Terrestrial gross primary production inferred from satellite fluorescence and vegetation models

Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 20; no. 10; pp. 3103 - 3121
Main Authors Parazoo, Nicholas C, Bowman, Kevin, Fisher, Joshua B, Frankenberg, Christian, Jones, Dylan B. A, Cescatti, Alessandro, Pérez‐Priego, Óscar, Wohlfahrt, Georg, Montagnani, Leonardo
Format Journal Article
LanguageEnglish
Published England Blackwell Science 01.10.2014
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar‐induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7–8 Pg C yr⁻¹ from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr⁻¹) and enhanced GPP in tropical forests (~3.7 Pg C yr⁻¹). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak‐to‐trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40–70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well‐suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution.
AbstractList Abstract Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar‐induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7–8 Pg C yr −1 from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr −1 ) and enhanced GPP in tropical forests (~3.7 Pg C yr −1 ). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak‐to‐trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40–70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well‐suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution.
Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar‐induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7–8 Pg C yr⁻¹ from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr⁻¹) and enhanced GPP in tropical forests (~3.7 Pg C yr⁻¹). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak‐to‐trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40–70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well‐suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution.
Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7-8 Pg C yr super(-1) from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr super(-1)) and enhanced GPP in tropical forests (~3.7 Pg C yr super(-1)). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40-70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution.
Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7-8 Pg C yr-1 from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr-1) and enhanced GPP in tropical forests (~3.7 Pg C yr-1). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40-70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution. [PUBLICATION ABSTRACT]
Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7-8 Pg C yr(-1) from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr(-1) ) and enhanced GPP in tropical forests (~3.7 Pg C yr(-1) ). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40-70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution.
Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar‐induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7–8 Pg C yr−1 from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr−1) and enhanced GPP in tropical forests (~3.7 Pg C yr−1). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak‐to‐trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40–70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well‐suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution.
Author Parazoo, Nicholas C
Pérez‐Priego, Óscar
Fisher, Joshua B
Cescatti, Alessandro
Bowman, Kevin
Frankenberg, Christian
Jones, Dylan B. A
Montagnani, Leonardo
Wohlfahrt, Georg
Author_xml – sequence: 1
  fullname: Parazoo, Nicholas C
– sequence: 2
  fullname: Bowman, Kevin
– sequence: 3
  fullname: Fisher, Joshua B
– sequence: 4
  fullname: Frankenberg, Christian
– sequence: 5
  fullname: Jones, Dylan B. A
– sequence: 6
  fullname: Cescatti, Alessandro
– sequence: 7
  fullname: Pérez‐Priego, Óscar
– sequence: 8
  fullname: Wohlfahrt, Georg
– sequence: 9
  fullname: Montagnani, Leonardo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24909755$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1TAQhS3Uij5gwR-ASGxgkdaP2ImXcEVvkdqyoBUSG8t2JlcuTlzsBOi_x7m57QKpEpasmcV3jmbmHKG9IQyA0CuCT0h-pxtrTggVnD5Dh4QJXtKqEXtzz6uSYMIO0FFKtxhjRrF4jg5oJbGsOT9E6hpihDRGp32xiSGl4i66Xsf7XEM72dGFoXBDN2Nt0cXQF0mP4L0boej8FLLawmCh0ENb_IINjHqr6UMLPr1A-532CV7u6jG6Oft0vTovL76sP68-XJSW84qWLSbG1IaYpjZGS4KtMbZttaxJXeXFqGyEth0WICQ2AhMOtKsAV2CsZLxmx-jd4pun_jnlhVTv8lze6wHClBThQjQcM4H_ByWylrJhGX37D3obpjjkRbZUJSjlM_V-oex8vwid2p1QEazmgFQOSG0DyuzrneNkemgfyYdEMnC6AL-dh_unndR69fHBslwULo3w51Gh4w8lalZz9e1qrdjZ9_P1ShJ1mfk3C9_poPQmuqRuvlJMKpw_I4KwvzEytBU
CitedBy_id crossref_primary_10_1080_17538947_2019_1597187
crossref_primary_10_1016_j_agrformet_2024_110090
crossref_primary_10_1029_2021GL093285
crossref_primary_10_1016_j_agee_2018_11_016
crossref_primary_10_3390_rs13132545
crossref_primary_10_5194_bg_12_4067_2015
crossref_primary_10_1016_j_jag_2020_102155
crossref_primary_10_1029_2020AV000228
crossref_primary_10_1016_j_foreco_2015_05_032
crossref_primary_10_1029_2021GB007177
crossref_primary_10_1088_1748_9326_ab1ac0
crossref_primary_10_1111_pce_13620
crossref_primary_10_5194_bg_18_6579_2021
crossref_primary_10_1126_science_aam5690
crossref_primary_10_3390_rs12152346
crossref_primary_10_1016_j_rse_2019_111383
crossref_primary_10_1016_j_agrformet_2020_108292
crossref_primary_10_1029_2021GB007216
crossref_primary_10_1029_2021MS002555
crossref_primary_10_1002_eap_2101
crossref_primary_10_1126_science_aam5745
crossref_primary_10_1080_10739149_2019_1674326
crossref_primary_10_1126_science_aam5747
crossref_primary_10_1002_2017GL076630
crossref_primary_10_1007_s10668_019_00440_2
crossref_primary_10_3390_atmos15040463
crossref_primary_10_1007_s40641_024_00194_8
crossref_primary_10_1029_2024GL108310
crossref_primary_10_1111_gcb_14634
crossref_primary_10_1186_s40645_023_00562_2
crossref_primary_10_1016_j_ecolind_2022_108721
crossref_primary_10_5194_amt_9_3939_2016
crossref_primary_10_1007_s10265_021_01313_4
crossref_primary_10_1029_2020RG000711
crossref_primary_10_3390_f14061201
crossref_primary_10_1016_j_rse_2015_06_004
crossref_primary_10_1016_j_agrformet_2017_02_012
crossref_primary_10_1029_2020GL087541
crossref_primary_10_3390_rs9121275
crossref_primary_10_3390_rs10071008
crossref_primary_10_1111_nph_14623
crossref_primary_10_1029_2022MS003135
crossref_primary_10_1016_j_scitotenv_2022_153559
crossref_primary_10_3390_rs11030273
crossref_primary_10_1016_j_rse_2022_112998
crossref_primary_10_1016_j_jhydrol_2021_126884
crossref_primary_10_1016_j_rse_2017_09_034
crossref_primary_10_1029_2018GL077906
crossref_primary_10_1029_2019AV000140
crossref_primary_10_1186_s40663_018_0138_y
crossref_primary_10_5194_esd_8_875_2017
crossref_primary_10_1002_2015GL063201
crossref_primary_10_1002_2016EA000204
crossref_primary_10_1088_1748_9326_aad5ef
crossref_primary_10_1109_JSTARS_2021_3128355
crossref_primary_10_3390_rs11050517
crossref_primary_10_5194_bg_17_6393_2020
crossref_primary_10_1016_j_rse_2022_113282
crossref_primary_10_1029_2021JG006524
crossref_primary_10_1029_2019MS001889
crossref_primary_10_3390_rs10091346
crossref_primary_10_1016_j_geomorph_2015_01_022
crossref_primary_10_3390_f8040137
crossref_primary_10_3390_s19133000
crossref_primary_10_1016_j_ecolind_2019_105755
crossref_primary_10_1016_j_rse_2021_112748
crossref_primary_10_5194_bg_16_2269_2019
crossref_primary_10_1016_j_agrformet_2022_109189
crossref_primary_10_5194_essd_13_299_2021
crossref_primary_10_1109_JSTARS_2021_3123111
crossref_primary_10_3390_rs12071202
crossref_primary_10_1080_01431161_2020_1763507
crossref_primary_10_1016_j_atmosenv_2017_08_017
crossref_primary_10_1111_nph_13597
crossref_primary_10_3389_fpls_2022_828451
crossref_primary_10_3390_s18072063
crossref_primary_10_1109_TGRS_2022_3204885
crossref_primary_10_1016_j_agrformet_2019_107691
crossref_primary_10_3390_s20092493
crossref_primary_10_1111_gcb_13200
crossref_primary_10_3390_rs13173382
crossref_primary_10_1038_nature17966
crossref_primary_10_3390_s20041144
crossref_primary_10_3390_rs12040680
crossref_primary_10_1111_nph_16055
crossref_primary_10_3390_rs13050963
crossref_primary_10_1111_gcb_15775
crossref_primary_10_1016_j_rse_2015_12_036
crossref_primary_10_1016_j_ecolind_2017_06_045
crossref_primary_10_1111_pce_12569
crossref_primary_10_1002_2015RG000483
crossref_primary_10_5194_bg_17_405_2020
crossref_primary_10_2139_ssrn_3978981
crossref_primary_10_1002_2015GL065161
crossref_primary_10_3390_rs11212562
crossref_primary_10_3390_rs11212563
crossref_primary_10_1080_15481603_2024_2318846
crossref_primary_10_1016_j_rse_2020_111644
crossref_primary_10_1016_j_agrformet_2020_108092
crossref_primary_10_1111_nph_14437
crossref_primary_10_1111_gcb_14283
crossref_primary_10_1016_j_rse_2016_04_027
crossref_primary_10_1029_2018JG004520
crossref_primary_10_1111_gcb_15373
crossref_primary_10_1029_2020AV000310
crossref_primary_10_1016_j_rse_2021_112722
crossref_primary_10_1016_j_rse_2022_112984
crossref_primary_10_3390_f8060212
crossref_primary_10_1016_j_rse_2020_112226
crossref_primary_10_1016_j_heliyon_2022_e09153
crossref_primary_10_1016_j_agrformet_2023_109504
crossref_primary_10_5194_bg_16_3069_2019
crossref_primary_10_5194_bg_14_1969_2017
crossref_primary_10_1029_2018JG004938
crossref_primary_10_1016_j_agrformet_2024_110151
crossref_primary_10_1029_2018GL079031
crossref_primary_10_5194_amt_12_2341_2019
crossref_primary_10_1016_j_isprsjprs_2015_01_017
crossref_primary_10_1029_2021GB006956
crossref_primary_10_1071_WF20162
crossref_primary_10_1007_s10712_019_09506_2
crossref_primary_10_3390_rs12193249
crossref_primary_10_5194_bg_15_3625_2018
crossref_primary_10_1029_2018JG004472
crossref_primary_10_1002_2015GB005125
crossref_primary_10_1016_j_agrformet_2022_108904
crossref_primary_10_1038_s41598_017_13783_5
crossref_primary_10_3390_rs11141691
crossref_primary_10_1038_s41598_018_20024_w
crossref_primary_10_1111_gcb_16646
crossref_primary_10_1016_j_rse_2016_05_015
crossref_primary_10_1016_j_agrformet_2022_109038
crossref_primary_10_1016_j_agrformet_2021_108424
crossref_primary_10_1038_s43247_022_00533_3
crossref_primary_10_1016_j_rse_2015_08_022
crossref_primary_10_3390_s20174682
crossref_primary_10_5194_bg_17_3589_2020
crossref_primary_10_1029_2020JG005651
crossref_primary_10_5194_gmd_11_1517_2018
crossref_primary_10_1002_2014GB005034
crossref_primary_10_3390_rs14071722
crossref_primary_10_1098_rstb_2017_0408
crossref_primary_10_1029_2019JG005534
crossref_primary_10_1016_j_rse_2018_10_018
crossref_primary_10_1002_2017GL075922
crossref_primary_10_1029_2023JG007468
crossref_primary_10_3390_rs11161952
crossref_primary_10_1016_j_agrformet_2016_03_009
crossref_primary_10_1038_s41467_020_15852_2
crossref_primary_10_1002_2016GL070775
crossref_primary_10_1029_2021GL096802
crossref_primary_10_5194_bg_15_5377_2018
crossref_primary_10_1029_2020GB006598
crossref_primary_10_3390_rs12020258
crossref_primary_10_1016_j_rse_2019_04_030
crossref_primary_10_1016_j_scitotenv_2024_171748
crossref_primary_10_1111_gcb_14297
crossref_primary_10_1038_s41598_018_32602_z
crossref_primary_10_1002_2014GB005022
crossref_primary_10_5194_bg_12_6351_2015
Cites_doi 10.1029/2003JD003968
10.1109/TGRS.2010.2046420
10.1029/2010JG001566
10.5194/amt-5-687-2012
10.1029/2011GL048738
10.1046/j.1365-2486.2003.00569.x
10.1029/2009GL040613
10.5194/essd-5-165-2013
10.1046/j.1365-2486.2001.00383.x
10.1007/s10584-008-9404-2
10.1371/journal.pone.0088130
10.1029/2011EO100001
10.1175/JCLI-D-13-00074.1
10.1111/gcb.12187
10.5194/bg-3-571-2006
10.1111/j.1365-2486.2008.01626.x
10.5194/gmd-4-701-2011
10.5194/bg-8-2027-2011
10.1016/j.rse.2012.02.006
10.1016/j.agrformet.2013.04.031
10.1029/2008GL034332
10.1146/annurev-ecolsys-102209-144647
10.1002/grl.50452
10.5194/amtd-6-3883-2013
10.1029/2003GB002199
10.1126/science.1184984
10.1016/j.ecolmodel.2012.02.004
10.1175/BAMS-D-11-00094.1
10.1093/jexbot/51.345.659
10.1038/nature07949
10.5194/bg-6-1181-2009
10.5194/bg-9-3857-2012
10.1111/j.1365-2486.2009.02041.x
10.1137/1.9780898717921
10.1088/1748-9326/7/4/044008
10.1038/ngeo689
10.1029/2005GL024607
10.5194/bg-6-3109-2009
10.1175/JCLI-D-11-00015.1
10.5194/bgd-10-20113-2013
10.1175/JCLI-D-12-00494.1
10.1098/rsta.2007.2068
10.1046/j.1466-822X.2001.t01-1-00256.x
10.1029/2007JG000644
10.1175/JCLI3800.1
10.1029/2012JG001960
10.1029/2006GB002868
10.1016/j.rse.2012.02.019
10.1111/j.1365-2486.2009.01908.x
10.1098/rspb.2013.0171
10.1029/2012GL052336
10.1073/pnas.0611338104
10.5194/acp-10-11707-2010
10.1029/2009GB003522
10.5194/bg-8-637-2011
10.1034/j.1399-3054.2002.1140209.x
10.1111/j.1365-2486.2005.001002.x
ContentType Journal Article
Copyright 2014 John Wiley & Sons Ltd
2014 John Wiley & Sons Ltd.
Copyright © 2014 John Wiley & Sons Ltd
Copyright_xml – notice: 2014 John Wiley & Sons Ltd
– notice: 2014 John Wiley & Sons Ltd.
– notice: Copyright © 2014 John Wiley & Sons Ltd
DBID FBQ
BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7U6
SOI
DOI 10.1111/gcb.12652
DatabaseName AGRIS
Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
Environment Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList CrossRef

Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 3121
ExternalDocumentID 3429907511
10_1111_gcb_12652
24909755
GCB12652
ark_67375_WNG_3FZHGC91_M
US201400143161
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations South America
North America
Europe
South America, Amazon R
GeographicLocations_xml – name: Europe
– name: North America
– name: South America
– name: South America, Amazon R
GrantInformation_xml – fundername: FAO‐GTOS‐TCO
– fundername: NASA Atmospheric CO2 Observations from Space (ACOS) program
  funderid: NNX10AT42G
– fundername: National Science Foundation
– fundername: NASA
– fundername: Université Laval and Environment Canada
– fundername: Max Planck Institute for Biogeochemistry
– fundername: Canadian Foundation for Climate and Atmospheric Sciences
– fundername: Canadian Natural Sciences and Engineering Research Council
– fundername: NSF
  funderid: 0845166
– fundername: CarboEuropeIP
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7U6
SOI
ID FETCH-LOGICAL-c5542-d01bb7b1b87bba910cbbcdda971746522986acf06e690b6015e2f4e04ebc93573
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Fri Aug 16 21:28:54 EDT 2024
Sat Aug 17 02:42:01 EDT 2024
Thu Oct 10 19:57:28 EDT 2024
Fri Aug 23 00:28:54 EDT 2024
Sat Sep 28 07:54:32 EDT 2024
Sat Aug 24 01:09:47 EDT 2024
Wed Oct 30 09:56:47 EDT 2024
Wed Dec 27 19:25:11 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords amazon
water stress
carbon cycle
flux towers
climate change
model benchmarking
Language English
License 2014 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5542-d01bb7b1b87bba910cbbcdda971746522986acf06e690b6015e2f4e04ebc93573
Notes http://dx.doi.org/10.1111/gcb.12652
US Department of Energy
Microsoft Research eScience
University of California - Berkeley
NSF - No. 0845166
NASA Atmospheric CO2 Observations from Space (ACOS) program - No. NNX10AT42G
File S1. Information about (1) SIF scaling technique, (2) satellite fluorescence sampling coverage, (3) observation system simulation experiments, and (4) flux tower data.
istex:08D806F9130F3F33AA71D453569F9D7527606DB2
CarboEuropeIP
Max Planck Institute for Biogeochemistry
ArticleID:GCB12652
ark:/67375/WNG-3FZHGC91-M
Oak Ridge National Laboratory
iLEAPS
National Science Foundation
University of Tuscia
Ontario Ministry of Environment
University of Virginia
NASA
Canadian Foundation for Climate and Atmospheric Sciences
Berkeley Water Center
Canadian Forest Service
FAO-GTOS-TCO
Université Laval and Environment Canada
Lawrence Berkeley National Laboratory
Canadian Natural Sciences and Engineering Research Council
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24909755
PQID 1561462253
PQPubID 30327
PageCount 19
ParticipantIDs proquest_miscellaneous_1566850360
proquest_miscellaneous_1561979983
proquest_journals_1561462253
crossref_primary_10_1111_gcb_12652
pubmed_primary_24909755
wiley_primary_10_1111_gcb_12652_GCB12652
istex_primary_ark_67375_WNG_3FZHGC91_M
fao_agris_US201400143161
PublicationCentury 2000
PublicationDate October 2014
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: October 2014
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2014
Publisher Blackwell Science
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
References Damm A, Elbers J, Erler A et al. (2010) Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Global Change Biology, 16, 171-186.
Lasslop G, Reichstein M, Papale D et al. (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology, 16, 187-208.
Zeri M, Sá LDA, Manzi AO et al. (2014) Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia. PLoS ONE, 9, e88130.
Suntharalingam P, Kettle AJ, Montzka SM, Jacob DJ (2008) Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: implications for terrestrial vegetation uptake. Geophysical Research Letters, 35 .
Zeng N, Qian H, Roedenbeck C, Heimann M (2005) Impact of 1998-2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophysical Research Letters, 32, L22709. doi:10.1029/2005GL024607.
Van der Tol C, Verhoef W, Timmermans J, Verhoef A, Su Z (2009) An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences, 6, 3109-3129.
Papale D, Reichstein M, Aubinet M (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3, 571-583.
Collins M (2007) Ensembles and probabilities: a new era in the prediction of climate change. Philosophical Transaction of the Royal Society A, 365, 1957-1970.
Knorr W (2009) Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophysical Research Letters, 36, doi: 10.1029/2009GL040613.
Le Quéré C, Andres RJ, Boden R et al. (2013) The global carbon budget 1959-2011. Earth System Science Data, 5, 165-185.
Schaefer K, Schwalm CR, Williams C et al. (2012) A model-data comparison of gross primary productivity: results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 117, G03010, doi:10.1029/2012JG001960
Reichstein M, Falge E, Baldocchi D et al. (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439.
Beer C, Reichstein M, Tomelleri E et al. (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329 , 834-838.
Sitch S, Huntingford C, Gedney N et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015-2039.
Ahlström A, Schurgers G, Arneth A, Smith B (2012b) Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environmental Research Letters, 7, 044008.
Piao S, Sitch S, Ciais P et al. (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 19 , 2117-2132.
Rienecker MM, Suarez MJ, Gelaro R et al. (2011) MERRA: NASA's modern-era retrospective analysis for research and applications. Journal of Climate, 24, 3624-3648.
Canadell JG, Ciais P, Gurney K, Le Quéré C, Piao S, Raupach MR, Sabine CL (2011) An international effort to quantify regional carbon fluxes. Eos, Transactions American Geophysical Union, 92, 81-82.
Guanter L, Frankenberg C, Dudhia A et al. (2012) Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sensing of Environment, 121, 236-251.
Cramer W, Bondeau A, Woodward FI et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373.
Cescatti A, Marcolla B, Santhana Vannan SK et al. (2012) Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote sensing of environment, 121, 323-334.
Rascher U, Agati G, Alonso L et al. (2009) CEFLES 2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands. Biogeosciences, 6, 1181-1198.
Daumard F, Champagne S, Fournier A, Goulas Y, Ounis A, Hanocq J-F, Moya I (2010) A field platform for continuous measurement of canopy fluorescence. IEEE Transactions on Geoscience and Remote Sensing, 48, 3358.
Baker IT, Harper AB, da Rocha HR (2013) Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America. Agricultural and Forest Meteorology, 182-183, 1770188.
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93 , 485-498.
Le Quéré C, Raupach MR, Canadell JG et al. (2009) Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 17, 831-836.
Sitch S, Friedlingstein P, Gruber N (2013) Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades. Biogeosciences Discussions, 10, 1-65.
Flexas J, Escalona J, Evain S, Gulias J, Moya I, Osmond C, Medrano H (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia Plantarum, 114, 231-240.
Olsen SC, Randerson JT (2004) Differences between surface and column atmospheric CO2 and implications for carbon cycle research. Journal of Geophysical Research, 109, D02301, 11 pp.
Huntzinger DN, Post WM, Wei Y et al. (2012) North American Carbon Program (NACP) regional interim synthesis: terrestrial biospheric model intercomparison. Ecological Modelling, 232, 144-157.
Crisp D, Fisher BM, O'Dell C et al. (2012) The ACOS CO2 retrievals algorithm - Part II: global XCO2 data characterization. Atmospheric Measurement Techniques, 5, 687-707.
Myneni RB, Yang W, Nemani RR et al. (2007) Large seasonal swings in leaf area of Amazon rainforests. Proceedings of the National Academy of Sciences, 104, 4820-2823.
Ahlström A, Miller PA, Smith B (2012a) Too early to infer a global NPP decline since 2000. Geophysical Research Letters, 39, L15403.
Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeography, 10, 621-637.
Zaehle S, Friend AD, Friedlingstein P, Dentener F, Peylin P, Schulz M (2010) Carbon and nitrogen cycle dynamics in the O-CN land surface model. II. The role of the nitrogen cycle in the historical terrestrial C balance. Global Biogeochemical Cycles, 24, GB1006, doi:10.1029/2009GB003522.
Krinner G, Viovy N, de Noblet-Ducoudré N et al. (2005) A dynamic global vegetation model for studies of the coupled atmosphere biosphere system. Global Biogeochemical Cycles, 19, 1-33.
Poulter B, Frank DC, Hodson EL, Zimmermann NE (2011) Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction. Biogeosciences, 8, 2027-2036.
Restrepo-Coupe N, da Rocha HR, Hutyra LR et al. (2013) What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology, 182, 128-144.
van der Werf GV, Randerson JT, Giglio L et al. (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10, 11707-11735.
Maxwell K, Johnson G (2000) Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 51, 659-668.
Baker IT, Prihodko L, Denning AS, Goulden M, Miller S, Da Rocha HR (2008) Seasonal drought stress in the Amazon: reconciling models and observations. Journal of Geophysical Research, 113, G00B01, 10 pp.
Clark DB, Mercado LM, Sitch S et al. (2011) The joint UK land environment simulator (JULES), model description. II. Carbon fluxes and vegetation dynamics. Geoscientific Model Development, 4, 701-722.
Lee JE, Frankenberg C, van der Tol C et al. (2013) Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Proceedings of the Royal Society B: Biological Sciences, 280, 9.
Sitch S, Smith B, Prentice IC et al. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161-185.
Tarantola A. (2005) Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, Pennsylvania.
Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014-1017.
Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics, 42, 181-203.
Friedlingstein P, Cox P, Betts R (2006) Climate-carbon cycle feedback analysis: results from the C4MIP Model Intercomparison. Journal of Climate, 19, 3337-3353.
Arora VK, Boer GJ, Friedlingstein P et al. (2013) Carbon-concentration and carbon-climate feedbacks in CMIP5 earcth system models. Journal of Climate, 26, 5289-5314.
Jung M, Reichstein M, Margolis HA et al. (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research, 116, G00J07.
O'Neill B, Melnikov N (2008) Learning about parameter and structural uncertainty in carbon cycle models. Climate Change, 89, 23-44.
Joiner JY, Yoshida Y, Vasilkov AP, Yoshida Y, Corp LA, Middleton EM (2011) First observations of global and seasonal terrestrial chlorophyll fluorescence from s
2011; 116
2007; 104
2010; 10
2013; 26
2012; 121
2010; 16
2002; 114
2014; 27
2000; 51
2008; 35
2013; 280
2013; 5
2013; 6
2013; 19
2012a; 39
2010; 24
2013; 10
2003; 9
2013; 182–183
2005; 32
2011; 24
2008; 113
2014; 9
2007; 21
2009; 17
2001; 10
2007; 365
2010; 329
2013; 40
2008; 14
2006; 19
2006; 3
2005
2011; 4
2004; 109
2011; 38
2013; 182
2011; 8
2009; 458
2012; 93
2009; 36
2005; 19
2010; 48
2012; 232
2001; 7
2011; 92
2011; 42
2008; 89
2009; 6
2012; 5
2012; 117
2005; 11
2012b; 7
2012; 9
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
Krinner G (e_1_2_6_26_1) 2005; 19
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Baker IT (e_1_2_6_6_1) 2013; 182
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 5
  start-page: 687
  year: 2012
  end-page: 707
  article-title: The ACOS CO2 retrievals algorithm – Part II: global XCO2 data characterization
  publication-title: Atmospheric Measurement Techniques
– volume: 4
  start-page: 701
  year: 2011
  end-page: 722
  article-title: The joint UK land environment simulator (JULES), model description. II. Carbon fluxes and vegetation dynamics
  publication-title: Geoscientific Model Development
– year: 2005
– volume: 3
  start-page: 571
  year: 2006
  end-page: 583
  article-title: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation
  publication-title: Biogeosciences
– volume: 8
  start-page: 2027
  year: 2011
  end-page: 2036
  article-title: Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction
  publication-title: Biogeosciences
– volume: 36
  year: 2009
  article-title: Is the airborne fraction of anthropogenic CO2 emissions increasing?
  publication-title: Geophysical Research Letters
– volume: 24
  start-page: GB1006
  year: 2010
  article-title: Carbon and nitrogen cycle dynamics in the O‐CN land surface model. II. The role of the nitrogen cycle in the historical terrestrial C balance
  publication-title: Global Biogeochemical Cycles
– volume: 26
  start-page: 5289
  year: 2013
  end-page: 5314
  article-title: Carbon‐concentration and carbon‐climate feedbacks in CMIP5 earcth system models
  publication-title: Journal of Climate
– volume: 6
  start-page: 3883
  year: 2013
  end-page: 3930
  article-title: Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near‐infrared satellite measurements: methodology, simulations, and application to GOME‐2
  publication-title: Atmospheric Measurement Techniques Discussions
– volume: 6
  start-page: 3109
  year: 2009
  end-page: 3129
  article-title: An integrated model of soil‐canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance
  publication-title: Biogeosciences
– volume: 9
  start-page: 161
  year: 2003
  end-page: 185
  article-title: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model
  publication-title: Global Change Biology
– volume: 114
  start-page: 231
  year: 2002
  end-page: 240
  article-title: Steady‐state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water‐stress in C3 plants
  publication-title: Physiologia Plantarum
– volume: 89
  start-page: 23
  year: 2008
  end-page: 44
  article-title: Learning about parameter and structural uncertainty in carbon cycle models
  publication-title: Climate Change
– volume: 21
  start-page: GB4018
  year: 2007
  article-title: Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability
  publication-title: Global Biogeochemical Cycles
– volume: 16
  start-page: 171
  year: 2010
  end-page: 186
  article-title: Remote sensing of sun‐induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP)
  publication-title: Global Change Biology
– volume: 51
  start-page: 659
  year: 2000
  end-page: 668
  article-title: Chlorophyll fluorescence – a practical guide
  publication-title: Journal of Experimental Botany
– volume: 8
  start-page: 637
  year: 2011
  end-page: 651
  article-title: First observations of global and seasonal terrestrial chlorophyll fluorescence from space
  publication-title: Biogeosciences
– volume: 11
  start-page: 1424
  year: 2005
  end-page: 1439
  article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm
  publication-title: Global Change Biology
– volume: 24
  start-page: 3624
  year: 2011
  end-page: 3648
  article-title: MERRA: NASA's modern‐era retrospective analysis for research and applications
  publication-title: Journal of Climate
– volume: 9
  start-page: e88130
  year: 2014
  article-title: Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia
  publication-title: PLoS ONE
– volume: 17
  start-page: 831
  year: 2009
  end-page: 836
  article-title: Trends in the sources and sinks of carbon dioxide
  publication-title: Nature Geoscience
– volume: 27
  start-page: 571
  year: 2014
  end-page: 591
  article-title: Impact of evapotranspiration on dry season climate in the Amazon forest
  publication-title: Journal of Climate
– volume: 6
  start-page: 1181
  year: 2009
  end-page: 1198
  article-title: CEFLES 2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun‐induced fluorescence in the oxygen absorption bands
  publication-title: Biogeosciences
– volume: 182–183
  start-page: 1770188
  year: 2013
  article-title: Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America
  publication-title: Agricultural and Forest Meteorology
– volume: 19
  start-page: 2117
  year: 2013
  end-page: 2132
  article-title: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends
  publication-title: Global Change Biology
– volume: 14
  start-page: 2015
  year: 2008
  end-page: 2039
  article-title: Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs)
  publication-title: Global Change Biology
– volume: 117
  start-page: G03010
  year: 2012
  article-title: A model‐data comparison of gross primary productivity: results from the North American Carbon Program site synthesis
  publication-title: Journal of Geophysical Research
– volume: 113
  start-page: G00B01
  year: 2008
  article-title: Seasonal drought stress in the Amazon: reconciling models and observations
  publication-title: Journal of Geophysical Research
– volume: 19
  start-page: 3337
  year: 2006
  end-page: 3353
  article-title: Climate‐carbon cycle feedback analysis: results from the C4MIP Model Intercomparison
  publication-title: Journal of Climate
– volume: 10
  start-page: 1
  year: 2013
  end-page: 65
  article-title: Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades
  publication-title: Biogeosciences Discussions
– volume: 7
  start-page: 044008
  year: 2012b
  article-title: Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections
  publication-title: Environmental Research Letters
– volume: 365
  start-page: 1957
  year: 2007
  end-page: 1970
  article-title: Ensembles and probabilities: a new era in the prediction of climate change
  publication-title: Philosophical Transaction of the Royal Society A
– volume: 116
  start-page: G00J07
  year: 2011
  article-title: Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations
  publication-title: Journal of Geophysical Research
– volume: 19
  start-page: 1
  year: 2005
  end-page: 33
  article-title: A dynamic global vegetation model for studies of the coupled atmosphere biosphere system
  publication-title: Global Biogeochemical Cycles
– volume: 42
  start-page: 181
  year: 2011
  end-page: 203
  article-title: Ecological lessons from free‐air CO enrichment (FACE) experiments
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 38
  start-page: L17706
  year: 2011
  article-title: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity
  publication-title: Geophysical Research Letters
– volume: 5
  start-page: 165
  year: 2013
  end-page: 185
  article-title: The global carbon budget 1959‐2011
  publication-title: Earth System Science Data
– volume: 35
  year: 2008
  article-title: Global 3‐D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: implications for terrestrial vegetation uptake
  publication-title: Geophysical Research Letters
– volume: 109
  start-page: D02301
  year: 2004
  article-title: Differences between surface and column atmospheric CO2 and implications for carbon cycle research
  publication-title: Journal of Geophysical Research
– volume: 32
  start-page: L22709
  year: 2005
  article-title: Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle
  publication-title: Geophysical Research Letters
– volume: 458
  start-page: 1014
  year: 2009
  end-page: 1017
  article-title: Impact of changes in diffuse radiation on the global land carbon sink
  publication-title: Nature
– volume: 121
  start-page: 323
  year: 2012
  end-page: 334
  article-title: Intercomparison of MODIS albedo retrievals and measurements across the global FLUXNET network
  publication-title: Remote sensing of environment
– volume: 10
  start-page: 621
  year: 2001
  end-page: 637
  article-title: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space
  publication-title: Global Ecology and Biogeography
– volume: 121
  start-page: 236
  year: 2012
  end-page: 251
  article-title: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements
  publication-title: Remote Sensing of Environment
– volume: 9
  start-page: 3857
  year: 2012
  end-page: 3874
  article-title: A framework for benchmarking land models
  publication-title: Biogeosciences
– volume: 40
  start-page: 2829
  year: 2013
  end-page: 2833
  article-title: Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT
  publication-title: Geophysical Research Letters
– volume: 182
  start-page: 128
  year: 2013
  end-page: 144
  article-title: What drives the seasonality of photosynthesis across the Amazon basin? A cross‐site analysis of eddy flux tower measurements from the Brasil flux network
  publication-title: Agricultural and Forest Meteorology
– volume: 10
  start-page: 11707
  year: 2010
  end-page: 11735
  article-title: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009)
  publication-title: Atmospheric Chemistry and Physics
– volume: 39
  start-page: L15403
  year: 2012a
  article-title: Too early to infer a global NPP decline since 2000
  publication-title: Geophysical Research Letters
– volume: 329
  start-page: 834
  year: 2010
  end-page: 838
  article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate
  publication-title: Science
– volume: 232
  start-page: 144
  year: 2012
  end-page: 157
  article-title: North American Carbon Program (NACP) regional interim synthesis: terrestrial biospheric model intercomparison
  publication-title: Ecological Modelling
– volume: 92
  start-page: 81
  year: 2011
  end-page: 82
  article-title: An international effort to quantify regional carbon fluxes
  publication-title: Eos, Transactions American Geophysical Union
– volume: 104
  start-page: 4820
  year: 2007
  end-page: 2823
  article-title: Large seasonal swings in leaf area of Amazon rainforests
  publication-title: Proceedings of the National Academy of Sciences
– volume: 48
  start-page: 3358
  year: 2010
  article-title: A field platform for continuous measurement of canopy fluorescence
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 16
  start-page: 187
  year: 2010
  end-page: 208
  article-title: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation
  publication-title: Global Change Biology
– volume: 93
  start-page: 485
  year: 2012
  end-page: 498
  article-title: An overview of CMIP5 and the experiment design
  publication-title: Bulletin of the American Meteorological Society
– volume: 280
  start-page: 9
  year: 2013
  article-title: Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 7
  start-page: 357
  year: 2001
  end-page: 373
  article-title: Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models
  publication-title: Global Change Biology
– ident: e_1_2_6_36_1
  doi: 10.1029/2003JD003968
– ident: e_1_2_6_15_1
  doi: 10.1109/TGRS.2010.2046420
– ident: e_1_2_6_24_1
  doi: 10.1029/2010JG001566
– ident: e_1_2_6_13_1
  doi: 10.5194/amt-5-687-2012
– ident: e_1_2_6_17_1
  doi: 10.1029/2011GL048738
– ident: e_1_2_6_47_1
  doi: 10.1046/j.1365-2486.2003.00569.x
– ident: e_1_2_6_25_1
  doi: 10.1029/2009GL040613
– ident: e_1_2_6_29_1
  doi: 10.5194/essd-5-165-2013
– ident: e_1_2_6_12_1
  doi: 10.1046/j.1365-2486.2001.00383.x
– ident: e_1_2_6_37_1
  doi: 10.1007/s10584-008-9404-2
– ident: e_1_2_6_59_1
  doi: 10.1371/journal.pone.0088130
– ident: e_1_2_6_8_1
  doi: 10.1029/2011EO100001
– ident: e_1_2_6_20_1
  doi: 10.1175/JCLI-D-13-00074.1
– ident: e_1_2_6_40_1
  doi: 10.1111/gcb.12187
– ident: e_1_2_6_38_1
  doi: 10.5194/bg-3-571-2006
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1365-2486.2008.01626.x
– ident: e_1_2_6_10_1
  doi: 10.5194/gmd-4-701-2011
– ident: e_1_2_6_41_1
  doi: 10.5194/bg-8-2027-2011
– ident: e_1_2_6_19_1
  doi: 10.1016/j.rse.2012.02.006
– ident: e_1_2_6_44_1
  doi: 10.1016/j.agrformet.2013.04.031
– ident: e_1_2_6_51_1
  doi: 10.1029/2008GL034332
– ident: e_1_2_6_35_1
  doi: 10.1146/annurev-ecolsys-102209-144647
– ident: e_1_2_6_39_1
  doi: 10.1002/grl.50452
– ident: e_1_2_6_23_1
  doi: 10.5194/amtd-6-3883-2013
– volume: 19
  start-page: 1
  year: 2005
  ident: e_1_2_6_26_1
  article-title: A dynamic global vegetation model for studies of the coupled atmosphere biosphere system
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/2003GB002199
  contributor:
    fullname: Krinner G
– ident: e_1_2_6_7_1
  doi: 10.1126/science.1184984
– ident: e_1_2_6_21_1
  doi: 10.1016/j.ecolmodel.2012.02.004
– ident: e_1_2_6_53_1
  doi: 10.1175/BAMS-D-11-00094.1
– ident: e_1_2_6_32_1
  doi: 10.1093/jexbot/51.345.659
– ident: e_1_2_6_33_1
  doi: 10.1038/nature07949
– ident: e_1_2_6_42_1
  doi: 10.5194/bg-6-1181-2009
– ident: e_1_2_6_31_1
  doi: 10.5194/bg-9-3857-2012
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1365-2486.2009.02041.x
– ident: e_1_2_6_52_1
  doi: 10.1137/1.9780898717921
– ident: e_1_2_6_3_1
  doi: 10.1088/1748-9326/7/4/044008
– ident: e_1_2_6_28_1
  doi: 10.1038/ngeo689
– ident: e_1_2_6_58_1
  doi: 10.1029/2005GL024607
– ident: e_1_2_6_55_1
  doi: 10.5194/bg-6-3109-2009
– ident: e_1_2_6_45_1
  doi: 10.1175/JCLI-D-11-00015.1
– ident: e_1_2_6_49_1
  doi: 10.5194/bgd-10-20113-2013
– ident: e_1_2_6_4_1
  doi: 10.1175/JCLI-D-12-00494.1
– ident: e_1_2_6_11_1
  doi: 10.1098/rsta.2007.2068
– ident: e_1_2_6_50_1
  doi: 10.1046/j.1466-822X.2001.t01-1-00256.x
– ident: e_1_2_6_5_1
  doi: 10.1029/2007JG000644
– volume: 182
  start-page: 1770188
  year: 2013
  ident: e_1_2_6_6_1
  article-title: Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America
  publication-title: Agricultural and Forest Meteorology
  contributor:
    fullname: Baker IT
– ident: e_1_2_6_18_1
  doi: 10.1175/JCLI3800.1
– ident: e_1_2_6_46_1
  doi: 10.1029/2012JG001960
– ident: e_1_2_6_54_1
  doi: 10.1029/2006GB002868
– ident: e_1_2_6_9_1
  doi: 10.1016/j.rse.2012.02.019
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1365-2486.2009.01908.x
– ident: e_1_2_6_30_1
  doi: 10.1098/rspb.2013.0171
– ident: e_1_2_6_2_1
  doi: 10.1029/2012GL052336
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.0611338104
– ident: e_1_2_6_56_1
  doi: 10.5194/acp-10-11707-2010
– ident: e_1_2_6_57_1
  doi: 10.1029/2009GB003522
– ident: e_1_2_6_22_1
  doi: 10.5194/bg-8-637-2011
– ident: e_1_2_6_16_1
  doi: 10.1034/j.1399-3054.2002.1140209.x
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1365-2486.2005.001002.x
SSID ssj0003206
Score 2.561546
Snippet Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget....
Abstract Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon...
SourceID proquest
crossref
pubmed
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 3103
SubjectTerms amazon
carbon
Carbon Cycle
chlorophyll
Chlorophyll - analysis
Chlorophyll - metabolism
Climate
Climate change
cropland
deciduous forests
dry season
Environmental Monitoring - methods
Europe
Fluorescence
flux towers
greenhouse gases
growing season
latitude
model benchmarking
Models, Theoretical
North America
Photosynthesis
Plants - metabolism
prediction
primary productivity
Remote sensing
seasonal variation
Seasons
South America
Spacecraft
Sunlight
Terrestrial ecosystems
tropical forests
tropics
uncertainty
Vegetation
water stress
Title Terrestrial gross primary production inferred from satellite fluorescence and vegetation models
URI https://api.istex.fr/ark:/67375/WNG-3FZHGC91-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12652
https://www.ncbi.nlm.nih.gov/pubmed/24909755
https://www.proquest.com/docview/1561462253
https://search.proquest.com/docview/1561979983
https://search.proquest.com/docview/1566850360
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OA8EXP1bPq54SRQ5fujRN0w980vV2F2HvQW_xECEkabocd7THdlfUv95J0vY8URHfWjqBZDoz-U07-Q3Ai1QmKuMlOpIudJhUVIWyjGmImxeC-1RnmTvlujhO58vk3Sk_3YFX_VkYzw8xfHCznuHitXVwqdqfnHyl1ZjGKbfxl7LMlnO9fX9FHcVi11eTMp5gqKGsYxWyVTzDyGt70Y1KNohQrXK__g5uXkevbvuZ3oHP_cR91cn5eLtRY_39F07H_1zZXbjdwVLy2tvRPdgx9Qhu-kaV30awd3R1Hg7FuoDQjiBYIOhu1k6MHJLJxRkiYHd3H8SJcZ0_rImTldUAufTcFuTS88yiTRBbDYZiJbEHXUgrHUPoxpDqYtusHdeUNkTWJfliVl1pJHHte9oHsJwenUzmYdfPIdQIWuKwjKhSmaIqz5SSiFO0UrosZYEpZYLLjdE4pK6i1GDKrjBT5CauEhMlRumC8YztwW7d1GYfCAqqpMiZqTDB5SyWZW4wrhuMWKbSRgXwvH-zolua6NMdVK9w6g1gH9-5kCsMp2L5IbbJpqU7RBAcwKEzhGGwXJ_bEriMi4_HM8Gmn-azSUHFIoCD3lJE5_2toJZeNcVIyQJ4NjxGv7U_Y2Rtmq2Xsb9U87_LpDlHjBEF8NBb4TAhTJujIuM8gJfOlv68TDGbvHEXj_5d9DHcsurwVYsHsLtZb80TRF8b9dS52Q_DdShx
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQvAwpjgQEGoYmXVHEc50PiBcraAmsfoBUTErJsx6mmTcnUDwT89ZydjzEECPGWKGcpPt-df5ecfwfwLJaRSniOjqQz7UcFVb7MQ-rj5oXgPtZJ4k65TqbxeB69PebHW_CiPQtT80N0H9ysZ7h4bR3cfpD-ycsXWvVpGHMMwFfR3Zlt3PD6_QV5FAtdZ03KeITBhrKGV8jW8XRDL-1GVwpZIUa16v36O8B5Gb-6DWh4Ez63r17XnZz2N2vV199_YXX837ndgp0GmZKXtSndhi1T9uBa3avyWw92Dy-OxKFYExNWPfAmiLurpRMjB2RwdoIg2N3dATEzrvmHtXKysCog5zW9BTmvqWbRLIgtCEOxnNizLmQlHUno2pDibFMtHd2UNkSWOfliFk11JHEdfFZ3YT48nA3GftPSwdeIW0I_D6hSiaIqTZSSCFW0UjrPZYZZZYTTDdE-pC6C2GDWrjBZ5CYsIhNERumM8YTtwnZZlWYPCAqqKEuZKTDH5SyUeWowtBsMWqbQRnnwtF1a0UxNtBkPqlc49Xqwh4su5AIjqph_CG2-aRkPEQd7cOAsoRssl6e2Ci7h4uN0JNjw03g0yKiYeLDfmopoAsBKUMuwGmOwZB486R6j69r_MbI01aaWsX9V07_LxClHmBF4cK82w-6FMHMOsoRzD547Y_rzNMVo8Mpd3P930cdwfTybHImjN9N3D-CGVU1dxLgP2-vlxjxEMLZWj5zP_QAn9SyJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9qRfFL1dPa1KqrSPFLjjx288BPevbufNwh2sMiwrKvHNKSHPcQ9a93dvOoFRXxW0JmYXcyM_ubZPY3AI8TQWXKNDqSypVPi1D6Qkehj5sXgvtEpak75TqZJuMZfXXCTrbgaXsWpuaH6D64Wc9w8do6-EIXPzn5XMl-GCUM4-9lmiDytYjo3Tl3VBy5xpphzCjGmjBuaIVsGU839MJmdKkQFUJUq92vv8ObF-Gr23-G1-FTO_O67OS0v1nLvvr-C6njfy7tBuw0uJQ8qw3pJmyZsgdX6k6V33qwe3R-IA7Fmoiw6oE3QdRdLZ0YOSSDs88Igd3dLeDHxrX-sDZO5lYDZFGTW5BFTTSLRkFsORiKaWJPupCVcBSha0OKs021dGRTyhBRavLFzJvaSOL696xuw2x4dDwY-01DB18haol8HYRSpjKUWSqlQKCipFRaixxzSorLjdA6hCqCxGDOLjFVZCYqqAmokSqPWRrvwnZZlWYPCApKmmexKTDDZXEkdGYwsBsMWaZQRnrwqH2zvFkab_MdVC936vVgD985F3OMp3z2PrLZpuU7RBTswaEzhG6wWJ7aGriU8Q_TEY-HH8ejQR7yiQcHraXwxv1XPLT8qgmGytiDh91jdFz7N0aUptrUMvafavZ3mSRjCDICD-7UVthNCPPmIE8Z8-CJs6U_L5OPBs_dxf6_iz6Aq29fDPmbl9PXd-Ga1UxdwXgA2-vlxtxDJLaW953H_QB-WSs4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terrestrial+gross+primary+production+inferred+from+satellite+fluorescence+and+vegetation+models&rft.jtitle=Global+change+biology&rft.au=Parazoo%2C+Nicholas+C&rft.au=Bowman%2C+Kevin&rft.au=Fisher%2C+Joshua+B&rft.au=Frankenberg%2C+Christian&rft.date=2014-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=20&rft.issue=10&rft.spage=3103&rft_id=info:doi/10.1111%2Fgcb.12652&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3429907511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon