Recycling of the actin monomer pool limits the lifetime of network turnover
Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural sta...
Saved in:
Published in | The EMBO journal Vol. 42; no. 9; pp. e112717 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.05.2023
Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase‐associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long‐term network assembly with a limited amount of building blocks.
Synopsis
Mechanisms enabling the maintenance of cellular structural stability during the constant turnover of a limited actin monomer pool are poorly understood. Here, reconstitution of actin in a dynamic steady state using a combination of purified proteins and cell‐sized compartments reveals the parameters influencing actin lifetime.
Sustained actin turnover over multiple hours was reconstituted in cell‐sized microwells containing a limited amount of components
A recycling step is required for reuse of actin monomers and other actin‐binding proteins in multiple assembly cycles
Actin monomers age and limit the lifetime of the reconstituted system
Changes in the availability of actin monomers enable a feedback loop between assembly and disassembly
Graphical Abstract
Reconstitution of actin in a dynamic steady state using cell‐sized compartments reveals the parameters influencing long‐term assembly upon limited component availability. |
---|---|
AbstractList | Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase‐associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long‐term network assembly with a limited amount of building blocks.
image
Mechanisms enabling the maintenance of cellular structural stability during the constant turnover of a limited actin monomer pool are poorly understood. Here, reconstitution of actin in a dynamic steady state using a combination of purified proteins and cell‐sized compartments reveals the parameters influencing actin lifetime.
Sustained actin turnover over multiple hours was reconstituted in cell‐sized microwells containing a limited amount of components
A recycling step is required for reuse of actin monomers and other actin‐binding proteins in multiple assembly cycles
Actin monomers age and limit the lifetime of the reconstituted system
Changes in the availability of actin monomers enable a feedback loop between assembly and disassembly Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase‐associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long‐term network assembly with a limited amount of building blocks. Synopsis Mechanisms enabling the maintenance of cellular structural stability during the constant turnover of a limited actin monomer pool are poorly understood. Here, reconstitution of actin in a dynamic steady state using a combination of purified proteins and cell‐sized compartments reveals the parameters influencing actin lifetime. Sustained actin turnover over multiple hours was reconstituted in cell‐sized microwells containing a limited amount of components A recycling step is required for reuse of actin monomers and other actin‐binding proteins in multiple assembly cycles Actin monomers age and limit the lifetime of the reconstituted system Changes in the availability of actin monomers enable a feedback loop between assembly and disassembly Reconstitution of actin in a dynamic steady state using cell‐sized compartments reveals the parameters influencing long‐term assembly upon limited component availability. Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks. Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks. Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase‐associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long‐term network assembly with a limited amount of building blocks. Synopsis Mechanisms enabling the maintenance of cellular structural stability during the constant turnover of a limited actin monomer pool are poorly understood. Here, reconstitution of actin in a dynamic steady state using a combination of purified proteins and cell‐sized compartments reveals the parameters influencing actin lifetime. Sustained actin turnover over multiple hours was reconstituted in cell‐sized microwells containing a limited amount of components A recycling step is required for reuse of actin monomers and other actin‐binding proteins in multiple assembly cycles Actin monomers age and limit the lifetime of the reconstituted system Changes in the availability of actin monomers enable a feedback loop between assembly and disassembly Graphical Abstract Reconstitution of actin in a dynamic steady state using cell‐sized compartments reveals the parameters influencing long‐term assembly upon limited component availability. Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called “dynamic steady state,” allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase‐associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long‐term network assembly with a limited amount of building blocks. Reconstitution of actin in a dynamic steady state using cell‐sized compartments reveals the parameters influencing long‐term assembly upon limited component availability. |
Author | Mogilner, Alex Vianay, Benoit Lappalainen, Pekka Théry, Manuel Kotila, Tommi Colin, Alexandra Guérin, Christophe Orhant‐Prioux, Magali Blanchoin, Laurent |
AuthorAffiliation | 5 Department of Biology New York University New York NY USA 3 CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI) University of Paris, INSERM, CEA Paris France 4 Courant Institute of Mathematical Sciences New York University New York NY USA 1 CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble University of Grenoble‐Alpes, CEA, CNRS, INRA Grenoble France 2 Institute of Biotechnology and Helsinki Institute of Life Science University of Helsinki Helsinki Finland |
AuthorAffiliation_xml | – name: 4 Courant Institute of Mathematical Sciences New York University New York NY USA – name: 1 CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble University of Grenoble‐Alpes, CEA, CNRS, INRA Grenoble France – name: 2 Institute of Biotechnology and Helsinki Institute of Life Science University of Helsinki Helsinki Finland – name: 5 Department of Biology New York University New York NY USA – name: 3 CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI) University of Paris, INSERM, CEA Paris France |
Author_xml | – sequence: 1 givenname: Alexandra orcidid: 0000-0002-9144-3282 surname: Colin fullname: Colin, Alexandra organization: CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble‐Alpes, CEA, CNRS, INRA – sequence: 2 givenname: Tommi orcidid: 0000-0002-9046-5834 surname: Kotila fullname: Kotila, Tommi organization: Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki – sequence: 3 givenname: Christophe surname: Guérin fullname: Guérin, Christophe organization: CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble‐Alpes, CEA, CNRS, INRA – sequence: 4 givenname: Magali surname: Orhant‐Prioux fullname: Orhant‐Prioux, Magali organization: CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble‐Alpes, CEA, CNRS, INRA – sequence: 5 givenname: Benoit surname: Vianay fullname: Vianay, Benoit organization: CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA – sequence: 6 givenname: Alex surname: Mogilner fullname: Mogilner, Alex organization: Courant Institute of Mathematical Sciences, New York University, Department of Biology, New York University – sequence: 7 givenname: Pekka surname: Lappalainen fullname: Lappalainen, Pekka organization: Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki – sequence: 8 givenname: Manuel orcidid: 0000-0002-9968-1779 surname: Théry fullname: Théry, Manuel email: manuel.thery@cea.fr organization: CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble‐Alpes, CEA, CNRS, INRA, CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA – sequence: 9 givenname: Laurent orcidid: 0000-0001-8146-9254 surname: Blanchoin fullname: Blanchoin, Laurent email: laurent.blanchoin@cea.fr organization: CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble‐Alpes, CEA, CNRS, INRA, CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36912152$$D View this record in MEDLINE/PubMed https://hal.science/hal-04054219$$DView record in HAL |
BookMark | eNqFkc1v1DAQxS1URLeFOycUiQscUjyOHScSEipVP4BFSAjOlpNMdr0k9uJ4t9r_HqcpLV0JOFmyf-89z7wjcmCdRUKeAz0BwQR7g321OmGUMQAmQT4iM-A5TRmV4oDMKMsh5VCUh-RoGFaUUlFIeEIOs7wEFh1m5NNXrHd1Z-wicW0SlpjoOhib9M66Hn2ydq5LOtObMNy8dqbFYHocaYvh2vkfSdh467bon5LHre4GfHZ7HpPvF-ffzq7S-ZfLD2en87QWgstUai20yHLNKWtFW4qKStlgkVWyosiwAuDYCpBYtnVWlpBJzThteNM2LSsxOybvJt_1puqxqdEGrzu19qbXfqecNurhizVLtXBbBTTODLyMDq8nh-We7up0rsY7yqngDMotRPbVbZp3Pzc4BNWbocau0xbdZlBMFrmALC9ERF_uoSsXdxN3oVhBixHKeKRe_Pn9u_zfpUSATkDt3TB4bO8QoOqmdzX2ru57j5J8T1KboINx4wJM9y_h20l4bTrc_TdInX9-__GBHCb5EJV2gf5-4r9G_gI8QtKM |
CitedBy_id | crossref_primary_10_1016_j_cub_2024_12_036 crossref_primary_10_1038_s41467_024_52251_3 crossref_primary_10_1016_j_cub_2024_11_067 crossref_primary_10_1016_j_ejcb_2023_151383 crossref_primary_10_1083_jcb_202309021 crossref_primary_10_1038_s41556_024_01379_x crossref_primary_10_1126_sciadv_ado5788 crossref_primary_10_1016_j_ejcb_2023_151368 crossref_primary_10_1016_j_jbc_2023_105367 crossref_primary_10_1073_pnas_2300416120 crossref_primary_10_1091_mbc_E23_09_0370 crossref_primary_10_3389_fmolb_2024_1423503 crossref_primary_10_1016_j_tcb_2024_12_009 |
Cites_doi | 10.1016/j.cub.2015.04.011 10.1083/jcb.130.2.331 10.1152/physrev.00018.2013 10.1083/jcb.101.2.597 10.1073/pnas.2112799119 10.1006/jmbi.1994.1200 10.1038/s41467-019-13268-1 10.1074/jbc.273.39.25106 10.1038/ncomms5778 10.1016/j.cdev.2021.203736 10.1016/j.cub.2017.08.066 10.1242/jcs.107623 10.1016/j.cell.2008.04.011 10.1038/s41592-022-01507-1 10.1038/ncb3284 10.1126/science.1223539 10.7554/eLife.50963 10.1073/pnas.95.11.6181 10.1242/jcs.115.8.1591 10.1073/pnas.96.9.4908 10.3390/biology10111166 10.1038/nrm2890 10.1016/j.cell.2015.11.057 10.1091/mbc.e11-01-0052 10.1016/j.cell.2017.07.051 10.1038/417308a 10.1091/mbc.e04-01-0048 10.1038/44183 10.1073/pnas.1117096109 10.1002/cm.20458 10.1038/nrm2460 10.1016/S0960-9822(01)00022-7 10.1016/S0092-8674(03)00120-X 10.1091/mbc.E19-10-0576 10.1016/S0960-9822(03)00040-X 10.3389/fcell.2020.586631 10.1007/BF01766455 10.1002/cm.21098 10.1016/S0021-9258(18)62016-2 10.1371/journal.pbio.3000317 10.1073/pnas.1121238109 10.1016/j.cub.2021.03.038 10.1016/j.tcb.2021.06.006 10.7554/eLife.68712 10.1126/science.1221708 10.1016/j.cub.2018.06.028 10.1016/j.copbio.2019.05.008 10.1083/jcb.200909176 10.1016/j.cub.2017.05.048 10.3389/fgene.2020.00172 10.1146/annurev.biochem.73.011303.073844 10.1038/s41467-022-30128-7 10.1242/jcs.219832 10.1016/j.ejcb.2022.151249 10.1016/S0891-5849(01)00749-3 10.1038/ncb3246 10.1038/s41598-020-62942-8 10.1038/s41586-022-05241-8 10.1038/352126a0 10.1083/jcb.146.6.1319 10.1126/sciadv.1501337 10.1091/mbc.e13-03-0156 10.1038/s41467-018-04231-7 10.1074/jbc.M112.396051 10.1016/j.devcel.2014.10.027 10.1038/ncb1007-1110 10.1038/d41586-022-03343-x 10.1091/mbc.e12-06-0485 10.1073/pnas.1121583109 10.1038/40418 10.1016/j.ceb.2011.07.003 10.1002/cm.20429 10.1038/nmeth.2019 10.1016/j.cub.2012.03.046 10.1016/j.biocel.2012.05.024 10.15252/embj.2022111631 10.1039/c1sm06060k 10.1002/cm.21170 10.7554/eLife.42413 10.1016/j.cub.2011.03.064 10.1146/annurev-conmatphys-031218-013231 10.1016/j.bpj.2012.11.3819 10.1091/mbc.e12-08-0589 10.1083/jcb.200106157 10.1126/science.aaf1709 10.1038/s41580-022-00508-4 10.1016/j.cub.2007.04.037 10.1242/jcs.219899 10.1038/ncb3142 10.1091/mbc.e11-06-0584 10.1038/s41467-017-00455-1 10.1038/ncb2205 10.1083/jcb.200511093 10.1016/j.celrep.2015.03.033 10.1074/jbc.274.22.15538 10.1126/sciadv.aar2847 10.1038/s42003-021-02653-6 10.1146/annurev.biophys.29.1.545 10.1074/jbc.270.19.11437 10.1038/emboj.2008.34 10.1016/j.molcel.2006.08.006 10.1038/s41467-021-25682-5 10.1016/j.pneurobio.2021.102050 10.1038/s41467-019-13213-2 10.7554/eLife.06126 10.1039/C3SM52421C 10.1016/j.tcb.2004.05.002 10.1126/science.1067470 10.1038/s41567-018-0413-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023 The Authors. Published under the terms of the CC BY 4.0 license 2023 The Authors. Published under the terms of the CC BY 4.0 license. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2023 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
DOI | 10.15252/embj.2022112717 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Alexandra Colin et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | PMC10152149 oai_HAL_hal_04054219v1 36912152 10_15252_embj_2022112717 EMBJ2022112717 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Academy of Finland (AKA) grantid: 302161 – fundername: EC|European Research Council (ERC) grantid: 741773; 771599 – fundername: National Science Foundation (NSF) grantid: DMS 2052515; DMS 1953430 – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR‐17‐EURE‐0003 funderid: 10.13039/501100001665 – fundername: Agence Nationale de la Recherche (ANR) funderid: ANR‐17‐EURE‐0003 – fundername: EC|European Research Council (ERC) funderid: 741773; 771599 – fundername: National Science Foundation (NSF) funderid: DMS 2052515; DMS 1953430 – fundername: Academy of Finland (AKA) funderid: 302161 – fundername: ; grantid: ANR‐17‐EURE‐0003 |
GroupedDBID | --- -DZ -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI AASML AAYXX ABZEH CITATION NAO CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c5547-7aa5a536a402f5f95b077de83b7b0e2eb114ef517e9fc399137a240d4dfdf29e3 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:37:28 EDT 2025 Fri May 09 12:13:01 EDT 2025 Fri Jul 11 04:14:34 EDT 2025 Fri Jul 25 10:20:15 EDT 2025 Wed Feb 19 02:23:46 EST 2025 Tue Jul 01 01:47:24 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Wed Jan 22 16:23:15 EST 2025 Fri Feb 21 02:36:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | lifetime actin turnover aging reconstituted system microwells actin turnover aging lifetime microwells reconstituted system Subject Category Cell Adhesion reconstituted system Subject Category Cell Adhesion Polarity & Cytoskeleton |
Language | English |
License | Attribution 2023 The Authors. Published under the terms of the CC BY 4.0 license. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5547-7aa5a536a402f5f95b077de83b7b0e2eb114ef517e9fc399137a240d4dfdf29e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9968-1779 0000-0002-9144-3282 0000-0002-9046-5834 0000-0001-8146-9254 |
OpenAccessLink | https://doi.org/10.15252/embj.2022112717 |
PMID | 36912152 |
PQID | 2808136834 |
PQPubID | 35985 |
PageCount | 30 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10152149 hal_primary_oai_HAL_hal_04054219v1 proquest_miscellaneous_2786513685 proquest_journals_2808136834 pubmed_primary_36912152 crossref_primary_10_15252_embj_2022112717 crossref_citationtrail_10_15252_embj_2022112717 wiley_primary_10_15252_embj_2022112717_EMBJ2022112717 springer_journals_10_15252_embj_2022112717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 02 May 2023 |
PublicationDateYYYYMMDD | 2023-05-02 |
PublicationDate_xml | – month: 05 year: 2023 text: 02 May 2023 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: EMBO Press – name: John Wiley and Sons Inc |
References | Pinot, Steiner, Dehapiot, Yoo, Chesnel, Blanchoin, Kervrann, Gueroui (CR73) 2012; 109 Rottner, Stradal (CR84) 2011; 23 Lacayo, Soneral, Zhu, Tsuchida, Footer, Soo, Lu, Xia, Mogilner, Theriot (CR50) 2012; 23 Marchand, Moreau, Paoletti, Cossart, Carlier, Pantaloni (CR59) 1995; 130 Wang, Robinson, Burtnick (CR105) 2010; 67 Akin, Mullins (CR1) 2008; 133 Okreglak, Drubin (CR68) 2010; 188 Cameron, Svitkina, Vignjevic, Theriot, Borisy (CR19) 2001; 11 Moriyama, Yahara (CR63) 2002; 115 Chaudhry, Jansen, Little, Suarez, Boujemaa‐Paterski, Blanchoin, Goode (CR24) 2014; 71 Kotila, Wioland, Enkavi, Kogan, Vattulainen, Jégou, Romet‐Lemonne, Lappalainen (CR49) 2019; 10 Vitriol, McMillen, Kapustina, Gomez, Vavylonis, Zheng (CR103) 2015; 11 Cossio, Hocky (CR27) 2022; 611 Blanchoin, Boujemaa‐Paterski, Sykes, Plastino (CR14) 2014; 94 Fritzsche, Lewalle, Duke, Kruse, Charras (CR33) 2013; 24 Wang (CR104) 1985; 101 Andrianantoandro, Pollard (CR5) 2006; 24 Chakrabarti, Lee, Higgs (CR20) 2021; 31 Miyoshi, Watanabe (CR62) 2013; 70 Chhabra, Higgs (CR25) 2007; 9 Pollard, Garabedian, Alioto, Shekhar, Goode (CR77) 2020; 31 Kotila, Kogan, Enkavi, Guo, Vattulainen, Goode, Lappalainen (CR48) 2018; 9 Schneider, Duong, Metz, Winkelmeier, Hübner, Endesfelder, Rust (CR88) 2021; 202 Soares e Silva, Alvarado, Nguyen, Georgoulia, Mulder, Koenderink (CR91) 2011; 7 Rust, Khudayberdiev, Pelucchi, Marcello (CR86) 2020; 8 Watanabe, Mitchison (CR106) 2002; 295 Rouyère, Serrano, Frémont, Echard (CR85) 2022; 101 Dalle‐Donne, Rossi, Milzani, Di Simplicio, Colombo (CR28) 2001; 31 Funk, Merino, Venkova, Heydenreich, Kierfeld, Vargas, Raunser, Piel, Bieling (CR35) 2019; 8 Henty‐Ridilla, Rankova, Eskin, Kenny, Goode (CR41) 2016; 352 Nishimura, Shi, Li, Bershadsky, Viasnoff (CR66) 2021; 168 Estes, Selden, Kinosian, Gershman (CR32) 1992; 13 Funk, Merino, Schaks, Rottner, Raunser, Bieling (CR36) 2021; 12 Reymann, Suarez, Guérin, Martiel, Staiger, Blanchoin, Boujemaa‐Paterski (CR82) 2011; 22 Manhart, Icheva, Guerin, Klar, Boujemaa‐Paterski, Thery, Blanchoin, Mogilner (CR58) 2019; 8 Wettstein, Bellaye, Micheau, Bonniaud (CR107) 2012; 44 Tojkander, Gateva, Husain, Krishnan, Lappalainen (CR98) 2015; 4 Wioland, Guichard, Senju, Myram, Lappalainen, Jégou, Romet‐Lemonne (CR108) 2017; 27 Lai, Szczodrak, Block, Faix, Breitsprecher, Mannherz, Stradal, Dunn, Small, Rottner (CR51) 2008; 27 Shekhar, Chung, Kondev, Gelles, Goode (CR89) 2019; 10 Antkowiak, Guillotin, Sanders, Colombo, Vincentelli, Michelot (CR6) 2019; 17 Lappalainen, Drubin (CR52) 1997; 388 Gressin, Guillotin, Guérin, Blanchoin, Michelot (CR40) 2015; 25 López, Huber, Grigoriev, Steinmetz, Akhmanova, Koenderink, Dogterom (CR56) 2014; 5 Ganzinger, Vogel, Mücksch, Blumhardt, Schwille (CR92) 2019; 132 Cameron, Footer, van Oudenaarden, Theriot (CR18) 1999; 96 Alvarado, Mulder, Koenderink (CR4) 2014; 10 Reymann, Boujemaa‐Paterski, Martiel, Guerin, Cao, Chin, De La Cruz, Thery, Blanchoin (CR83) 2012; 336 Jia, Schwille (CR46) 2019; 60 Bieling, Li, Weichsel, McGorty, Jreij, Huang, Fletcher, Mullins (CR11) 2016; 164 Ershov, Phan, Pylvänäinen, Rigaud, Le Blanc, Charles‐Orszag, Conway, Laine, Roy, Bonazzi (CR31) 2022; 19 Fritzsche, Erlenkämper, Moeendarbary, Charras, Kruse (CR34) 2016; 2 Bernheim‐Groswasser, Wiesner, Golsteyn, Carlier, Sykes (CR9) 2002; 417 Vinzenz, Nemethova, Schur, Mueller, Narita, Urban, Winkler, Schmeiser, Koestler, Rottner (CR101) 2012; 125 Oosterheert, Klink, Belyy, Pospich, Raunser (CR70) 2022; 611 Isambert, Venier, Maggs, Fattoum, Kassab, Pantaloni, Carlier (CR44) 1995; 270 Loisel, Boujemaa, Pantaloni, Carlier (CR54) 1999; 401 Hotulainen, Lappalainen (CR42) 2006; 173 Suarez, Carroll, Burke, Christensen, Bestul, Sees, James, Sirotkin, Kovar (CR95) 2015; 32 Plastino, Blanchoin (CR74) 2019; 132 Vargas, Maiuri, Bretou, Sáez, Pierobon, Maurin, Chabaud, Lankar, Obino, Terriac (CR99) 2016; 18 Raz‐Ben Aroush, Ofer, Abu‐Shah, Allard, Krichevsky, Mogilner, Keren (CR81) 2017; 27 Greiner, Glonek (CR39) 2021; 10 Yamamoto, Gaillard, Vianay, Guerin, Orhant‐Prioux, Blanchoin, Théry (CR109) 2022; 41 Pollard, Blanchoin, Mullins (CR76) 2000; 29 Mueller, Szep, Nemethova, de Vries, Lieber, Winkler, Kruse, Small, Schmeiser, Keren (CR64) 2017; 171 Mullins, Heuser, Pollard (CR65) 1998; 95 Alkemade, Wierenga, Volkov, Preciado López, Akhmanova, ten Wolde, Dogterom, Koenderink (CR2) 2022; 119 Normoyle, Brieher (CR67) 2012; 287 Spudich, Watt (CR93) 1971; 246 Hsu, Sciortino, de la Trobe, Bausch (CR43) 2022; 13 Chaudhry, Breitsprecher, Little, Sharov, Sokolova, Goode (CR23) 2013; 24 Pujol, du Roure, Fermigier, Heuvingh (CR78) 2012; 109 Chaudhry, Little, Talarico, Quintero‐Monzon, Goode (CR22) 2010; 67 Paavilainen, Bertling, Falck, Lappalainen (CR71) 2004; 14 Vitriol, Wise, Berginski, Bamburg, Zheng (CR102) 2013; 24 Banerjee, Gardel, Schwarz (CR7) 2019; 11 Palmgren, Ojala, Wear, Cooper, Lappalainen (CR72) 2001; 155 Blanchoin, Pollard (CR12) 1998; 273 Dawe, Minamide, Bamburg, Cramer (CR29) 2003; 13 Bleicher, Sciortino, Bausch (CR15) 2020; 10 Smith, Kiuchi, Watanabe, Vavylonis (CR90) 2013; 104 Boujemaa‐Paterski, Suarez, Klar, Zhu, Guérin, Mogilner, Théry, Blanchoin (CR16) 2017; 8 Blanchoin, Pollard (CR13) 1999; 274 Malik‐Garbi, Ierushalmi, Jansen, Abu‐Shah, Goode, Mogilner, Keren (CR57) 2019; 15 Rafelski, Theriot (CR80) 2004; 73 Burnette, Manley, Sengupta, Sougrat, Davidson, Kachar, Lippincott‐Schwartz (CR17) 2011; 13 Theriot, Mitchison (CR97) 1991; 352 Bertling, Hotulainen, Mattila, Matilainen, Salminen, Lappalainen (CR10) 2004; 15 Suarez, Roland, Boujemaa‐Paterski, Kang, McCullough, Reymann, Guérin, Martiel, De La Cruz, Blanchoin (CR94) 2011; 21 Almo, Pollard, Way, Lattman (CR3) 1994; 236 Lomakin, Lee, Han, Bui, Davidson, Mogilner, Danuser (CR55) 2015; 17 Pollard, Borisy (CR75) 2003; 112 Bashirzadeh, Redford, Lorpaiboon, Groaz, Moghimianavval, Litschel, Schwille, Hocky, Dinner, Liu (CR8) 2021; 4 Rafelski, Marshall (CR79) 2008; 9 Grantham (CR38) 2020; 11 Vedula, Kurosaka, MacTaggart, Ni, Papoian, Jiang, Dong, Kashina (CR100) 2021; 10 Iwanski, Gregorio, Colpan (CR45) 2021; 31 Olson, Nordheim (CR69) 2010; 11 Egile, Loisel, Laurent, Li, Pantaloni, Sansonetti, Carlier (CR30) 1999; 146 Tan, Malik‐Garbi, Abu‐Shah, Li, Sharma, MacKintosh, Keren, Schmidt, Fakhri (CR96) 2018; 4 Chan, Marshall (CR21) 2012; 337 Schindelin, Arganda‐Carreras, Frise, Kaynig, Longair, Pietzsch, Preibisch, Rueden, Saalfeld, Schmid (CR87) 2012; 9 Miyazaki, Chiba, Eguchi, Ohki, Ishiwata (CR61) 2015; 17 Kawska, Carvalho, Manzi, Boujemaa‐Paterski, Blanchoin, Martiel, Sykes (CR47) 2012; 109 Lappalainen, Kotila, Jégou, Romet‐Lemonne (CR53) 2022; 23 Colin, Singaravelu, Théry, Blanchoin, Gueroui (CR26) 2018; 28 Goehring, Hyman (CR37) 2012; 22 Michelot, Berro, Guérin, Boujemaa‐Paterski, Staiger, Martiel, Blanchoin (CR60) 2007; 17 1991; 352 2010; 11 2017; 8 2012; 287 2021; 168 2019; 11 2013; 24 2019; 10 2021; 202 2019; 15 2015; 32 2019; 17 2003; 13 2022; 23 2008; 9 2006; 173 2010; 188 2002; 115 1971; 246 2013; 70 2011; 13 1992; 13 2020; 11 2020; 10 2012; 125 1999; 401 1995; 130 2003; 112 2022; 611 1998; 273 2010; 67 1997; 388 2020; 8 2018; 9 2019; 60 2014; 5 2021; 31 2004; 73 2018; 4 2006; 24 2008; 27 2007; 9 2011; 22 2016; 352 2011; 21 1999; 96 2011; 23 2001; 11 1998; 95 2014; 94 2012; 23 2012; 336 2012; 337 2012; 22 2014; 10 2019; 8 2007; 17 2018; 28 2015; 17 2000; 29 2021; 4 2015; 4 1994; 236 2017; 27 2002; 295 2013; 104 2015; 11 1985; 101 2017; 171 1999; 146 2022; 41 2002; 417 2022; 119 2016; 18 2016; 164 1995; 270 2011; 7 2012; 109 2001; 155 2022; 101 2015; 25 2021; 10 2016; 2 2021; 12 2020; 31 2004; 14 2004; 15 1999; 274 2022; 13 2008; 133 2014; 71 2012; 44 2001; 31 2022; 19 2019; 132 2012; 9 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 23 start-page: 569 year: 2011 end-page: 578 ident: CR84 article-title: Actin dynamics and turnover in cell motility publication-title: Curr Opin Cell Biol – volume: 132 year: 2019 ident: CR92 article-title: Myosin‐II activity generates a dynamic steady state with continuous actin turnover in a minimal actin cortex publication-title: J Cell Sci – volume: 417 start-page: 308 year: 2002 end-page: 311 ident: CR9 article-title: The dynamics of actin‐based motility depend on surface parameters publication-title: Nature – volume: 23 start-page: 836 year: 2022 end-page: 852 ident: CR53 article-title: Biochemical and mechanical regulation of actin dynamics publication-title: Nat Rev Mol Cell Biol – volume: 31 start-page: 1624 year: 2001 end-page: 1632 ident: CR28 article-title: The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself publication-title: Free Radic Biol Med – volume: 246 start-page: 4866 year: 1971 end-page: 4871 ident: CR93 article-title: The regulation of rabbit skeletal muscle contraction publication-title: J Biol Chem – volume: 7 year: 2011 ident: CR91 article-title: Self‐organized patterns of actin filaments in cell‐sized confinement publication-title: Soft Matter – volume: 274 start-page: 15538 year: 1999 end-page: 15546 ident: CR13 article-title: Mechanism of interaction of acanthamoeba actophorin (ADF/cofilin) with actin filaments publication-title: J Biol Chem – volume: 4 year: 2018 ident: CR96 article-title: Self‐organized stress patterns drive state transitions in actin cortices publication-title: Sci Adv – volume: 11 start-page: 421 year: 2019 end-page: 439 ident: CR7 article-title: The actin cytoskeleton as an active adaptive material publication-title: Annu Rev Condens Matter Phys – volume: 73 start-page: 209 year: 2004 end-page: 239 ident: CR80 article-title: Crawling toward a unified model of cell motility: spatial and temporal regulation of actin dynamics publication-title: Annu Rev Biochem – volume: 164 start-page: 115 year: 2016 end-page: 127 ident: CR11 article-title: Force feedback controls motor activity and mechanical properties of self‐assembling branched actin networks publication-title: Cell – volume: 336 start-page: 1310 year: 2012 end-page: 1314 ident: CR83 article-title: Actin network architecture can determine myosin motor activity publication-title: Science – volume: 2 year: 2016 ident: CR34 article-title: Actin kinetics shapes cortical network structure and mechanics publication-title: Sci Adv – volume: 109 start-page: 14440 year: 2012 end-page: 14445 ident: CR47 article-title: How actin network dynamics control the onset of actin‐based motility publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 5319 year: 2019 ident: CR89 article-title: Synergy between cyclase‐associated protein and cofilin accelerates actin filament depolymerization by two orders of magnitude publication-title: Nat Commun – volume: 11 start-page: 353 year: 2010 end-page: 365 ident: CR69 article-title: Linking actin dynamics and gene transcription to drive cellular motile functions publication-title: Nat Rev Mol Cell Biol – volume: 146 start-page: 1319 year: 1999 end-page: 1332 ident: CR30 article-title: Activation of the Cdc42 effector N‐wasp by the shigella flexneri Icsa protein promotes actin nucleation by Arp2/3 complex and bacterial actin‐based motility publication-title: J Cell Biol – volume: 130 start-page: 331 year: 1995 end-page: 343 ident: CR59 article-title: Actin‐based movement of listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface publication-title: J Cell Biol – volume: 24 start-page: 2238 year: 2013 end-page: 2247 ident: CR102 article-title: Instantaneous inactivation of cofilin reveals its function of F‐actin disassembly in lamellipodia publication-title: Mol Biol Cell – volume: 8 year: 2019 ident: CR35 article-title: Profilin and formin constitute a pacemaker system for robust actin filament growth publication-title: Elife – volume: 13 start-page: 2579 year: 2022 ident: CR43 article-title: Activity‐induced polar patterns of filaments gliding on a sphere publication-title: Nat Commun – volume: 109 start-page: 10364 year: 2012 end-page: 10369 ident: CR78 article-title: Impact of branching on the elasticity of actin networks publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: R330 year: 2012 end-page: R339 ident: CR37 article-title: Organelle growth control through limiting pools of cytoplasmic components publication-title: Curr Biol – volume: 10 start-page: 5320 year: 2019 ident: CR49 article-title: Mechanism of synergistic actin filament pointed end depolymerization by cyclase‐associated protein and cofilin publication-title: Nat Commun – volume: 388 start-page: 78 year: 1997 end-page: 82 ident: CR52 article-title: Cofilin promotes rapid actin filament turnover publication-title: Nature – volume: 13 start-page: 252 year: 2003 end-page: 257 ident: CR29 article-title: ADF/cofilin controls cell polarity during fibroblast migration publication-title: Curr Biol – volume: 5 start-page: 4778 year: 2014 ident: CR56 article-title: Actin–microtubule coordination at growing microtubule ends publication-title: Nat Commun – volume: 168 year: 2021 ident: CR66 article-title: Crosstalk between myosin II and formin functions in the regulation of force generation and actomyosin dynamics in stress fibers publication-title: Cells Dev – volume: 9 start-page: 1110 year: 2007 end-page: 1121 ident: CR25 article-title: The many faces of actin: matching assembly factors with cellular structures publication-title: Nat Cell Biol – volume: 14 start-page: 386 year: 2004 end-page: 394 ident: CR71 article-title: Regulation of cytoskeletal dynamics by actin‐monomer‐binding proteins publication-title: Trends Cell Biol – volume: 22 start-page: 2541 year: 2011 end-page: 2550 ident: CR82 article-title: Turnover of branched actin filament networks by stochastic fragmentation with ADF/cofilin publication-title: Mol Biol Cell – volume: 94 start-page: 235 year: 2014 end-page: 263 ident: CR14 article-title: Actin dynamics, architecture, and mechanics in cell motility publication-title: Physiol Rev – volume: 112 start-page: 453 year: 2003 end-page: 465 ident: CR75 article-title: Cellular motility driven by assembly and disassembly of actin filaments publication-title: Cell – volume: 21 start-page: 862 year: 2011 end-page: 868 ident: CR94 article-title: Cofilin tunes the nucleotide state of actin filaments and severs at bare and decorated segment boundaries publication-title: Curr Biol – volume: 270 start-page: 11437 year: 1995 end-page: 11444 ident: CR44 article-title: Flexibility of actin filaments derived from thermal fluctuations publication-title: J Biol Chem – volume: 611 start-page: 374 year: 2022 end-page: 379 ident: CR70 article-title: Structural basis of actin filament assembly and aging publication-title: Nature – volume: 202 year: 2021 ident: CR88 article-title: Mutual functional dependence of cyclase‐associated protein 1 (CAP1) and cofilin1 in neuronal actin dynamics and growth cone function publication-title: Prog Neurobiol – volume: 25 start-page: 1437 year: 2015 end-page: 1447 ident: CR40 article-title: Architecture dependence of actin filament network disassembly publication-title: Curr Biol – volume: 29 start-page: 545 year: 2000 end-page: 576 ident: CR76 article-title: Molecular mechanisms controlling actin filament dynamics in nonmuscle cells publication-title: Annu Rev Biophys Biomol Struct – volume: 96 start-page: 4908 year: 1999 end-page: 4913 ident: CR18 article-title: Motility of ActA protein‐coated microspheres driven by actin polymerization publication-title: Proc Natl Acad Sci USA – volume: 95 start-page: 6181 year: 1998 end-page: 6186 ident: CR65 article-title: The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments publication-title: Proc Natl Acad Sci USA – volume: 27 start-page: 2963 year: 2017 end-page: 2973.e14 ident: CR81 article-title: Actin turnover in lamellipodial fragments publication-title: Curr Biol – volume: 31 start-page: R603 year: 2021 end-page: R618 ident: CR20 article-title: Multiple roles for actin in secretory and endocytic pathways publication-title: Curr Biol – volume: 101 start-page: 597 year: 1985 end-page: 602 ident: CR104 article-title: Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling publication-title: J Cell Biol – volume: 104 start-page: 247 year: 2013 end-page: 257 ident: CR90 article-title: Distributed actin turnover in the lamellipodium and FRAP kinetics publication-title: Biophys J – volume: 17 start-page: 825 year: 2007 end-page: 833 ident: CR60 article-title: Actin‐filament stochastic dynamics mediated by ADF/cofilin publication-title: Curr Biol – volume: 18 start-page: 43 year: 2016 end-page: 53 ident: CR99 article-title: Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells publication-title: Nat Cell Biol – volume: 31 start-page: 708 year: 2021 end-page: 711 ident: CR45 article-title: Redefining actin dynamics of the pointed‐end complex in striated muscle publication-title: Trends Cell Biol – volume: 337 start-page: 1186 year: 2012 end-page: 1189 ident: CR21 article-title: How cells know the size of their organelles publication-title: Science – volume: 70 start-page: 179 year: 2013 end-page: 190 ident: CR62 article-title: Can filament treadmilling alone account for the F‐actin turnover in lamellipodia? publication-title: Cytoskeleton – volume: 31 start-page: 335 year: 2020 end-page: 347 ident: CR77 article-title: Genetically inspired reconstitution of actin cables from seven purified proteins publication-title: Mol Biol Cell – volume: 115 start-page: 1591 year: 2002 end-page: 1601 ident: CR63 article-title: Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover publication-title: J Cell Sci – volume: 133 start-page: 841 year: 2008 end-page: 851 ident: CR1 article-title: Capping protein increases the rate of actin‐based motility by promoting filament nucleation by the Arp2/3 complex publication-title: Cell – volume: 171 start-page: 188 year: 2017 end-page: 200.e16 ident: CR64 article-title: Load adaptation of lamellipodial actin networks publication-title: Cell – volume: 71 start-page: 351 year: 2014 end-page: 360 ident: CR24 article-title: Autonomous and in trans functions for the two halves of Srv2/CAP in promoting actin turnover publication-title: Cytoskeleton – volume: 23 start-page: 614 year: 2012 end-page: 629 ident: CR50 article-title: Choosing orientation: influence of cargo geometry and ActA polarization on actin comet tails publication-title: Mol Biol Cell – volume: 109 start-page: 11705 year: 2012 end-page: 11710 ident: CR73 article-title: Confinement induces actin flow in a meiotic cytoplasm publication-title: Proc Natl Acad Sci USA – volume: 67 start-page: 456 year: 2010 end-page: 465 ident: CR105 article-title: The structure of native G‐actin publication-title: Cytoskeleton – volume: 19 start-page: 829 year: 2022 end-page: 832 ident: CR31 article-title: TrackMate 7: integrating state‐of‐the‐art segmentation algorithms into tracking pipelines publication-title: Nat Methods – volume: 32 start-page: 43 year: 2015 end-page: 53 ident: CR95 article-title: Profilin regulates F‐actin network homeostasis by favoring formin over Arp2/3 complex publication-title: Dev Cell – volume: 15 start-page: 2324 year: 2004 end-page: 2334 ident: CR10 article-title: Cyclase‐associated protein 1 (CAP1) promotes cofilin‐ induced actin dynamics in mammalian nonmuscle cells publication-title: Mol Biol Cell – volume: 67 start-page: 120 year: 2010 end-page: 133 ident: CR22 article-title: A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover and publication-title: Cytoskeleton – volume: 9 start-page: 593 year: 2008 end-page: 602 ident: CR79 article-title: Building the cell: design principles of cellular architecture publication-title: Nat Rev Mol Cell Biol – volume: 17 year: 2019 ident: CR6 article-title: Sizes of actin networks sharing a common environment are determined by the relative rates of assembly publication-title: PLoS Biol – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: CR87 article-title: Fiji: an open‐source platform for biological‐image analysis publication-title: Nat Methods – volume: 28 start-page: 2647 year: 2018 end-page: 2656.e4 ident: CR26 article-title: Actin‐network architecture regulates microtubule dynamics publication-title: Curr Biol – volume: 24 start-page: 31 year: 2013 end-page: 41 ident: CR23 article-title: Srv2/Cyclase‐associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin publication-title: Mol Biol Cell – volume: 10 year: 2021 ident: CR100 article-title: Different translation dynamics of β‐ and γ‐actin regulates cell migration publication-title: Elife – volume: 352 start-page: 1004 year: 2016 end-page: 1009 ident: CR41 article-title: Accelerated actin filament polymerization from microtubule plus ends publication-title: Science – volume: 119 year: 2022 ident: CR2 article-title: Cross‐linkers at growing microtubule ends generate forces that drive actin transport publication-title: Proc Natl Acad Sci USA – volume: 101 year: 2022 ident: CR85 article-title: Oxidation and reduction of actin: origin, impact and functional consequences publication-title: Eur J Cell Biol – volume: 41 start-page: e111631 year: 2022 ident: CR109 article-title: Actin network architecture can ensure robust centering or sensitive decentering of the centrosome publication-title: EMBO J – volume: 13 start-page: 272 year: 1992 end-page: 284 ident: CR32 article-title: Tightly‐bound divalent cation of actin publication-title: J Muscle Res Cell Motil – volume: 24 start-page: 757 year: 2013 end-page: 767 ident: CR33 article-title: Analysis of turnover dynamics of the submembranous actin cortex publication-title: Mol Biol Cell – volume: 60 start-page: 179 year: 2019 end-page: 187 ident: CR46 article-title: Bottom‐up synthetic biology: reconstitution in space and time publication-title: Curr Opin Biotechnol – volume: 10 start-page: 1166 year: 2021 ident: CR39 article-title: Intracellular ATP concentration and implication for cellular evolution publication-title: Biology – volume: 8 year: 2019 ident: CR58 article-title: Quantitative regulation of the dynamic steady state of actin networks publication-title: Elife – volume: 17 start-page: 1435 year: 2015 end-page: 1445 ident: CR55 article-title: Competition for actin between two distinct F‐actin networks defines a bistable switch for cell polarization publication-title: Nat Cell Biol – volume: 401 start-page: 613 year: 1999 end-page: 616 ident: CR54 article-title: Reconstitution of actin‐based motility of listeria and shigella using pure proteins publication-title: Nature – volume: 24 start-page: 13 year: 2006 end-page: 23 ident: CR5 article-title: Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin publication-title: Mol Cell – volume: 352 start-page: 126 year: 1991 end-page: 131 ident: CR97 article-title: Actin microfilaments dynamics in locomoting cells publication-title: Nature – volume: 10 start-page: 6215 year: 2020 ident: CR15 article-title: The dynamics of actin network turnover is self‐organized by a growth‐depletion feedback publication-title: Sci Rep – volume: 13 start-page: 371 year: 2011 end-page: 382 ident: CR17 article-title: A role for actin arcs in the leading‐edge advance of migrating cells publication-title: Nat Cell Biol – volume: 173 start-page: 383 year: 2006 end-page: 394 ident: CR42 article-title: Stress fibers are generated by two distinct actin assembly mechanisms in motile cells publication-title: J Cell Biol – volume: 12 start-page: 5329 year: 2021 ident: CR36 article-title: A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks publication-title: Nat Commun – volume: 10 start-page: 2354 year: 2014 end-page: 2364 ident: CR4 article-title: Alignment of nematic and bundled semiflexible polymers in cell‐sized confinement publication-title: Soft Matter – volume: 11 start-page: 130 year: 2001 end-page: 135 ident: CR19 article-title: Dendritic organization of actin comet tails publication-title: Curr Biol – volume: 8 year: 2020 ident: CR86 article-title: CAPt'n of actin dynamics: recent advances in the molecular, developmental and physiological functions of cyclase‐associated protein (CAP) publication-title: Front Cell Dev Biol – volume: 15 start-page: 509 year: 2019 end-page: 516 ident: CR57 article-title: Scaling behaviour in steady‐state contracting actomyosin networks publication-title: Nat Phys – volume: 4 year: 2015 ident: CR98 article-title: Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly publication-title: Elife – volume: 611 start-page: 241 year: 2022 end-page: 243 ident: CR27 article-title: Catching actin proteins in action publication-title: Nature – volume: 295 start-page: 1083 year: 2002 end-page: 1086 ident: CR106 article-title: Single‐molecule speckle analysis of actin filament turnover in lamellipodia publication-title: Science – volume: 11 start-page: 433 year: 2015 end-page: 445 ident: CR103 article-title: Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia publication-title: Cell Rep – volume: 11 start-page: 172 year: 2020 ident: CR38 article-title: The molecular chaperone CCT/TRiC: an essential component of proteostasis and a potential modulator of protein aggregation publication-title: Front Genet – volume: 125 start-page: 2775 year: 2012 end-page: 2785 ident: CR101 article-title: Actin branching in the initiation and maintenance of lamellipodia publication-title: J Cell Sci – volume: 9 start-page: 1892 year: 2018 ident: CR48 article-title: Structural basis of actin monomer re‐charging by cyclase‐associated protein publication-title: Nat Commun – volume: 27 start-page: 1956 year: 2017 end-page: 1967.e7 ident: CR108 article-title: ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends publication-title: Curr Biol – volume: 8 start-page: 655 year: 2017 ident: CR16 article-title: Network heterogeneity regulates steering in actin‐based motility publication-title: Nat Commun – volume: 4 start-page: 1136 year: 2021 ident: CR8 article-title: Actin crosslinker competition and sorting drive emergent GUV size‐dependent actin network architecture publication-title: Commun Biol – volume: 188 start-page: 769 year: 2010 end-page: 777 ident: CR68 article-title: Loss of Aip1 reveals a role in maintaining the actin monomer pool and an oligomer assembly pathway publication-title: J Cell Biol – volume: 273 start-page: 25106 year: 1998 end-page: 25111 ident: CR12 article-title: Interaction of actin monomers with acanthamoeba Actophorin (ADF/cofilin) and profilin publication-title: J Biol Chem – volume: 236 start-page: 950 year: 1994 end-page: 952 ident: CR3 article-title: Purification, characterization and crystallization of acanthamoeba profilin expressed in publication-title: J Mol Biol – volume: 132 year: 2019 ident: CR74 article-title: Dynamic stability of the actin ecosystem publication-title: J Cell Sci – volume: 27 start-page: 982 year: 2008 end-page: 992 ident: CR51 article-title: Arp2/3 Complex interactions and actin network turnover in lamellipodia publication-title: EMBO J – volume: 44 start-page: 1680 year: 2012 end-page: 1686 ident: CR107 article-title: Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? publication-title: Int J Biochem – volume: 287 start-page: 35722 year: 2012 end-page: 35732 ident: CR67 article-title: Cyclase‐associated protein (CAP) acts directly on F‐actin to accelerate cofilin‐mediated actin severing across the range of physiological pH publication-title: J Biol Chem – volume: 155 start-page: 251 year: 2001 end-page: 260 ident: CR72 article-title: Interactions with PIP2, ADP‐actin monomers, and capping protein regulate the activity and localization of yeast twinfilin publication-title: J Cell Biol – volume: 17 start-page: 480 year: 2015 end-page: 489 ident: CR61 article-title: Cell‐sized spherical confinement induces the spontaneous formation of contractile actomyosin rings publication-title: Nat Cell Biol – volume: 125 start-page: 2775 year: 2012 end-page: 2785 article-title: Actin branching in the initiation and maintenance of lamellipodia publication-title: J Cell Sci – volume: 273 start-page: 25106 year: 1998 end-page: 25111 article-title: Interaction of actin monomers with acanthamoeba Actophorin (ADF/cofilin) and profilin publication-title: J Biol Chem – volume: 11 start-page: 433 year: 2015 end-page: 445 article-title: Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia publication-title: Cell Rep – volume: 17 start-page: 1435 year: 2015 end-page: 1445 article-title: Competition for actin between two distinct F‐actin networks defines a bistable switch for cell polarization publication-title: Nat Cell Biol – volume: 21 start-page: 862 year: 2011 end-page: 868 article-title: Cofilin tunes the nucleotide state of actin filaments and severs at bare and decorated segment boundaries publication-title: Curr Biol – volume: 11 start-page: 172 year: 2020 article-title: The molecular chaperone CCT/TRiC: an essential component of proteostasis and a potential modulator of protein aggregation publication-title: Front Genet – volume: 173 start-page: 383 year: 2006 end-page: 394 article-title: Stress fibers are generated by two distinct actin assembly mechanisms in motile cells publication-title: J Cell Biol – volume: 287 start-page: 35722 year: 2012 end-page: 35732 article-title: Cyclase‐associated protein (CAP) acts directly on F‐actin to accelerate cofilin‐mediated actin severing across the range of physiological pH publication-title: J Biol Chem – volume: 44 start-page: 1680 year: 2012 end-page: 1686 article-title: Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity? publication-title: Int J Biochem – volume: 155 start-page: 251 year: 2001 end-page: 260 article-title: Interactions with PIP2, ADP‐actin monomers, and capping protein regulate the activity and localization of yeast twinfilin publication-title: J Cell Biol – volume: 10 start-page: 5319 year: 2019 article-title: Synergy between cyclase‐associated protein and cofilin accelerates actin filament depolymerization by two orders of magnitude publication-title: Nat Commun – volume: 388 start-page: 78 year: 1997 end-page: 82 article-title: Cofilin promotes rapid actin filament turnover publication-title: Nature – volume: 31 start-page: 335 year: 2020 end-page: 347 article-title: Genetically inspired reconstitution of actin cables from seven purified proteins publication-title: Mol Biol Cell – volume: 31 start-page: 1624 year: 2001 end-page: 1632 article-title: The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself publication-title: Free Radic Biol Med – volume: 71 start-page: 351 year: 2014 end-page: 360 article-title: Autonomous and in trans functions for the two halves of Srv2/CAP in promoting actin turnover publication-title: Cytoskeleton – volume: 15 start-page: 509 year: 2019 end-page: 516 article-title: Scaling behaviour in steady‐state contracting actomyosin networks publication-title: Nat Phys – volume: 10 start-page: 1166 year: 2021 article-title: Intracellular ATP concentration and implication for cellular evolution publication-title: Biology – volume: 10 start-page: 2354 year: 2014 end-page: 2364 article-title: Alignment of nematic and bundled semiflexible polymers in cell‐sized confinement publication-title: Soft Matter – volume: 13 start-page: 272 year: 1992 end-page: 284 article-title: Tightly‐bound divalent cation of actin publication-title: J Muscle Res Cell Motil – volume: 7 year: 2011 article-title: Self‐organized patterns of actin filaments in cell‐sized confinement publication-title: Soft Matter – volume: 352 start-page: 126 year: 1991 end-page: 131 article-title: Actin microfilaments dynamics in locomoting cells publication-title: Nature – volume: 11 start-page: 421 year: 2019 end-page: 439 article-title: The actin cytoskeleton as an active adaptive material publication-title: Annu Rev Condens Matter Phys – volume: 11 start-page: 353 year: 2010 end-page: 365 article-title: Linking actin dynamics and gene transcription to drive cellular motile functions publication-title: Nat Rev Mol Cell Biol – volume: 109 start-page: 10364 year: 2012 end-page: 10369 article-title: Impact of branching on the elasticity of actin networks publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 836 year: 2022 end-page: 852 article-title: Biochemical and mechanical regulation of actin dynamics publication-title: Nat Rev Mol Cell Biol – volume: 12 start-page: 5329 year: 2021 article-title: A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks publication-title: Nat Commun – volume: 4 year: 2018 article-title: Self‐organized stress patterns drive state transitions in actin cortices publication-title: Sci Adv – volume: 4 start-page: 1136 year: 2021 article-title: Actin crosslinker competition and sorting drive emergent GUV size‐dependent actin network architecture publication-title: Commun Biol – volume: 32 start-page: 43 year: 2015 end-page: 53 article-title: Profilin regulates F‐actin network homeostasis by favoring formin over Arp2/3 complex publication-title: Dev Cell – volume: 5 start-page: 4778 year: 2014 article-title: Actin–microtubule coordination at growing microtubule ends publication-title: Nat Commun – volume: 8 year: 2020 article-title: CAPt'n of actin dynamics: recent advances in the molecular, developmental and physiological functions of cyclase‐associated protein (CAP) publication-title: Front Cell Dev Biol – volume: 67 start-page: 120 year: 2010 end-page: 133 article-title: A central role for the WH2 domain of Srv2/CAP in recharging actin monomers to drive actin turnover and publication-title: Cytoskeleton – volume: 2 year: 2016 article-title: Actin kinetics shapes cortical network structure and mechanics publication-title: Sci Adv – volume: 109 start-page: 11705 year: 2012 end-page: 11710 article-title: Confinement induces actin flow in a meiotic cytoplasm publication-title: Proc Natl Acad Sci USA – volume: 246 start-page: 4866 year: 1971 end-page: 4871 article-title: The regulation of rabbit skeletal muscle contraction publication-title: J Biol Chem – volume: 17 year: 2019 article-title: Sizes of actin networks sharing a common environment are determined by the relative rates of assembly publication-title: PLoS Biol – volume: 67 start-page: 456 year: 2010 end-page: 465 article-title: The structure of native G‐actin publication-title: Cytoskeleton – volume: 104 start-page: 247 year: 2013 end-page: 257 article-title: Distributed actin turnover in the lamellipodium and FRAP kinetics publication-title: Biophys J – volume: 25 start-page: 1437 year: 2015 end-page: 1447 article-title: Architecture dependence of actin filament network disassembly publication-title: Curr Biol – volume: 8 year: 2019 article-title: Quantitative regulation of the dynamic steady state of actin networks publication-title: Elife – volume: 101 year: 2022 article-title: Oxidation and reduction of actin: origin, impact and functional consequences publication-title: Eur J Cell Biol – volume: 337 start-page: 1186 year: 2012 end-page: 1189 article-title: How cells know the size of their organelles publication-title: Science – volume: 94 start-page: 235 year: 2014 end-page: 263 article-title: Actin dynamics, architecture, and mechanics in cell motility publication-title: Physiol Rev – volume: 9 start-page: 1892 year: 2018 article-title: Structural basis of actin monomer re‐charging by cyclase‐associated protein publication-title: Nat Commun – volume: 4 year: 2015 article-title: Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly publication-title: Elife – volume: 24 start-page: 2238 year: 2013 end-page: 2247 article-title: Instantaneous inactivation of cofilin reveals its function of F‐actin disassembly in lamellipodia publication-title: Mol Biol Cell – volume: 23 start-page: 614 year: 2012 end-page: 629 article-title: Choosing orientation: influence of cargo geometry and ActA polarization on actin comet tails publication-title: Mol Biol Cell – volume: 15 start-page: 2324 year: 2004 end-page: 2334 article-title: Cyclase‐associated protein 1 (CAP1) promotes cofilin‐ induced actin dynamics in mammalian nonmuscle cells publication-title: Mol Biol Cell – volume: 611 start-page: 241 year: 2022 end-page: 243 article-title: Catching actin proteins in action publication-title: Nature – volume: 270 start-page: 11437 year: 1995 end-page: 11444 article-title: Flexibility of actin filaments derived from thermal fluctuations publication-title: J Biol Chem – volume: 171 start-page: 188 year: 2017 end-page: 200.e16 article-title: Load adaptation of lamellipodial actin networks publication-title: Cell – volume: 168 year: 2021 article-title: Crosstalk between myosin II and formin functions in the regulation of force generation and actomyosin dynamics in stress fibers publication-title: Cells Dev – volume: 13 start-page: 252 year: 2003 end-page: 257 article-title: ADF/cofilin controls cell polarity during fibroblast migration publication-title: Curr Biol – volume: 27 start-page: 982 year: 2008 end-page: 992 article-title: Arp2/3 Complex interactions and actin network turnover in lamellipodia publication-title: EMBO J – volume: 101 start-page: 597 year: 1985 end-page: 602 article-title: Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling publication-title: J Cell Biol – volume: 70 start-page: 179 year: 2013 end-page: 190 article-title: Can filament treadmilling alone account for the F‐actin turnover in lamellipodia? publication-title: Cytoskeleton – volume: 22 start-page: 2541 year: 2011 end-page: 2550 article-title: Turnover of branched actin filament networks by stochastic fragmentation with ADF/cofilin publication-title: Mol Biol Cell – volume: 73 start-page: 209 year: 2004 end-page: 239 article-title: Crawling toward a unified model of cell motility: spatial and temporal regulation of actin dynamics publication-title: Annu Rev Biochem – volume: 24 start-page: 13 year: 2006 end-page: 23 article-title: Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin publication-title: Mol Cell – volume: 115 start-page: 1591 year: 2002 end-page: 1601 article-title: Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover publication-title: J Cell Sci – volume: 96 start-page: 4908 year: 1999 end-page: 4913 article-title: Motility of ActA protein‐coated microspheres driven by actin polymerization publication-title: Proc Natl Acad Sci USA – volume: 336 start-page: 1310 year: 2012 end-page: 1314 article-title: Actin network architecture can determine myosin motor activity publication-title: Science – volume: 10 start-page: 6215 year: 2020 article-title: The dynamics of actin network turnover is self‐organized by a growth‐depletion feedback publication-title: Sci Rep – volume: 274 start-page: 15538 year: 1999 end-page: 15546 article-title: Mechanism of interaction of acanthamoeba actophorin (ADF/cofilin) with actin filaments publication-title: J Biol Chem – volume: 611 start-page: 374 year: 2022 end-page: 379 article-title: Structural basis of actin filament assembly and aging publication-title: Nature – volume: 9 start-page: 676 year: 2012 end-page: 682 article-title: Fiji: an open‐source platform for biological‐image analysis publication-title: Nat Methods – volume: 164 start-page: 115 year: 2016 end-page: 127 article-title: Force feedback controls motor activity and mechanical properties of self‐assembling branched actin networks publication-title: Cell – volume: 11 start-page: 130 year: 2001 end-page: 135 article-title: Dendritic organization of actin comet tails publication-title: Curr Biol – volume: 8 year: 2019 article-title: Profilin and formin constitute a pacemaker system for robust actin filament growth publication-title: Elife – volume: 10 year: 2021 article-title: Different translation dynamics of β‐ and γ‐actin regulates cell migration publication-title: Elife – volume: 27 start-page: 1956 year: 2017 end-page: 1967.e7 article-title: ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends publication-title: Curr Biol – volume: 188 start-page: 769 year: 2010 end-page: 777 article-title: Loss of Aip1 reveals a role in maintaining the actin monomer pool and an oligomer assembly pathway publication-title: J Cell Biol – volume: 95 start-page: 6181 year: 1998 end-page: 6186 article-title: The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 5320 year: 2019 article-title: Mechanism of synergistic actin filament pointed end depolymerization by cyclase‐associated protein and cofilin publication-title: Nat Commun – volume: 27 start-page: 2963 year: 2017 end-page: 2973.e14 article-title: Actin turnover in lamellipodial fragments publication-title: Curr Biol – volume: 18 start-page: 43 year: 2016 end-page: 53 article-title: Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells publication-title: Nat Cell Biol – volume: 236 start-page: 950 year: 1994 end-page: 952 article-title: Purification, characterization and crystallization of acanthamoeba profilin expressed in publication-title: J Mol Biol – volume: 24 start-page: 31 year: 2013 end-page: 41 article-title: Srv2/Cyclase‐associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin publication-title: Mol Biol Cell – volume: 60 start-page: 179 year: 2019 end-page: 187 article-title: Bottom‐up synthetic biology: reconstitution in space and time publication-title: Curr Opin Biotechnol – volume: 132 year: 2019 article-title: Myosin‐II activity generates a dynamic steady state with continuous actin turnover in a minimal actin cortex publication-title: J Cell Sci – volume: 130 start-page: 331 year: 1995 end-page: 343 article-title: Actin‐based movement of listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface publication-title: J Cell Biol – volume: 17 start-page: 480 year: 2015 end-page: 489 article-title: Cell‐sized spherical confinement induces the spontaneous formation of contractile actomyosin rings publication-title: Nat Cell Biol – volume: 202 year: 2021 article-title: Mutual functional dependence of cyclase‐associated protein 1 (CAP1) and cofilin1 in neuronal actin dynamics and growth cone function publication-title: Prog Neurobiol – volume: 13 start-page: 2579 year: 2022 article-title: Activity‐induced polar patterns of filaments gliding on a sphere publication-title: Nat Commun – volume: 31 start-page: 708 year: 2021 end-page: 711 article-title: Redefining actin dynamics of the pointed‐end complex in striated muscle publication-title: Trends Cell Biol – volume: 22 start-page: R330 year: 2012 end-page: R339 article-title: Organelle growth control through limiting pools of cytoplasmic components publication-title: Curr Biol – volume: 112 start-page: 453 year: 2003 end-page: 465 article-title: Cellular motility driven by assembly and disassembly of actin filaments publication-title: Cell – volume: 31 start-page: R603 year: 2021 end-page: R618 article-title: Multiple roles for actin in secretory and endocytic pathways publication-title: Curr Biol – volume: 417 start-page: 308 year: 2002 end-page: 311 article-title: The dynamics of actin‐based motility depend on surface parameters publication-title: Nature – volume: 19 start-page: 829 year: 2022 end-page: 832 article-title: TrackMate 7: integrating state‐of‐the‐art segmentation algorithms into tracking pipelines publication-title: Nat Methods – volume: 8 start-page: 655 year: 2017 article-title: Network heterogeneity regulates steering in actin‐based motility publication-title: Nat Commun – volume: 28 start-page: 2647 year: 2018 end-page: 2656.e4 article-title: Actin‐network architecture regulates microtubule dynamics publication-title: Curr Biol – volume: 146 start-page: 1319 year: 1999 end-page: 1332 article-title: Activation of the Cdc42 effector N‐wasp by the shigella flexneri Icsa protein promotes actin nucleation by Arp2/3 complex and bacterial actin‐based motility publication-title: J Cell Biol – volume: 133 start-page: 841 year: 2008 end-page: 851 article-title: Capping protein increases the rate of actin‐based motility by promoting filament nucleation by the Arp2/3 complex publication-title: Cell – volume: 9 start-page: 593 year: 2008 end-page: 602 article-title: Building the cell: design principles of cellular architecture publication-title: Nat Rev Mol Cell Biol – volume: 132 year: 2019 article-title: Dynamic stability of the actin ecosystem publication-title: J Cell Sci – volume: 352 start-page: 1004 year: 2016 end-page: 1009 article-title: Accelerated actin filament polymerization from microtubule plus ends publication-title: Science – volume: 24 start-page: 757 year: 2013 end-page: 767 article-title: Analysis of turnover dynamics of the submembranous actin cortex publication-title: Mol Biol Cell – volume: 29 start-page: 545 year: 2000 end-page: 576 article-title: Molecular mechanisms controlling actin filament dynamics in nonmuscle cells publication-title: Annu Rev Biophys Biomol Struct – volume: 23 start-page: 569 year: 2011 end-page: 578 article-title: Actin dynamics and turnover in cell motility publication-title: Curr Opin Cell Biol – volume: 119 year: 2022 article-title: Cross‐linkers at growing microtubule ends generate forces that drive actin transport publication-title: Proc Natl Acad Sci USA – volume: 41 start-page: e111631 year: 2022 article-title: Actin network architecture can ensure robust centering or sensitive decentering of the centrosome publication-title: EMBO J – volume: 17 start-page: 825 year: 2007 end-page: 833 article-title: Actin‐filament stochastic dynamics mediated by ADF/cofilin publication-title: Curr Biol – volume: 295 start-page: 1083 year: 2002 end-page: 1086 article-title: Single‐molecule speckle analysis of actin filament turnover in lamellipodia publication-title: Science – volume: 14 start-page: 386 year: 2004 end-page: 394 article-title: Regulation of cytoskeletal dynamics by actin‐monomer‐binding proteins publication-title: Trends Cell Biol – volume: 109 start-page: 14440 year: 2012 end-page: 14445 article-title: How actin network dynamics control the onset of actin‐based motility publication-title: Proc Natl Acad Sci USA – volume: 9 start-page: 1110 year: 2007 end-page: 1121 article-title: The many faces of actin: matching assembly factors with cellular structures publication-title: Nat Cell Biol – volume: 401 start-page: 613 year: 1999 end-page: 616 article-title: Reconstitution of actin‐based motility of listeria and shigella using pure proteins publication-title: Nature – volume: 13 start-page: 371 year: 2011 end-page: 382 article-title: A role for actin arcs in the leading‐edge advance of migrating cells publication-title: Nat Cell Biol – ident: e_1_2_9_41_1 doi: 10.1016/j.cub.2015.04.011 – ident: e_1_2_9_60_1 doi: 10.1083/jcb.130.2.331 – ident: e_1_2_9_15_1 doi: 10.1152/physrev.00018.2013 – ident: e_1_2_9_105_1 doi: 10.1083/jcb.101.2.597 – ident: e_1_2_9_3_1 doi: 10.1073/pnas.2112799119 – ident: e_1_2_9_4_1 doi: 10.1006/jmbi.1994.1200 – ident: e_1_2_9_90_1 doi: 10.1038/s41467-019-13268-1 – ident: e_1_2_9_13_1 doi: 10.1074/jbc.273.39.25106 – ident: e_1_2_9_57_1 doi: 10.1038/ncomms5778 – ident: e_1_2_9_67_1 doi: 10.1016/j.cdev.2021.203736 – ident: e_1_2_9_82_1 doi: 10.1016/j.cub.2017.08.066 – ident: e_1_2_9_102_1 doi: 10.1242/jcs.107623 – ident: e_1_2_9_2_1 doi: 10.1016/j.cell.2008.04.011 – ident: e_1_2_9_32_1 doi: 10.1038/s41592-022-01507-1 – ident: e_1_2_9_100_1 doi: 10.1038/ncb3284 – ident: e_1_2_9_22_1 doi: 10.1126/science.1223539 – ident: e_1_2_9_36_1 doi: 10.7554/eLife.50963 – ident: e_1_2_9_66_1 doi: 10.1073/pnas.95.11.6181 – ident: e_1_2_9_64_1 doi: 10.1242/jcs.115.8.1591 – ident: e_1_2_9_19_1 doi: 10.1073/pnas.96.9.4908 – ident: e_1_2_9_40_1 doi: 10.3390/biology10111166 – ident: e_1_2_9_70_1 doi: 10.1038/nrm2890 – ident: e_1_2_9_12_1 doi: 10.1016/j.cell.2015.11.057 – ident: e_1_2_9_83_1 doi: 10.1091/mbc.e11-01-0052 – ident: e_1_2_9_65_1 doi: 10.1016/j.cell.2017.07.051 – ident: e_1_2_9_10_1 doi: 10.1038/417308a – ident: e_1_2_9_11_1 doi: 10.1091/mbc.e04-01-0048 – ident: e_1_2_9_55_1 doi: 10.1038/44183 – ident: e_1_2_9_48_1 doi: 10.1073/pnas.1117096109 – ident: e_1_2_9_106_1 doi: 10.1002/cm.20458 – ident: e_1_2_9_80_1 doi: 10.1038/nrm2460 – ident: e_1_2_9_20_1 doi: 10.1016/S0960-9822(01)00022-7 – ident: e_1_2_9_76_1 doi: 10.1016/S0092-8674(03)00120-X – ident: e_1_2_9_78_1 doi: 10.1091/mbc.E19-10-0576 – ident: e_1_2_9_30_1 doi: 10.1016/S0960-9822(03)00040-X – ident: e_1_2_9_87_1 doi: 10.3389/fcell.2020.586631 – ident: e_1_2_9_33_1 doi: 10.1007/BF01766455 – ident: e_1_2_9_63_1 doi: 10.1002/cm.21098 – ident: e_1_2_9_94_1 doi: 10.1016/S0021-9258(18)62016-2 – ident: e_1_2_9_7_1 doi: 10.1371/journal.pbio.3000317 – ident: e_1_2_9_79_1 doi: 10.1073/pnas.1121238109 – ident: e_1_2_9_21_1 doi: 10.1016/j.cub.2021.03.038 – ident: e_1_2_9_46_1 doi: 10.1016/j.tcb.2021.06.006 – ident: e_1_2_9_101_1 doi: 10.7554/eLife.68712 – ident: e_1_2_9_84_1 doi: 10.1126/science.1221708 – ident: e_1_2_9_27_1 doi: 10.1016/j.cub.2018.06.028 – ident: e_1_2_9_47_1 doi: 10.1016/j.copbio.2019.05.008 – ident: e_1_2_9_69_1 doi: 10.1083/jcb.200909176 – ident: e_1_2_9_109_1 doi: 10.1016/j.cub.2017.05.048 – ident: e_1_2_9_39_1 doi: 10.3389/fgene.2020.00172 – ident: e_1_2_9_81_1 doi: 10.1146/annurev.biochem.73.011303.073844 – ident: e_1_2_9_44_1 doi: 10.1038/s41467-022-30128-7 – ident: e_1_2_9_75_1 doi: 10.1242/jcs.219832 – ident: e_1_2_9_86_1 doi: 10.1016/j.ejcb.2022.151249 – ident: e_1_2_9_29_1 doi: 10.1016/S0891-5849(01)00749-3 – ident: e_1_2_9_56_1 doi: 10.1038/ncb3246 – ident: e_1_2_9_16_1 doi: 10.1038/s41598-020-62942-8 – ident: e_1_2_9_71_1 doi: 10.1038/s41586-022-05241-8 – ident: e_1_2_9_98_1 doi: 10.1038/352126a0 – ident: e_1_2_9_31_1 doi: 10.1083/jcb.146.6.1319 – ident: e_1_2_9_35_1 doi: 10.1126/sciadv.1501337 – ident: e_1_2_9_103_1 doi: 10.1091/mbc.e13-03-0156 – ident: e_1_2_9_49_1 doi: 10.1038/s41467-018-04231-7 – ident: e_1_2_9_68_1 doi: 10.1074/jbc.M112.396051 – ident: e_1_2_9_96_1 doi: 10.1016/j.devcel.2014.10.027 – ident: e_1_2_9_26_1 doi: 10.1038/ncb1007-1110 – ident: e_1_2_9_28_1 doi: 10.1038/d41586-022-03343-x – ident: e_1_2_9_34_1 doi: 10.1091/mbc.e12-06-0485 – ident: e_1_2_9_74_1 doi: 10.1073/pnas.1121583109 – ident: e_1_2_9_53_1 doi: 10.1038/40418 – ident: e_1_2_9_85_1 doi: 10.1016/j.ceb.2011.07.003 – ident: e_1_2_9_23_1 doi: 10.1002/cm.20429 – ident: e_1_2_9_88_1 doi: 10.1038/nmeth.2019 – ident: e_1_2_9_38_1 doi: 10.1016/j.cub.2012.03.046 – ident: e_1_2_9_108_1 doi: 10.1016/j.biocel.2012.05.024 – ident: e_1_2_9_110_1 doi: 10.15252/embj.2022111631 – ident: e_1_2_9_92_1 doi: 10.1039/c1sm06060k – ident: e_1_2_9_25_1 doi: 10.1002/cm.21170 – ident: e_1_2_9_59_1 doi: 10.7554/eLife.42413 – ident: e_1_2_9_95_1 doi: 10.1016/j.cub.2011.03.064 – ident: e_1_2_9_8_1 doi: 10.1146/annurev-conmatphys-031218-013231 – ident: e_1_2_9_91_1 doi: 10.1016/j.bpj.2012.11.3819 – ident: e_1_2_9_24_1 doi: 10.1091/mbc.e12-08-0589 – ident: e_1_2_9_73_1 doi: 10.1083/jcb.200106157 – ident: e_1_2_9_42_1 doi: 10.1126/science.aaf1709 – ident: e_1_2_9_54_1 doi: 10.1038/s41580-022-00508-4 – ident: e_1_2_9_61_1 doi: 10.1016/j.cub.2007.04.037 – ident: e_1_2_9_93_1 doi: 10.1242/jcs.219899 – ident: e_1_2_9_62_1 doi: 10.1038/ncb3142 – ident: e_1_2_9_51_1 doi: 10.1091/mbc.e11-06-0584 – ident: e_1_2_9_17_1 doi: 10.1038/s41467-017-00455-1 – ident: e_1_2_9_18_1 doi: 10.1038/ncb2205 – ident: e_1_2_9_43_1 doi: 10.1083/jcb.200511093 – ident: e_1_2_9_104_1 doi: 10.1016/j.celrep.2015.03.033 – ident: e_1_2_9_14_1 doi: 10.1074/jbc.274.22.15538 – ident: e_1_2_9_97_1 doi: 10.1126/sciadv.aar2847 – ident: e_1_2_9_9_1 doi: 10.1038/s42003-021-02653-6 – ident: e_1_2_9_77_1 doi: 10.1146/annurev.biophys.29.1.545 – ident: e_1_2_9_45_1 doi: 10.1074/jbc.270.19.11437 – ident: e_1_2_9_52_1 doi: 10.1038/emboj.2008.34 – ident: e_1_2_9_6_1 doi: 10.1016/j.molcel.2006.08.006 – ident: e_1_2_9_37_1 doi: 10.1038/s41467-021-25682-5 – ident: e_1_2_9_89_1 doi: 10.1016/j.pneurobio.2021.102050 – ident: e_1_2_9_50_1 doi: 10.1038/s41467-019-13213-2 – ident: e_1_2_9_99_1 doi: 10.7554/eLife.06126 – ident: e_1_2_9_5_1 doi: 10.1039/C3SM52421C – ident: e_1_2_9_72_1 doi: 10.1016/j.tcb.2004.05.002 – ident: e_1_2_9_107_1 doi: 10.1126/science.1067470 – ident: e_1_2_9_58_1 doi: 10.1038/s41567-018-0413-4 |
SSID | ssj0005871 |
Score | 2.4851937 |
Snippet | Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e112717 |
SubjectTerms | Actin Actin Cytoskeleton - metabolism actin turnover Actins - metabolism aging Beads Cellular Biology Cellular communication Cellular structure Comet tails Cycle protein Dismantling EMBO05 Feedback loops Life Sciences lifetime microwells Monomers Polystyrene Polystyrene resins Proteins reconstituted system Steady state Structural stability |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VqopeqkKhTaHIVL2AFLFx4tg-AgKteFQ9FIlbZCc2Dy3ZioVK_PvOOI9tilqkHhNPEicznvkmngfAF12i1GhpYu7ThIpqi1irSsZJJbkoZZkrHwJkv-bj8-z4Qlz8lgvT1Ifof7jRygj6mha4sbOuYw9VDXW39gYdPI4uDEenZAFeUoYt1c_n2bd5mIcKTlf4z5IlSrdblXSP3T_uMDBNC1cUGPkUdT4Nnux3UIf4Nhioo7fwpkWWbK8RhWV44eoVeNX0mnxcgaWDrrXbOzhBsPhIOZGXbOoZQkBG6Q01u6UMB3fHqO8Wm1Dq0yyMTq69oyb0RF03ceMMTVVN4Z-rcH50-P1gHLddFeISoYOMpTHCiDQ36Dl64bWwIykrp1Ir7chx1N1J5rxIpNO-RPiSpNKg2a-yyleea5euwWI9rd0HYIi9nHcW7RsCAZ1zZatKSmkNbedIbiPY7T5oUbYlx6nzxaQg14NYUBALijkLItjur_jRlNv4B-1n5FFPRnWyx3unBZ1DzSQy1MU_kwg2OhYW7eqcFZzajaS5SrMItvph5AFtlpjaTR-QRqpcEJGI4H3D8f5Raa6pKAePQA1kYTCX4Uh9fRVqd6MGRMCU6Qh2OrGZz-vvbyqCYD37SYrDs_3j-eHH_7xuHV7jQRPXyTdg8f7uwX1C7HVvN8Pi-gVuKSEO priority: 102 providerName: Wiley-Blackwell |
Title | Recycling of the actin monomer pool limits the lifetime of network turnover |
URI | https://link.springer.com/article/10.15252/embj.2022112717 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022112717 https://www.ncbi.nlm.nih.gov/pubmed/36912152 https://www.proquest.com/docview/2808136834 https://www.proquest.com/docview/2786513685 https://hal.science/hal-04054219 https://pubmed.ncbi.nlm.nih.gov/PMC10152149 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT6wwEJ64GnN8Md6O4mVTzXnRhCiF0vZRN5qNnmN8OCa-EQqtl6ys8Zb4750BlpV4i4_QAqUz7XzTuQH80RlyjZapz10YUFJt4WuVSz_IJReZzGLlSgfZ07h_Hh1fiIv6vINiYd7a7wUXfNfemhtU4zgqKhxVjw5MiSCMiX97cW_szKFK1ao8TYkCpWuD5EdvaAmgzhW5P77Hlu9dJBs7aRvFlmLoaA5ma_zI9iuCz8OELRZguqoo-bIAv3qjAm6LcIKQ8IUiHy_Z0DEEeoyCGAp2S3EM9p5RdS02oACnh7J1cO0slZqn3kXlHc5QIBXk5LkE50eH_3t9v66d4GcIEKQv01SkIoxT1A-dcFqYPSlzq0IjzZ7luEMHkXUikFa7DEFKEMoUhXse5S53XNvwN0wWw8KuAEOEZZ01KMVQ3OuYK5PnUkqTktFGcuPB7mhCk6xOLE71LQYJKRhEgoRIkIxJ4MF288RdlVTji75bSKOmG2XD7u__Tege7j8iwh33OfBgfUTCpF6DDwmnoiJhrMLIg82mGWlAJpG0sMMn7CNVTPykhAfLFcWbTyGXUeoN7oFq8UJrLO2W4vqqzNCN-xzCokh7sDNim_G4Pv9TUTLWt1OSHP47OB5frv7kI2swgxeVyyZfh8nH-ye7gbDq0XShw6OzbrmuuiTgxCun8xcj |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VUEUvFVCgKbSYigtI0RInju0jrEALLJxA4mbFic1DS7biUYl_z0ySzTaipeKYeJI4HtvzjecFsKVznDVaZiH3cURJtUWoVSHDqJBc5DJPla8cZM_SwUVyfCkum_MOioX5034vuOA9d2dvUY3jqKhwVD1mYC5BPZmc9_ppf-rMoSrVqjpNSSKlG4Pk397QEUAz1-T--BpbvnaRbO2kXRRbiaHDBfjc4Ee2VzN8ET64cgk-1hUln5dgvj8p4PYFThASPlPk4xUbe4ZAj1EQQ8nuKI7B3TOqrsVGFOD0ULWObryjUvNEXdbe4QwFUklOnstwcXhw3h-ETe2EMEeAIEOZZSITcZqhfuiF18LuSlk4FVtpdx3HHTpKnBeRdNrnCFKiWGYo3Iuk8IXn2sUrMFuOS_cVGCIs551FKYbiXqdc2aKQUtqMjDaS2wB6kwE1eZNYnOpbjAwpGMQCQywwUxYEsN0-8atOqvEG7U_kUUtG2bAHe0ND93D_EQnuuL-jANYnLDTNGnwwnIqKxKmKkwA222bkAZlEstKNn5BGqlQQkQhgteZ4-6k41ZR6gwegOnOh05duS3lzXWXoxn0OYVGiA9iZTJtpv_79p6KaWP8dEnNwun88vfz2no9swPzg_HRohkdnJ2vwCRtq902-DrOP90_uO0KsR_ujWl0vy0UYUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIigXBIWWQAGDuIAUbePEsX0sS1dLWyoOVOotihObFm29VXeL1H_PjPNYReUhjrEnL8_E803mBfBOVyg1WpYxd2lCRbVFrFUt46SWXFSyypULAbLH-fQkOzgVp-0Pt0UX7d65JJucBqrS5Jejy9p1_Xr4yF6YH2jccTRfOBoka3AX7ZTgph3n41WIhwoGV_jHkiVKt27K311hoJbWzigo8jbivB042XtPh9g2KKfJI3jYokq214jBY7hj_Sbca_pM3mzCxrhr6_YEDhEo3lA-5Hc2dwzhH6PUBs8uKLvBXjHqucVmlPa0CLOzc2epAT1R-yZmnKGa8hT6-RROJvvfxtO47agQVwgbZCzLUpQizUu0Gp1wWphdKWurUiPNruW4byeZdSKRVrsKoUuSyhJVfp3VrnZc23QL1v3c22fAEHdZZw3qNgQBOufK1LWU0pTkypHcRDDqFrSo2nLj1PViVpDZQSwoiAXFigURvO_PuGxKbfyF9i3yqCejGtnTvaOCxnBXEhnuwz-TCHY6Fhbtl7koOLUaSXOVZhG86aeRB-QoKb2dXyONVLkgIhHBdsPx_lZprqkgB49ADWRh8CzDGX9-Fup24-6HYCnTEXzoxGb1XH9-UxEE659LUux_-XiwOnz-Pzd5Dfe_fpoUR5-PD1_AAxxvYjr5Dqwvr67tS8RdS_MqfFy_APSSIJo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recycling+of+the+actin+monomer+pool+limits+the+lifetime+of+network+turnover&rft.jtitle=The+EMBO+journal&rft.au=Colin%2C+Alexandra&rft.au=Kotila%2C+Tommi&rft.au=Gu%C3%A9rin%2C+Christophe&rft.au=Orhant%E2%80%90Prioux%2C+Magali&rft.date=2023-05-02&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=42&rft.issue=9&rft_id=info:doi/10.15252%2Fembj.2022112717&rft.externalDBID=n%2Fa&rft.externalDocID=10_15252_embj_2022112717 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |