Terrestrial gross primary production inferred from satellite fluorescence and vegetation models
Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate...
Saved in:
Published in | Global change biology Vol. 20; no. 10; pp. 3103 - 3121 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Science
01.10.2014
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar‐induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7–8 Pg C yr⁻¹ from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr⁻¹) and enhanced GPP in tropical forests (~3.7 Pg C yr⁻¹). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak‐to‐trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40–70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well‐suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution. |
---|---|
AbstractList | Abstract
Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar‐induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7–8 Pg C yr
−1
from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr
−1
) and enhanced GPP in tropical forests (~3.7 Pg C yr
−1
). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak‐to‐trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40–70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well‐suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution. Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar‐induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7–8 Pg C yr⁻¹ from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr⁻¹) and enhanced GPP in tropical forests (~3.7 Pg C yr⁻¹). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak‐to‐trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40–70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well‐suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution. Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7-8 Pg C yr super(-1) from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr super(-1)) and enhanced GPP in tropical forests (~3.7 Pg C yr super(-1)). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40-70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution. Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7-8 Pg C yr-1 from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr-1) and enhanced GPP in tropical forests (~3.7 Pg C yr-1). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40-70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution. [PUBLICATION ABSTRACT] Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7-8 Pg C yr(-1) from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr(-1) ) and enhanced GPP in tropical forests (~3.7 Pg C yr(-1) ). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40-70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution. Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar‐induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7–8 Pg C yr−1 from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr−1) and enhanced GPP in tropical forests (~3.7 Pg C yr−1). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak‐to‐trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40–70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well‐suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution. |
Author | Parazoo, Nicholas C Pérez‐Priego, Óscar Fisher, Joshua B Cescatti, Alessandro Bowman, Kevin Frankenberg, Christian Jones, Dylan B. A Montagnani, Leonardo Wohlfahrt, Georg |
Author_xml | – sequence: 1 fullname: Parazoo, Nicholas C – sequence: 2 fullname: Bowman, Kevin – sequence: 3 fullname: Fisher, Joshua B – sequence: 4 fullname: Frankenberg, Christian – sequence: 5 fullname: Jones, Dylan B. A – sequence: 6 fullname: Cescatti, Alessandro – sequence: 7 fullname: Pérez‐Priego, Óscar – sequence: 8 fullname: Wohlfahrt, Georg – sequence: 9 fullname: Montagnani, Leonardo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24909755$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1TAQhS3Uij5gwR-ASGxgkdaP2ImXcEVvkdqyoBUSG8t2JlcuTlzsBOi_x7m57QKpEpasmcV3jmbmHKG9IQyA0CuCT0h-pxtrTggVnD5Dh4QJXtKqEXtzz6uSYMIO0FFKtxhjRrF4jg5oJbGsOT9E6hpihDRGp32xiSGl4i66Xsf7XEM72dGFoXBDN2Nt0cXQF0mP4L0boej8FLLawmCh0ENb_IINjHqr6UMLPr1A-532CV7u6jG6Oft0vTovL76sP68-XJSW84qWLSbG1IaYpjZGS4KtMbZttaxJXeXFqGyEth0WICQ2AhMOtKsAV2CsZLxmx-jd4pun_jnlhVTv8lze6wHClBThQjQcM4H_ByWylrJhGX37D3obpjjkRbZUJSjlM_V-oex8vwid2p1QEazmgFQOSG0DyuzrneNkemgfyYdEMnC6AL-dh_unndR69fHBslwULo3w51Gh4w8lalZz9e1qrdjZ9_P1ShJ1mfk3C9_poPQmuqRuvlJMKpw_I4KwvzEytBU |
CitedBy_id | crossref_primary_10_1080_17538947_2019_1597187 crossref_primary_10_1016_j_agrformet_2024_110090 crossref_primary_10_1029_2021GL093285 crossref_primary_10_1016_j_agee_2018_11_016 crossref_primary_10_3390_rs13132545 crossref_primary_10_5194_bg_12_4067_2015 crossref_primary_10_1016_j_jag_2020_102155 crossref_primary_10_1029_2020AV000228 crossref_primary_10_1016_j_foreco_2015_05_032 crossref_primary_10_1029_2021GB007177 crossref_primary_10_1088_1748_9326_ab1ac0 crossref_primary_10_1111_pce_13620 crossref_primary_10_5194_bg_18_6579_2021 crossref_primary_10_1126_science_aam5690 crossref_primary_10_3390_rs12152346 crossref_primary_10_1016_j_rse_2019_111383 crossref_primary_10_1016_j_agrformet_2020_108292 crossref_primary_10_1029_2021GB007216 crossref_primary_10_1029_2021MS002555 crossref_primary_10_1002_eap_2101 crossref_primary_10_1126_science_aam5745 crossref_primary_10_1080_10739149_2019_1674326 crossref_primary_10_1126_science_aam5747 crossref_primary_10_1002_2017GL076630 crossref_primary_10_1007_s10668_019_00440_2 crossref_primary_10_3390_atmos15040463 crossref_primary_10_1007_s40641_024_00194_8 crossref_primary_10_1029_2024GL108310 crossref_primary_10_1111_gcb_14634 crossref_primary_10_1186_s40645_023_00562_2 crossref_primary_10_1016_j_ecolind_2022_108721 crossref_primary_10_5194_amt_9_3939_2016 crossref_primary_10_1007_s10265_021_01313_4 crossref_primary_10_1029_2020RG000711 crossref_primary_10_3390_f14061201 crossref_primary_10_1016_j_rse_2015_06_004 crossref_primary_10_1016_j_agrformet_2017_02_012 crossref_primary_10_1029_2020GL087541 crossref_primary_10_3390_rs9121275 crossref_primary_10_3390_rs10071008 crossref_primary_10_1111_nph_14623 crossref_primary_10_1029_2022MS003135 crossref_primary_10_1016_j_scitotenv_2022_153559 crossref_primary_10_3390_rs11030273 crossref_primary_10_1016_j_rse_2022_112998 crossref_primary_10_1016_j_jhydrol_2021_126884 crossref_primary_10_1016_j_rse_2017_09_034 crossref_primary_10_1029_2018GL077906 crossref_primary_10_1029_2019AV000140 crossref_primary_10_1186_s40663_018_0138_y crossref_primary_10_5194_esd_8_875_2017 crossref_primary_10_1002_2015GL063201 crossref_primary_10_1002_2016EA000204 crossref_primary_10_1088_1748_9326_aad5ef crossref_primary_10_1109_JSTARS_2021_3128355 crossref_primary_10_3390_rs11050517 crossref_primary_10_5194_bg_17_6393_2020 crossref_primary_10_1016_j_rse_2022_113282 crossref_primary_10_1029_2021JG006524 crossref_primary_10_1029_2019MS001889 crossref_primary_10_3390_rs10091346 crossref_primary_10_1016_j_geomorph_2015_01_022 crossref_primary_10_3390_f8040137 crossref_primary_10_3390_s19133000 crossref_primary_10_1016_j_ecolind_2019_105755 crossref_primary_10_1016_j_rse_2021_112748 crossref_primary_10_5194_bg_16_2269_2019 crossref_primary_10_1016_j_agrformet_2022_109189 crossref_primary_10_5194_essd_13_299_2021 crossref_primary_10_1109_JSTARS_2021_3123111 crossref_primary_10_3390_rs12071202 crossref_primary_10_1080_01431161_2020_1763507 crossref_primary_10_1016_j_atmosenv_2017_08_017 crossref_primary_10_1111_nph_13597 crossref_primary_10_3389_fpls_2022_828451 crossref_primary_10_3390_s18072063 crossref_primary_10_1109_TGRS_2022_3204885 crossref_primary_10_1016_j_agrformet_2019_107691 crossref_primary_10_3390_s20092493 crossref_primary_10_1111_gcb_13200 crossref_primary_10_3390_rs13173382 crossref_primary_10_1038_nature17966 crossref_primary_10_3390_s20041144 crossref_primary_10_3390_rs12040680 crossref_primary_10_1111_nph_16055 crossref_primary_10_3390_rs13050963 crossref_primary_10_1111_gcb_15775 crossref_primary_10_1016_j_rse_2015_12_036 crossref_primary_10_1016_j_ecolind_2017_06_045 crossref_primary_10_1111_pce_12569 crossref_primary_10_1002_2015RG000483 crossref_primary_10_5194_bg_17_405_2020 crossref_primary_10_2139_ssrn_3978981 crossref_primary_10_1002_2015GL065161 crossref_primary_10_3390_rs11212562 crossref_primary_10_3390_rs11212563 crossref_primary_10_1080_15481603_2024_2318846 crossref_primary_10_1016_j_rse_2020_111644 crossref_primary_10_1016_j_agrformet_2020_108092 crossref_primary_10_1111_nph_14437 crossref_primary_10_1111_gcb_14283 crossref_primary_10_1016_j_rse_2016_04_027 crossref_primary_10_1029_2018JG004520 crossref_primary_10_1111_gcb_15373 crossref_primary_10_1029_2020AV000310 crossref_primary_10_1016_j_rse_2021_112722 crossref_primary_10_1016_j_rse_2022_112984 crossref_primary_10_3390_f8060212 crossref_primary_10_1016_j_rse_2020_112226 crossref_primary_10_1016_j_heliyon_2022_e09153 crossref_primary_10_1016_j_agrformet_2023_109504 crossref_primary_10_5194_bg_16_3069_2019 crossref_primary_10_5194_bg_14_1969_2017 crossref_primary_10_1029_2018JG004938 crossref_primary_10_1016_j_agrformet_2024_110151 crossref_primary_10_1029_2018GL079031 crossref_primary_10_5194_amt_12_2341_2019 crossref_primary_10_1016_j_isprsjprs_2015_01_017 crossref_primary_10_1029_2021GB006956 crossref_primary_10_1071_WF20162 crossref_primary_10_1007_s10712_019_09506_2 crossref_primary_10_3390_rs12193249 crossref_primary_10_5194_bg_15_3625_2018 crossref_primary_10_1029_2018JG004472 crossref_primary_10_1002_2015GB005125 crossref_primary_10_1016_j_agrformet_2022_108904 crossref_primary_10_1038_s41598_017_13783_5 crossref_primary_10_3390_rs11141691 crossref_primary_10_1038_s41598_018_20024_w crossref_primary_10_1111_gcb_16646 crossref_primary_10_1016_j_rse_2016_05_015 crossref_primary_10_1016_j_agrformet_2022_109038 crossref_primary_10_1016_j_agrformet_2021_108424 crossref_primary_10_1038_s43247_022_00533_3 crossref_primary_10_1016_j_rse_2015_08_022 crossref_primary_10_3390_s20174682 crossref_primary_10_5194_bg_17_3589_2020 crossref_primary_10_1029_2020JG005651 crossref_primary_10_5194_gmd_11_1517_2018 crossref_primary_10_1002_2014GB005034 crossref_primary_10_3390_rs14071722 crossref_primary_10_1098_rstb_2017_0408 crossref_primary_10_1029_2019JG005534 crossref_primary_10_1016_j_rse_2018_10_018 crossref_primary_10_1002_2017GL075922 crossref_primary_10_1029_2023JG007468 crossref_primary_10_3390_rs11161952 crossref_primary_10_1016_j_agrformet_2016_03_009 crossref_primary_10_1038_s41467_020_15852_2 crossref_primary_10_1002_2016GL070775 crossref_primary_10_1029_2021GL096802 crossref_primary_10_5194_bg_15_5377_2018 crossref_primary_10_1029_2020GB006598 crossref_primary_10_3390_rs12020258 crossref_primary_10_1016_j_rse_2019_04_030 crossref_primary_10_1016_j_scitotenv_2024_171748 crossref_primary_10_1111_gcb_14297 crossref_primary_10_1038_s41598_018_32602_z crossref_primary_10_1002_2014GB005022 crossref_primary_10_5194_bg_12_6351_2015 |
Cites_doi | 10.1029/2003JD003968 10.1109/TGRS.2010.2046420 10.1029/2010JG001566 10.5194/amt-5-687-2012 10.1029/2011GL048738 10.1046/j.1365-2486.2003.00569.x 10.1029/2009GL040613 10.5194/essd-5-165-2013 10.1046/j.1365-2486.2001.00383.x 10.1007/s10584-008-9404-2 10.1371/journal.pone.0088130 10.1029/2011EO100001 10.1175/JCLI-D-13-00074.1 10.1111/gcb.12187 10.5194/bg-3-571-2006 10.1111/j.1365-2486.2008.01626.x 10.5194/gmd-4-701-2011 10.5194/bg-8-2027-2011 10.1016/j.rse.2012.02.006 10.1016/j.agrformet.2013.04.031 10.1029/2008GL034332 10.1146/annurev-ecolsys-102209-144647 10.1002/grl.50452 10.5194/amtd-6-3883-2013 10.1029/2003GB002199 10.1126/science.1184984 10.1016/j.ecolmodel.2012.02.004 10.1175/BAMS-D-11-00094.1 10.1093/jexbot/51.345.659 10.1038/nature07949 10.5194/bg-6-1181-2009 10.5194/bg-9-3857-2012 10.1111/j.1365-2486.2009.02041.x 10.1137/1.9780898717921 10.1088/1748-9326/7/4/044008 10.1038/ngeo689 10.1029/2005GL024607 10.5194/bg-6-3109-2009 10.1175/JCLI-D-11-00015.1 10.5194/bgd-10-20113-2013 10.1175/JCLI-D-12-00494.1 10.1098/rsta.2007.2068 10.1046/j.1466-822X.2001.t01-1-00256.x 10.1029/2007JG000644 10.1175/JCLI3800.1 10.1029/2012JG001960 10.1029/2006GB002868 10.1016/j.rse.2012.02.019 10.1111/j.1365-2486.2009.01908.x 10.1098/rspb.2013.0171 10.1029/2012GL052336 10.1073/pnas.0611338104 10.5194/acp-10-11707-2010 10.1029/2009GB003522 10.5194/bg-8-637-2011 10.1034/j.1399-3054.2002.1140209.x 10.1111/j.1365-2486.2005.001002.x |
ContentType | Journal Article |
Copyright | 2014 John Wiley & Sons Ltd 2014 John Wiley & Sons Ltd. Copyright © 2014 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2014 John Wiley & Sons Ltd – notice: 2014 John Wiley & Sons Ltd. – notice: Copyright © 2014 John Wiley & Sons Ltd |
DBID | FBQ BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7U6 SOI |
DOI | 10.1111/gcb.12652 |
DatabaseName | AGRIS Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts Environment Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts |
DatabaseTitleList | CrossRef Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 3121 |
ExternalDocumentID | 3429907511 10_1111_gcb_12652 24909755 GCB12652 ark_67375_WNG_3FZHGC91_M US201400143161 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | South America North America Europe South America, Amazon R |
GeographicLocations_xml | – name: Europe – name: North America – name: South America – name: South America, Amazon R |
GrantInformation_xml | – fundername: FAO‐GTOS‐TCO – fundername: NASA Atmospheric CO2 Observations from Space (ACOS) program funderid: NNX10AT42G – fundername: National Science Foundation – fundername: NASA – fundername: Université Laval and Environment Canada – fundername: Max Planck Institute for Biogeochemistry – fundername: Canadian Foundation for Climate and Atmospheric Sciences – fundername: Canadian Natural Sciences and Engineering Research Council – fundername: NSF funderid: 0845166 – fundername: CarboEuropeIP |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7U6 SOI |
ID | FETCH-LOGICAL-c5542-d01bb7b1b87bba910cbbcdda971746522986acf06e690b6015e2f4e04ebc93573 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 |
IngestDate | Fri Aug 16 21:28:54 EDT 2024 Sat Aug 17 02:42:01 EDT 2024 Thu Oct 10 19:57:28 EDT 2024 Fri Aug 23 00:28:54 EDT 2024 Sat Sep 28 07:54:32 EDT 2024 Sat Aug 24 01:09:47 EDT 2024 Wed Oct 30 09:56:47 EDT 2024 Wed Dec 27 19:25:11 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | amazon water stress carbon cycle flux towers climate change model benchmarking |
Language | English |
License | 2014 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5542-d01bb7b1b87bba910cbbcdda971746522986acf06e690b6015e2f4e04ebc93573 |
Notes | http://dx.doi.org/10.1111/gcb.12652 US Department of Energy Microsoft Research eScience University of California - Berkeley NSF - No. 0845166 NASA Atmospheric CO2 Observations from Space (ACOS) program - No. NNX10AT42G File S1. Information about (1) SIF scaling technique, (2) satellite fluorescence sampling coverage, (3) observation system simulation experiments, and (4) flux tower data. istex:08D806F9130F3F33AA71D453569F9D7527606DB2 CarboEuropeIP Max Planck Institute for Biogeochemistry ArticleID:GCB12652 ark:/67375/WNG-3FZHGC91-M Oak Ridge National Laboratory iLEAPS National Science Foundation University of Tuscia Ontario Ministry of Environment University of Virginia NASA Canadian Foundation for Climate and Atmospheric Sciences Berkeley Water Center Canadian Forest Service FAO-GTOS-TCO Université Laval and Environment Canada Lawrence Berkeley National Laboratory Canadian Natural Sciences and Engineering Research Council ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24909755 |
PQID | 1561462253 |
PQPubID | 30327 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1566850360 proquest_miscellaneous_1561979983 proquest_journals_1561462253 crossref_primary_10_1111_gcb_12652 pubmed_primary_24909755 wiley_primary_10_1111_gcb_12652_GCB12652 istex_primary_ark_67375_WNG_3FZHGC91_M fao_agris_US201400143161 |
PublicationCentury | 2000 |
PublicationDate | October 2014 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: October 2014 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2014 |
Publisher | Blackwell Science Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd |
References | Damm A, Elbers J, Erler A et al. (2010) Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Global Change Biology, 16, 171-186. Lasslop G, Reichstein M, Papale D et al. (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology, 16, 187-208. Zeri M, Sá LDA, Manzi AO et al. (2014) Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia. PLoS ONE, 9, e88130. Suntharalingam P, Kettle AJ, Montzka SM, Jacob DJ (2008) Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: implications for terrestrial vegetation uptake. Geophysical Research Letters, 35 . Zeng N, Qian H, Roedenbeck C, Heimann M (2005) Impact of 1998-2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophysical Research Letters, 32, L22709. doi:10.1029/2005GL024607. Van der Tol C, Verhoef W, Timmermans J, Verhoef A, Su Z (2009) An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences, 6, 3109-3129. Papale D, Reichstein M, Aubinet M (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3, 571-583. Collins M (2007) Ensembles and probabilities: a new era in the prediction of climate change. Philosophical Transaction of the Royal Society A, 365, 1957-1970. Knorr W (2009) Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophysical Research Letters, 36, doi: 10.1029/2009GL040613. Le Quéré C, Andres RJ, Boden R et al. (2013) The global carbon budget 1959-2011. Earth System Science Data, 5, 165-185. Schaefer K, Schwalm CR, Williams C et al. (2012) A model-data comparison of gross primary productivity: results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 117, G03010, doi:10.1029/2012JG001960 Reichstein M, Falge E, Baldocchi D et al. (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439. Beer C, Reichstein M, Tomelleri E et al. (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329 , 834-838. Sitch S, Huntingford C, Gedney N et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015-2039. Ahlström A, Schurgers G, Arneth A, Smith B (2012b) Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environmental Research Letters, 7, 044008. Piao S, Sitch S, Ciais P et al. (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 19 , 2117-2132. Rienecker MM, Suarez MJ, Gelaro R et al. (2011) MERRA: NASA's modern-era retrospective analysis for research and applications. Journal of Climate, 24, 3624-3648. Canadell JG, Ciais P, Gurney K, Le Quéré C, Piao S, Raupach MR, Sabine CL (2011) An international effort to quantify regional carbon fluxes. Eos, Transactions American Geophysical Union, 92, 81-82. Guanter L, Frankenberg C, Dudhia A et al. (2012) Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sensing of Environment, 121, 236-251. Cramer W, Bondeau A, Woodward FI et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357-373. Cescatti A, Marcolla B, Santhana Vannan SK et al. (2012) Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote sensing of environment, 121, 323-334. Rascher U, Agati G, Alonso L et al. (2009) CEFLES 2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands. Biogeosciences, 6, 1181-1198. Daumard F, Champagne S, Fournier A, Goulas Y, Ounis A, Hanocq J-F, Moya I (2010) A field platform for continuous measurement of canopy fluorescence. IEEE Transactions on Geoscience and Remote Sensing, 48, 3358. Baker IT, Harper AB, da Rocha HR (2013) Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America. Agricultural and Forest Meteorology, 182-183, 1770188. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93 , 485-498. Le Quéré C, Raupach MR, Canadell JG et al. (2009) Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 17, 831-836. Sitch S, Friedlingstein P, Gruber N (2013) Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades. Biogeosciences Discussions, 10, 1-65. Flexas J, Escalona J, Evain S, Gulias J, Moya I, Osmond C, Medrano H (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia Plantarum, 114, 231-240. Olsen SC, Randerson JT (2004) Differences between surface and column atmospheric CO2 and implications for carbon cycle research. Journal of Geophysical Research, 109, D02301, 11 pp. Huntzinger DN, Post WM, Wei Y et al. (2012) North American Carbon Program (NACP) regional interim synthesis: terrestrial biospheric model intercomparison. Ecological Modelling, 232, 144-157. Crisp D, Fisher BM, O'Dell C et al. (2012) The ACOS CO2 retrievals algorithm - Part II: global XCO2 data characterization. Atmospheric Measurement Techniques, 5, 687-707. Myneni RB, Yang W, Nemani RR et al. (2007) Large seasonal swings in leaf area of Amazon rainforests. Proceedings of the National Academy of Sciences, 104, 4820-2823. Ahlström A, Miller PA, Smith B (2012a) Too early to infer a global NPP decline since 2000. Geophysical Research Letters, 39, L15403. Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecology and Biogeography, 10, 621-637. Zaehle S, Friend AD, Friedlingstein P, Dentener F, Peylin P, Schulz M (2010) Carbon and nitrogen cycle dynamics in the O-CN land surface model. II. The role of the nitrogen cycle in the historical terrestrial C balance. Global Biogeochemical Cycles, 24, GB1006, doi:10.1029/2009GB003522. Krinner G, Viovy N, de Noblet-Ducoudré N et al. (2005) A dynamic global vegetation model for studies of the coupled atmosphere biosphere system. Global Biogeochemical Cycles, 19, 1-33. Poulter B, Frank DC, Hodson EL, Zimmermann NE (2011) Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction. Biogeosciences, 8, 2027-2036. Restrepo-Coupe N, da Rocha HR, Hutyra LR et al. (2013) What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology, 182, 128-144. van der Werf GV, Randerson JT, Giglio L et al. (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10, 11707-11735. Maxwell K, Johnson G (2000) Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany, 51, 659-668. Baker IT, Prihodko L, Denning AS, Goulden M, Miller S, Da Rocha HR (2008) Seasonal drought stress in the Amazon: reconciling models and observations. Journal of Geophysical Research, 113, G00B01, 10 pp. Clark DB, Mercado LM, Sitch S et al. (2011) The joint UK land environment simulator (JULES), model description. II. Carbon fluxes and vegetation dynamics. Geoscientific Model Development, 4, 701-722. Lee JE, Frankenberg C, van der Tol C et al. (2013) Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Proceedings of the Royal Society B: Biological Sciences, 280, 9. Sitch S, Smith B, Prentice IC et al. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161-185. Tarantola A. (2005) Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, Pennsylvania. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014-1017. Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics, 42, 181-203. Friedlingstein P, Cox P, Betts R (2006) Climate-carbon cycle feedback analysis: results from the C4MIP Model Intercomparison. Journal of Climate, 19, 3337-3353. Arora VK, Boer GJ, Friedlingstein P et al. (2013) Carbon-concentration and carbon-climate feedbacks in CMIP5 earcth system models. Journal of Climate, 26, 5289-5314. Jung M, Reichstein M, Margolis HA et al. (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research, 116, G00J07. O'Neill B, Melnikov N (2008) Learning about parameter and structural uncertainty in carbon cycle models. Climate Change, 89, 23-44. Joiner JY, Yoshida Y, Vasilkov AP, Yoshida Y, Corp LA, Middleton EM (2011) First observations of global and seasonal terrestrial chlorophyll fluorescence from s 2011; 116 2007; 104 2010; 10 2013; 26 2012; 121 2010; 16 2002; 114 2014; 27 2000; 51 2008; 35 2013; 280 2013; 5 2013; 6 2013; 19 2012a; 39 2010; 24 2013; 10 2003; 9 2013; 182–183 2005; 32 2011; 24 2008; 113 2014; 9 2007; 21 2009; 17 2001; 10 2007; 365 2010; 329 2013; 40 2008; 14 2006; 19 2006; 3 2005 2011; 4 2004; 109 2011; 38 2013; 182 2011; 8 2009; 458 2012; 93 2009; 36 2005; 19 2010; 48 2012; 232 2001; 7 2011; 92 2011; 42 2008; 89 2009; 6 2012; 5 2012; 117 2005; 11 2012b; 7 2012; 9 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 Krinner G (e_1_2_6_26_1) 2005; 19 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Baker IT (e_1_2_6_6_1) 2013; 182 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 5 start-page: 687 year: 2012 end-page: 707 article-title: The ACOS CO2 retrievals algorithm – Part II: global XCO2 data characterization publication-title: Atmospheric Measurement Techniques – volume: 4 start-page: 701 year: 2011 end-page: 722 article-title: The joint UK land environment simulator (JULES), model description. II. Carbon fluxes and vegetation dynamics publication-title: Geoscientific Model Development – year: 2005 – volume: 3 start-page: 571 year: 2006 end-page: 583 article-title: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation publication-title: Biogeosciences – volume: 8 start-page: 2027 year: 2011 end-page: 2036 article-title: Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction publication-title: Biogeosciences – volume: 36 year: 2009 article-title: Is the airborne fraction of anthropogenic CO2 emissions increasing? publication-title: Geophysical Research Letters – volume: 24 start-page: GB1006 year: 2010 article-title: Carbon and nitrogen cycle dynamics in the O‐CN land surface model. II. The role of the nitrogen cycle in the historical terrestrial C balance publication-title: Global Biogeochemical Cycles – volume: 26 start-page: 5289 year: 2013 end-page: 5314 article-title: Carbon‐concentration and carbon‐climate feedbacks in CMIP5 earcth system models publication-title: Journal of Climate – volume: 6 start-page: 3883 year: 2013 end-page: 3930 article-title: Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near‐infrared satellite measurements: methodology, simulations, and application to GOME‐2 publication-title: Atmospheric Measurement Techniques Discussions – volume: 6 start-page: 3109 year: 2009 end-page: 3129 article-title: An integrated model of soil‐canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance publication-title: Biogeosciences – volume: 9 start-page: 161 year: 2003 end-page: 185 article-title: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model publication-title: Global Change Biology – volume: 114 start-page: 231 year: 2002 end-page: 240 article-title: Steady‐state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water‐stress in C3 plants publication-title: Physiologia Plantarum – volume: 89 start-page: 23 year: 2008 end-page: 44 article-title: Learning about parameter and structural uncertainty in carbon cycle models publication-title: Climate Change – volume: 21 start-page: GB4018 year: 2007 article-title: Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability publication-title: Global Biogeochemical Cycles – volume: 16 start-page: 171 year: 2010 end-page: 186 article-title: Remote sensing of sun‐induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP) publication-title: Global Change Biology – volume: 51 start-page: 659 year: 2000 end-page: 668 article-title: Chlorophyll fluorescence – a practical guide publication-title: Journal of Experimental Botany – volume: 8 start-page: 637 year: 2011 end-page: 651 article-title: First observations of global and seasonal terrestrial chlorophyll fluorescence from space publication-title: Biogeosciences – volume: 11 start-page: 1424 year: 2005 end-page: 1439 article-title: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm publication-title: Global Change Biology – volume: 24 start-page: 3624 year: 2011 end-page: 3648 article-title: MERRA: NASA's modern‐era retrospective analysis for research and applications publication-title: Journal of Climate – volume: 9 start-page: e88130 year: 2014 article-title: Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia publication-title: PLoS ONE – volume: 17 start-page: 831 year: 2009 end-page: 836 article-title: Trends in the sources and sinks of carbon dioxide publication-title: Nature Geoscience – volume: 27 start-page: 571 year: 2014 end-page: 591 article-title: Impact of evapotranspiration on dry season climate in the Amazon forest publication-title: Journal of Climate – volume: 6 start-page: 1181 year: 2009 end-page: 1198 article-title: CEFLES 2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun‐induced fluorescence in the oxygen absorption bands publication-title: Biogeosciences – volume: 182–183 start-page: 1770188 year: 2013 article-title: Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America publication-title: Agricultural and Forest Meteorology – volume: 19 start-page: 2117 year: 2013 end-page: 2132 article-title: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends publication-title: Global Change Biology – volume: 14 start-page: 2015 year: 2008 end-page: 2039 article-title: Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) publication-title: Global Change Biology – volume: 117 start-page: G03010 year: 2012 article-title: A model‐data comparison of gross primary productivity: results from the North American Carbon Program site synthesis publication-title: Journal of Geophysical Research – volume: 113 start-page: G00B01 year: 2008 article-title: Seasonal drought stress in the Amazon: reconciling models and observations publication-title: Journal of Geophysical Research – volume: 19 start-page: 3337 year: 2006 end-page: 3353 article-title: Climate‐carbon cycle feedback analysis: results from the C4MIP Model Intercomparison publication-title: Journal of Climate – volume: 10 start-page: 1 year: 2013 end-page: 65 article-title: Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades publication-title: Biogeosciences Discussions – volume: 7 start-page: 044008 year: 2012b article-title: Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections publication-title: Environmental Research Letters – volume: 365 start-page: 1957 year: 2007 end-page: 1970 article-title: Ensembles and probabilities: a new era in the prediction of climate change publication-title: Philosophical Transaction of the Royal Society A – volume: 116 start-page: G00J07 year: 2011 article-title: Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations publication-title: Journal of Geophysical Research – volume: 19 start-page: 1 year: 2005 end-page: 33 article-title: A dynamic global vegetation model for studies of the coupled atmosphere biosphere system publication-title: Global Biogeochemical Cycles – volume: 42 start-page: 181 year: 2011 end-page: 203 article-title: Ecological lessons from free‐air CO enrichment (FACE) experiments publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 38 start-page: L17706 year: 2011 article-title: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity publication-title: Geophysical Research Letters – volume: 5 start-page: 165 year: 2013 end-page: 185 article-title: The global carbon budget 1959‐2011 publication-title: Earth System Science Data – volume: 35 year: 2008 article-title: Global 3‐D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: implications for terrestrial vegetation uptake publication-title: Geophysical Research Letters – volume: 109 start-page: D02301 year: 2004 article-title: Differences between surface and column atmospheric CO2 and implications for carbon cycle research publication-title: Journal of Geophysical Research – volume: 32 start-page: L22709 year: 2005 article-title: Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle publication-title: Geophysical Research Letters – volume: 458 start-page: 1014 year: 2009 end-page: 1017 article-title: Impact of changes in diffuse radiation on the global land carbon sink publication-title: Nature – volume: 121 start-page: 323 year: 2012 end-page: 334 article-title: Intercomparison of MODIS albedo retrievals and measurements across the global FLUXNET network publication-title: Remote sensing of environment – volume: 10 start-page: 621 year: 2001 end-page: 637 article-title: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space publication-title: Global Ecology and Biogeography – volume: 121 start-page: 236 year: 2012 end-page: 251 article-title: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements publication-title: Remote Sensing of Environment – volume: 9 start-page: 3857 year: 2012 end-page: 3874 article-title: A framework for benchmarking land models publication-title: Biogeosciences – volume: 40 start-page: 2829 year: 2013 end-page: 2833 article-title: Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO2 and chlorophyll fluorescence from GOSAT publication-title: Geophysical Research Letters – volume: 182 start-page: 128 year: 2013 end-page: 144 article-title: What drives the seasonality of photosynthesis across the Amazon basin? A cross‐site analysis of eddy flux tower measurements from the Brasil flux network publication-title: Agricultural and Forest Meteorology – volume: 10 start-page: 11707 year: 2010 end-page: 11735 article-title: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009) publication-title: Atmospheric Chemistry and Physics – volume: 39 start-page: L15403 year: 2012a article-title: Too early to infer a global NPP decline since 2000 publication-title: Geophysical Research Letters – volume: 329 start-page: 834 year: 2010 end-page: 838 article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate publication-title: Science – volume: 232 start-page: 144 year: 2012 end-page: 157 article-title: North American Carbon Program (NACP) regional interim synthesis: terrestrial biospheric model intercomparison publication-title: Ecological Modelling – volume: 92 start-page: 81 year: 2011 end-page: 82 article-title: An international effort to quantify regional carbon fluxes publication-title: Eos, Transactions American Geophysical Union – volume: 104 start-page: 4820 year: 2007 end-page: 2823 article-title: Large seasonal swings in leaf area of Amazon rainforests publication-title: Proceedings of the National Academy of Sciences – volume: 48 start-page: 3358 year: 2010 article-title: A field platform for continuous measurement of canopy fluorescence publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 16 start-page: 187 year: 2010 end-page: 208 article-title: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation publication-title: Global Change Biology – volume: 93 start-page: 485 year: 2012 end-page: 498 article-title: An overview of CMIP5 and the experiment design publication-title: Bulletin of the American Meteorological Society – volume: 280 start-page: 9 year: 2013 article-title: Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 7 start-page: 357 year: 2001 end-page: 373 article-title: Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models publication-title: Global Change Biology – ident: e_1_2_6_36_1 doi: 10.1029/2003JD003968 – ident: e_1_2_6_15_1 doi: 10.1109/TGRS.2010.2046420 – ident: e_1_2_6_24_1 doi: 10.1029/2010JG001566 – ident: e_1_2_6_13_1 doi: 10.5194/amt-5-687-2012 – ident: e_1_2_6_17_1 doi: 10.1029/2011GL048738 – ident: e_1_2_6_47_1 doi: 10.1046/j.1365-2486.2003.00569.x – ident: e_1_2_6_25_1 doi: 10.1029/2009GL040613 – ident: e_1_2_6_29_1 doi: 10.5194/essd-5-165-2013 – ident: e_1_2_6_12_1 doi: 10.1046/j.1365-2486.2001.00383.x – ident: e_1_2_6_37_1 doi: 10.1007/s10584-008-9404-2 – ident: e_1_2_6_59_1 doi: 10.1371/journal.pone.0088130 – ident: e_1_2_6_8_1 doi: 10.1029/2011EO100001 – ident: e_1_2_6_20_1 doi: 10.1175/JCLI-D-13-00074.1 – ident: e_1_2_6_40_1 doi: 10.1111/gcb.12187 – ident: e_1_2_6_38_1 doi: 10.5194/bg-3-571-2006 – ident: e_1_2_6_48_1 doi: 10.1111/j.1365-2486.2008.01626.x – ident: e_1_2_6_10_1 doi: 10.5194/gmd-4-701-2011 – ident: e_1_2_6_41_1 doi: 10.5194/bg-8-2027-2011 – ident: e_1_2_6_19_1 doi: 10.1016/j.rse.2012.02.006 – ident: e_1_2_6_44_1 doi: 10.1016/j.agrformet.2013.04.031 – ident: e_1_2_6_51_1 doi: 10.1029/2008GL034332 – ident: e_1_2_6_35_1 doi: 10.1146/annurev-ecolsys-102209-144647 – ident: e_1_2_6_39_1 doi: 10.1002/grl.50452 – ident: e_1_2_6_23_1 doi: 10.5194/amtd-6-3883-2013 – volume: 19 start-page: 1 year: 2005 ident: e_1_2_6_26_1 article-title: A dynamic global vegetation model for studies of the coupled atmosphere biosphere system publication-title: Global Biogeochemical Cycles doi: 10.1029/2003GB002199 contributor: fullname: Krinner G – ident: e_1_2_6_7_1 doi: 10.1126/science.1184984 – ident: e_1_2_6_21_1 doi: 10.1016/j.ecolmodel.2012.02.004 – ident: e_1_2_6_53_1 doi: 10.1175/BAMS-D-11-00094.1 – ident: e_1_2_6_32_1 doi: 10.1093/jexbot/51.345.659 – ident: e_1_2_6_33_1 doi: 10.1038/nature07949 – ident: e_1_2_6_42_1 doi: 10.5194/bg-6-1181-2009 – ident: e_1_2_6_31_1 doi: 10.5194/bg-9-3857-2012 – ident: e_1_2_6_27_1 doi: 10.1111/j.1365-2486.2009.02041.x – ident: e_1_2_6_52_1 doi: 10.1137/1.9780898717921 – ident: e_1_2_6_3_1 doi: 10.1088/1748-9326/7/4/044008 – ident: e_1_2_6_28_1 doi: 10.1038/ngeo689 – ident: e_1_2_6_58_1 doi: 10.1029/2005GL024607 – ident: e_1_2_6_55_1 doi: 10.5194/bg-6-3109-2009 – ident: e_1_2_6_45_1 doi: 10.1175/JCLI-D-11-00015.1 – ident: e_1_2_6_49_1 doi: 10.5194/bgd-10-20113-2013 – ident: e_1_2_6_4_1 doi: 10.1175/JCLI-D-12-00494.1 – ident: e_1_2_6_11_1 doi: 10.1098/rsta.2007.2068 – ident: e_1_2_6_50_1 doi: 10.1046/j.1466-822X.2001.t01-1-00256.x – ident: e_1_2_6_5_1 doi: 10.1029/2007JG000644 – volume: 182 start-page: 1770188 year: 2013 ident: e_1_2_6_6_1 article-title: Surface ecophysiological behavior across vegetation and moisture gradients in tropical South America publication-title: Agricultural and Forest Meteorology contributor: fullname: Baker IT – ident: e_1_2_6_18_1 doi: 10.1175/JCLI3800.1 – ident: e_1_2_6_46_1 doi: 10.1029/2012JG001960 – ident: e_1_2_6_54_1 doi: 10.1029/2006GB002868 – ident: e_1_2_6_9_1 doi: 10.1016/j.rse.2012.02.019 – ident: e_1_2_6_14_1 doi: 10.1111/j.1365-2486.2009.01908.x – ident: e_1_2_6_30_1 doi: 10.1098/rspb.2013.0171 – ident: e_1_2_6_2_1 doi: 10.1029/2012GL052336 – ident: e_1_2_6_34_1 doi: 10.1073/pnas.0611338104 – ident: e_1_2_6_56_1 doi: 10.5194/acp-10-11707-2010 – ident: e_1_2_6_57_1 doi: 10.1029/2009GB003522 – ident: e_1_2_6_22_1 doi: 10.5194/bg-8-637-2011 – ident: e_1_2_6_16_1 doi: 10.1034/j.1399-3054.2002.1140209.x – ident: e_1_2_6_43_1 doi: 10.1111/j.1365-2486.2005.001002.x |
SSID | ssj0003206 |
Score | 2.561546 |
Snippet | Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget.... Abstract Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon... |
SourceID | proquest crossref pubmed wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3103 |
SubjectTerms | amazon carbon Carbon Cycle chlorophyll Chlorophyll - analysis Chlorophyll - metabolism Climate Climate change cropland deciduous forests dry season Environmental Monitoring - methods Europe Fluorescence flux towers greenhouse gases growing season latitude model benchmarking Models, Theoretical North America Photosynthesis Plants - metabolism prediction primary productivity Remote sensing seasonal variation Seasons South America Spacecraft Sunlight Terrestrial ecosystems tropical forests tropics uncertainty Vegetation water stress |
Title | Terrestrial gross primary production inferred from satellite fluorescence and vegetation models |
URI | https://api.istex.fr/ark:/67375/WNG-3FZHGC91-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12652 https://www.ncbi.nlm.nih.gov/pubmed/24909755 https://www.proquest.com/docview/1561462253 https://search.proquest.com/docview/1561979983 https://search.proquest.com/docview/1566850360 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OA8EXP1bPq54SRQ5fujRN0w980vV2F2HvQW_xECEkabocd7THdlfUv95J0vY8URHfWjqBZDoz-U07-Q3Ai1QmKuMlOpIudJhUVIWyjGmImxeC-1RnmTvlujhO58vk3Sk_3YFX_VkYzw8xfHCznuHitXVwqdqfnHyl1ZjGKbfxl7LMlnO9fX9FHcVi11eTMp5gqKGsYxWyVTzDyGt70Y1KNohQrXK__g5uXkevbvuZ3oHP_cR91cn5eLtRY_39F07H_1zZXbjdwVLy2tvRPdgx9Qhu-kaV30awd3R1Hg7FuoDQjiBYIOhu1k6MHJLJxRkiYHd3H8SJcZ0_rImTldUAufTcFuTS88yiTRBbDYZiJbEHXUgrHUPoxpDqYtusHdeUNkTWJfliVl1pJHHte9oHsJwenUzmYdfPIdQIWuKwjKhSmaIqz5SSiFO0UrosZYEpZYLLjdE4pK6i1GDKrjBT5CauEhMlRumC8YztwW7d1GYfCAqqpMiZqTDB5SyWZW4wrhuMWKbSRgXwvH-zolua6NMdVK9w6g1gH9-5kCsMp2L5IbbJpqU7RBAcwKEzhGGwXJ_bEriMi4_HM8Gmn-azSUHFIoCD3lJE5_2toJZeNcVIyQJ4NjxGv7U_Y2Rtmq2Xsb9U87_LpDlHjBEF8NBb4TAhTJujIuM8gJfOlv68TDGbvHEXj_5d9DHcsurwVYsHsLtZb80TRF8b9dS52Q_DdShx |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQvAwpjgQEGoYmXVHEc50PiBcraAmsfoBUTErJsx6mmTcnUDwT89ZydjzEECPGWKGcpPt-df5ecfwfwLJaRSniOjqQz7UcFVb7MQ-rj5oXgPtZJ4k65TqbxeB69PebHW_CiPQtT80N0H9ysZ7h4bR3cfpD-ycsXWvVpGHMMwFfR3Zlt3PD6_QV5FAtdZ03KeITBhrKGV8jW8XRDL-1GVwpZIUa16v36O8B5Gb-6DWh4Ez63r17XnZz2N2vV199_YXX837ndgp0GmZKXtSndhi1T9uBa3avyWw92Dy-OxKFYExNWPfAmiLurpRMjB2RwdoIg2N3dATEzrvmHtXKysCog5zW9BTmvqWbRLIgtCEOxnNizLmQlHUno2pDibFMtHd2UNkSWOfliFk11JHEdfFZ3YT48nA3GftPSwdeIW0I_D6hSiaIqTZSSCFW0UjrPZYZZZYTTDdE-pC6C2GDWrjBZ5CYsIhNERumM8YTtwnZZlWYPCAqqKEuZKTDH5SyUeWowtBsMWqbQRnnwtF1a0UxNtBkPqlc49Xqwh4su5AIjqph_CG2-aRkPEQd7cOAsoRssl6e2Ci7h4uN0JNjw03g0yKiYeLDfmopoAsBKUMuwGmOwZB486R6j69r_MbI01aaWsX9V07_LxClHmBF4cK82w-6FMHMOsoRzD547Y_rzNMVo8Mpd3P930cdwfTybHImjN9N3D-CGVU1dxLgP2-vlxjxEMLZWj5zP_QAn9SyJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9qRfFL1dPa1KqrSPFLjjx288BPevbufNwh2sMiwrKvHNKSHPcQ9a93dvOoFRXxW0JmYXcyM_ubZPY3AI8TQWXKNDqSypVPi1D6Qkehj5sXgvtEpak75TqZJuMZfXXCTrbgaXsWpuaH6D64Wc9w8do6-EIXPzn5XMl-GCUM4-9lmiDytYjo3Tl3VBy5xpphzCjGmjBuaIVsGU839MJmdKkQFUJUq92vv8ObF-Gr23-G1-FTO_O67OS0v1nLvvr-C6njfy7tBuw0uJQ8qw3pJmyZsgdX6k6V33qwe3R-IA7Fmoiw6oE3QdRdLZ0YOSSDs88Igd3dLeDHxrX-sDZO5lYDZFGTW5BFTTSLRkFsORiKaWJPupCVcBSha0OKs021dGRTyhBRavLFzJvaSOL696xuw2x4dDwY-01DB18haol8HYRSpjKUWSqlQKCipFRaixxzSorLjdA6hCqCxGDOLjFVZCYqqAmokSqPWRrvwnZZlWYPCApKmmexKTDDZXEkdGYwsBsMWaZQRnrwqH2zvFkab_MdVC936vVgD985F3OMp3z2PrLZpuU7RBTswaEzhG6wWJ7aGriU8Q_TEY-HH8ejQR7yiQcHraXwxv1XPLT8qgmGytiDh91jdFz7N0aUptrUMvafavZ3mSRjCDICD-7UVthNCPPmIE8Z8-CJs6U_L5OPBs_dxf6_iz6Aq29fDPmbl9PXd-Ga1UxdwXgA2-vlxtxDJLaW953H_QB-WSs4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terrestrial+gross+primary+production+inferred+from+satellite+fluorescence+and+vegetation+models&rft.jtitle=Global+change+biology&rft.au=Parazoo%2C+Nicholas+C&rft.au=Bowman%2C+Kevin&rft.au=Fisher%2C+Joshua+B&rft.au=Frankenberg%2C+Christian&rft.date=2014-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=20&rft.issue=10&rft.spage=3103&rft_id=info:doi/10.1111%2Fgcb.12652&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3429907511 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |