Role of Fatty Acids in Energy Provision During Oocyte Maturation and Early Embryo Development

While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos ha...

Full description

Saved in:
Bibliographic Details
Published inReproduction in domestic animals Vol. 44; no. s3; pp. 50 - 58
Main Authors Sturmey, RG, Reis, A, Leese, HJ, McEvoy, TG
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.09.2009
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos.
AbstractList While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos. [PUBLICATION ABSTRACT]
Contents While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre‐implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late‐stage oocyte and the pre‐implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos.
While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos.
While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos.While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos.
Author Leese, HJ
Sturmey, RG
Reis, A
McEvoy, TG
Author_xml – sequence: 1
  fullname: Sturmey, RG
– sequence: 2
  fullname: Reis, A
– sequence: 3
  fullname: Leese, HJ
– sequence: 4
  fullname: McEvoy, TG
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19660080$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv0zAUxy00xLrBVwCLA5xSnu3ETg4gVWu3ITaGBhNc0JPrOpVLGhc7Gc23J1lHDzsAvvhJ7_d7lt__iBzUvraEUAZj1p83qzFLRZFAJtiYAxRjYCnw8fYRGe0bB2QEhZCJVDI_JEcxrgBYliv1hByyQkqAHEbk-7WvLPUlPdVN09GJcYtIXU1ntQ3Ljn4K_tZF52s6bYOrl_TKm66x9FI3bdDN0ND1gs50qDo6W89D5-nU3trKb9a2bp6Sx6Wuon12fx-Tm9PZl5Pz5OLq7P3J5CIxWZbypFBWlczMs3kpNStZrjmHLFUCJCjRFyBLAGk1CFOmXC7KIjVmIZW2BrQAcUxe7-Zugv_Z2tjg2kVjq0rX1rcRlRCZUizPe_LVX8lUCq7STPTgywfgyreh7n-BnAmVFiznPfT8Hmrna7vATXBrHTr8s98eeLcDTPAxBluicc3d3pqgXYUMcAgUVzjkhkNuOASKd4Hith-QPxiwf-Pf6tud-stVtvtvD6-nk6Hq_WTnu9jY7d7X4QdKJVSGXz-eYZF_OL_8NhXIev7Fji-1R70MLuLNZw5MAJOZygUXvwGFdM1p
CitedBy_id crossref_primary_10_1039_C6AN00629A
crossref_primary_10_3390_ani11113200
crossref_primary_10_1016_j_theriogenology_2016_01_024
crossref_primary_10_1186_s12958_020_00588_x
crossref_primary_10_2147_SCCAA_S513982
crossref_primary_10_1071_RD14278
crossref_primary_10_1071_RD19047
crossref_primary_10_1111_rda_13501
crossref_primary_10_1016_j_theriogenology_2019_11_028
crossref_primary_10_29252_ijrm_14_4_255
crossref_primary_10_1071_RD10124
crossref_primary_10_1002_mrd_23352
crossref_primary_10_3389_fendo_2023_1120988
crossref_primary_10_1016_j_theriogenology_2023_04_003
crossref_primary_10_3389_fnut_2022_927972
crossref_primary_10_1016_j_anireprosci_2017_08_004
crossref_primary_10_3390_ijms19020509
crossref_primary_10_3389_fanim_2024_1368155
crossref_primary_10_1016_j_theriogenology_2016_01_019
crossref_primary_10_1016_j_theriogenology_2018_04_003
crossref_primary_10_3389_fendo_2020_00087
crossref_primary_10_3390_genes12040605
crossref_primary_10_1038_srep32021
crossref_primary_10_1016_j_rbmo_2023_01_007
crossref_primary_10_3390_ani10122196
crossref_primary_10_1007_s10304_022_00437_7
crossref_primary_10_1111_j_1439_0531_2011_01762_x
crossref_primary_10_1071_RD21249
crossref_primary_10_3390_ijms18050988
crossref_primary_10_1016_j_jnutbio_2023_109502
crossref_primary_10_1038_s41598_020_62975_z
crossref_primary_10_1016_j_domaniend_2014_10_003
crossref_primary_10_1016_j_anireprosci_2019_05_003
crossref_primary_10_1016_j_theriogenology_2021_07_003
crossref_primary_10_1262_jrd_2015_076
crossref_primary_10_1002_mrd_22037
crossref_primary_10_1016_j_aimed_2024_08_004
crossref_primary_10_1071_RD11901
crossref_primary_10_17816_JOWD65052
crossref_primary_10_1071_RD11907
crossref_primary_10_1016_j_stem_2019_05_001
crossref_primary_10_1016_j_ecoenv_2022_113745
crossref_primary_10_12717_DR_2018_22_4_297
crossref_primary_10_1007_s10815_017_1032_1
crossref_primary_10_3390_ijms17050618
crossref_primary_10_1262_jrd_2018_039
crossref_primary_10_2478_aoas_2021_0018
crossref_primary_10_1002_mrd_23251
crossref_primary_10_1371_journal_pone_0067834
crossref_primary_10_1016_j_theriogenology_2016_08_007
crossref_primary_10_1007_s11259_023_10072_7
crossref_primary_10_1016_j_theriogenology_2014_05_027
crossref_primary_10_1071_RD17335
crossref_primary_10_1093_humrep_deac027
crossref_primary_10_17116_rosakush202121041109
crossref_primary_10_1016_j_ecoenv_2021_112361
crossref_primary_10_1016_j_scitotenv_2023_167311
crossref_primary_10_1016_j_anireprosci_2018_06_007
crossref_primary_10_1016_j_theriogenology_2017_03_014
crossref_primary_10_1530_JOE_16_0302
crossref_primary_10_1016_j_psj_2022_102060
crossref_primary_10_1016_j_theriogenology_2019_11_039
crossref_primary_10_1111_rda_12308
crossref_primary_10_1186_s12915_023_01773_1
crossref_primary_10_1002_mrd_22299
crossref_primary_10_3389_fpubh_2022_938343
crossref_primary_10_1111_rda_12289
crossref_primary_10_1016_j_anireprosci_2021_106718
crossref_primary_10_1071_RD14359
crossref_primary_10_33590_emj_10310074
crossref_primary_10_3390_ijms25010491
crossref_primary_10_1021_acs_analchem_1c05090
crossref_primary_10_1590_1984_3143_ar2024_0051
crossref_primary_10_3390_ijms21186661
crossref_primary_10_1007_s11626_013_9624_2
crossref_primary_10_1016_S2095_3119_14_60866_2
crossref_primary_10_1093_humrep_dex087
crossref_primary_10_1097_01_PGO_0000756752_73305_e0
crossref_primary_10_1038_s41598_018_33550_4
crossref_primary_10_1016_j_livsci_2020_104380
crossref_primary_10_1262_jrd_2014_168
crossref_primary_10_3390_ani15030344
crossref_primary_10_1292_jvms_15_0008
crossref_primary_10_1016_j_theriogenology_2021_09_034
crossref_primary_10_1210_me_2013_1413
crossref_primary_10_3390_nu16081182
crossref_primary_10_3390_ijms19051457
crossref_primary_10_1016_S0031_3939_10_70562_X
crossref_primary_10_1530_REP_16_0642
crossref_primary_10_1590_1984_3143_ar2023_0063
crossref_primary_10_1038_s41419_022_05263_0
crossref_primary_10_1007_s10815_015_0560_9
crossref_primary_10_1016_j_theriogenology_2023_03_016
crossref_primary_10_1152_ajpendo_00469_2012
crossref_primary_10_1371_journal_pone_0130334
crossref_primary_10_1002_mrd_22868
crossref_primary_10_3389_fmars_2024_1506646
crossref_primary_10_1016_j_mehy_2012_02_018
crossref_primary_10_1371_journal_pone_0132638
crossref_primary_10_1038_s41598_021_90870_8
crossref_primary_10_1186_s40104_022_00818_9
crossref_primary_10_1080_10495398_2019_1653314
crossref_primary_10_1111_rda_12987
crossref_primary_10_3390_ijms20071526
crossref_primary_10_1016_j_anireprosci_2012_08_013
crossref_primary_10_4103_2305_0500_356843
crossref_primary_10_1071_RD10339
crossref_primary_10_1038_s41598_024_53480_8
crossref_primary_10_1038_s41556_023_01341_3
crossref_primary_10_1111_ahe_12197
crossref_primary_10_1093_humrep_deu276
crossref_primary_10_1071_RD13282
crossref_primary_10_1071_RD12403
crossref_primary_10_3389_fcell_2023_1280998
crossref_primary_10_1590_1808_1657001292018
crossref_primary_10_3390_ijms19103261
crossref_primary_10_1111_jpn_12486
crossref_primary_10_1016_j_isci_2022_103904
crossref_primary_10_1093_jas_skac136
crossref_primary_10_1364_BOE_381359
crossref_primary_10_1017_S0967199414000380
crossref_primary_10_1016_j_fertnstert_2019_09_041
crossref_primary_10_53588_alpa_310504
crossref_primary_10_3390_ani13223563
crossref_primary_10_1016_j_jinsphys_2012_05_005
crossref_primary_10_17221_1573_VETMED
crossref_primary_10_3389_fendo_2024_1464171
crossref_primary_10_1016_j_theriogenology_2016_11_018
crossref_primary_10_1186_s12884_023_05917_7
crossref_primary_10_1016_j_domaniend_2025_106938
crossref_primary_10_1095_biolreprod_111_092585
crossref_primary_10_1016_j_theriogenology_2024_04_011
crossref_primary_10_3390_metabo11080484
crossref_primary_10_1007_s10815_020_01935_y
crossref_primary_10_3390_ijms22031311
crossref_primary_10_1007_s13361_019_02334_z
crossref_primary_10_1071_AN17895
crossref_primary_10_1016_j_rbmo_2021_03_022
crossref_primary_10_1262_jrd_2019_102
crossref_primary_10_1016_j_theriogenology_2016_03_025
crossref_primary_10_1042_BST20120352
crossref_primary_10_1590_1414_431x20143744
crossref_primary_10_1016_j_theriogenology_2020_04_015
crossref_primary_10_1007_s10815_015_0439_9
crossref_primary_10_1038_s41556_019_0453_8
crossref_primary_10_1016_j_aquaculture_2014_11_025
crossref_primary_10_1016_j_theriogenology_2012_11_025
crossref_primary_10_1071_RD14310
crossref_primary_10_1134_S1062360419050102
crossref_primary_10_3390_biology6030035
crossref_primary_10_1007_s10815_014_0179_2
crossref_primary_10_12717_DR_2017_21_2_205
crossref_primary_10_1071_RD12372
crossref_primary_10_1210_me_2014_1049
crossref_primary_10_22319_rmcp_v15i3_6456
crossref_primary_10_1016_j_cbd_2019_100648
crossref_primary_10_1155_2021_6696305
crossref_primary_10_1101_gad_227926_113
crossref_primary_10_1016_j_anireprosci_2014_01_011
crossref_primary_10_1016_j_ajog_2017_08_010
crossref_primary_10_1071_RD15414
crossref_primary_10_1017_S0967199415000428
crossref_primary_10_1007_s10815_014_0359_0
crossref_primary_10_3389_fphys_2021_757266
crossref_primary_10_1016_j_anireprosci_2019_06_003
crossref_primary_10_7717_peerj_15618
crossref_primary_10_1002_jcp_25876
crossref_primary_10_1007_s10616_020_00393_9
crossref_primary_10_1002_mrd_23518
crossref_primary_10_3390_agriculture15050471
crossref_primary_10_1016_j_fertnstert_2011_07_1115
crossref_primary_10_1530_REP_11_0484
crossref_primary_10_3389_fgene_2022_812764
crossref_primary_10_1111_rda_12386
crossref_primary_10_1016_j_theriogenology_2018_11_010
crossref_primary_10_1242_dev_192997
crossref_primary_10_1016_j_theriogenology_2011_12_008
crossref_primary_10_1002_cbin_10746
crossref_primary_10_1530_REP_13_0251
crossref_primary_10_1016_j_theriogenology_2014_11_003
crossref_primary_10_3390_antiox10010091
crossref_primary_10_3390_ijms26051989
crossref_primary_10_1111_asj_12016
crossref_primary_10_3168_jds_2021_20190
crossref_primary_10_1016_j_fertnstert_2011_01_154
crossref_primary_10_1016_j_gene_2020_145194
crossref_primary_10_1002_mrd_21351
crossref_primary_10_1071_RD15319
crossref_primary_10_1007_s10815_024_03130_9
crossref_primary_10_1016_j_ecoenv_2018_03_037
crossref_primary_10_3390_antib12040079
crossref_primary_10_1080_14647273_2021_2007421
crossref_primary_10_1530_REP_18_0561
crossref_primary_10_1590_1519_6984_253514
crossref_primary_10_1007_s10815_018_1365_4
crossref_primary_10_1016_j_devcel_2021_07_020
crossref_primary_10_1242_dev_199961
crossref_primary_10_1242_dev_161893
crossref_primary_10_1071_RD14343
crossref_primary_10_1016_j_cryobiol_2020_11_004
crossref_primary_10_1371_journal_pone_0180451
crossref_primary_10_3390_vetsci11090397
crossref_primary_10_1590_1984_3143_ar2021_0031
crossref_primary_10_1093_humrep_deac226
crossref_primary_10_1016_j_theriogenology_2023_05_016
crossref_primary_10_1016_j_theriogenology_2015_02_023
crossref_primary_10_1016_j_theriogenology_2019_10_028
crossref_primary_10_1016_j_theriogenology_2018_02_020
crossref_primary_10_3390_life12020171
crossref_primary_10_3390_nu12071953
crossref_primary_10_1016_j_cryobiol_2014_02_012
crossref_primary_10_3390_nu14204405
crossref_primary_10_1002_mrd_23306
crossref_primary_10_1016_j_freeradbiomed_2020_08_012
crossref_primary_10_1093_humrep_dez305
crossref_primary_10_3389_fphys_2023_1198873
crossref_primary_10_1016_j_redox_2025_103539
crossref_primary_10_1186_s12944_024_02366_9
crossref_primary_10_15252_embr_202357440
crossref_primary_10_1530_REP_14_0015
crossref_primary_10_3390_biom14081014
crossref_primary_10_1016_j_jhazmat_2020_122643
crossref_primary_10_3168_jds_2013_7719
crossref_primary_10_1590_1984_3143_ar2020_0015
crossref_primary_10_1186_1757_2215_7_44
crossref_primary_10_1016_j_vas_2021_100193
crossref_primary_10_1093_humrep_deaa181
crossref_primary_10_1371_journal_ppat_1002996
crossref_primary_10_1016_j_fertnstert_2018_05_027
crossref_primary_10_1016_j_fertnstert_2015_03_015
crossref_primary_10_1038_s41598_019_42958_5
crossref_primary_10_3390_ani11071932
crossref_primary_10_1017_S0967199415000507
crossref_primary_10_1016_j_anireprosci_2012_02_002
crossref_primary_10_1530_REP_10_0236
crossref_primary_10_3390_ijms21207589
crossref_primary_10_3390_metabo11030162
crossref_primary_10_4236_ojas_2021_112023
crossref_primary_10_3389_fcell_2022_837405
crossref_primary_10_3390_ijms19092802
crossref_primary_10_1371_journal_pone_0102620
crossref_primary_10_3390_ijms21186488
crossref_primary_10_1371_journal_pbio_3002960
crossref_primary_10_3390_ph16050723
crossref_primary_10_29252_rap_10_23_100
crossref_primary_10_1186_s12958_021_00848_4
crossref_primary_10_1071_RD17248
crossref_primary_10_1071_RD11262
crossref_primary_10_1002_rmb2_12403
crossref_primary_10_1071_RD11034
crossref_primary_10_3390_biomedicines10020257
crossref_primary_10_1111_rda_12352
crossref_primary_10_1016_j_theriogenology_2016_04_060
crossref_primary_10_1111_rda_12592
crossref_primary_10_1017_S1751731114000937
crossref_primary_10_1371_journal_pone_0142724
crossref_primary_10_1111_asj_12628
crossref_primary_10_1016_j_theriogenology_2015_01_028
crossref_primary_10_1016_j_fertnstert_2014_12_116
crossref_primary_10_1016_j_anireprosci_2018_07_001
crossref_primary_10_1095_biolreprod_111_096602
crossref_primary_10_1016_j_stem_2024_01_009
Cites_doi 10.1095/biolreprod64.5.1375
10.1093/humrep/15.suppl_2.189
10.1530/rep.0.1240675
10.1016/j.anireprosci.2007.09.001
10.1159/000143363
10.1007/978-1-4613-9317-7_6
10.1002/mrd.1120180108
10.1038/374416a0
10.1002/bies.10137
10.1530/jrf.0.0290203
10.1093/humrep/17.2.393
10.1002/mrd.1120210306
10.1111/j.1439-0531.2008.01139.x
10.1017/S1357729800050955
10.1016/S0093-691X(01)00470-8
10.1016/S0093-691X(01)00454-X
10.1002/mrd.20763
10.1111/j.1439-0531.2007.00961.x
10.1530/jrf.0.1150079
10.1530/rep.0.1260197
10.1530/jrf.0.0770425
10.1016/j.theriogenology.2006.01.049
10.1093/humupd/1.1.63
10.1080/1464770312331369463
10.1007/s004290050249
10.5713/ajas.1997.523
10.1159/000144509
10.1016/j.ydbio.2003.07.014
10.1071/RDv20n1Ab137
10.1046/j.1439-0531.2001.00284.x
10.1002/(SICI)1098-2795(199906)53:2<171::AID-MRD6>3.0.CO;2-F
10.1002/jez.1401600111
10.1017/S0967199400001131
10.1016/j.theriogenology.2004.06.006
10.1530/jrf.0.1060299
10.1530/REP-06-0073
10.1016/S0093-691X(98)00041-7
10.1002/(SICI)1098-2795(199608)44:4<476::AID-MRD7>3.0.CO;2-I
10.1002/mrd.10138
10.1002/(SICI)1098-2795(199907)53:3<325::AID-MRD8>3.0.CO;2-T
10.1002/mrd.20604
10.1093/humrep/13.8.2227
10.1002/mrd.1131
10.1071/RD05017
10.1530/jrf.0.1160373
10.2527/jas.2007-0546
10.1002/mrd.20494
10.1016/S0093-691X(02)00660-X
10.1016/S0093-691X(96)00336-6
10.1530/rep.0.1220131
10.1002/mrd.1156
10.1071/RD03004
10.1530/rep.0.1220155
10.1002/mrd.1120080105
10.1016/j.theriogenology.2006.05.018
10.1194/jlr.R700014-JLR200
10.1016/S0093-691X(00)00306-X
10.1016/S0960-9822(01)00257-3
10.1095/biolreprod64.3.904
10.1054/plef.1999.0101
10.1095/biolreprod51.4.618
10.1016/j.theriogenology.2008.08.002
10.1262/jrd.50.287
10.1095/biolreprod.106.052779
10.1016/S0021-9258(17)42763-3
10.1262/jrd.19139
10.1002/(SICI)1098-2795(199603)43:3<323::AID-MRD6>3.0.CO;2-S
10.1093/molehr/gan065
10.1016/j.semcdb.2008.12.005
10.1530/reprod/118.1.163
10.1016/j.anireprosci.2006.10.018
10.1095/biolreprod53.6.1385
10.1017/S0967199400001787
10.1095/biolreprod37.4.775
10.1530/rep.1.00974
10.1095/biolreprod62.5.1459
10.1016/S0093-691X(02)00634-9
10.1093/oxfordjournals.humrep.a137258
10.1095/biolreprod.103.026542
10.1016/j.theriogenology.2005.04.029
10.1111/j.1439-0531.2004.00556.x
ContentType Journal Article
Copyright 2009 The Authors. Journal compilation © 2009 Blackwell Verlag GmbH
2009 Blackwell Verlag GmbH
Copyright_xml – notice: 2009 The Authors. Journal compilation © 2009 Blackwell Verlag GmbH
– notice: 2009 Blackwell Verlag GmbH
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7S9
L.6
7X8
DOI 10.1111/j.1439-0531.2009.01402.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Engineering Research Database

MEDLINE
MEDLINE - Academic
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
Agriculture
EISSN 1439-0531
EndPage 58
ExternalDocumentID 1800951821
19660080
10_1111_j_1439_0531_2009_01402_x
RDA1402
ark_67375_WNG_98KHMXD3_1
US201301657832
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Wellcome Trust
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29P
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHTB
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPEJ
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
EYRJQ
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HVLQZ
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WOIKV
WPGGZ
WQJ
WRC
WXSBR
XG1
ZZTAW
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7S9
L.6
7X8
ID FETCH-LOGICAL-c5542-97e7f1cb5bf6a1f18a22054730607354706f006ea03cf426df94ccd67aec0a303
IEDL.DBID DR2
ISSN 0936-6768
1439-0531
IngestDate Fri Jul 11 02:07:50 EDT 2025
Fri Jul 11 10:42:46 EDT 2025
Fri Jul 25 19:43:23 EDT 2025
Mon Jul 21 05:46:19 EDT 2025
Tue Jul 01 04:25:31 EDT 2025
Thu Apr 24 22:52:13 EDT 2025
Wed Aug 20 01:21:45 EDT 2025
Wed Oct 30 09:52:09 EDT 2024
Wed Dec 27 18:54:21 EST 2023
IsPeerReviewed true
IsScholarly true
Issue s3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5542-97e7f1cb5bf6a1f18a22054730607354706f006ea03cf426df94ccd67aec0a303
Notes http://dx.doi.org/10.1111/j.1439-0531.2009.01402.x
istex:5EE0CBDE68F589587AAB4C1B5CB5E5DAF45A662E
ark:/67375/WNG-98KHMXD3-1
ArticleID:RDA1402
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Review-3
PMID 19660080
PQID 213749182
PQPubID 26873
PageCount 9
ParticipantIDs proquest_miscellaneous_733577188
proquest_miscellaneous_46327453
proquest_journals_213749182
pubmed_primary_19660080
crossref_citationtrail_10_1111_j_1439_0531_2009_01402_x
crossref_primary_10_1111_j_1439_0531_2009_01402_x
wiley_primary_10_1111_j_1439_0531_2009_01402_x_RDA1402
istex_primary_ark_67375_WNG_98KHMXD3_1
fao_agris_US201301657832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2009
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: September 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Germany
– name: Oxford
PublicationTitle Reproduction in domestic animals
PublicationTitleAlternate Reprod Domest Anim
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Cetica P, Pintos L, Dalvit G, Beconi M, 2002: Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction 124, 675-681.
Sturmey RG, Leese HJ, 2003: Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197-204.
Gomez E, Duque P, Díaz E, Facal N, Antolín I, Hidalgo C, Díez C, 2002: Effects of acetoacetate and D-beta-hydroxybutyrate on bovine in vitro embryo development in serum-free medium. Theriogenology 57, 1551-1562.
Kane MT, 1987: Minimal nutrient requirements for culture of one-cell rabbit embryos. Biol Reprod 37, 775-778.
Van Blerkom J, Davis P, Mathwig V, Alexander S, 2002: Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod 17, 393-406.
Matorras R, Ruiz JI, Mendoza R, Ruiz N, Sanjurjo P, Rodriguez-Escudero FJ, 1998: Fatty acid composition of fertilization-failed human oocytes. Hum Reprod 13, 2227-2230.
Brown DA, 2001: Lipid droplets: proteins floating on a pool of fat. Curr Biol 11, R446-R449.
Aardema H, Knijn HM, Oei CHY, Vos PLAM, Gadella BM, 2008: Lipid droplet dynamics during in vitro maturation of bovine oocytes. Reprod Domest Anim 43(Suppl.5), 76 (Abstract).
Rizos D, Fair T, Papadopoulos S, Boland MP, Lonergan P, 2002: Developmental, qualitative and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol Reprod Dev 62, 320-327.
Van Blerkom J, 2008: Mitochondria in early mammalian development. Semin Cell Dev Biol [Epub ahead of print] doi:DOI: 10.1016/j.semcdb.2008.12.005.
Houghton FD, Humpherson PG, Hawkhead JA, Hall CJ, Leese HJ, 2003: Na+, K+, ATPase activity in the human and bovine preimplantation embryo. Dev Biol 263, 360-366.
Baumann CG, Morris DG, Sreenan JM, Leese HJ, 2007: The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev 74, 1345-1353.
Hyttel P, Fair T, Callesen H, Greve T, 1997: Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 23-32.
Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, Wolf E, 2001: Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 64, 904-909.
Brevini TAL, Cillo F, Antonini S, Gandolfi F, 2007: Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes. Anim Reprod Sci 98, 23-38.
Hewitson LC, Martin KL, Leese HJ, 1996: Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses. Mol Reprod Dev 43, 323-330.
Brasaemle DL, 2007: The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48, 2547-2559.
Reis A, Rooke JA, McCallum GJ, Staines ME, Lomax MA, McEvoy TG, 2003: Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro. Reprod Fertil Dev 15, 275-284.
Spindler RE, Renfree MB, Shaw G, Gardner DK, 1999: Reactivating tammar wallaby blastocysts oxidise fatty acids and amino acids. J Reprod Fertil 115, 79-86.
Diez C, Heyman Y, Le Bourhis D, Guyader-Joly C, Degrouard J, Renard JP, 2001: Delipidating in vitro-produced bovine zygotes: effect on further development and consequences for freezability. Theriogenology 55, 923-936.
De Paz P, Sanchez AJ, De la Fuente J, Chamorro CA, Alvarez M, Anel E, Anel L, 2001: Ultrastructural and cytochemical comparisons between cow and calf oocytes. Theriogenology 55, 1107-1116.
Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Nottle MB, 1995: Cryopreservation of porcine embryos. Nature 374, 416.
Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ, 1996: Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil 106, 299-306.
Abe H, Yamashita S, Itoh T, Satoh T, Hoshi H, 1999b: Ultrastructure of bovine embryos developed from in vitro-matured and -fertilized oocytes: comparative morphological evaluation of embryos cultured either in serum-free medium or in serum-supplemented medium. Mol Reprod Dev 53, 325-335.
Downs SM, Hudson ED, 2000: Energy substrates and the completion of spontaneous meiotic maturation. Zygote 8, 339-351.
Karja NWK, Otoi T, Wongsrikeao P, Murakami M, Agung B, Fahrudin M, Nagai T, 2006: In vitro development and post-thaw survival of blastocysts derived from delipidated zygotes from domestic cats. Theriogenology 65, 415-423.
Leese HJ, 2003: What does an embryo need? Hum Fertil 6, 180-185.
Houghton FD, Thompson JG, Kennedy CJ, Leese HJ, 1996: Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev 44, 476-485.
Crosier AE, Farin PW, Dykstra MJ, Alexander JE, Farin CE, 2001: Ultrastructural morphometry of bovine blastocysts produced in vivo or in vitro. Biol Reprod 64, 1375-1385.
Abe H, Matsuzaki S, Hoshi H, 2002b: Ultrastuctural differences in bovine morulae classified as high and low qualities by morphological evaluation. Theriogenology 57, 1273-1283.
Clark AR, Stokes YM, Lane M, Thompson JG, 2006: Mathematical modelling of oxygen consumption in bovine and murine cumulus-oocyte complexes. Reproduction 131, 999-1006.
Genicot G, Leroy JL, Van Soom A, Donnay I, 2005: The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 63, 1181-1194.
Abe Y, Suwa Y, Yanagimoto-Ueta Y, Suzuki H, 2008: Preimplantation development of embryos in Labrador Retrievers. J Reprod Dev 54, 135-137.
Waterman RA, Wall RJ, 1988: Lipid interactions with in vitro development of mammalian zygotes. Gamete Res 21, 243-254.
Leroy JL, Genicot G, Donnay I, Van Soom A, 2005: Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach. Reprod Domest Anim 40, 76-78.
Leroy JL, Van Soom A, Opsomer G, Goovaerts IG, Bols PE, 2008: Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim 43, 623-632.
Brison DR, Leese HJ, 1994: The role of exogenous energy substrates in blastocoele fluid accumulation in the rat. Zygote 2, 69-77.
Kim JY, Kinoshita M, Ohnishi M, Fukui Y, 2001: Lipid and fatty acid analysis of fresh and frozen-thawed immature an in vitro matured bovine oocytes. Reproduction 122, 131-138.
Brand MD, 1994: The stoichiometry of proton pumping and ATP sythesis in mitochondria. Biochemist 16, 20-24.
Ozdzenski W, Czołowska R, 1980: Lipid inclusions in oocytes and preimplantational embryos of different strains of mice. Folia Morphol (Warsz) 39, 497-502.
Guraya S, 1969: Histochemical study of lipids in the developing ovarian oocyte of the golden hamster (Mesocricetus aurautus). Acta Anat 74, 65-75.
Guraya SS, 1965: A histochemical analysis of lipid yolk deposition in the oocytes of cat and dog. J Exp Zool 160, 123-136.
Abe H, Yamashita S, Satoh T, Hoshi H, 2002a: Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol Reprod Dev 61, 57-66.
Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Seamark RF, Nottle MB, 1994: Removal of cytoplasmic lipid enhances the tolerance of porcine embryos to chilling. Biol Reprod 51, 618-622.
Santos JE, Bilby TR, Thatcher WW, Staples CR, Silvestre FT, 2008: Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod Domest Anim 43(Suppl. 2), 23-30.
Byatt-Smith JG, Leese HJ, Gosden RG, 1991: An investigation by mathematical modelling of whether mouse and human preimplantation embryos in static culture can satisfy their demands for oxygen by diffusion. Hum Reprod 6, 52-57.
Barcelo-Fimbres M, Brink Z, Seidel GE Jr, 2009: Effects of phenazine ethosulfate during culture of bovine embryos on pregnancy rate, prenatal and postnatal development. Theriogenology 71, 355-368.
Ferguson EM, Leese HJ, 2006: A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev 73, 1195-1201.
Gomez E, Duque P, Díaz E, Díez C, 2001: Effects of acetoacetate on in vitro development of bovine embryos in medium containing citrate and myo-inositol. Reprod Domest Anim 36, 189-194.
Hess BW, Moss GE, Rule DC, 2008: A decade of developments in the area of fat supplementation research with beef cattle and sheep. J Anim Sci 86(E Suppl.), E188-E204.
McEvoy TG, Speake BK, 2001: Nutrition and the Egg: Safe-Guarding Reproduction in Birds and Reptiles. Proc 1st International Symposium on Assisted Reproductive Technology for the Conservation and Genetic Management of Wildlife. Henry Doorly Zoo, Omaha, Nebraska. pp. 197-200.
Bavister BD, Squirrell JM, 2000: Mitochondrial distribution and function in oocytes and early embryos. Hum Reprod 15(Suppl. 2), 189-198.
McEvoy TG, Coull GD, Speake BK, Staines ME, Broadbent PJ, 1997: Estimation of lipid and fatty acid composition of zona-intact pig oocytes. J Reprod Fertil Abstr Ser 20, 10.
Kiorpes T, Hoerr D, Ho W, Weaner LE, Inman M, Tutwiler G, 1984: Identification of 2-tetradecylglycidyl coenzyme-A as the active form of methyl 2-tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase-A in isolated rat-liver mitochondria. J Biol Chem 15, 9750-9755.
Leese HJ, 2002: Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24, 845-849.
Durrant BS, Pratt NC, Russ KD, Bolamba D, 1998: Isolation and characterization of canine advanced preantral and early antral follicles. Theriogenology 49, 917-932.
Trávník P, 1981: Incidence and localization of lipids in the mouse oocyte and cleaving ovum. Folia Morphol (Prah
1998; 49
2002; 17
2006; 73
1991; 13
1986; 77
1969; 74
2002; 57
1997; 47
2000; 8
1967; 157
2005; 63
2008; 108
1983; 8
2003; 15
2006; 132
2006; 131
2007; 74
2008; 75
1975; 93
1995; 374
2007; 76
1998; 43
1987; 37
1996; 106
1980; 39
2004; 71
2001
2000; 15
1997; 10
1984; 15
2006; 65
2006; 66
2003; 6
2000; 53
2000; 62
1965; 160
1999; 53
1999a; 199
2008; 20
2001; 11
2001; 55
2003; 126
1998; 13
2001; 122
1995; 53
1997; 20
2000; 118
1999; 69
2008; 14
2005; 40
2008
2008; 54
1981; 29
1993
2003
1999; 61
2007; 98
1995; 1
2002b; 57
1972; 29
1987; 18
1991; 6
2001; 64
1999
2002a; 61
2004; 50
2002; 61
2009; 71
2002; 62
2002; 124
1980; 56
2002; 24
1988; 21
2008; 43
1994; 16
1964; 12
2008; 86
2005; 17
1999; 115
1994; 2
1999; 116
2001; 36
1996; 43
1994; 51
1999b; 53
2007; 48
2003; 263
1996; 44
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Brand MD (e_1_2_8_12_1) 1994; 16
e_1_2_8_3_1
e_1_2_8_81_1
Kiorpes T (e_1_2_8_50_1) 1984; 15
McEvoy TG (e_1_2_8_64_1) 2001
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
Aardema H (e_1_2_8_2_1) 2008; 43
e_1_2_8_13_1
e_1_2_8_36_1
Khandoker MAMY (e_1_2_8_47_1) 1998; 43
e_1_2_8_59_1
e_1_2_8_15_1
Kuran M (e_1_2_8_53_1) 1999; 69
e_1_2_8_57_1
Szabo PL (e_1_2_8_85_1) 1967; 157
Ozdzenski W (e_1_2_8_71_1) 1980; 39
Trávník P (e_1_2_8_89_1) 1981; 29
e_1_2_8_70_1
Loewenstein JE (e_1_2_8_62_1) 1964; 12
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
Ferguson EM (e_1_2_8_28_1) 1999
e_1_2_8_48_1
e_1_2_8_69_1
Hess BW (e_1_2_8_38_1) 2008; 86
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
Hillman N (e_1_2_8_40_1) 1980; 56
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Leese HJ (e_1_2_8_54_1) 1991; 13
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
Kubovicova E (e_1_2_8_52_1) 2003
McEvoy TG (e_1_2_8_65_1) 1997; 20
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_73_1
References_xml – reference: McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JSM, Speake BK, 2000: Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil 118, 163-170.
– reference: Byatt-Smith JG, Leese HJ, Gosden RG, 1991: An investigation by mathematical modelling of whether mouse and human preimplantation embryos in static culture can satisfy their demands for oxygen by diffusion. Hum Reprod 6, 52-57.
– reference: McEvoy TG, Coull GD, Speake BK, Staines ME, Broadbent PJ, 1997: Estimation of lipid and fatty acid composition of zona-intact pig oocytes. J Reprod Fertil Abstr Ser 20, 10.
– reference: Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Nottle MB, 1995: Cryopreservation of porcine embryos. Nature 374, 416.
– reference: Sturmey RG, O'Toole PJ, Leese HJ, 2006: Fluorescence resonance energy transfer analysis of mitochondrial: lipid association in the porcine oocyte. Reproduction 132, 829-837.
– reference: Trávník P, 1981: Incidence and localization of lipids in the mouse oocyte and cleaving ovum. Folia Morphol (Praha) 29, 292-296.
– reference: Nagashima H, Hiruma K, Saito H, Tomii R, Ueno S, Nakayama N, Matsurani H, Kurome M, 2007: Production of live piglets following cryopreservation of embryos derived from in vitro-matured oocytes. Biol Reprod 76, 900-905.
– reference: Esaki R, Ueda H, Kurome M, Hirakawa K, Tomii R, Yoshioka H, Ushijima H, Kuwayama M, Nagashima H, 2004: Cryopreservation of porcine embryos derived from in vitro-matured oocytes. Biol Reprod 71, 432-437.
– reference: Brison DR, Leese HJ, 1994: The role of exogenous energy substrates in blastocoele fluid accumulation in the rat. Zygote 2, 69-77.
– reference: Abayasekara DRE, Wathes DC, 1999: Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility. Prostaglandins Leukot Essent Fatty Acids 61, 275-287.
– reference: Baumann CG, Morris DG, Sreenan JM, Leese HJ, 2007: The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev 74, 1345-1353.
– reference: Matorras R, Ruiz JI, Mendoza R, Ruiz N, Sanjurjo P, Rodriguez-Escudero FJ, 1998: Fatty acid composition of fertilization-failed human oocytes. Hum Reprod 13, 2227-2230.
– reference: Van Blerkom J, 2008: Mitochondria in early mammalian development. Semin Cell Dev Biol [Epub ahead of print] doi:DOI: 10.1016/j.semcdb.2008.12.005.
– reference: Kim JY, Kinoshita M, Ohnishi M, Fukui Y, 2001: Lipid and fatty acid analysis of fresh and frozen-thawed immature an in vitro matured bovine oocytes. Reproduction 122, 131-138.
– reference: Leese HJ, 1991: Metabolism of the preimplantation mammalian embryo. Oxf Rev Reprod Biol 13, 35-72.
– reference: Reis A, Rooke JA, McCallum GJ, Staines ME, Lomax MA, McEvoy TG, 2003: Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro. Reprod Fertil Dev 15, 275-284.
– reference: Brasaemle DL, 2007: The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48, 2547-2559.
– reference: Clark AR, Stokes YM, Lane M, Thompson JG, 2006: Mathematical modelling of oxygen consumption in bovine and murine cumulus-oocyte complexes. Reproduction 131, 999-1006.
– reference: Hess BW, Moss GE, Rule DC, 2008: A decade of developments in the area of fat supplementation research with beef cattle and sheep. J Anim Sci 86(E Suppl.), E188-E204.
– reference: Guraya S, 1975: Histochemical observations on the juxtanuclear complex of organelles in the hamster oocyte. Acta Anat 93, 335-343.
– reference: Van Blerkom J, Davis P, Mathwig V, Alexander S, 2002: Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod 17, 393-406.
– reference: Waterman RA, Wall RJ, 1988: Lipid interactions with in vitro development of mammalian zygotes. Gamete Res 21, 243-254.
– reference: Abe H, Otoi T, Tachikawa S, Yamashita S, Satoh T, Hoshi H, 1999a: Fine structure of bovine morulae and blastocysts in vivo and in vitro. Anat Embryol (Berl) 199, 519-527.
– reference: Kuran M, Onal AG, Robinson JJ, Mackie K, Speake BK, McEvoy TG, 1999: A dietary supplement of calcium soaps of fatty acids enhances luteal function in sheep. Anim Sci 69, 385-393.
– reference: Szabo PL, 1967: Ultrastructure of the developing dog oocyte. Anat Rec 157, 330.
– reference: Kiorpes T, Hoerr D, Ho W, Weaner LE, Inman M, Tutwiler G, 1984: Identification of 2-tetradecylglycidyl coenzyme-A as the active form of methyl 2-tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase-A in isolated rat-liver mitochondria. J Biol Chem 15, 9750-9755.
– reference: Leroy JL, Genicot G, Donnay I, Van Soom A, 2005: Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach. Reprod Domest Anim 40, 76-78.
– reference: Genicot G, Leroy JL, Van Soom A, Donnay I, 2005: The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 63, 1181-1194.
– reference: Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ, 1996: Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil 106, 299-306.
– reference: Houghton FD, Thompson JG, Kennedy CJ, Leese HJ, 1996: Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev 44, 476-485.
– reference: Karja NWK, Otoi T, Wongsrikeao P, Murakami M, Agung B, Fahrudin M, Nagai T, 2006: In vitro development and post-thaw survival of blastocysts derived from delipidated zygotes from domestic cats. Theriogenology 65, 415-423.
– reference: Men H, Agca Y, Riley LK, Critser JK, 2006: Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology 66, 2008-2016.
– reference: Tominaga K, Shimizu M, Ooyama S, Izaike Y, 2000: Effect of lipid polarization by centrifugation at different developmental stages on post-thaw survival of bovine in vitro produced 16-cell embryos. Theriogenology 53, 1669-1680.
– reference: Kane MT, 1987: Minimal nutrient requirements for culture of one-cell rabbit embryos. Biol Reprod 37, 775-778.
– reference: Reynaud K, Fontbonne A, Marseloo N, Viaris De Lesegno C, Saint-Dizier M, Chastant-Maillard S, 2006: In vivo canine oocyte maturation, fertilization and early embryogenesis: a review. Theriogenology 66, 1685-1693.
– reference: Yoneda A, Suzuki K, Mori T, Ueda J, Watanabe T, 2004: Effects of delipidation and oxygen concentration on in vitro development of porcine embryos. J Reprod Dev 50, 287-295.
– reference: Thompson JG, Gardner DK, Pugh A, McMillan WH, Tervit HR, 1995: Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol Reprod 53, 1385-1391.
– reference: Hillman N, Flynn TJ, 1980: The metabolism of exogenous fatty acids by pre-implantation mouse embryos developing in vitro. J Embryol Exp Morphol 56, 157-168.
– reference: De Paz P, Sanchez AJ, De la Fuente J, Chamorro CA, Alvarez M, Anel E, Anel L, 2001: Ultrastructural and cytochemical comparisons between cow and calf oocytes. Theriogenology 55, 1107-1116.
– reference: Donnay I, Leese HJ, 1999: Energy metabolism during the expansion of the bovine blastocyst. Mol Reprod Dev 53, 171-178.
– reference: Sanchez-Osorio J, Cuello C, Gil MA, Alminana C, Parrilla I, Caballero I, Garcia EM, Vazquez JM, Roca J, Martinez EA, 2008: Factors affecting the success rate of porcine embryo vitrification by the Open Pulled Straw method. Anim Reprod Sci 108, 334-344.
– reference: Gomez E, Duque P, Díaz E, Facal N, Antolín I, Hidalgo C, Díez C, 2002: Effects of acetoacetate and D-beta-hydroxybutyrate on bovine in vitro embryo development in serum-free medium. Theriogenology 57, 1551-1562.
– reference: Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Seamark RF, Nottle MB, 1994: Removal of cytoplasmic lipid enhances the tolerance of porcine embryos to chilling. Biol Reprod 51, 618-622.
– reference: Leese HJ, 2003: What does an embryo need? Hum Fertil 6, 180-185.
– reference: Hyttel P, Fair T, Callesen H, Greve T, 1997: Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 23-32.
– reference: Sturmey RG, Leese HJ, 2003: Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197-204.
– reference: Guraya S, 1969: Histochemical study of lipids in the developing ovarian oocyte of the golden hamster (Mesocricetus aurautus). Acta Anat 74, 65-75.
– reference: Sun QY, Wu GM, Lai L, Park KW, Cabot R, Cheong HT, Day BN, Prather RS, Schatten H, 2001: Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 122, 155-163.
– reference: Aardema H, Knijn HM, Oei CHY, Vos PLAM, Gadella BM, 2008: Lipid droplet dynamics during in vitro maturation of bovine oocytes. Reprod Domest Anim 43(Suppl.5), 76 (Abstract).
– reference: Ozdzenski W, Czołowska R, 1980: Lipid inclusions in oocytes and preimplantational embryos of different strains of mice. Folia Morphol (Warsz) 39, 497-502.
– reference: Guraya SS, 1965: A histochemical analysis of lipid yolk deposition in the oocytes of cat and dog. J Exp Zool 160, 123-136.
– reference: Zeron Y, Sklan D, Arav A, 2002: Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Mol Reprod Dev 61, 271-278.
– reference: Leese HJ, 1995: Metabolic control during preimplantation mammalian development. Hum Reprod Update 1, 63-72.
– reference: Loewenstein JE, Cohen AI, 1964: Dry mass, lipid content and protein content of the intact and zona-free mouse ovum. J Embryol Exp Morphol 12, 113-121.
– reference: Abe H, Yamashita S, Satoh T, Hoshi H, 2002a: Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol Reprod Dev 61, 57-66.
– reference: Ferguson EM, Leese HJ, 2006: A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev 73, 1195-1201.
– reference: Kruip TAM, Cran DG, Van Beneden TH, Dieleman SJ, 1983: Structural changes in bovine oocytes during final maturation in vivo. Gamete Res 8, 29-47.
– reference: Ferguson EM, Leese HJ, 1999: Triglyceride content of bovine oocytes and early embryos. J Reprod Fertil 116, 373-378.
– reference: Diez C, Heyman Y, Le Bourhis D, Guyader-Joly C, Degrouard J, Renard JP, 2001: Delipidating in vitro-produced bovine zygotes: effect on further development and consequences for freezability. Theriogenology 55, 923-936.
– reference: Homa ST, Racowsky C, McGaughey RW, 1986: Lipid analysis of immature pig oocytes. J Reprod Fertil 77, 425-434.
– reference: Spindler RE, Renfree MB, Shaw G, Gardner DK, 1999: Reactivating tammar wallaby blastocysts oxidise fatty acids and amino acids. J Reprod Fertil 115, 79-86.
– reference: Brevini TAL, Cillo F, Antonini S, Gandolfi F, 2007: Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes. Anim Reprod Sci 98, 23-38.
– reference: Abe H, Yamashita S, Itoh T, Satoh T, Hoshi H, 1999b: Ultrastructure of bovine embryos developed from in vitro-matured and -fertilized oocytes: comparative morphological evaluation of embryos cultured either in serum-free medium or in serum-supplemented medium. Mol Reprod Dev 53, 325-335.
– reference: Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG, 2008: Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod 14, 667-672.
– reference: Reis A, McCallum GJ, McEvoy TG, 2005: Accumulation and distribution of neutral lipid droplets is non-uniform in ovine blastocysts produced in vitro in either the presence or absence of serum. Reprod Fertil Dev 17, 815-823.
– reference: Brand MD, 1994: The stoichiometry of proton pumping and ATP sythesis in mitochondria. Biochemist 16, 20-24.
– reference: Fleming WN, Saacke RG, 1972: Fine structure of the bovine oocyte from the mature graafian follicle. J Reprod Fertil 29, 203-213.
– reference: Khandoker MAMY, Tsujii H, 1998: Metabolism of exogenous fatty acids by preimplantation rabbit embryos. Jpn J Fertil Steril 43, 195-201.
– reference: Leroy JL, Van Soom A, Opsomer G, Goovaerts IG, Bols PE, 2008: Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim 43, 623-632.
– reference: Viaris De Lesegno C, Reynaud K, Pechoux C, Thoumire S, Chastant-Maillard S, 2008: Ultrastructure of canine oocytes during in vivo maturation. Mol Reprod Dev 75, 115-125.
– reference: Cetica P, Pintos L, Dalvit G, Beconi M, 2002: Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction 124, 675-681.
– reference: Crosier AE, Farin PW, Dykstra MJ, Alexander JE, Farin CE, 2001: Ultrastructural morphometry of bovine blastocysts produced in vivo or in vitro. Biol Reprod 64, 1375-1385.
– reference: Cran DG, 1987: The distribution of organelles in mammalian oocytes following centrifugation prior to injection of foreign DNA. Gamete Res 18, 67-76.
– reference: Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, Wolf E, 2001: Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 64, 904-909.
– reference: Sturmey RG, Leese HJ, 2008: Role of glucose and fatty acid metabolism in porcine early embryo development. Reprod Fertil Dev 20, 149.
– reference: Brown DA, 2001: Lipid droplets: proteins floating on a pool of fat. Curr Biol 11, R446-R449.
– reference: Santos JE, Bilby TR, Thatcher WW, Staples CR, Silvestre FT, 2008: Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod Domest Anim 43(Suppl. 2), 23-30.
– reference: Durrant BS, Pratt NC, Russ KD, Bolamba D, 1998: Isolation and characterization of canine advanced preantral and early antral follicles. Theriogenology 49, 917-932.
– reference: Crosier AE, Farin PW, Dykstra MJ, Alexander JE, Farin CE, 2000: Ultrastructural morphometry of bovine compact morulae produced in vivo or in vitro. Biol Reprod 62, 1459-1465.
– reference: Houghton FD, Humpherson PG, Hawkhead JA, Hall CJ, Leese HJ, 2003: Na+, K+, ATPase activity in the human and bovine preimplantation embryo. Dev Biol 263, 360-366.
– reference: Barcelo-Fimbres M, Brink Z, Seidel GE Jr, 2009: Effects of phenazine ethosulfate during culture of bovine embryos on pregnancy rate, prenatal and postnatal development. Theriogenology 71, 355-368.
– reference: Rizos D, Fair T, Papadopoulos S, Boland MP, Lonergan P, 2002: Developmental, qualitative and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol Reprod Dev 62, 320-327.
– reference: Khandoker MAMY, Tsujii H, Karasawa D, 1997: Fatty acid compositions of oocytes, follicular, oviductal and uterine fluids of pig and cow. Asian-Australas J Anim Sci 10, 523-527.
– reference: McEvoy TG, Speake BK, 2001: Nutrition and the Egg: Safe-Guarding Reproduction in Birds and Reptiles. Proc 1st International Symposium on Assisted Reproductive Technology for the Conservation and Genetic Management of Wildlife. Henry Doorly Zoo, Omaha, Nebraska. pp. 197-200.
– reference: Hewitson LC, Martin KL, Leese HJ, 1996: Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses. Mol Reprod Dev 43, 323-330.
– reference: Downs SM, Hudson ED, 2000: Energy substrates and the completion of spontaneous meiotic maturation. Zygote 8, 339-351.
– reference: Leese HJ, 2002: Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24, 845-849.
– reference: Abe H, Matsuzaki S, Hoshi H, 2002b: Ultrastuctural differences in bovine morulae classified as high and low qualities by morphological evaluation. Theriogenology 57, 1273-1283.
– reference: Bavister BD, Squirrell JM, 2000: Mitochondrial distribution and function in oocytes and early embryos. Hum Reprod 15(Suppl. 2), 189-198.
– reference: Abe Y, Suwa Y, Yanagimoto-Ueta Y, Suzuki H, 2008: Preimplantation development of embryos in Labrador Retrievers. J Reprod Dev 54, 135-137.
– reference: Gomez E, Duque P, Díaz E, Díez C, 2001: Effects of acetoacetate on in vitro development of bovine embryos in medium containing citrate and myo-inositol. Reprod Domest Anim 36, 189-194.
– volume: 53
  start-page: 171
  year: 1999
  end-page: 178
  article-title: Energy metabolism during the expansion of the bovine blastocyst
  publication-title: Mol Reprod Dev
– volume: 66
  start-page: 2008
  year: 2006
  end-page: 2016
  article-title: Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis
  publication-title: Theriogenology
– volume: 49
  start-page: 917
  year: 1998
  end-page: 932
  article-title: Isolation and characterization of canine advanced preantral and early antral follicles
  publication-title: Theriogenology
– start-page: 73
  year: 1993
  end-page: 82
– volume: 71
  start-page: 432
  year: 2004
  end-page: 437
  article-title: Cryopreservation of porcine embryos derived from in vitro‐matured oocytes
  publication-title: Biol Reprod
– year: 2008
  article-title: Mitochondria in early mammalian development
  publication-title: Semin Cell Dev Biol
– volume: 77
  start-page: 425
  year: 1986
  end-page: 434
  article-title: Lipid analysis of immature pig oocytes
  publication-title: J Reprod Fertil
– volume: 93
  start-page: 335
  year: 1975
  end-page: 343
  article-title: Histochemical observations on the juxtanuclear complex of organelles in the hamster oocyte
  publication-title: Acta Anat
– volume: 106
  start-page: 299
  year: 1996
  end-page: 306
  article-title: Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos
  publication-title: J Reprod Fertil
– volume: 61
  start-page: 57
  year: 2002a
  end-page: 66
  article-title: Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum‐free or serum‐containing media
  publication-title: Mol Reprod Dev
– volume: 13
  start-page: 2227
  year: 1998
  end-page: 2230
  article-title: Fatty acid composition of fertilization‐failed human oocytes
  publication-title: Hum Reprod
– volume: 17
  start-page: 393
  year: 2002
  end-page: 406
  article-title: Domains of high‐polarized and low‐polarized mitochondria may occur in mouse and human oocytes and early embryos
  publication-title: Hum Reprod
– volume: 55
  start-page: 1107
  year: 2001
  end-page: 1116
  article-title: Ultrastructural and cytochemical comparisons between cow and calf oocytes
  publication-title: Theriogenology
– volume: 43
  start-page: 23
  issue: Suppl. 2
  year: 2008
  end-page: 30
  article-title: Long chain fatty acids of diet as factors influencing reproduction in cattle
  publication-title: Reprod Domest Anim
– volume: 126
  start-page: 197
  year: 2003
  end-page: 204
  article-title: Energy metabolism in pig oocytes and early embryos
  publication-title: Reproduction
– volume: 12
  start-page: 113
  year: 1964
  end-page: 121
  article-title: Dry mass, lipid content and protein content of the intact and zona‐free mouse ovum
  publication-title: J Embryol Exp Morphol
– volume: 53
  start-page: 1385
  year: 1995
  end-page: 1391
  article-title: Lamb birth weight is affected by culture system utilized during in vitro pre‐elongation development of ovine embryos
  publication-title: Biol Reprod
– volume: 263
  start-page: 360
  year: 2003
  end-page: 366
  article-title: Na+, K+, ATPase activity in the human and bovine preimplantation embryo
  publication-title: Dev Biol
– volume: 69
  start-page: 385
  year: 1999
  end-page: 393
  article-title: A dietary supplement of calcium soaps of fatty acids enhances luteal function in sheep
  publication-title: Anim Sci
– volume: 57
  start-page: 1273
  year: 2002b
  end-page: 1283
  article-title: Ultrastuctural differences in bovine morulae classified as high and low qualities by morphological evaluation
  publication-title: Theriogenology
– volume: 15
  start-page: 275
  year: 2003
  end-page: 284
  article-title: Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro
  publication-title: Reprod Fertil Dev
– volume: 132
  start-page: 829
  year: 2006
  end-page: 837
  article-title: Fluorescence resonance energy transfer analysis of mitochondrial: lipid association in the porcine oocyte
  publication-title: Reproduction
– volume: 122
  start-page: 155
  year: 2001
  end-page: 163
  article-title: Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro
  publication-title: Reproduction
– volume: 15
  start-page: 9750
  year: 1984
  end-page: 9755
  article-title: Identification of 2‐tetradecylglycidyl coenzyme‐A as the active form of methyl 2‐tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site‐directed inhibitor of carnitine palmitoyltransferase‐A in isolated rat‐liver mitochondria
  publication-title: J Biol Chem
– volume: 1
  start-page: 63
  year: 1995
  end-page: 72
  article-title: Metabolic control during preimplantation mammalian development
  publication-title: Hum Reprod Update
– volume: 122
  start-page: 131
  year: 2001
  end-page: 138
  article-title: Lipid and fatty acid analysis of fresh and frozen‐thawed immature an in vitro matured bovine oocytes
  publication-title: Reproduction
– volume: 21
  start-page: 243
  year: 1988
  end-page: 254
  article-title: Lipid interactions with in vitro development of mammalian zygotes
  publication-title: Gamete Res
– volume: 53
  start-page: 325
  year: 1999b
  end-page: 335
  article-title: Ultrastructure of bovine embryos developed from ‐matured and ‐fertilized oocytes: comparative morphological evaluation of embryos cultured either in serum‐free medium or in serum‐supplemented medium
  publication-title: Mol Reprod Dev
– volume: 11
  start-page: R446
  year: 2001
  end-page: R449
  article-title: Lipid droplets: proteins floating on a pool of fat
  publication-title: Curr Biol
– volume: 64
  start-page: 1375
  year: 2001
  end-page: 1385
  article-title: Ultrastructural morphometry of bovine blastocysts produced in vivo or in vitro
  publication-title: Biol Reprod
– volume: 50
  start-page: 287
  year: 2004
  end-page: 295
  article-title: Effects of delipidation and oxygen concentration on in vitro development of porcine embryos
  publication-title: J Reprod Dev
– volume: 73
  start-page: 1195
  year: 2006
  end-page: 1201
  article-title: A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development
  publication-title: Mol Reprod Dev
– volume: 8
  start-page: 29
  year: 1983
  end-page: 47
  article-title: Structural changes in bovine oocytes during final maturation in vivo
  publication-title: Gamete Res
– volume: 8
  start-page: 339
  year: 2000
  end-page: 351
  article-title: Energy substrates and the completion of spontaneous meiotic maturation
  publication-title: Zygote
– volume: 62
  start-page: 1459
  year: 2000
  end-page: 1465
  article-title: Ultrastructural morphometry of bovine compact morulae produced in vivo or in vitro
  publication-title: Biol Reprod
– volume: 108
  start-page: 334
  year: 2008
  end-page: 344
  article-title: Factors affecting the success rate of porcine embryo vitrification by the Open Pulled Straw method
  publication-title: Anim Reprod Sci
– volume: 98
  start-page: 23
  year: 2007
  end-page: 38
  article-title: Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes
  publication-title: Anim Reprod Sci
– volume: 63
  start-page: 1181
  year: 2005
  end-page: 1194
  article-title: The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes
  publication-title: Theriogenology
– volume: 86
  start-page: E188
  issue: E Suppl.
  year: 2008
  end-page: E204
  article-title: A decade of developments in the area of fat supplementation research with beef cattle and sheep
  publication-title: J Anim Sci
– volume: 131
  start-page: 999
  year: 2006
  end-page: 1006
  article-title: Mathematical modelling of oxygen consumption in bovine and murine cumulus‐oocyte complexes
  publication-title: Reproduction
– volume: 18
  start-page: 67
  year: 1987
  end-page: 76
  article-title: The distribution of organelles in mammalian oocytes following centrifugation prior to injection of foreign DNA
  publication-title: Gamete Res
– volume: 55
  start-page: 923
  year: 2001
  end-page: 936
  article-title: Delipidating in vitro‐produced bovine zygotes: effect on further development and consequences for freezability
  publication-title: Theriogenology
– volume: 56
  start-page: 157
  year: 1980
  end-page: 168
  article-title: The metabolism of exogenous fatty acids by pre‐implantation mouse embryos developing in vitro
  publication-title: J Embryol Exp Morphol
– volume: 43
  issue: Suppl.5
  year: 2008
  article-title: Lipid droplet dynamics during in vitro maturation of bovine oocytes
  publication-title: Reprod Domest Anim
– volume: 6
  start-page: 180
  year: 2003
  end-page: 185
  article-title: What does an embryo need?
  publication-title: Hum Fertil
– volume: 43
  start-page: 623
  year: 2008
  end-page: 632
  article-title: Reduced fertility in high‐yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high‐yielding dairy cows
  publication-title: Reprod Domest Anim
– volume: 20
  start-page: 149
  year: 2008
  article-title: Role of glucose and fatty acid metabolism in porcine early embryo development
  publication-title: Reprod Fertil Dev
– volume: 43
  start-page: 323
  year: 1996
  end-page: 330
  article-title: Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses
  publication-title: Mol Reprod Dev
– volume: 47
  start-page: 23
  year: 1997
  end-page: 32
  article-title: Oocyte growth, capacitation and final maturation in cattle
  publication-title: Theriogenology
– volume: 16
  start-page: 20
  year: 1994
  end-page: 24
  article-title: The stoichiometry of proton pumping and ATP sythesis in mitochondria
  publication-title: Biochemist
– volume: 71
  start-page: 355
  year: 2009
  end-page: 368
  article-title: Effects of phenazine ethosulfate during culture of bovine embryos on pregnancy rate, prenatal and postnatal development
  publication-title: Theriogenology
– volume: 29
  start-page: 203
  year: 1972
  end-page: 213
  article-title: Fine structure of the bovine oocyte from the mature graafian follicle
  publication-title: J Reprod Fertil
– volume: 17
  start-page: 815
  year: 2005
  end-page: 823
  article-title: Accumulation and distribution of neutral lipid droplets is non‐uniform in ovine blastocysts produced in vitro in either the presence or absence of serum
  publication-title: Reprod Fertil Dev
– volume: 118
  start-page: 163
  year: 2000
  end-page: 170
  article-title: Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida
  publication-title: J Reprod Fertil
– volume: 2
  start-page: 69
  year: 1994
  end-page: 77
  article-title: The role of exogenous energy substrates in blastocoele fluid accumulation in the rat
  publication-title: Zygote
– volume: 65
  start-page: 415
  year: 2006
  end-page: 423
  article-title: In vitro development and post‐thaw survival of blastocysts derived from delipidated zygotes from domestic cats
  publication-title: Theriogenology
– volume: 124
  start-page: 675
  year: 2002
  end-page: 681
  article-title: Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro
  publication-title: Reproduction
– volume: 75
  start-page: 115
  year: 2008
  end-page: 125
  article-title: Ultrastructure of canine oocytes during in vivo maturation
  publication-title: Mol Reprod Dev
– volume: 61
  start-page: 275
  year: 1999
  end-page: 287
  article-title: Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility
  publication-title: Prostaglandins Leukot Essent Fatty Acids
– volume: 76
  start-page: 900
  year: 2007
  end-page: 905
  article-title: Production of live piglets following cryopreservation of embryos derived from in vitro‐matured oocytes
  publication-title: Biol Reprod
– volume: 20
  start-page: 10
  year: 1997
  article-title: Estimation of lipid and fatty acid composition of zona‐intact pig oocytes
  publication-title: J Reprod Fertil Abstr Ser
– volume: 160
  start-page: 123
  year: 1965
  end-page: 136
  article-title: A histochemical analysis of lipid yolk deposition in the oocytes of cat and dog
  publication-title: J Exp Zool
– volume: 44
  start-page: 476
  year: 1996
  end-page: 485
  article-title: Oxygen consumption and energy metabolism of the early mouse embryo
  publication-title: Mol Reprod Dev
– volume: 48
  start-page: 2547
  year: 2007
  end-page: 2559
  article-title: The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis
  publication-title: J Lipid Res
– volume: 116
  start-page: 373
  year: 1999
  end-page: 378
  article-title: Triglyceride content of bovine oocytes and early embryos
  publication-title: J Reprod Fertil
– volume: 53
  start-page: 1669
  year: 2000
  end-page: 1680
  article-title: Effect of lipid polarization by centrifugation at different developmental stages on post‐thaw survival of bovine in vitro produced 16‐cell embryos
  publication-title: Theriogenology
– volume: 37
  start-page: 775
  year: 1987
  end-page: 778
  article-title: Minimal nutrient requirements for culture of one‐cell rabbit embryos
  publication-title: Biol Reprod
– volume: 13
  start-page: 35
  year: 1991
  end-page: 72
  article-title: Metabolism of the preimplantation mammalian embryo
  publication-title: Oxf Rev Reprod Biol
– volume: 62
  start-page: 320
  year: 2002
  end-page: 327
  article-title: Developmental, qualitative and ultrastructural differences between ovine and bovine embryos produced or
  publication-title: Mol Reprod Dev
– volume: 66
  start-page: 1685
  year: 2006
  end-page: 1693
  article-title: In vivo canine oocyte maturation, fertilization and early embryogenesis: a review
  publication-title: Theriogenology
– start-page: 93
  year: 2003
  end-page: 113
– volume: 157
  start-page: 330
  year: 1967
  article-title: Ultrastructure of the developing dog oocyte
  publication-title: Anat Rec
– volume: 40
  start-page: 76
  year: 2005
  end-page: 78
  article-title: Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach
  publication-title: Reprod Domest Anim
– volume: 10
  start-page: 523
  year: 1997
  end-page: 527
  article-title: Fatty acid compositions of oocytes, follicular, oviductal and uterine fluids of pig and cow
  publication-title: Asian-Australas J Anim Sci
– volume: 374
  start-page: 416
  year: 1995
  article-title: Cryopreservation of porcine embryos
  publication-title: Nature
– volume: 24
  start-page: 845
  year: 2002
  end-page: 849
  article-title: Quiet please, do not disturb: a hypothesis of embryo metabolism and viability
  publication-title: Bioessays
– volume: 6
  start-page: 52
  year: 1991
  end-page: 57
  article-title: An investigation by mathematical modelling of whether mouse and human preimplantation embryos in static culture can satisfy their demands for oxygen by diffusion
  publication-title: Hum Reprod
– volume: 39
  start-page: 497
  year: 1980
  end-page: 502
  article-title: Lipid inclusions in oocytes and preimplantational embryos of different strains of mice
  publication-title: Folia Morphol (Warsz)
– volume: 64
  start-page: 904
  year: 2001
  end-page: 909
  article-title: Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture
  publication-title: Biol Reprod
– volume: 115
  start-page: 79
  year: 1999
  end-page: 86
  article-title: Reactivating tammar wallaby blastocysts oxidise fatty acids and amino acids
  publication-title: J Reprod Fertil
– volume: 15
  start-page: 189
  issue: Suppl. 2
  year: 2000
  end-page: 198
  article-title: Mitochondrial distribution and function in oocytes and early embryos
  publication-title: Hum Reprod
– volume: 199
  start-page: 519
  year: 1999a
  end-page: 527
  article-title: Fine structure of bovine morulae and blastocysts and
  publication-title: Anat Embryol (Berl)
– volume: 74
  start-page: 1345
  year: 2007
  end-page: 1353
  article-title: The quiet embryo hypothesis: molecular characteristics favoring viability
  publication-title: Mol Reprod Dev
– volume: 43
  start-page: 195
  year: 1998
  end-page: 201
  article-title: Metabolism of exogenous fatty acids by preimplantation rabbit embryos
  publication-title: Jpn J Fertil Steril
– volume: 14
  start-page: 667
  year: 2008
  end-page: 672
  article-title: Metabolism of the viable mammalian embryo: quietness revisited
  publication-title: Mol Hum Reprod
– volume: 29
  start-page: 292
  year: 1981
  end-page: 296
  article-title: Incidence and localization of lipids in the mouse oocyte and cleaving ovum
  publication-title: Folia Morphol (Praha)
– volume: 74
  start-page: 65
  year: 1969
  end-page: 75
  article-title: Histochemical study of lipids in the developing ovarian oocyte of the golden hamster ( )
  publication-title: Acta Anat
– volume: 61
  start-page: 271
  year: 2002
  end-page: 278
  article-title: Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes
  publication-title: Mol Reprod Dev
– volume: 36
  start-page: 189
  year: 2001
  end-page: 194
  article-title: Effects of acetoacetate on in vitro development of bovine embryos in medium containing citrate and myo‐inositol
  publication-title: Reprod Domest Anim
– volume: 54
  start-page: 135
  year: 2008
  end-page: 137
  article-title: Preimplantation development of embryos in Labrador Retrievers
  publication-title: J Reprod Dev
– start-page: 197
  year: 2001
  end-page: 200
– volume: 51
  start-page: 618
  year: 1994
  end-page: 622
  article-title: Removal of cytoplasmic lipid enhances the tolerance of porcine embryos to chilling
  publication-title: Biol Reprod
– volume: 57
  start-page: 1551
  year: 2002
  end-page: 1562
  article-title: Effects of acetoacetate and D‐beta‐hydroxybutyrate on bovine in vitro embryo development in serum‐free medium
  publication-title: Theriogenology
– year: 1999
– ident: e_1_2_8_22_1
  doi: 10.1095/biolreprod64.5.1375
– start-page: 197
  volume-title: Nutrition and the Egg: Safe‐Guarding Reproduction in Birds and Reptiles
  year: 2001
  ident: e_1_2_8_64_1
– ident: e_1_2_8_11_1
  doi: 10.1093/humrep/15.suppl_2.189
– ident: e_1_2_8_18_1
  doi: 10.1530/rep.0.1240675
– ident: e_1_2_8_77_1
  doi: 10.1016/j.anireprosci.2007.09.001
– ident: e_1_2_8_36_1
  doi: 10.1159/000143363
– ident: e_1_2_8_55_1
  doi: 10.1007/978-1-4613-9317-7_6
– ident: e_1_2_8_20_1
  doi: 10.1002/mrd.1120180108
– ident: e_1_2_8_69_1
  doi: 10.1038/374416a0
– ident: e_1_2_8_57_1
  doi: 10.1002/bies.10137
– ident: e_1_2_8_31_1
  doi: 10.1530/jrf.0.0290203
– ident: e_1_2_8_91_1
  doi: 10.1093/humrep/17.2.393
– ident: e_1_2_8_93_1
  doi: 10.1002/mrd.1120210306
– ident: e_1_2_8_78_1
  doi: 10.1111/j.1439-0531.2008.01139.x
– volume: 69
  start-page: 385
  year: 1999
  ident: e_1_2_8_53_1
  article-title: A dietary supplement of calcium soaps of fatty acids enhances luteal function in sheep
  publication-title: Anim Sci
  doi: 10.1017/S1357729800050955
– ident: e_1_2_8_72_1
  doi: 10.1016/S0093-691X(01)00470-8
– ident: e_1_2_8_23_1
  doi: 10.1016/S0093-691X(01)00454-X
– ident: e_1_2_8_92_1
  doi: 10.1002/mrd.20763
– ident: e_1_2_8_61_1
  doi: 10.1111/j.1439-0531.2007.00961.x
– ident: e_1_2_8_79_1
  doi: 10.1530/jrf.0.1150079
– ident: e_1_2_8_81_1
  doi: 10.1530/rep.0.1260197
– volume: 13
  start-page: 35
  year: 1991
  ident: e_1_2_8_54_1
  article-title: Metabolism of the preimplantation mammalian embryo
  publication-title: Oxf Rev Reprod Biol
– ident: e_1_2_8_41_1
  doi: 10.1530/jrf.0.0770425
– ident: e_1_2_8_75_1
  doi: 10.1016/j.theriogenology.2006.01.049
– ident: e_1_2_8_56_1
  doi: 10.1093/humupd/1.1.63
– ident: e_1_2_8_58_1
  doi: 10.1080/1464770312331369463
– ident: e_1_2_8_4_1
  doi: 10.1007/s004290050249
– ident: e_1_2_8_48_1
  doi: 10.5713/ajas.1997.523
– ident: e_1_2_8_37_1
  doi: 10.1159/000144509
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ydbio.2003.07.014
– ident: e_1_2_8_82_1
  doi: 10.1071/RDv20n1Ab137
– ident: e_1_2_8_33_1
  doi: 10.1046/j.1439-0531.2001.00284.x
– ident: e_1_2_8_24_1
  doi: 10.1002/(SICI)1098-2795(199906)53:2<171::AID-MRD6>3.0.CO;2-F
– ident: e_1_2_8_35_1
  doi: 10.1002/jez.1401600111
– ident: e_1_2_8_25_1
  doi: 10.1017/S0967199400001131
– ident: e_1_2_8_32_1
  doi: 10.1016/j.theriogenology.2004.06.006
– volume: 39
  start-page: 497
  year: 1980
  ident: e_1_2_8_71_1
  article-title: Lipid inclusions in oocytes and preimplantational embryos of different strains of mice
  publication-title: Folia Morphol (Warsz)
– ident: e_1_2_8_87_1
  doi: 10.1530/jrf.0.1060299
– ident: e_1_2_8_83_1
  doi: 10.1530/REP-06-0073
– ident: e_1_2_8_26_1
  doi: 10.1016/S0093-691X(98)00041-7
– ident: e_1_2_8_42_1
  doi: 10.1002/(SICI)1098-2795(199608)44:4<476::AID-MRD7>3.0.CO;2-I
– ident: e_1_2_8_76_1
  doi: 10.1002/mrd.10138
– ident: e_1_2_8_5_1
  doi: 10.1002/(SICI)1098-2795(199907)53:3<325::AID-MRD8>3.0.CO;2-T
– ident: e_1_2_8_10_1
  doi: 10.1002/mrd.20604
– ident: e_1_2_8_63_1
  doi: 10.1093/humrep/13.8.2227
– volume: 12
  start-page: 113
  year: 1964
  ident: e_1_2_8_62_1
  article-title: Dry mass, lipid content and protein content of the intact and zona‐free mouse ovum
  publication-title: J Embryol Exp Morphol
– ident: e_1_2_8_6_1
  doi: 10.1002/mrd.1131
– ident: e_1_2_8_74_1
  doi: 10.1071/RD05017
– ident: e_1_2_8_29_1
  doi: 10.1530/jrf.0.1160373
– volume: 86
  start-page: E188
  year: 2008
  ident: e_1_2_8_38_1
  article-title: A decade of developments in the area of fat supplementation research with beef cattle and sheep
  publication-title: J Anim Sci
  doi: 10.2527/jas.2007-0546
– ident: e_1_2_8_30_1
  doi: 10.1002/mrd.20494
– volume-title: Endogenous Energy Stores in the Bovine Oocyte and Early Embryo
  year: 1999
  ident: e_1_2_8_28_1
– ident: e_1_2_8_34_1
  doi: 10.1016/S0093-691X(02)00660-X
– ident: e_1_2_8_44_1
  doi: 10.1016/S0093-691X(96)00336-6
– ident: e_1_2_8_49_1
  doi: 10.1530/rep.0.1220131
– start-page: 93
  volume-title: Regulation and Evaluation of Ovarian Function and Embryogenesis in Normal and Transgenic Animals In Vitro and In Vivo
  year: 2003
  ident: e_1_2_8_52_1
– ident: e_1_2_8_95_1
  doi: 10.1002/mrd.1156
– volume: 43
  issue: 5
  year: 2008
  ident: e_1_2_8_2_1
  article-title: Lipid droplet dynamics during in vitro maturation of bovine oocytes
  publication-title: Reprod Domest Anim
– ident: e_1_2_8_73_1
  doi: 10.1071/RD03004
– ident: e_1_2_8_84_1
  doi: 10.1530/rep.0.1220155
– ident: e_1_2_8_51_1
  doi: 10.1002/mrd.1120080105
– ident: e_1_2_8_67_1
  doi: 10.1016/j.theriogenology.2006.05.018
– ident: e_1_2_8_13_1
  doi: 10.1194/jlr.R700014-JLR200
– volume: 20
  start-page: 10
  year: 1997
  ident: e_1_2_8_65_1
  article-title: Estimation of lipid and fatty acid composition of zona‐intact pig oocytes
  publication-title: J Reprod Fertil Abstr Ser
– ident: e_1_2_8_88_1
  doi: 10.1016/S0093-691X(00)00306-X
– ident: e_1_2_8_16_1
  doi: 10.1016/S0960-9822(01)00257-3
– volume: 43
  start-page: 195
  year: 1998
  ident: e_1_2_8_47_1
  article-title: Metabolism of exogenous fatty acids by preimplantation rabbit embryos
  publication-title: Jpn J Fertil Steril
– ident: e_1_2_8_80_1
  doi: 10.1095/biolreprod64.3.904
– ident: e_1_2_8_3_1
  doi: 10.1054/plef.1999.0101
– volume: 157
  start-page: 330
  year: 1967
  ident: e_1_2_8_85_1
  article-title: Ultrastructure of the developing dog oocyte
  publication-title: Anat Rec
– ident: e_1_2_8_68_1
  doi: 10.1095/biolreprod51.4.618
– ident: e_1_2_8_9_1
  doi: 10.1016/j.theriogenology.2008.08.002
– ident: e_1_2_8_94_1
  doi: 10.1262/jrd.50.287
– ident: e_1_2_8_70_1
  doi: 10.1095/biolreprod.106.052779
– volume: 15
  start-page: 9750
  year: 1984
  ident: e_1_2_8_50_1
  article-title: Identification of 2‐tetradecylglycidyl coenzyme‐A as the active form of methyl 2‐tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site‐directed inhibitor of carnitine palmitoyltransferase‐A in isolated rat‐liver mitochondria
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)42763-3
– ident: e_1_2_8_8_1
  doi: 10.1262/jrd.19139
– volume: 16
  start-page: 20
  year: 1994
  ident: e_1_2_8_12_1
  article-title: The stoichiometry of proton pumping and ATP sythesis in mitochondria
  publication-title: Biochemist
– ident: e_1_2_8_39_1
  doi: 10.1002/(SICI)1098-2795(199603)43:3<323::AID-MRD6>3.0.CO;2-S
– ident: e_1_2_8_59_1
  doi: 10.1093/molehr/gan065
– ident: e_1_2_8_90_1
  doi: 10.1016/j.semcdb.2008.12.005
– ident: e_1_2_8_66_1
  doi: 10.1530/reprod/118.1.163
– ident: e_1_2_8_14_1
  doi: 10.1016/j.anireprosci.2006.10.018
– ident: e_1_2_8_86_1
  doi: 10.1095/biolreprod53.6.1385
– ident: e_1_2_8_15_1
  doi: 10.1017/S0967199400001787
– ident: e_1_2_8_45_1
  doi: 10.1095/biolreprod37.4.775
– ident: e_1_2_8_19_1
  doi: 10.1530/rep.1.00974
– volume: 29
  start-page: 292
  year: 1981
  ident: e_1_2_8_89_1
  article-title: Incidence and localization of lipids in the mouse oocyte and cleaving ovum
  publication-title: Folia Morphol (Praha)
– ident: e_1_2_8_21_1
  doi: 10.1095/biolreprod62.5.1459
– ident: e_1_2_8_7_1
  doi: 10.1016/S0093-691X(02)00634-9
– ident: e_1_2_8_17_1
  doi: 10.1093/oxfordjournals.humrep.a137258
– ident: e_1_2_8_27_1
  doi: 10.1095/biolreprod.103.026542
– volume: 56
  start-page: 157
  year: 1980
  ident: e_1_2_8_40_1
  article-title: The metabolism of exogenous fatty acids by pre‐implantation mouse embryos developing in vitro
  publication-title: J Embryol Exp Morphol
– ident: e_1_2_8_46_1
  doi: 10.1016/j.theriogenology.2005.04.029
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1439-0531.2004.00556.x
SSID ssj0015877
Score 2.3785143
SecondaryResourceType review_article
Snippet While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian...
Contents While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre‐implantation...
While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre‐implantation mammalian...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 50
SubjectTerms Adenosine Triphosphate
Adenosine Triphosphate - metabolism
amino acids
Animal reproduction
Animals
Cattle
cryopreservation
early development
embryogenesis
Embryonic Development
Embryonic Development - physiology
Embryos
energy
Energy Metabolism
Fatty acids
Fatty Acids - metabolism
Female
glucose
growth & development
Humans
Lipid Peroxidation
Lipids
Lipids - physiology
Metabolism
Morula
Morula - metabolism
nutrients
oocytes
Oocytes - growth & development
Oocytes - metabolism
Oxidation
Oxygen Consumption
physiology
pyruvic acid
Sheep
Swine
Title Role of Fatty Acids in Energy Provision During Oocyte Maturation and Early Embryo Development
URI https://api.istex.fr/ark:/67375/WNG-98KHMXD3-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1439-0531.2009.01402.x
https://www.ncbi.nlm.nih.gov/pubmed/19660080
https://www.proquest.com/docview/213749182
https://www.proquest.com/docview/46327453
https://www.proquest.com/docview/733577188
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagJzjwCI8u5eED4rZR7fXa2WNEEiJQCgoEckGW1_ZWVcouSjZSw69nxrsJTVWkCnGzlNiKnZnxN_Y3nwl5LQ3zmXG92DhIUQQTKs45MnO4yxJhUAIPzyEnJ3I8E-_n6bzlP2EtTKMPsTtwQ88I8Rod3OSrK06ewKBgRK3sJOQKvIt4EqlbiI-mOyUplvbCI4yQv8tYAsTeJ_VcO9DeTnW7MBXgV1z6i-vA6D62DZvT6D5ZbKfVcFIW3XWdd-2vK4qP_2feD8i9FsPSfmN0D8ktX3bI3f7pstXx8B3S-Yo0m1DrSyft9f0j8n1anXtaFXRk6npD-_bMrehZSYehAJF-wuMNPL2jg1A8ST9WdlN7OkHx0WBB1JSOBk1mOvyRLzcVvUR6ekxmo-GXt-O4fd8htgBieJwprwpm8zQvwGQK1jNY9Ssg5kgIPNA4lgUEBW-OE1sAknBFJqx1Uhlvjw3svU_IQVmV_pBQw6TLnc08905wSBggkWQmU04ox41gEVHb_1LbVvwc3-A415eToCTTuKz4NCe0cFn1RUTYrufPRgDkBn0OwVy0gXVf6dlnjrfDTEJsTHhE3gQb2o1llgvk1qlUfzt5p7Peh_FkPkg0_OKjrZHpNqysNGfgOhmkhBF5tfsU4gFe8pjSV-uVFjLhSqRJROhfvqGSJFUASXoRedoY75-JoVYr5BARkcEEbzxjPR30sfXsXzsekTvNPR2y956Tg3q59i8A7tX5y-DIvwG-uz97
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgPAAP_CiMhQHzA-ItVeM4cfJY0ZbC1oLKCn1BlmM7aFpJUJtKK389d05a1mlIE-LNUmurdu_O353vviPkdawCmyqT-MqAi8IDLvyMYWYOM2nIFVLgYRxyNI6HU_5hFs2adkBYC1PzQ2wDbqgZzl6jgmNA-oqWh7AqSFHDOwnOAmsDoLyDDb6dfzXZckkFUeLaMIIHH_sxgOzdtJ5rV9q5q27nqgQEi4d_cR0c3UW37noaPCTzzcbqrJTz9qrK2vrXFc7H_7TzR-RBA2Npt5a7x-SWLVrkfvf7oqHysC3S-oKZNq7cl46aF_wn5NuknFta5nSgqmpNu_rMLOlZQfuuBpF-wggHBvBoz9VP0o-lXleWjpB_1AkRVYWhjpaZ9n9ki3VJL-U9PSXTQf_07dBvWjz4GnAM81NhRR7oLMpykJo8SBQW_nIwOzHYHhh04hzsglWdUOcAJkyecq1NLJTVHQXX7z7ZK8rCHhCqgthkRqeWWcMZ-AzgSwYqFYYLwxQPPCI2f6bUDf85tuGYy8t-UJhKPFbszgkjPFZ54ZFgO_NnzQFygzkHIC9Swbkv5fQzwwfiIAbzGDKPvHFCtF1LLc4xvU5E8uv4nUyT4-Fo1gsl_OLDjZTJxrIsJQtAe1LwCj1ytP0UTAK-86jClqul5HHIBI9Cj9C_fEOEYSQAlSQeeVZL75-NIV0ruBEeiZ0M3njHctLr4uj5v048IneHp6MTefJ-fHxI7tXPdpjM94LsVYuVfQnor8peOa3-Db5rQ5Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgSAge-FEYCwPmB8RbqtpxnOSxoi2F0TIVCn1BlmM7aOpIpjaVVv567pK0rNOQJsSbpdZW7X53_s6--0zIa6mZS7SNfW0hRBFMRH7KMTOH2yQQGiXw8BxyNJbDqfgwC2dN_hPWwtT6ENsDN7SMyl-jgZ_b7IqRBzAogKiRnYRYgbeBT94RshMjwnuTrZQUC-PqFUYI4KUvgWPvZvVcO9LOVnU70wUQWFz7i-vY6C65rXanwUMy38yrTkqZt1dl2ja_rkg-_p-JPyIPGhJLuzXqHpNbLm-R-90fi0bIw7VI6yvm2VTFvnTU3N8_Id8nxZmjRUYHuizXtGtO7ZKe5rRfVSDSEzzfwOM72quqJ-mnwqxLR0eoPlpBiOrc0kqUmfZ_pot1QS9lPT0l00H_y9uh3zzw4BtgMdxPIhdlzKRhmgFmMhZrLPsV4HQkeB5odGQGXsHpTmAyoBI2S4QxVkbamY6GzXef7OVF7g4I1Uza1JrEcWcFh4gBIkmmk8iKyHItmEeizX-pTKN-jo9wnKnLUVCQKFxWfJsTWris6sIjbNvzvFYAuUGfA4CL0rDuSzX9zPF6mElwjgH3yJsKQ9ux9GKOyXVRqL6N36kkPh6OZr1AwS8-3IBMNX5lqTgD20kgJvTI0fZTcAh4y6NzV6yWSsiARyIMPEL_8o0oCMIIOEnskWc1eP9MDMVaIYjwiKwgeOMZq0mvi63n_9rxiNw96Q3Ux_fj40Nyr76zw0y-F2SvXKzcS6B-ZfqqsunfvUhCTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Fatty+Acids+in+Energy+Provision+During+Oocyte+Maturation+and+Early+Embryo+Development&rft.jtitle=Reproduction+in+domestic+animals&rft.au=Sturmey%2C+RG&rft.au=Reis%2C+A&rft.au=Leese%2C+HJ&rft.au=McEvoy%2C+TG&rft.date=2009-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0936-6768&rft.eissn=1439-0531&rft.volume=44&rft.issue=s3&rft.spage=50&rft.epage=58&rft_id=info:doi/10.1111%2Fj.1439-0531.2009.01402.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_98KHMXD3_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0936-6768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0936-6768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0936-6768&client=summon