– volume: 104
  start-page: 247
  year: 2013
  end-page: 257
  article-title: Distributed actin turnover in the lamellipodium and FRAP kinetics
  publication-title: Biophys J
– volume: 25
  start-page: 1437
  year: 2015
  end-page: 1447
  article-title: Architecture dependence of actin filament network disassembly
  publication-title: Curr Biol
– volume: 8
  year: 2019
  article-title: Quantitative regulation of the dynamic steady state of actin networks
  publication-title: Elife
– volume: 101
  year: 2022
  article-title: Oxidation and reduction of actin: origin, impact and functional consequences
  publication-title: Eur J Cell Biol
– volume: 337
  start-page: 1186
  year: 2012
  end-page: 1189
  article-title: How cells know the size of their organelles
  publication-title: Science
– volume: 94
  start-page: 235
  year: 2014
  end-page: 263
  article-title: Actin dynamics, architecture, and mechanics in cell motility
  publication-title: Physiol Rev
– volume: 9
  start-page: 1892
  year: 2018
  article-title: Structural basis of actin monomer re‐charging by cyclase‐associated protein
  publication-title: Nat Commun
– volume: 4
  year: 2015
  article-title: Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly
  publication-title: Elife
– volume: 24
  start-page: 2238
  year: 2013
  end-page: 2247
  article-title: Instantaneous inactivation of cofilin reveals its function of F‐actin disassembly in lamellipodia
  publication-title: Mol Biol Cell
– volume: 23
  start-page: 614
  year: 2012
  end-page: 629
  article-title: Choosing orientation: influence of cargo geometry and ActA polarization on actin comet tails
  publication-title: Mol Biol Cell
– volume: 15
  start-page: 2324
  year: 2004
  end-page: 2334
  article-title: Cyclase‐associated protein 1 (CAP1) promotes cofilin‐ induced actin dynamics in mammalian nonmuscle cells
  publication-title: Mol Biol Cell
– volume: 611
  start-page: 241
  year: 2022
  end-page: 243
  article-title: Catching actin proteins in action
  publication-title: Nature
– volume: 270
  start-page: 11437
  year: 1995
  end-page: 11444
  article-title: Flexibility of actin filaments derived from thermal fluctuations
  publication-title: J Biol Chem
– volume: 171
  start-page: 188
  year: 2017
  end-page: 200.e16
  article-title: Load adaptation of lamellipodial actin networks
  publication-title: Cell
– volume: 168
  year: 2021
  article-title: Crosstalk between myosin II and formin functions in the regulation of force generation and actomyosin dynamics in stress fibers
  publication-title: Cells Dev
– volume: 13
  start-page: 252
  year: 2003
  end-page: 257
  article-title: ADF/cofilin controls cell polarity during fibroblast migration
  publication-title: Curr Biol
– volume: 27
  start-page: 982
  year: 2008
  end-page: 992
  article-title: Arp2/3 Complex interactions and actin network turnover in lamellipodia
  publication-title: EMBO J
– volume: 101
  start-page: 597
  year: 1985
  end-page: 602
  article-title: Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling
  publication-title: J Cell Biol
– volume: 70
  start-page: 179
  year: 2013
  end-page: 190
  article-title: Can filament treadmilling alone account for the F‐actin turnover in lamellipodia?
  publication-title: Cytoskeleton
– volume: 22
  start-page: 2541
  year: 2011
  end-page: 2550
  article-title: Turnover of branched actin filament networks by stochastic fragmentation with ADF/cofilin
  publication-title: Mol Biol Cell
– volume: 73
  start-page: 209
  year: 2004
  end-page: 239
  article-title: Crawling toward a unified model of cell motility: spatial and temporal regulation of actin dynamics
  publication-title: Annu Rev Biochem
– volume: 24
  start-page: 13
  year: 2006
  end-page: 23
  article-title: Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin
  publication-title: Mol Cell
– volume: 115
  start-page: 1591
  year: 2002
  end-page: 1601
  article-title: Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover
  publication-title: J Cell Sci
– volume: 96
  start-page: 4908
  year: 1999
  end-page: 4913
  article-title: Motility of ActA protein‐coated microspheres driven by actin polymerization
  publication-title: Proc Natl Acad Sci USA
– volume: 336
  start-page: 1310
  year: 2012
  end-page: 1314
  article-title: Actin network architecture can determine myosin motor activity
  publication-title: Science
– volume: 10
  start-page: 6215
  year: 2020
  article-title: The dynamics of actin network turnover is self‐organized by a growth‐depletion feedback
  publication-title: Sci Rep
– volume: 274
  start-page: 15538
  year: 1999
  end-page: 15546
  article-title: Mechanism of interaction of acanthamoeba actophorin (ADF/cofilin) with actin filaments
  publication-title: J Biol Chem
– volume: 611
  start-page: 374
  year: 2022
  end-page: 379
  article-title: Structural basis of actin filament assembly and aging
  publication-title: Nature
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  article-title: Fiji: an open‐source platform for biological‐image analysis
  publication-title: Nat Methods
– volume: 164
  start-page: 115
  year: 2016
  end-page: 127
  article-title: Force feedback controls motor activity and mechanical properties of self‐assembling branched actin networks
  publication-title: Cell
– volume: 11
  start-page: 130
  year: 2001
  end-page: 135
  article-title: Dendritic organization of actin comet tails
  publication-title: Curr Biol
– volume: 8
  year: 2019
  article-title: Profilin and formin constitute a pacemaker system for robust actin filament growth
  publication-title: Elife
– volume: 10
  year: 2021
  article-title: Different translation dynamics of β‐ and γ‐actin regulates cell migration
  publication-title: Elife
– volume: 27
  start-page: 1956
  year: 2017
  end-page: 1967.e7
  article-title: ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends
  publication-title: Curr Biol
– volume: 188
  start-page: 769
  year: 2010
  end-page: 777
  article-title: Loss of Aip1 reveals a role in maintaining the actin monomer pool and an oligomer assembly pathway
  publication-title: J Cell Biol
– volume: 95
  start-page: 6181
  year: 1998
  end-page: 6186
  article-title: The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 5320
  year: 2019
  article-title: Mechanism of synergistic actin filament pointed end depolymerization by cyclase‐associated protein and cofilin
  publication-title: Nat Commun
– volume: 27
  start-page: 2963
  year: 2017
  end-page: 2973.e14
  article-title: Actin turnover in lamellipodial fragments
  publication-title: Curr Biol
– volume: 18
  start-page: 43
  year: 2016
  end-page: 53
  article-title: Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells
  publication-title: Nat Cell Biol
– volume: 236
  start-page: 950
  year: 1994
  end-page: 952
  article-title: Purification, characterization and crystallization of acanthamoeba profilin expressed in
  publication-title: J Mol Biol
– volume: 24
  start-page: 31
  year: 2013
  end-page: 41
  article-title: Srv2/Cyclase‐associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin
  publication-title: Mol Biol Cell
– volume: 60
  start-page: 179
  year: 2019
  end-page: 187
  article-title: Bottom‐up synthetic biology: reconstitution in space and time
  publication-title: Curr Opin Biotechnol
– volume: 132
  year: 2019
  article-title: Myosin‐II activity generates a dynamic steady state with continuous actin turnover in a minimal actin cortex
  publication-title: J Cell Sci
– volume: 130
  start-page: 331
  year: 1995
  end-page: 343
  article-title: Actin‐based movement of listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface
  publication-title: J Cell Biol
– volume: 17
  start-page: 480
  year: 2015
  end-page: 489
  article-title: Cell‐sized spherical confinement induces the spontaneous formation of contractile actomyosin rings
  publication-title: Nat Cell Biol
– volume: 202
  year: 2021
  article-title: Mutual functional dependence of cyclase‐associated protein 1 (CAP1) and cofilin1 in neuronal actin dynamics and growth cone function
  publication-title: Prog Neurobiol
– volume: 13
  start-page: 2579
  year: 2022
  article-title: Activity‐induced polar patterns of filaments gliding on a sphere
  publication-title: Nat Commun
– volume: 31
  start-page: 708
  year: 2021
  end-page: 711
  article-title: Redefining actin dynamics of the pointed‐end complex in striated muscle
  publication-title: Trends Cell Biol
– volume: 22
  start-page: R330
  year: 2012
  end-page: R339
  article-title: Organelle growth control through limiting pools of cytoplasmic components
  publication-title: Curr Biol
– volume: 112
  start-page: 453
  year: 2003
  end-page: 465
  article-title: Cellular motility driven by assembly and disassembly of actin filaments
  publication-title: Cell
– volume: 31
  start-page: R603
  year: 2021
  end-page: R618
  article-title: Multiple roles for actin in secretory and endocytic pathways
  publication-title: Curr Biol
– volume: 417
  start-page: 308
  year: 2002
  end-page: 311
  article-title: The dynamics of actin‐based motility depend on surface parameters
  publication-title: Nature
– volume: 19
  start-page: 829
  year: 2022
  end-page: 832
  article-title: TrackMate 7: integrating state‐of‐the‐art segmentation algorithms into tracking pipelines
  publication-title: Nat Methods
– volume: 8
  start-page: 655
  year: 2017
  article-title: Network heterogeneity regulates steering in actin‐based motility
  publication-title: Nat Commun
– volume: 28
  start-page: 2647
  year: 2018
  end-page: 2656.e4
  article-title: Actin‐network architecture regulates microtubule dynamics
  publication-title: Curr Biol
– volume: 146
  start-page: 1319
  year: 1999
  end-page: 1332
  article-title: Activation of the Cdc42 effector N‐wasp by the shigella flexneri Icsa protein promotes actin nucleation by Arp2/3 complex and bacterial actin‐based motility
  publication-title: J Cell Biol
– volume: 133
  start-page: 841
  year: 2008
  end-page: 851
  article-title: Capping protein increases the rate of actin‐based motility by promoting filament nucleation by the Arp2/3 complex
  publication-title: Cell
– volume: 9
  start-page: 593
  year: 2008
  end-page: 602
  article-title: Building the cell: design principles of cellular architecture
  publication-title: Nat Rev Mol Cell Biol
– volume: 132
  year: 2019
  article-title: Dynamic stability of the actin ecosystem
  publication-title: J Cell Sci
– volume: 352
  start-page: 1004
  year: 2016
  end-page: 1009
  article-title: Accelerated actin filament polymerization from microtubule plus ends
  publication-title: Science
– volume: 24
  start-page: 757
  year: 2013
  end-page: 767
  article-title: Analysis of turnover dynamics of the submembranous actin cortex
  publication-title: Mol Biol Cell
– volume: 29
  start-page: 545
  year: 2000
  end-page: 576
  article-title: Molecular mechanisms controlling actin filament dynamics in nonmuscle cells
  publication-title: Annu Rev Biophys Biomol Struct
– volume: 23
  start-page: 569
  year: 2011
  end-page: 578
  article-title: Actin dynamics and turnover in cell motility
  publication-title: Curr Opin Cell Biol
– volume: 119
  year: 2022
  article-title: Cross‐linkers at growing microtubule ends generate forces that drive actin transport
  publication-title: Proc Natl Acad Sci USA
– volume: 41
  start-page: e111631
  year: 2022
  article-title: Actin network architecture can ensure robust centering or sensitive decentering of the centrosome
  publication-title: EMBO J
– volume: 17
  start-page: 825
  year: 2007
  end-page: 833
  article-title: Actin‐filament stochastic dynamics mediated by ADF/cofilin
  publication-title: Curr Biol
– volume: 295
  start-page: 1083
  year: 2002
  end-page: 1086
  article-title: Single‐molecule speckle analysis of actin filament turnover in lamellipodia
  publication-title: Science
– volume: 14
  start-page: 386
  year: 2004
  end-page: 394
  article-title: Regulation of cytoskeletal dynamics by actin‐monomer‐binding proteins
  publication-title: Trends Cell Biol
– volume: 109
  start-page: 14440
  year: 2012
  end-page: 14445
  article-title: How actin network dynamics control the onset of actin‐based motility
  publication-title: Proc Natl Acad Sci USA
– volume: 9
  start-page: 1110
  year: 2007
  end-page: 1121
  article-title: The many faces of actin: matching assembly factors with cellular structures
  publication-title: Nat Cell Biol
– volume: 401
  start-page: 613
  year: 1999
  end-page: 616
  article-title: Reconstitution of actin‐based motility of listeria and shigella using pure proteins
  publication-title: Nature
– volume: 13
  start-page: 371
  year: 2011
  end-page: 382
  article-title: A role for actin arcs in the leading‐edge advance of migrating cells
  publication-title: Nat Cell Biol
– ident: e_1_2_9_41_1
  doi: 10.1016/j.cub.2015.04.011
– ident: e_1_2_9_60_1
  doi: 10.1083/jcb.130.2.331
– ident: e_1_2_9_15_1
  doi: 10.1152/physrev.00018.2013
– ident: e_1_2_9_105_1
  doi: 10.1083/jcb.101.2.597
– ident: e_1_2_9_3_1
  doi: 10.1073/pnas.2112799119
– ident: e_1_2_9_4_1
  doi: 10.1006/jmbi.1994.1200
– ident: e_1_2_9_90_1
  doi: 10.1038/s41467-019-13268-1
– ident: e_1_2_9_13_1
  doi: 10.1074/jbc.273.39.25106
– ident: e_1_2_9_57_1
  doi: 10.1038/ncomms5778
– ident: e_1_2_9_67_1
  doi: 10.1016/j.cdev.2021.203736
– ident: e_1_2_9_82_1
  doi: 10.1016/j.cub.2017.08.066
– ident: e_1_2_9_102_1
  doi: 10.1242/jcs.107623
– ident: e_1_2_9_2_1
  doi: 10.1016/j.cell.2008.04.011
– ident: e_1_2_9_32_1
  doi: 10.1038/s41592-022-01507-1
– ident: e_1_2_9_100_1
  doi: 10.1038/ncb3284
– ident: e_1_2_9_22_1
  doi: 10.1126/science.1223539
– ident: e_1_2_9_36_1
  doi: 10.7554/eLife.50963
– ident: e_1_2_9_66_1
  doi: 10.1073/pnas.95.11.6181
– ident: e_1_2_9_64_1
  doi: 10.1242/jcs.115.8.1591
– ident: e_1_2_9_19_1
  doi: 10.1073/pnas.96.9.4908
– ident: e_1_2_9_40_1
  doi: 10.3390/biology10111166
– ident: e_1_2_9_70_1
  doi: 10.1038/nrm2890
– ident: e_1_2_9_12_1
  doi: 10.1016/j.cell.2015.11.057
– ident: e_1_2_9_83_1
  doi: 10.1091/mbc.e11-01-0052
– ident: e_1_2_9_65_1
  doi: 10.1016/j.cell.2017.07.051
– ident: e_1_2_9_10_1
  doi: 10.1038/417308a
– ident: e_1_2_9_11_1
  doi: 10.1091/mbc.e04-01-0048
– ident: e_1_2_9_55_1
  doi: 10.1038/44183
– ident: e_1_2_9_48_1
  doi: 10.1073/pnas.1117096109
– ident: e_1_2_9_106_1
  doi: 10.1002/cm.20458
– ident: e_1_2_9_80_1
  doi: 10.1038/nrm2460
– ident: e_1_2_9_20_1
  doi: 10.1016/S0960-9822(01)00022-7
– ident: e_1_2_9_76_1
  doi: 10.1016/S0092-8674(03)00120-X
– ident: e_1_2_9_78_1
  doi: 10.1091/mbc.E19-10-0576
– ident: e_1_2_9_30_1
  doi: 10.1016/S0960-9822(03)00040-X
– ident: e_1_2_9_87_1
  doi: 10.3389/fcell.2020.586631
– ident: e_1_2_9_33_1
  doi: 10.1007/BF01766455
– ident: e_1_2_9_63_1
  doi: 10.1002/cm.21098
– ident: e_1_2_9_94_1
  doi: 10.1016/S0021-9258(18)62016-2
– ident: e_1_2_9_7_1
  doi: 10.1371/journal.pbio.3000317
– ident: e_1_2_9_79_1
  doi: 10.1073/pnas.1121238109
– ident: e_1_2_9_21_1
  doi: 10.1016/j.cub.2021.03.038
– ident: e_1_2_9_46_1
  doi: 10.1016/j.tcb.2021.06.006
– ident: e_1_2_9_101_1
  doi: 10.7554/eLife.68712
– ident: e_1_2_9_84_1
  doi: 10.1126/science.1221708
– ident: e_1_2_9_27_1
  doi: 10.1016/j.cub.2018.06.028
– ident: e_1_2_9_47_1
  doi: 10.1016/j.copbio.2019.05.008
– ident: e_1_2_9_69_1
  doi: 10.1083/jcb.200909176
– ident: e_1_2_9_109_1
  doi: 10.1016/j.cub.2017.05.048
– ident: e_1_2_9_39_1
  doi: 10.3389/fgene.2020.00172
– ident: e_1_2_9_81_1
  doi: 10.1146/annurev.biochem.73.011303.073844
– ident: e_1_2_9_44_1
  doi: 10.1038/s41467-022-30128-7
– ident: e_1_2_9_75_1
  doi: 10.1242/jcs.219832
– ident: e_1_2_9_86_1
  doi: 10.1016/j.ejcb.2022.151249
– ident: e_1_2_9_29_1
  doi: 10.1016/S0891-5849(01)00749-3
– ident: e_1_2_9_56_1
  doi: 10.1038/ncb3246
– ident: e_1_2_9_16_1
  doi: 10.1038/s41598-020-62942-8
– ident: e_1_2_9_71_1
  doi: 10.1038/s41586-022-05241-8
– ident: e_1_2_9_98_1
  doi: 10.1038/352126a0
– ident: e_1_2_9_31_1
  doi: 10.1083/jcb.146.6.1319
– ident: e_1_2_9_35_1
  doi: 10.1126/sciadv.1501337
– ident: e_1_2_9_103_1
  doi: 10.1091/mbc.e13-03-0156
– ident: e_1_2_9_49_1
  doi: 10.1038/s41467-018-04231-7
– ident: e_1_2_9_68_1
  doi: 10.1074/jbc.M112.396051
– ident: e_1_2_9_96_1
  doi: 10.1016/j.devcel.2014.10.027
– ident: e_1_2_9_26_1
  doi: 10.1038/ncb1007-1110
– ident: e_1_2_9_28_1
  doi: 10.1038/d41586-022-03343-x
– ident: e_1_2_9_34_1
  doi: 10.1091/mbc.e12-06-0485
– ident: e_1_2_9_74_1
  doi: 10.1073/pnas.1121583109
– ident: e_1_2_9_53_1
  doi: 10.1038/40418
– ident: e_1_2_9_85_1
  doi: 10.1016/j.ceb.2011.07.003
– ident: e_1_2_9_23_1
  doi: 10.1002/cm.20429
– ident: e_1_2_9_88_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_9_38_1
  doi: 10.1016/j.cub.2012.03.046
– ident: e_1_2_9_108_1
  doi: 10.1016/j.biocel.2012.05.024
– ident: e_1_2_9_110_1
  doi: 10.15252/embj.2022111631
– ident: e_1_2_9_92_1
  doi: 10.1039/c1sm06060k
– ident: e_1_2_9_25_1
  doi: 10.1002/cm.21170
– ident: e_1_2_9_59_1
  doi: 10.7554/eLife.42413
– ident: e_1_2_9_95_1
  doi: 10.1016/j.cub.2011.03.064
– ident: e_1_2_9_8_1
  doi: 10.1146/annurev-conmatphys-031218-013231
– ident: e_1_2_9_91_1
  doi: 10.1016/j.bpj.2012.11.3819
– ident: e_1_2_9_24_1
  doi: 10.1091/mbc.e12-08-0589
– ident: e_1_2_9_73_1
  doi: 10.1083/jcb.200106157
– ident: e_1_2_9_42_1
  doi: 10.1126/science.aaf1709
– ident: e_1_2_9_54_1
  doi: 10.1038/s41580-022-00508-4
– ident: e_1_2_9_61_1
  doi: 10.1016/j.cub.2007.04.037
– ident: e_1_2_9_93_1
  doi: 10.1242/jcs.219899
– ident: e_1_2_9_62_1
  doi: 10.1038/ncb3142
– ident: e_1_2_9_51_1
  doi: 10.1091/mbc.e11-06-0584
– ident: e_1_2_9_17_1
  doi: 10.1038/s41467-017-00455-1
– ident: e_1_2_9_18_1
  doi: 10.1038/ncb2205
– ident: e_1_2_9_43_1
  doi: 10.1083/jcb.200511093
– ident: e_1_2_9_104_1
  doi: 10.1016/j.celrep.2015.03.033
– ident: e_1_2_9_14_1
  doi: 10.1074/jbc.274.22.15538
– ident: e_1_2_9_97_1
  doi: 10.1126/sciadv.aar2847
– ident: e_1_2_9_9_1
  doi: 10.1038/s42003-021-02653-6
– ident: e_1_2_9_77_1
  doi: 10.1146/annurev.biophys.29.1.545
– ident: e_1_2_9_45_1
  doi: 10.1074/jbc.270.19.11437
– ident: e_1_2_9_52_1
  doi: 10.1038/emboj.2008.34
– ident: e_1_2_9_6_1
  doi: 10.1016/j.molcel.2006.08.006
– ident: e_1_2_9_37_1
  doi: 10.1038/s41467-021-25682-5
– ident: e_1_2_9_89_1
  doi: 10.1016/j.pneurobio.2021.102050
– ident: e_1_2_9_50_1
  doi: 10.1038/s41467-019-13213-2
– ident: e_1_2_9_99_1
  doi: 10.7554/eLife.06126
– ident: e_1_2_9_5_1
  doi: 10.1039/C3SM52421C
– ident: e_1_2_9_72_1
  doi: 10.1016/j.tcb.2004.05.002
– ident: e_1_2_9_107_1
  doi: 10.1126/science.1067470
– ident: e_1_2_9_58_1
  doi: 10.1038/s41567-018-0413-4
SSID ssj0005871
Score 2.4851937
Snippet Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e112717
SubjectTerms Actin
Actin Cytoskeleton - metabolism
actin turnover
Actins - metabolism
aging
Beads
Cellular Biology
Cellular communication
Cellular structure
Comet tails
Cycle protein
Dismantling
EMBO05
Feedback loops
Life Sciences
lifetime
microwells
Monomers
Polystyrene
Polystyrene resins
Proteins
reconstituted system
Steady state
Structural stability
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VqopeqkKhTaHIVL2AFLFx4tg-AgKteFQ9FIlbZCc2Dy3ZioVK_PvOOI9tilqkHhNPEicznvkmngfAF12i1GhpYu7ThIpqi1irSsZJJbkoZZkrHwJkv-bj8-z4Qlz8lgvT1Ifof7jRygj6mha4sbOuYw9VDXW39gYdPI4uDEenZAFeUoYt1c_n2bd5mIcKTlf4z5IlSrdblXSP3T_uMDBNC1cUGPkUdT4Nnux3UIf4Nhioo7fwpkWWbK8RhWV44eoVeNX0mnxcgaWDrrXbOzhBsPhIOZGXbOoZQkBG6Q01u6UMB3fHqO8Wm1Dq0yyMTq69oyb0RF03ceMMTVVN4Z-rcH50-P1gHLddFeISoYOMpTHCiDQ36Dl64bWwIykrp1Ir7chx1N1J5rxIpNO-RPiSpNKg2a-yyleea5euwWI9rd0HYIi9nHcW7RsCAZ1zZatKSmkNbedIbiPY7T5oUbYlx6nzxaQg14NYUBALijkLItjur_jRlNv4B-1n5FFPRnWyx3unBZ1DzSQy1MU_kwg2OhYW7eqcFZzajaS5SrMItvph5AFtlpjaTR-QRqpcEJGI4H3D8f5Raa6pKAePQA1kYTCX4Uh9fRVqd6MGRMCU6Qh2OrGZz-vvbyqCYD37SYrDs_3j-eHH_7xuHV7jQRPXyTdg8f7uwX1C7HVvN8Pi-gVuKSEO
  priority: 102
  providerName: Wiley-Blackwell
Title Recycling of the actin monomer pool limits the lifetime of network turnover
URI https://link.springer.com/article/10.15252/embj.2022112717
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022112717
https://www.ncbi.nlm.nih.gov/pubmed/36912152
https://www.proquest.com/docview/2808136834
https://www.proquest.com/docview/2786513685
https://hal.science/hal-04054219
https://pubmed.ncbi.nlm.nih.gov/PMC10152149
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT6wwEJ64GnN8Md6O4mVTzXnRhCiF0vZRN5qNnmN8OCa-EQqtl6ys8Zb4750BlpV4i4_QAqUz7XzTuQH80RlyjZapz10YUFJt4WuVSz_IJReZzGLlSgfZ07h_Hh1fiIv6vINiYd7a7wUXfNfemhtU4zgqKhxVjw5MiSCMiX97cW_szKFK1ao8TYkCpWuD5EdvaAmgzhW5P77Hlu9dJBs7aRvFlmLoaA5ma_zI9iuCz8OELRZguqoo-bIAv3qjAm6LcIKQ8IUiHy_Z0DEEeoyCGAp2S3EM9p5RdS02oACnh7J1cO0slZqn3kXlHc5QIBXk5LkE50eH_3t9v66d4GcIEKQv01SkIoxT1A-dcFqYPSlzq0IjzZ7luEMHkXUikFa7DEFKEMoUhXse5S53XNvwN0wWw8KuAEOEZZ01KMVQ3OuYK5PnUkqTktFGcuPB7mhCk6xOLE71LQYJKRhEgoRIkIxJ4MF288RdlVTji75bSKOmG2XD7u__Tege7j8iwh33OfBgfUTCpF6DDwmnoiJhrMLIg82mGWlAJpG0sMMn7CNVTPykhAfLFcWbTyGXUeoN7oFq8UJrLO2W4vqqzNCN-xzCokh7sDNim_G4Pv9TUTLWt1OSHP47OB5frv7kI2swgxeVyyZfh8nH-ye7gbDq0XShw6OzbrmuuiTgxCun8xcj
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VUEUvFVCgKbSYigtI0RInju0jrEALLJxA4mbFic1DS7biUYl_z0ySzTaipeKYeJI4HtvzjecFsKVznDVaZiH3cURJtUWoVSHDqJBc5DJPla8cZM_SwUVyfCkum_MOioX5034vuOA9d2dvUY3jqKhwVD1mYC5BPZmc9_ppf-rMoSrVqjpNSSKlG4Pk397QEUAz1-T--BpbvnaRbO2kXRRbiaHDBfjc4Ee2VzN8ET64cgk-1hUln5dgvj8p4PYFThASPlPk4xUbe4ZAj1EQQ8nuKI7B3TOqrsVGFOD0ULWObryjUvNEXdbe4QwFUklOnstwcXhw3h-ETe2EMEeAIEOZZSITcZqhfuiF18LuSlk4FVtpdx3HHTpKnBeRdNrnCFKiWGYo3Iuk8IXn2sUrMFuOS_cVGCIs551FKYbiXqdc2aKQUtqMjDaS2wB6kwE1eZNYnOpbjAwpGMQCQywwUxYEsN0-8atOqvEG7U_kUUtG2bAHe0ND93D_EQnuuL-jANYnLDTNGnwwnIqKxKmKkwA222bkAZlEstKNn5BGqlQQkQhgteZ4-6k41ZR6gwegOnOh05duS3lzXWXoxn0OYVGiA9iZTJtpv_79p6KaWP8dEnNwun88vfz2no9swPzg_HRohkdnJ2vwCRtq902-DrOP90_uO0KsR_ujWl0vy0UYUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIigXBIWWQAGDuIAUbePEsX0sS1dLWyoOVOotihObFm29VXeL1H_PjPNYReUhjrEnL8_E803mBfBOVyg1WpYxd2lCRbVFrFUt46SWXFSyypULAbLH-fQkOzgVp-0Pt0UX7d65JJucBqrS5Jejy9p1_Xr4yF6YH2jccTRfOBoka3AX7ZTgph3n41WIhwoGV_jHkiVKt27K311hoJbWzigo8jbivB042XtPh9g2KKfJI3jYokq214jBY7hj_Sbca_pM3mzCxrhr6_YEDhEo3lA-5Hc2dwzhH6PUBs8uKLvBXjHqucVmlPa0CLOzc2epAT1R-yZmnKGa8hT6-RROJvvfxtO47agQVwgbZCzLUpQizUu0Gp1wWphdKWurUiPNruW4byeZdSKRVrsKoUuSyhJVfp3VrnZc23QL1v3c22fAEHdZZw3qNgQBOufK1LWU0pTkypHcRDDqFrSo2nLj1PViVpDZQSwoiAXFigURvO_PuGxKbfyF9i3yqCejGtnTvaOCxnBXEhnuwz-TCHY6Fhbtl7koOLUaSXOVZhG86aeRB-QoKb2dXyONVLkgIhHBdsPx_lZprqkgB49ADWRh8CzDGX9-Fup24-6HYCnTEXzoxGb1XH9-UxEE659LUux_-XiwOnz-Pzd5Dfe_fpoUR5-PD1_AAxxvYjr5Dqwvr67tS8RdS_MqfFy_APSSIJo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recycling+of+the+actin+monomer+pool+limits+the+lifetime+of+network+turnover&rft.jtitle=The+EMBO+journal&rft.au=Colin%2C+Alexandra&rft.au=Kotila%2C+Tommi&rft.au=Gu%C3%A9rin%2C+Christophe&rft.au=Orhant%E2%80%90Prioux%2C+Magali&rft.date=2023-05-02&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=42&rft.issue=9&rft_id=info:doi/10.15252%2Fembj.2022112717&rft.externalDBID=n%2Fa&rft.externalDocID=10_15252_embj_2022112717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon