Role of Fatty Acids in Energy Provision During Oocyte Maturation and Early Embryo Development
While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos ha...
Saved in:
Published in | Reproduction in domestic animals Vol. 44; no. s3; pp. 50 - 58 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.09.2009
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos. |
---|---|
AbstractList | While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos. [PUBLICATION ABSTRACT] Contents While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre‐implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late‐stage oocyte and the pre‐implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos. While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos. While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos.While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian embryos, the role of endogenous stores, particularly lipid, has been largely overlooked. The presence of lipid within oocytes and early embryos has been long known, and comparisons between species indicate that the amounts and types of lipid present vary considerably. Large amounts of intracellular lipid can compromise the success of cryopreservation and the removal of such lipid has been the subject of considerable effort. In this review, we present evidence that strongly suggests a metabolic role for lipid, specifically with regard to energy provision, in the late-stage oocyte and the pre-implantation embryo. We focus initially on oxygen consumption as a global indicator of metabolic activity, before reviewing different approaches that either have been designed to investigate directly, or have revealed indirectly the role of endogenous lipid in energy generation. These fall under five headings: (i) fatty acid oxidation; (ii) inhibition of triglyceride oxidation; (iii) culture in the absence of exogenous substrates; (iv) cytoplasmic organization; and (v) delipidation. On the basis of the data derived from these studies, we conclude that there is strong evidence for the utilization of endogenous lipid as an energy substrate by oocytes and early embryos. |
Author | Leese, HJ Sturmey, RG Reis, A McEvoy, TG |
Author_xml | – sequence: 1 fullname: Sturmey, RG – sequence: 2 fullname: Reis, A – sequence: 3 fullname: Leese, HJ – sequence: 4 fullname: McEvoy, TG |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19660080$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv0zAUxy00xLrBVwCLA5xSnu3ETg4gVWu3ITaGBhNc0JPrOpVLGhc7Gc23J1lHDzsAvvhJ7_d7lt__iBzUvraEUAZj1p83qzFLRZFAJtiYAxRjYCnw8fYRGe0bB2QEhZCJVDI_JEcxrgBYliv1hByyQkqAHEbk-7WvLPUlPdVN09GJcYtIXU1ntQ3Ljn4K_tZF52s6bYOrl_TKm66x9FI3bdDN0ND1gs50qDo6W89D5-nU3trKb9a2bp6Sx6Wuon12fx-Tm9PZl5Pz5OLq7P3J5CIxWZbypFBWlczMs3kpNStZrjmHLFUCJCjRFyBLAGk1CFOmXC7KIjVmIZW2BrQAcUxe7-Zugv_Z2tjg2kVjq0rX1rcRlRCZUizPe_LVX8lUCq7STPTgywfgyreh7n-BnAmVFiznPfT8Hmrna7vATXBrHTr8s98eeLcDTPAxBluicc3d3pqgXYUMcAgUVzjkhkNuOASKd4Hith-QPxiwf-Pf6tud-stVtvtvD6-nk6Hq_WTnu9jY7d7X4QdKJVSGXz-eYZF_OL_8NhXIev7Fji-1R70MLuLNZw5MAJOZygUXvwGFdM1p |
CitedBy_id | crossref_primary_10_1039_C6AN00629A crossref_primary_10_3390_ani11113200 crossref_primary_10_1016_j_theriogenology_2016_01_024 crossref_primary_10_1186_s12958_020_00588_x crossref_primary_10_2147_SCCAA_S513982 crossref_primary_10_1071_RD14278 crossref_primary_10_1071_RD19047 crossref_primary_10_1111_rda_13501 crossref_primary_10_1016_j_theriogenology_2019_11_028 crossref_primary_10_29252_ijrm_14_4_255 crossref_primary_10_1071_RD10124 crossref_primary_10_1002_mrd_23352 crossref_primary_10_3389_fendo_2023_1120988 crossref_primary_10_1016_j_theriogenology_2023_04_003 crossref_primary_10_3389_fnut_2022_927972 crossref_primary_10_1016_j_anireprosci_2017_08_004 crossref_primary_10_3390_ijms19020509 crossref_primary_10_3389_fanim_2024_1368155 crossref_primary_10_1016_j_theriogenology_2016_01_019 crossref_primary_10_1016_j_theriogenology_2018_04_003 crossref_primary_10_3389_fendo_2020_00087 crossref_primary_10_3390_genes12040605 crossref_primary_10_1038_srep32021 crossref_primary_10_1016_j_rbmo_2023_01_007 crossref_primary_10_3390_ani10122196 crossref_primary_10_1007_s10304_022_00437_7 crossref_primary_10_1111_j_1439_0531_2011_01762_x crossref_primary_10_1071_RD21249 crossref_primary_10_3390_ijms18050988 crossref_primary_10_1016_j_jnutbio_2023_109502 crossref_primary_10_1038_s41598_020_62975_z crossref_primary_10_1016_j_domaniend_2014_10_003 crossref_primary_10_1016_j_anireprosci_2019_05_003 crossref_primary_10_1016_j_theriogenology_2021_07_003 crossref_primary_10_1262_jrd_2015_076 crossref_primary_10_1002_mrd_22037 crossref_primary_10_1016_j_aimed_2024_08_004 crossref_primary_10_1071_RD11901 crossref_primary_10_17816_JOWD65052 crossref_primary_10_1071_RD11907 crossref_primary_10_1016_j_stem_2019_05_001 crossref_primary_10_1016_j_ecoenv_2022_113745 crossref_primary_10_12717_DR_2018_22_4_297 crossref_primary_10_1007_s10815_017_1032_1 crossref_primary_10_3390_ijms17050618 crossref_primary_10_1262_jrd_2018_039 crossref_primary_10_2478_aoas_2021_0018 crossref_primary_10_1002_mrd_23251 crossref_primary_10_1371_journal_pone_0067834 crossref_primary_10_1016_j_theriogenology_2016_08_007 crossref_primary_10_1007_s11259_023_10072_7 crossref_primary_10_1016_j_theriogenology_2014_05_027 crossref_primary_10_1071_RD17335 crossref_primary_10_1093_humrep_deac027 crossref_primary_10_17116_rosakush202121041109 crossref_primary_10_1016_j_ecoenv_2021_112361 crossref_primary_10_1016_j_scitotenv_2023_167311 crossref_primary_10_1016_j_anireprosci_2018_06_007 crossref_primary_10_1016_j_theriogenology_2017_03_014 crossref_primary_10_1530_JOE_16_0302 crossref_primary_10_1016_j_psj_2022_102060 crossref_primary_10_1016_j_theriogenology_2019_11_039 crossref_primary_10_1111_rda_12308 crossref_primary_10_1186_s12915_023_01773_1 crossref_primary_10_1002_mrd_22299 crossref_primary_10_3389_fpubh_2022_938343 crossref_primary_10_1111_rda_12289 crossref_primary_10_1016_j_anireprosci_2021_106718 crossref_primary_10_1071_RD14359 crossref_primary_10_33590_emj_10310074 crossref_primary_10_3390_ijms25010491 crossref_primary_10_1021_acs_analchem_1c05090 crossref_primary_10_1590_1984_3143_ar2024_0051 crossref_primary_10_3390_ijms21186661 crossref_primary_10_1007_s11626_013_9624_2 crossref_primary_10_1016_S2095_3119_14_60866_2 crossref_primary_10_1093_humrep_dex087 crossref_primary_10_1097_01_PGO_0000756752_73305_e0 crossref_primary_10_1038_s41598_018_33550_4 crossref_primary_10_1016_j_livsci_2020_104380 crossref_primary_10_1262_jrd_2014_168 crossref_primary_10_3390_ani15030344 crossref_primary_10_1292_jvms_15_0008 crossref_primary_10_1016_j_theriogenology_2021_09_034 crossref_primary_10_1210_me_2013_1413 crossref_primary_10_3390_nu16081182 crossref_primary_10_3390_ijms19051457 crossref_primary_10_1016_S0031_3939_10_70562_X crossref_primary_10_1530_REP_16_0642 crossref_primary_10_1590_1984_3143_ar2023_0063 crossref_primary_10_1038_s41419_022_05263_0 crossref_primary_10_1007_s10815_015_0560_9 crossref_primary_10_1016_j_theriogenology_2023_03_016 crossref_primary_10_1152_ajpendo_00469_2012 crossref_primary_10_1371_journal_pone_0130334 crossref_primary_10_1002_mrd_22868 crossref_primary_10_3389_fmars_2024_1506646 crossref_primary_10_1016_j_mehy_2012_02_018 crossref_primary_10_1371_journal_pone_0132638 crossref_primary_10_1038_s41598_021_90870_8 crossref_primary_10_1186_s40104_022_00818_9 crossref_primary_10_1080_10495398_2019_1653314 crossref_primary_10_1111_rda_12987 crossref_primary_10_3390_ijms20071526 crossref_primary_10_1016_j_anireprosci_2012_08_013 crossref_primary_10_4103_2305_0500_356843 crossref_primary_10_1071_RD10339 crossref_primary_10_1038_s41598_024_53480_8 crossref_primary_10_1038_s41556_023_01341_3 crossref_primary_10_1111_ahe_12197 crossref_primary_10_1093_humrep_deu276 crossref_primary_10_1071_RD13282 crossref_primary_10_1071_RD12403 crossref_primary_10_3389_fcell_2023_1280998 crossref_primary_10_1590_1808_1657001292018 crossref_primary_10_3390_ijms19103261 crossref_primary_10_1111_jpn_12486 crossref_primary_10_1016_j_isci_2022_103904 crossref_primary_10_1093_jas_skac136 crossref_primary_10_1364_BOE_381359 crossref_primary_10_1017_S0967199414000380 crossref_primary_10_1016_j_fertnstert_2019_09_041 crossref_primary_10_53588_alpa_310504 crossref_primary_10_3390_ani13223563 crossref_primary_10_1016_j_jinsphys_2012_05_005 crossref_primary_10_17221_1573_VETMED crossref_primary_10_3389_fendo_2024_1464171 crossref_primary_10_1016_j_theriogenology_2016_11_018 crossref_primary_10_1186_s12884_023_05917_7 crossref_primary_10_1016_j_domaniend_2025_106938 crossref_primary_10_1095_biolreprod_111_092585 crossref_primary_10_1016_j_theriogenology_2024_04_011 crossref_primary_10_3390_metabo11080484 crossref_primary_10_1007_s10815_020_01935_y crossref_primary_10_3390_ijms22031311 crossref_primary_10_1007_s13361_019_02334_z crossref_primary_10_1071_AN17895 crossref_primary_10_1016_j_rbmo_2021_03_022 crossref_primary_10_1262_jrd_2019_102 crossref_primary_10_1016_j_theriogenology_2016_03_025 crossref_primary_10_1042_BST20120352 crossref_primary_10_1590_1414_431x20143744 crossref_primary_10_1016_j_theriogenology_2020_04_015 crossref_primary_10_1007_s10815_015_0439_9 crossref_primary_10_1038_s41556_019_0453_8 crossref_primary_10_1016_j_aquaculture_2014_11_025 crossref_primary_10_1016_j_theriogenology_2012_11_025 crossref_primary_10_1071_RD14310 crossref_primary_10_1134_S1062360419050102 crossref_primary_10_3390_biology6030035 crossref_primary_10_1007_s10815_014_0179_2 crossref_primary_10_12717_DR_2017_21_2_205 crossref_primary_10_1071_RD12372 crossref_primary_10_1210_me_2014_1049 crossref_primary_10_22319_rmcp_v15i3_6456 crossref_primary_10_1016_j_cbd_2019_100648 crossref_primary_10_1155_2021_6696305 crossref_primary_10_1101_gad_227926_113 crossref_primary_10_1016_j_anireprosci_2014_01_011 crossref_primary_10_1016_j_ajog_2017_08_010 crossref_primary_10_1071_RD15414 crossref_primary_10_1017_S0967199415000428 crossref_primary_10_1007_s10815_014_0359_0 crossref_primary_10_3389_fphys_2021_757266 crossref_primary_10_1016_j_anireprosci_2019_06_003 crossref_primary_10_7717_peerj_15618 crossref_primary_10_1002_jcp_25876 crossref_primary_10_1007_s10616_020_00393_9 crossref_primary_10_1002_mrd_23518 crossref_primary_10_3390_agriculture15050471 crossref_primary_10_1016_j_fertnstert_2011_07_1115 crossref_primary_10_1530_REP_11_0484 crossref_primary_10_3389_fgene_2022_812764 crossref_primary_10_1111_rda_12386 crossref_primary_10_1016_j_theriogenology_2018_11_010 crossref_primary_10_1242_dev_192997 crossref_primary_10_1016_j_theriogenology_2011_12_008 crossref_primary_10_1002_cbin_10746 crossref_primary_10_1530_REP_13_0251 crossref_primary_10_1016_j_theriogenology_2014_11_003 crossref_primary_10_3390_antiox10010091 crossref_primary_10_3390_ijms26051989 crossref_primary_10_1111_asj_12016 crossref_primary_10_3168_jds_2021_20190 crossref_primary_10_1016_j_fertnstert_2011_01_154 crossref_primary_10_1016_j_gene_2020_145194 crossref_primary_10_1002_mrd_21351 crossref_primary_10_1071_RD15319 crossref_primary_10_1007_s10815_024_03130_9 crossref_primary_10_1016_j_ecoenv_2018_03_037 crossref_primary_10_3390_antib12040079 crossref_primary_10_1080_14647273_2021_2007421 crossref_primary_10_1530_REP_18_0561 crossref_primary_10_1590_1519_6984_253514 crossref_primary_10_1007_s10815_018_1365_4 crossref_primary_10_1016_j_devcel_2021_07_020 crossref_primary_10_1242_dev_199961 crossref_primary_10_1242_dev_161893 crossref_primary_10_1071_RD14343 crossref_primary_10_1016_j_cryobiol_2020_11_004 crossref_primary_10_1371_journal_pone_0180451 crossref_primary_10_3390_vetsci11090397 crossref_primary_10_1590_1984_3143_ar2021_0031 crossref_primary_10_1093_humrep_deac226 crossref_primary_10_1016_j_theriogenology_2023_05_016 crossref_primary_10_1016_j_theriogenology_2015_02_023 crossref_primary_10_1016_j_theriogenology_2019_10_028 crossref_primary_10_1016_j_theriogenology_2018_02_020 crossref_primary_10_3390_life12020171 crossref_primary_10_3390_nu12071953 crossref_primary_10_1016_j_cryobiol_2014_02_012 crossref_primary_10_3390_nu14204405 crossref_primary_10_1002_mrd_23306 crossref_primary_10_1016_j_freeradbiomed_2020_08_012 crossref_primary_10_1093_humrep_dez305 crossref_primary_10_3389_fphys_2023_1198873 crossref_primary_10_1016_j_redox_2025_103539 crossref_primary_10_1186_s12944_024_02366_9 crossref_primary_10_15252_embr_202357440 crossref_primary_10_1530_REP_14_0015 crossref_primary_10_3390_biom14081014 crossref_primary_10_1016_j_jhazmat_2020_122643 crossref_primary_10_3168_jds_2013_7719 crossref_primary_10_1590_1984_3143_ar2020_0015 crossref_primary_10_1186_1757_2215_7_44 crossref_primary_10_1016_j_vas_2021_100193 crossref_primary_10_1093_humrep_deaa181 crossref_primary_10_1371_journal_ppat_1002996 crossref_primary_10_1016_j_fertnstert_2018_05_027 crossref_primary_10_1016_j_fertnstert_2015_03_015 crossref_primary_10_1038_s41598_019_42958_5 crossref_primary_10_3390_ani11071932 crossref_primary_10_1017_S0967199415000507 crossref_primary_10_1016_j_anireprosci_2012_02_002 crossref_primary_10_1530_REP_10_0236 crossref_primary_10_3390_ijms21207589 crossref_primary_10_3390_metabo11030162 crossref_primary_10_4236_ojas_2021_112023 crossref_primary_10_3389_fcell_2022_837405 crossref_primary_10_3390_ijms19092802 crossref_primary_10_1371_journal_pone_0102620 crossref_primary_10_3390_ijms21186488 crossref_primary_10_1371_journal_pbio_3002960 crossref_primary_10_3390_ph16050723 crossref_primary_10_29252_rap_10_23_100 crossref_primary_10_1186_s12958_021_00848_4 crossref_primary_10_1071_RD17248 crossref_primary_10_1071_RD11262 crossref_primary_10_1002_rmb2_12403 crossref_primary_10_1071_RD11034 crossref_primary_10_3390_biomedicines10020257 crossref_primary_10_1111_rda_12352 crossref_primary_10_1016_j_theriogenology_2016_04_060 crossref_primary_10_1111_rda_12592 crossref_primary_10_1017_S1751731114000937 crossref_primary_10_1371_journal_pone_0142724 crossref_primary_10_1111_asj_12628 crossref_primary_10_1016_j_theriogenology_2015_01_028 crossref_primary_10_1016_j_fertnstert_2014_12_116 crossref_primary_10_1016_j_anireprosci_2018_07_001 crossref_primary_10_1095_biolreprod_111_096602 crossref_primary_10_1016_j_stem_2024_01_009 |
Cites_doi | 10.1095/biolreprod64.5.1375 10.1093/humrep/15.suppl_2.189 10.1530/rep.0.1240675 10.1016/j.anireprosci.2007.09.001 10.1159/000143363 10.1007/978-1-4613-9317-7_6 10.1002/mrd.1120180108 10.1038/374416a0 10.1002/bies.10137 10.1530/jrf.0.0290203 10.1093/humrep/17.2.393 10.1002/mrd.1120210306 10.1111/j.1439-0531.2008.01139.x 10.1017/S1357729800050955 10.1016/S0093-691X(01)00470-8 10.1016/S0093-691X(01)00454-X 10.1002/mrd.20763 10.1111/j.1439-0531.2007.00961.x 10.1530/jrf.0.1150079 10.1530/rep.0.1260197 10.1530/jrf.0.0770425 10.1016/j.theriogenology.2006.01.049 10.1093/humupd/1.1.63 10.1080/1464770312331369463 10.1007/s004290050249 10.5713/ajas.1997.523 10.1159/000144509 10.1016/j.ydbio.2003.07.014 10.1071/RDv20n1Ab137 10.1046/j.1439-0531.2001.00284.x 10.1002/(SICI)1098-2795(199906)53:2<171::AID-MRD6>3.0.CO;2-F 10.1002/jez.1401600111 10.1017/S0967199400001131 10.1016/j.theriogenology.2004.06.006 10.1530/jrf.0.1060299 10.1530/REP-06-0073 10.1016/S0093-691X(98)00041-7 10.1002/(SICI)1098-2795(199608)44:4<476::AID-MRD7>3.0.CO;2-I 10.1002/mrd.10138 10.1002/(SICI)1098-2795(199907)53:3<325::AID-MRD8>3.0.CO;2-T 10.1002/mrd.20604 10.1093/humrep/13.8.2227 10.1002/mrd.1131 10.1071/RD05017 10.1530/jrf.0.1160373 10.2527/jas.2007-0546 10.1002/mrd.20494 10.1016/S0093-691X(02)00660-X 10.1016/S0093-691X(96)00336-6 10.1530/rep.0.1220131 10.1002/mrd.1156 10.1071/RD03004 10.1530/rep.0.1220155 10.1002/mrd.1120080105 10.1016/j.theriogenology.2006.05.018 10.1194/jlr.R700014-JLR200 10.1016/S0093-691X(00)00306-X 10.1016/S0960-9822(01)00257-3 10.1095/biolreprod64.3.904 10.1054/plef.1999.0101 10.1095/biolreprod51.4.618 10.1016/j.theriogenology.2008.08.002 10.1262/jrd.50.287 10.1095/biolreprod.106.052779 10.1016/S0021-9258(17)42763-3 10.1262/jrd.19139 10.1002/(SICI)1098-2795(199603)43:3<323::AID-MRD6>3.0.CO;2-S 10.1093/molehr/gan065 10.1016/j.semcdb.2008.12.005 10.1530/reprod/118.1.163 10.1016/j.anireprosci.2006.10.018 10.1095/biolreprod53.6.1385 10.1017/S0967199400001787 10.1095/biolreprod37.4.775 10.1530/rep.1.00974 10.1095/biolreprod62.5.1459 10.1016/S0093-691X(02)00634-9 10.1093/oxfordjournals.humrep.a137258 10.1095/biolreprod.103.026542 10.1016/j.theriogenology.2005.04.029 10.1111/j.1439-0531.2004.00556.x |
ContentType | Journal Article |
Copyright | 2009 The Authors. Journal compilation © 2009 Blackwell Verlag GmbH 2009 Blackwell Verlag GmbH |
Copyright_xml | – notice: 2009 The Authors. Journal compilation © 2009 Blackwell Verlag GmbH – notice: 2009 Blackwell Verlag GmbH |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7S9 L.6 7X8 |
DOI | 10.1111/j.1439-0531.2009.01402.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine Agriculture |
EISSN | 1439-0531 |
EndPage | 58 |
ExternalDocumentID | 1800951821 19660080 10_1111_j_1439_0531_2009_01402_x RDA1402 ark_67375_WNG_98KHMXD3_1 US201301657832 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Wellcome Trust |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29P 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHTB AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPEJ ABPTK ABPVW ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACIWK ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX EYRJQ F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HVLQZ HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WOIKV WPGGZ WQJ WRC WXSBR XG1 ZZTAW ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5542-97e7f1cb5bf6a1f18a22054730607354706f006ea03cf426df94ccd67aec0a303 |
IEDL.DBID | DR2 |
ISSN | 0936-6768 1439-0531 |
IngestDate | Fri Jul 11 02:07:50 EDT 2025 Fri Jul 11 10:42:46 EDT 2025 Fri Jul 25 19:43:23 EDT 2025 Mon Jul 21 05:46:19 EDT 2025 Tue Jul 01 04:25:31 EDT 2025 Thu Apr 24 22:52:13 EDT 2025 Wed Aug 20 01:21:45 EDT 2025 Wed Oct 30 09:52:09 EDT 2024 Wed Dec 27 18:54:21 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | s3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5542-97e7f1cb5bf6a1f18a22054730607354706f006ea03cf426df94ccd67aec0a303 |
Notes | http://dx.doi.org/10.1111/j.1439-0531.2009.01402.x istex:5EE0CBDE68F589587AAB4C1B5CB5E5DAF45A662E ark:/67375/WNG-98KHMXD3-1 ArticleID:RDA1402 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Review-3 |
PMID | 19660080 |
PQID | 213749182 |
PQPubID | 26873 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_733577188 proquest_miscellaneous_46327453 proquest_journals_213749182 pubmed_primary_19660080 crossref_citationtrail_10_1111_j_1439_0531_2009_01402_x crossref_primary_10_1111_j_1439_0531_2009_01402_x wiley_primary_10_1111_j_1439_0531_2009_01402_x_RDA1402 istex_primary_ark_67375_WNG_98KHMXD3_1 fao_agris_US201301657832 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2009 |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: September 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Germany – name: Oxford |
PublicationTitle | Reproduction in domestic animals |
PublicationTitleAlternate | Reprod Domest Anim |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | Cetica P, Pintos L, Dalvit G, Beconi M, 2002: Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction 124, 675-681. Sturmey RG, Leese HJ, 2003: Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197-204. Gomez E, Duque P, Díaz E, Facal N, Antolín I, Hidalgo C, Díez C, 2002: Effects of acetoacetate and D-beta-hydroxybutyrate on bovine in vitro embryo development in serum-free medium. Theriogenology 57, 1551-1562. Kane MT, 1987: Minimal nutrient requirements for culture of one-cell rabbit embryos. Biol Reprod 37, 775-778. Van Blerkom J, Davis P, Mathwig V, Alexander S, 2002: Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod 17, 393-406. Matorras R, Ruiz JI, Mendoza R, Ruiz N, Sanjurjo P, Rodriguez-Escudero FJ, 1998: Fatty acid composition of fertilization-failed human oocytes. Hum Reprod 13, 2227-2230. Brown DA, 2001: Lipid droplets: proteins floating on a pool of fat. Curr Biol 11, R446-R449. Aardema H, Knijn HM, Oei CHY, Vos PLAM, Gadella BM, 2008: Lipid droplet dynamics during in vitro maturation of bovine oocytes. Reprod Domest Anim 43(Suppl.5), 76 (Abstract). Rizos D, Fair T, Papadopoulos S, Boland MP, Lonergan P, 2002: Developmental, qualitative and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol Reprod Dev 62, 320-327. Van Blerkom J, 2008: Mitochondria in early mammalian development. Semin Cell Dev Biol [Epub ahead of print] doi:DOI: 10.1016/j.semcdb.2008.12.005. Houghton FD, Humpherson PG, Hawkhead JA, Hall CJ, Leese HJ, 2003: Na+, K+, ATPase activity in the human and bovine preimplantation embryo. Dev Biol 263, 360-366. Baumann CG, Morris DG, Sreenan JM, Leese HJ, 2007: The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev 74, 1345-1353. Hyttel P, Fair T, Callesen H, Greve T, 1997: Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 23-32. Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, Wolf E, 2001: Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 64, 904-909. Brevini TAL, Cillo F, Antonini S, Gandolfi F, 2007: Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes. Anim Reprod Sci 98, 23-38. Hewitson LC, Martin KL, Leese HJ, 1996: Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses. Mol Reprod Dev 43, 323-330. Brasaemle DL, 2007: The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48, 2547-2559. Reis A, Rooke JA, McCallum GJ, Staines ME, Lomax MA, McEvoy TG, 2003: Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro. Reprod Fertil Dev 15, 275-284. Spindler RE, Renfree MB, Shaw G, Gardner DK, 1999: Reactivating tammar wallaby blastocysts oxidise fatty acids and amino acids. J Reprod Fertil 115, 79-86. Diez C, Heyman Y, Le Bourhis D, Guyader-Joly C, Degrouard J, Renard JP, 2001: Delipidating in vitro-produced bovine zygotes: effect on further development and consequences for freezability. Theriogenology 55, 923-936. De Paz P, Sanchez AJ, De la Fuente J, Chamorro CA, Alvarez M, Anel E, Anel L, 2001: Ultrastructural and cytochemical comparisons between cow and calf oocytes. Theriogenology 55, 1107-1116. Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Nottle MB, 1995: Cryopreservation of porcine embryos. Nature 374, 416. Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ, 1996: Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil 106, 299-306. Abe H, Yamashita S, Itoh T, Satoh T, Hoshi H, 1999b: Ultrastructure of bovine embryos developed from in vitro-matured and -fertilized oocytes: comparative morphological evaluation of embryos cultured either in serum-free medium or in serum-supplemented medium. Mol Reprod Dev 53, 325-335. Downs SM, Hudson ED, 2000: Energy substrates and the completion of spontaneous meiotic maturation. Zygote 8, 339-351. Karja NWK, Otoi T, Wongsrikeao P, Murakami M, Agung B, Fahrudin M, Nagai T, 2006: In vitro development and post-thaw survival of blastocysts derived from delipidated zygotes from domestic cats. Theriogenology 65, 415-423. Leese HJ, 2003: What does an embryo need? Hum Fertil 6, 180-185. Houghton FD, Thompson JG, Kennedy CJ, Leese HJ, 1996: Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev 44, 476-485. Crosier AE, Farin PW, Dykstra MJ, Alexander JE, Farin CE, 2001: Ultrastructural morphometry of bovine blastocysts produced in vivo or in vitro. Biol Reprod 64, 1375-1385. Abe H, Matsuzaki S, Hoshi H, 2002b: Ultrastuctural differences in bovine morulae classified as high and low qualities by morphological evaluation. Theriogenology 57, 1273-1283. Clark AR, Stokes YM, Lane M, Thompson JG, 2006: Mathematical modelling of oxygen consumption in bovine and murine cumulus-oocyte complexes. Reproduction 131, 999-1006. Genicot G, Leroy JL, Van Soom A, Donnay I, 2005: The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 63, 1181-1194. Abe Y, Suwa Y, Yanagimoto-Ueta Y, Suzuki H, 2008: Preimplantation development of embryos in Labrador Retrievers. J Reprod Dev 54, 135-137. Waterman RA, Wall RJ, 1988: Lipid interactions with in vitro development of mammalian zygotes. Gamete Res 21, 243-254. Leroy JL, Genicot G, Donnay I, Van Soom A, 2005: Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach. Reprod Domest Anim 40, 76-78. Leroy JL, Van Soom A, Opsomer G, Goovaerts IG, Bols PE, 2008: Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim 43, 623-632. Brison DR, Leese HJ, 1994: The role of exogenous energy substrates in blastocoele fluid accumulation in the rat. Zygote 2, 69-77. Kim JY, Kinoshita M, Ohnishi M, Fukui Y, 2001: Lipid and fatty acid analysis of fresh and frozen-thawed immature an in vitro matured bovine oocytes. Reproduction 122, 131-138. Brand MD, 1994: The stoichiometry of proton pumping and ATP sythesis in mitochondria. Biochemist 16, 20-24. Ozdzenski W, Czołowska R, 1980: Lipid inclusions in oocytes and preimplantational embryos of different strains of mice. Folia Morphol (Warsz) 39, 497-502. Guraya S, 1969: Histochemical study of lipids in the developing ovarian oocyte of the golden hamster (Mesocricetus aurautus). Acta Anat 74, 65-75. Guraya SS, 1965: A histochemical analysis of lipid yolk deposition in the oocytes of cat and dog. J Exp Zool 160, 123-136. Abe H, Yamashita S, Satoh T, Hoshi H, 2002a: Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol Reprod Dev 61, 57-66. Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Seamark RF, Nottle MB, 1994: Removal of cytoplasmic lipid enhances the tolerance of porcine embryos to chilling. Biol Reprod 51, 618-622. Santos JE, Bilby TR, Thatcher WW, Staples CR, Silvestre FT, 2008: Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod Domest Anim 43(Suppl. 2), 23-30. Byatt-Smith JG, Leese HJ, Gosden RG, 1991: An investigation by mathematical modelling of whether mouse and human preimplantation embryos in static culture can satisfy their demands for oxygen by diffusion. Hum Reprod 6, 52-57. Barcelo-Fimbres M, Brink Z, Seidel GE Jr, 2009: Effects of phenazine ethosulfate during culture of bovine embryos on pregnancy rate, prenatal and postnatal development. Theriogenology 71, 355-368. Ferguson EM, Leese HJ, 2006: A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev 73, 1195-1201. Gomez E, Duque P, Díaz E, Díez C, 2001: Effects of acetoacetate on in vitro development of bovine embryos in medium containing citrate and myo-inositol. Reprod Domest Anim 36, 189-194. Hess BW, Moss GE, Rule DC, 2008: A decade of developments in the area of fat supplementation research with beef cattle and sheep. J Anim Sci 86(E Suppl.), E188-E204. McEvoy TG, Speake BK, 2001: Nutrition and the Egg: Safe-Guarding Reproduction in Birds and Reptiles. Proc 1st International Symposium on Assisted Reproductive Technology for the Conservation and Genetic Management of Wildlife. Henry Doorly Zoo, Omaha, Nebraska. pp. 197-200. Bavister BD, Squirrell JM, 2000: Mitochondrial distribution and function in oocytes and early embryos. Hum Reprod 15(Suppl. 2), 189-198. McEvoy TG, Coull GD, Speake BK, Staines ME, Broadbent PJ, 1997: Estimation of lipid and fatty acid composition of zona-intact pig oocytes. J Reprod Fertil Abstr Ser 20, 10. Kiorpes T, Hoerr D, Ho W, Weaner LE, Inman M, Tutwiler G, 1984: Identification of 2-tetradecylglycidyl coenzyme-A as the active form of methyl 2-tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase-A in isolated rat-liver mitochondria. J Biol Chem 15, 9750-9755. Leese HJ, 2002: Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24, 845-849. Durrant BS, Pratt NC, Russ KD, Bolamba D, 1998: Isolation and characterization of canine advanced preantral and early antral follicles. Theriogenology 49, 917-932. Trávník P, 1981: Incidence and localization of lipids in the mouse oocyte and cleaving ovum. Folia Morphol (Prah 1998; 49 2002; 17 2006; 73 1991; 13 1986; 77 1969; 74 2002; 57 1997; 47 2000; 8 1967; 157 2005; 63 2008; 108 1983; 8 2003; 15 2006; 132 2006; 131 2007; 74 2008; 75 1975; 93 1995; 374 2007; 76 1998; 43 1987; 37 1996; 106 1980; 39 2004; 71 2001 2000; 15 1997; 10 1984; 15 2006; 65 2006; 66 2003; 6 2000; 53 2000; 62 1965; 160 1999; 53 1999a; 199 2008; 20 2001; 11 2001; 55 2003; 126 1998; 13 2001; 122 1995; 53 1997; 20 2000; 118 1999; 69 2008; 14 2005; 40 2008 2008; 54 1981; 29 1993 2003 1999; 61 2007; 98 1995; 1 2002b; 57 1972; 29 1987; 18 1991; 6 2001; 64 1999 2002a; 61 2004; 50 2002; 61 2009; 71 2002; 62 2002; 124 1980; 56 2002; 24 1988; 21 2008; 43 1994; 16 1964; 12 2008; 86 2005; 17 1999; 115 1994; 2 1999; 116 2001; 36 1996; 43 1994; 51 1999b; 53 2007; 48 2003; 263 1996; 44 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Brand MD (e_1_2_8_12_1) 1994; 16 e_1_2_8_3_1 e_1_2_8_81_1 Kiorpes T (e_1_2_8_50_1) 1984; 15 McEvoy TG (e_1_2_8_64_1) 2001 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 Aardema H (e_1_2_8_2_1) 2008; 43 e_1_2_8_13_1 e_1_2_8_36_1 Khandoker MAMY (e_1_2_8_47_1) 1998; 43 e_1_2_8_59_1 e_1_2_8_15_1 Kuran M (e_1_2_8_53_1) 1999; 69 e_1_2_8_57_1 Szabo PL (e_1_2_8_85_1) 1967; 157 Ozdzenski W (e_1_2_8_71_1) 1980; 39 Trávník P (e_1_2_8_89_1) 1981; 29 e_1_2_8_70_1 Loewenstein JE (e_1_2_8_62_1) 1964; 12 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_93_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 Ferguson EM (e_1_2_8_28_1) 1999 e_1_2_8_48_1 e_1_2_8_69_1 Hess BW (e_1_2_8_38_1) 2008; 86 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 Hillman N (e_1_2_8_40_1) 1980; 56 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Leese HJ (e_1_2_8_54_1) 1991; 13 e_1_2_8_92_1 e_1_2_8_94_1 e_1_2_8_90_1 Kubovicova E (e_1_2_8_52_1) 2003 McEvoy TG (e_1_2_8_65_1) 1997; 20 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_73_1 |
References_xml | – reference: McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JSM, Speake BK, 2000: Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil 118, 163-170. – reference: Byatt-Smith JG, Leese HJ, Gosden RG, 1991: An investigation by mathematical modelling of whether mouse and human preimplantation embryos in static culture can satisfy their demands for oxygen by diffusion. Hum Reprod 6, 52-57. – reference: McEvoy TG, Coull GD, Speake BK, Staines ME, Broadbent PJ, 1997: Estimation of lipid and fatty acid composition of zona-intact pig oocytes. J Reprod Fertil Abstr Ser 20, 10. – reference: Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Nottle MB, 1995: Cryopreservation of porcine embryos. Nature 374, 416. – reference: Sturmey RG, O'Toole PJ, Leese HJ, 2006: Fluorescence resonance energy transfer analysis of mitochondrial: lipid association in the porcine oocyte. Reproduction 132, 829-837. – reference: Trávník P, 1981: Incidence and localization of lipids in the mouse oocyte and cleaving ovum. Folia Morphol (Praha) 29, 292-296. – reference: Nagashima H, Hiruma K, Saito H, Tomii R, Ueno S, Nakayama N, Matsurani H, Kurome M, 2007: Production of live piglets following cryopreservation of embryos derived from in vitro-matured oocytes. Biol Reprod 76, 900-905. – reference: Esaki R, Ueda H, Kurome M, Hirakawa K, Tomii R, Yoshioka H, Ushijima H, Kuwayama M, Nagashima H, 2004: Cryopreservation of porcine embryos derived from in vitro-matured oocytes. Biol Reprod 71, 432-437. – reference: Brison DR, Leese HJ, 1994: The role of exogenous energy substrates in blastocoele fluid accumulation in the rat. Zygote 2, 69-77. – reference: Abayasekara DRE, Wathes DC, 1999: Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility. Prostaglandins Leukot Essent Fatty Acids 61, 275-287. – reference: Baumann CG, Morris DG, Sreenan JM, Leese HJ, 2007: The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev 74, 1345-1353. – reference: Matorras R, Ruiz JI, Mendoza R, Ruiz N, Sanjurjo P, Rodriguez-Escudero FJ, 1998: Fatty acid composition of fertilization-failed human oocytes. Hum Reprod 13, 2227-2230. – reference: Van Blerkom J, 2008: Mitochondria in early mammalian development. Semin Cell Dev Biol [Epub ahead of print] doi:DOI: 10.1016/j.semcdb.2008.12.005. – reference: Kim JY, Kinoshita M, Ohnishi M, Fukui Y, 2001: Lipid and fatty acid analysis of fresh and frozen-thawed immature an in vitro matured bovine oocytes. Reproduction 122, 131-138. – reference: Leese HJ, 1991: Metabolism of the preimplantation mammalian embryo. Oxf Rev Reprod Biol 13, 35-72. – reference: Reis A, Rooke JA, McCallum GJ, Staines ME, Lomax MA, McEvoy TG, 2003: Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro. Reprod Fertil Dev 15, 275-284. – reference: Brasaemle DL, 2007: The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48, 2547-2559. – reference: Clark AR, Stokes YM, Lane M, Thompson JG, 2006: Mathematical modelling of oxygen consumption in bovine and murine cumulus-oocyte complexes. Reproduction 131, 999-1006. – reference: Hess BW, Moss GE, Rule DC, 2008: A decade of developments in the area of fat supplementation research with beef cattle and sheep. J Anim Sci 86(E Suppl.), E188-E204. – reference: Guraya S, 1975: Histochemical observations on the juxtanuclear complex of organelles in the hamster oocyte. Acta Anat 93, 335-343. – reference: Van Blerkom J, Davis P, Mathwig V, Alexander S, 2002: Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod 17, 393-406. – reference: Waterman RA, Wall RJ, 1988: Lipid interactions with in vitro development of mammalian zygotes. Gamete Res 21, 243-254. – reference: Abe H, Otoi T, Tachikawa S, Yamashita S, Satoh T, Hoshi H, 1999a: Fine structure of bovine morulae and blastocysts in vivo and in vitro. Anat Embryol (Berl) 199, 519-527. – reference: Kuran M, Onal AG, Robinson JJ, Mackie K, Speake BK, McEvoy TG, 1999: A dietary supplement of calcium soaps of fatty acids enhances luteal function in sheep. Anim Sci 69, 385-393. – reference: Szabo PL, 1967: Ultrastructure of the developing dog oocyte. Anat Rec 157, 330. – reference: Kiorpes T, Hoerr D, Ho W, Weaner LE, Inman M, Tutwiler G, 1984: Identification of 2-tetradecylglycidyl coenzyme-A as the active form of methyl 2-tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase-A in isolated rat-liver mitochondria. J Biol Chem 15, 9750-9755. – reference: Leroy JL, Genicot G, Donnay I, Van Soom A, 2005: Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach. Reprod Domest Anim 40, 76-78. – reference: Genicot G, Leroy JL, Van Soom A, Donnay I, 2005: The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 63, 1181-1194. – reference: Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ, 1996: Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil 106, 299-306. – reference: Houghton FD, Thompson JG, Kennedy CJ, Leese HJ, 1996: Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev 44, 476-485. – reference: Karja NWK, Otoi T, Wongsrikeao P, Murakami M, Agung B, Fahrudin M, Nagai T, 2006: In vitro development and post-thaw survival of blastocysts derived from delipidated zygotes from domestic cats. Theriogenology 65, 415-423. – reference: Men H, Agca Y, Riley LK, Critser JK, 2006: Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology 66, 2008-2016. – reference: Tominaga K, Shimizu M, Ooyama S, Izaike Y, 2000: Effect of lipid polarization by centrifugation at different developmental stages on post-thaw survival of bovine in vitro produced 16-cell embryos. Theriogenology 53, 1669-1680. – reference: Kane MT, 1987: Minimal nutrient requirements for culture of one-cell rabbit embryos. Biol Reprod 37, 775-778. – reference: Reynaud K, Fontbonne A, Marseloo N, Viaris De Lesegno C, Saint-Dizier M, Chastant-Maillard S, 2006: In vivo canine oocyte maturation, fertilization and early embryogenesis: a review. Theriogenology 66, 1685-1693. – reference: Yoneda A, Suzuki K, Mori T, Ueda J, Watanabe T, 2004: Effects of delipidation and oxygen concentration on in vitro development of porcine embryos. J Reprod Dev 50, 287-295. – reference: Thompson JG, Gardner DK, Pugh A, McMillan WH, Tervit HR, 1995: Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol Reprod 53, 1385-1391. – reference: Hillman N, Flynn TJ, 1980: The metabolism of exogenous fatty acids by pre-implantation mouse embryos developing in vitro. J Embryol Exp Morphol 56, 157-168. – reference: De Paz P, Sanchez AJ, De la Fuente J, Chamorro CA, Alvarez M, Anel E, Anel L, 2001: Ultrastructural and cytochemical comparisons between cow and calf oocytes. Theriogenology 55, 1107-1116. – reference: Donnay I, Leese HJ, 1999: Energy metabolism during the expansion of the bovine blastocyst. Mol Reprod Dev 53, 171-178. – reference: Sanchez-Osorio J, Cuello C, Gil MA, Alminana C, Parrilla I, Caballero I, Garcia EM, Vazquez JM, Roca J, Martinez EA, 2008: Factors affecting the success rate of porcine embryo vitrification by the Open Pulled Straw method. Anim Reprod Sci 108, 334-344. – reference: Gomez E, Duque P, Díaz E, Facal N, Antolín I, Hidalgo C, Díez C, 2002: Effects of acetoacetate and D-beta-hydroxybutyrate on bovine in vitro embryo development in serum-free medium. Theriogenology 57, 1551-1562. – reference: Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Seamark RF, Nottle MB, 1994: Removal of cytoplasmic lipid enhances the tolerance of porcine embryos to chilling. Biol Reprod 51, 618-622. – reference: Leese HJ, 2003: What does an embryo need? Hum Fertil 6, 180-185. – reference: Hyttel P, Fair T, Callesen H, Greve T, 1997: Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 23-32. – reference: Sturmey RG, Leese HJ, 2003: Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197-204. – reference: Guraya S, 1969: Histochemical study of lipids in the developing ovarian oocyte of the golden hamster (Mesocricetus aurautus). Acta Anat 74, 65-75. – reference: Sun QY, Wu GM, Lai L, Park KW, Cabot R, Cheong HT, Day BN, Prather RS, Schatten H, 2001: Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 122, 155-163. – reference: Aardema H, Knijn HM, Oei CHY, Vos PLAM, Gadella BM, 2008: Lipid droplet dynamics during in vitro maturation of bovine oocytes. Reprod Domest Anim 43(Suppl.5), 76 (Abstract). – reference: Ozdzenski W, Czołowska R, 1980: Lipid inclusions in oocytes and preimplantational embryos of different strains of mice. Folia Morphol (Warsz) 39, 497-502. – reference: Guraya SS, 1965: A histochemical analysis of lipid yolk deposition in the oocytes of cat and dog. J Exp Zool 160, 123-136. – reference: Zeron Y, Sklan D, Arav A, 2002: Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Mol Reprod Dev 61, 271-278. – reference: Leese HJ, 1995: Metabolic control during preimplantation mammalian development. Hum Reprod Update 1, 63-72. – reference: Loewenstein JE, Cohen AI, 1964: Dry mass, lipid content and protein content of the intact and zona-free mouse ovum. J Embryol Exp Morphol 12, 113-121. – reference: Abe H, Yamashita S, Satoh T, Hoshi H, 2002a: Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol Reprod Dev 61, 57-66. – reference: Ferguson EM, Leese HJ, 2006: A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev 73, 1195-1201. – reference: Kruip TAM, Cran DG, Van Beneden TH, Dieleman SJ, 1983: Structural changes in bovine oocytes during final maturation in vivo. Gamete Res 8, 29-47. – reference: Ferguson EM, Leese HJ, 1999: Triglyceride content of bovine oocytes and early embryos. J Reprod Fertil 116, 373-378. – reference: Diez C, Heyman Y, Le Bourhis D, Guyader-Joly C, Degrouard J, Renard JP, 2001: Delipidating in vitro-produced bovine zygotes: effect on further development and consequences for freezability. Theriogenology 55, 923-936. – reference: Homa ST, Racowsky C, McGaughey RW, 1986: Lipid analysis of immature pig oocytes. J Reprod Fertil 77, 425-434. – reference: Spindler RE, Renfree MB, Shaw G, Gardner DK, 1999: Reactivating tammar wallaby blastocysts oxidise fatty acids and amino acids. J Reprod Fertil 115, 79-86. – reference: Brevini TAL, Cillo F, Antonini S, Gandolfi F, 2007: Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes. Anim Reprod Sci 98, 23-38. – reference: Abe H, Yamashita S, Itoh T, Satoh T, Hoshi H, 1999b: Ultrastructure of bovine embryos developed from in vitro-matured and -fertilized oocytes: comparative morphological evaluation of embryos cultured either in serum-free medium or in serum-supplemented medium. Mol Reprod Dev 53, 325-335. – reference: Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG, 2008: Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod 14, 667-672. – reference: Reis A, McCallum GJ, McEvoy TG, 2005: Accumulation and distribution of neutral lipid droplets is non-uniform in ovine blastocysts produced in vitro in either the presence or absence of serum. Reprod Fertil Dev 17, 815-823. – reference: Brand MD, 1994: The stoichiometry of proton pumping and ATP sythesis in mitochondria. Biochemist 16, 20-24. – reference: Fleming WN, Saacke RG, 1972: Fine structure of the bovine oocyte from the mature graafian follicle. J Reprod Fertil 29, 203-213. – reference: Khandoker MAMY, Tsujii H, 1998: Metabolism of exogenous fatty acids by preimplantation rabbit embryos. Jpn J Fertil Steril 43, 195-201. – reference: Leroy JL, Van Soom A, Opsomer G, Goovaerts IG, Bols PE, 2008: Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim 43, 623-632. – reference: Viaris De Lesegno C, Reynaud K, Pechoux C, Thoumire S, Chastant-Maillard S, 2008: Ultrastructure of canine oocytes during in vivo maturation. Mol Reprod Dev 75, 115-125. – reference: Cetica P, Pintos L, Dalvit G, Beconi M, 2002: Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction 124, 675-681. – reference: Crosier AE, Farin PW, Dykstra MJ, Alexander JE, Farin CE, 2001: Ultrastructural morphometry of bovine blastocysts produced in vivo or in vitro. Biol Reprod 64, 1375-1385. – reference: Cran DG, 1987: The distribution of organelles in mammalian oocytes following centrifugation prior to injection of foreign DNA. Gamete Res 18, 67-76. – reference: Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, Wolf E, 2001: Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 64, 904-909. – reference: Sturmey RG, Leese HJ, 2008: Role of glucose and fatty acid metabolism in porcine early embryo development. Reprod Fertil Dev 20, 149. – reference: Brown DA, 2001: Lipid droplets: proteins floating on a pool of fat. Curr Biol 11, R446-R449. – reference: Santos JE, Bilby TR, Thatcher WW, Staples CR, Silvestre FT, 2008: Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod Domest Anim 43(Suppl. 2), 23-30. – reference: Durrant BS, Pratt NC, Russ KD, Bolamba D, 1998: Isolation and characterization of canine advanced preantral and early antral follicles. Theriogenology 49, 917-932. – reference: Crosier AE, Farin PW, Dykstra MJ, Alexander JE, Farin CE, 2000: Ultrastructural morphometry of bovine compact morulae produced in vivo or in vitro. Biol Reprod 62, 1459-1465. – reference: Houghton FD, Humpherson PG, Hawkhead JA, Hall CJ, Leese HJ, 2003: Na+, K+, ATPase activity in the human and bovine preimplantation embryo. Dev Biol 263, 360-366. – reference: Barcelo-Fimbres M, Brink Z, Seidel GE Jr, 2009: Effects of phenazine ethosulfate during culture of bovine embryos on pregnancy rate, prenatal and postnatal development. Theriogenology 71, 355-368. – reference: Rizos D, Fair T, Papadopoulos S, Boland MP, Lonergan P, 2002: Developmental, qualitative and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol Reprod Dev 62, 320-327. – reference: Khandoker MAMY, Tsujii H, Karasawa D, 1997: Fatty acid compositions of oocytes, follicular, oviductal and uterine fluids of pig and cow. Asian-Australas J Anim Sci 10, 523-527. – reference: McEvoy TG, Speake BK, 2001: Nutrition and the Egg: Safe-Guarding Reproduction in Birds and Reptiles. Proc 1st International Symposium on Assisted Reproductive Technology for the Conservation and Genetic Management of Wildlife. Henry Doorly Zoo, Omaha, Nebraska. pp. 197-200. – reference: Hewitson LC, Martin KL, Leese HJ, 1996: Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses. Mol Reprod Dev 43, 323-330. – reference: Downs SM, Hudson ED, 2000: Energy substrates and the completion of spontaneous meiotic maturation. Zygote 8, 339-351. – reference: Leese HJ, 2002: Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24, 845-849. – reference: Abe H, Matsuzaki S, Hoshi H, 2002b: Ultrastuctural differences in bovine morulae classified as high and low qualities by morphological evaluation. Theriogenology 57, 1273-1283. – reference: Bavister BD, Squirrell JM, 2000: Mitochondrial distribution and function in oocytes and early embryos. Hum Reprod 15(Suppl. 2), 189-198. – reference: Abe Y, Suwa Y, Yanagimoto-Ueta Y, Suzuki H, 2008: Preimplantation development of embryos in Labrador Retrievers. J Reprod Dev 54, 135-137. – reference: Gomez E, Duque P, Díaz E, Díez C, 2001: Effects of acetoacetate on in vitro development of bovine embryos in medium containing citrate and myo-inositol. Reprod Domest Anim 36, 189-194. – volume: 53 start-page: 171 year: 1999 end-page: 178 article-title: Energy metabolism during the expansion of the bovine blastocyst publication-title: Mol Reprod Dev – volume: 66 start-page: 2008 year: 2006 end-page: 2016 article-title: Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis publication-title: Theriogenology – volume: 49 start-page: 917 year: 1998 end-page: 932 article-title: Isolation and characterization of canine advanced preantral and early antral follicles publication-title: Theriogenology – start-page: 73 year: 1993 end-page: 82 – volume: 71 start-page: 432 year: 2004 end-page: 437 article-title: Cryopreservation of porcine embryos derived from in vitro‐matured oocytes publication-title: Biol Reprod – year: 2008 article-title: Mitochondria in early mammalian development publication-title: Semin Cell Dev Biol – volume: 77 start-page: 425 year: 1986 end-page: 434 article-title: Lipid analysis of immature pig oocytes publication-title: J Reprod Fertil – volume: 93 start-page: 335 year: 1975 end-page: 343 article-title: Histochemical observations on the juxtanuclear complex of organelles in the hamster oocyte publication-title: Acta Anat – volume: 106 start-page: 299 year: 1996 end-page: 306 article-title: Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos publication-title: J Reprod Fertil – volume: 61 start-page: 57 year: 2002a end-page: 66 article-title: Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum‐free or serum‐containing media publication-title: Mol Reprod Dev – volume: 13 start-page: 2227 year: 1998 end-page: 2230 article-title: Fatty acid composition of fertilization‐failed human oocytes publication-title: Hum Reprod – volume: 17 start-page: 393 year: 2002 end-page: 406 article-title: Domains of high‐polarized and low‐polarized mitochondria may occur in mouse and human oocytes and early embryos publication-title: Hum Reprod – volume: 55 start-page: 1107 year: 2001 end-page: 1116 article-title: Ultrastructural and cytochemical comparisons between cow and calf oocytes publication-title: Theriogenology – volume: 43 start-page: 23 issue: Suppl. 2 year: 2008 end-page: 30 article-title: Long chain fatty acids of diet as factors influencing reproduction in cattle publication-title: Reprod Domest Anim – volume: 126 start-page: 197 year: 2003 end-page: 204 article-title: Energy metabolism in pig oocytes and early embryos publication-title: Reproduction – volume: 12 start-page: 113 year: 1964 end-page: 121 article-title: Dry mass, lipid content and protein content of the intact and zona‐free mouse ovum publication-title: J Embryol Exp Morphol – volume: 53 start-page: 1385 year: 1995 end-page: 1391 article-title: Lamb birth weight is affected by culture system utilized during in vitro pre‐elongation development of ovine embryos publication-title: Biol Reprod – volume: 263 start-page: 360 year: 2003 end-page: 366 article-title: Na+, K+, ATPase activity in the human and bovine preimplantation embryo publication-title: Dev Biol – volume: 69 start-page: 385 year: 1999 end-page: 393 article-title: A dietary supplement of calcium soaps of fatty acids enhances luteal function in sheep publication-title: Anim Sci – volume: 57 start-page: 1273 year: 2002b end-page: 1283 article-title: Ultrastuctural differences in bovine morulae classified as high and low qualities by morphological evaluation publication-title: Theriogenology – volume: 15 start-page: 275 year: 2003 end-page: 284 article-title: Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro publication-title: Reprod Fertil Dev – volume: 132 start-page: 829 year: 2006 end-page: 837 article-title: Fluorescence resonance energy transfer analysis of mitochondrial: lipid association in the porcine oocyte publication-title: Reproduction – volume: 122 start-page: 155 year: 2001 end-page: 163 article-title: Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro publication-title: Reproduction – volume: 15 start-page: 9750 year: 1984 end-page: 9755 article-title: Identification of 2‐tetradecylglycidyl coenzyme‐A as the active form of methyl 2‐tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site‐directed inhibitor of carnitine palmitoyltransferase‐A in isolated rat‐liver mitochondria publication-title: J Biol Chem – volume: 1 start-page: 63 year: 1995 end-page: 72 article-title: Metabolic control during preimplantation mammalian development publication-title: Hum Reprod Update – volume: 122 start-page: 131 year: 2001 end-page: 138 article-title: Lipid and fatty acid analysis of fresh and frozen‐thawed immature an in vitro matured bovine oocytes publication-title: Reproduction – volume: 21 start-page: 243 year: 1988 end-page: 254 article-title: Lipid interactions with in vitro development of mammalian zygotes publication-title: Gamete Res – volume: 53 start-page: 325 year: 1999b end-page: 335 article-title: Ultrastructure of bovine embryos developed from ‐matured and ‐fertilized oocytes: comparative morphological evaluation of embryos cultured either in serum‐free medium or in serum‐supplemented medium publication-title: Mol Reprod Dev – volume: 11 start-page: R446 year: 2001 end-page: R449 article-title: Lipid droplets: proteins floating on a pool of fat publication-title: Curr Biol – volume: 64 start-page: 1375 year: 2001 end-page: 1385 article-title: Ultrastructural morphometry of bovine blastocysts produced in vivo or in vitro publication-title: Biol Reprod – volume: 50 start-page: 287 year: 2004 end-page: 295 article-title: Effects of delipidation and oxygen concentration on in vitro development of porcine embryos publication-title: J Reprod Dev – volume: 73 start-page: 1195 year: 2006 end-page: 1201 article-title: A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development publication-title: Mol Reprod Dev – volume: 8 start-page: 29 year: 1983 end-page: 47 article-title: Structural changes in bovine oocytes during final maturation in vivo publication-title: Gamete Res – volume: 8 start-page: 339 year: 2000 end-page: 351 article-title: Energy substrates and the completion of spontaneous meiotic maturation publication-title: Zygote – volume: 62 start-page: 1459 year: 2000 end-page: 1465 article-title: Ultrastructural morphometry of bovine compact morulae produced in vivo or in vitro publication-title: Biol Reprod – volume: 108 start-page: 334 year: 2008 end-page: 344 article-title: Factors affecting the success rate of porcine embryo vitrification by the Open Pulled Straw method publication-title: Anim Reprod Sci – volume: 98 start-page: 23 year: 2007 end-page: 38 article-title: Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes publication-title: Anim Reprod Sci – volume: 63 start-page: 1181 year: 2005 end-page: 1194 article-title: The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes publication-title: Theriogenology – volume: 86 start-page: E188 issue: E Suppl. year: 2008 end-page: E204 article-title: A decade of developments in the area of fat supplementation research with beef cattle and sheep publication-title: J Anim Sci – volume: 131 start-page: 999 year: 2006 end-page: 1006 article-title: Mathematical modelling of oxygen consumption in bovine and murine cumulus‐oocyte complexes publication-title: Reproduction – volume: 18 start-page: 67 year: 1987 end-page: 76 article-title: The distribution of organelles in mammalian oocytes following centrifugation prior to injection of foreign DNA publication-title: Gamete Res – volume: 55 start-page: 923 year: 2001 end-page: 936 article-title: Delipidating in vitro‐produced bovine zygotes: effect on further development and consequences for freezability publication-title: Theriogenology – volume: 56 start-page: 157 year: 1980 end-page: 168 article-title: The metabolism of exogenous fatty acids by pre‐implantation mouse embryos developing in vitro publication-title: J Embryol Exp Morphol – volume: 43 issue: Suppl.5 year: 2008 article-title: Lipid droplet dynamics during in vitro maturation of bovine oocytes publication-title: Reprod Domest Anim – volume: 6 start-page: 180 year: 2003 end-page: 185 article-title: What does an embryo need? publication-title: Hum Fertil – volume: 43 start-page: 623 year: 2008 end-page: 632 article-title: Reduced fertility in high‐yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high‐yielding dairy cows publication-title: Reprod Domest Anim – volume: 20 start-page: 149 year: 2008 article-title: Role of glucose and fatty acid metabolism in porcine early embryo development publication-title: Reprod Fertil Dev – volume: 43 start-page: 323 year: 1996 end-page: 330 article-title: Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses publication-title: Mol Reprod Dev – volume: 47 start-page: 23 year: 1997 end-page: 32 article-title: Oocyte growth, capacitation and final maturation in cattle publication-title: Theriogenology – volume: 16 start-page: 20 year: 1994 end-page: 24 article-title: The stoichiometry of proton pumping and ATP sythesis in mitochondria publication-title: Biochemist – volume: 71 start-page: 355 year: 2009 end-page: 368 article-title: Effects of phenazine ethosulfate during culture of bovine embryos on pregnancy rate, prenatal and postnatal development publication-title: Theriogenology – volume: 29 start-page: 203 year: 1972 end-page: 213 article-title: Fine structure of the bovine oocyte from the mature graafian follicle publication-title: J Reprod Fertil – volume: 17 start-page: 815 year: 2005 end-page: 823 article-title: Accumulation and distribution of neutral lipid droplets is non‐uniform in ovine blastocysts produced in vitro in either the presence or absence of serum publication-title: Reprod Fertil Dev – volume: 118 start-page: 163 year: 2000 end-page: 170 article-title: Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida publication-title: J Reprod Fertil – volume: 2 start-page: 69 year: 1994 end-page: 77 article-title: The role of exogenous energy substrates in blastocoele fluid accumulation in the rat publication-title: Zygote – volume: 65 start-page: 415 year: 2006 end-page: 423 article-title: In vitro development and post‐thaw survival of blastocysts derived from delipidated zygotes from domestic cats publication-title: Theriogenology – volume: 124 start-page: 675 year: 2002 end-page: 681 article-title: Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro publication-title: Reproduction – volume: 75 start-page: 115 year: 2008 end-page: 125 article-title: Ultrastructure of canine oocytes during in vivo maturation publication-title: Mol Reprod Dev – volume: 61 start-page: 275 year: 1999 end-page: 287 article-title: Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility publication-title: Prostaglandins Leukot Essent Fatty Acids – volume: 76 start-page: 900 year: 2007 end-page: 905 article-title: Production of live piglets following cryopreservation of embryos derived from in vitro‐matured oocytes publication-title: Biol Reprod – volume: 20 start-page: 10 year: 1997 article-title: Estimation of lipid and fatty acid composition of zona‐intact pig oocytes publication-title: J Reprod Fertil Abstr Ser – volume: 160 start-page: 123 year: 1965 end-page: 136 article-title: A histochemical analysis of lipid yolk deposition in the oocytes of cat and dog publication-title: J Exp Zool – volume: 44 start-page: 476 year: 1996 end-page: 485 article-title: Oxygen consumption and energy metabolism of the early mouse embryo publication-title: Mol Reprod Dev – volume: 48 start-page: 2547 year: 2007 end-page: 2559 article-title: The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis publication-title: J Lipid Res – volume: 116 start-page: 373 year: 1999 end-page: 378 article-title: Triglyceride content of bovine oocytes and early embryos publication-title: J Reprod Fertil – volume: 53 start-page: 1669 year: 2000 end-page: 1680 article-title: Effect of lipid polarization by centrifugation at different developmental stages on post‐thaw survival of bovine in vitro produced 16‐cell embryos publication-title: Theriogenology – volume: 37 start-page: 775 year: 1987 end-page: 778 article-title: Minimal nutrient requirements for culture of one‐cell rabbit embryos publication-title: Biol Reprod – volume: 13 start-page: 35 year: 1991 end-page: 72 article-title: Metabolism of the preimplantation mammalian embryo publication-title: Oxf Rev Reprod Biol – volume: 62 start-page: 320 year: 2002 end-page: 327 article-title: Developmental, qualitative and ultrastructural differences between ovine and bovine embryos produced or publication-title: Mol Reprod Dev – volume: 66 start-page: 1685 year: 2006 end-page: 1693 article-title: In vivo canine oocyte maturation, fertilization and early embryogenesis: a review publication-title: Theriogenology – start-page: 93 year: 2003 end-page: 113 – volume: 157 start-page: 330 year: 1967 article-title: Ultrastructure of the developing dog oocyte publication-title: Anat Rec – volume: 40 start-page: 76 year: 2005 end-page: 78 article-title: Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach publication-title: Reprod Domest Anim – volume: 10 start-page: 523 year: 1997 end-page: 527 article-title: Fatty acid compositions of oocytes, follicular, oviductal and uterine fluids of pig and cow publication-title: Asian-Australas J Anim Sci – volume: 374 start-page: 416 year: 1995 article-title: Cryopreservation of porcine embryos publication-title: Nature – volume: 24 start-page: 845 year: 2002 end-page: 849 article-title: Quiet please, do not disturb: a hypothesis of embryo metabolism and viability publication-title: Bioessays – volume: 6 start-page: 52 year: 1991 end-page: 57 article-title: An investigation by mathematical modelling of whether mouse and human preimplantation embryos in static culture can satisfy their demands for oxygen by diffusion publication-title: Hum Reprod – volume: 39 start-page: 497 year: 1980 end-page: 502 article-title: Lipid inclusions in oocytes and preimplantational embryos of different strains of mice publication-title: Folia Morphol (Warsz) – volume: 64 start-page: 904 year: 2001 end-page: 909 article-title: Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture publication-title: Biol Reprod – volume: 115 start-page: 79 year: 1999 end-page: 86 article-title: Reactivating tammar wallaby blastocysts oxidise fatty acids and amino acids publication-title: J Reprod Fertil – volume: 15 start-page: 189 issue: Suppl. 2 year: 2000 end-page: 198 article-title: Mitochondrial distribution and function in oocytes and early embryos publication-title: Hum Reprod – volume: 199 start-page: 519 year: 1999a end-page: 527 article-title: Fine structure of bovine morulae and blastocysts and publication-title: Anat Embryol (Berl) – volume: 74 start-page: 1345 year: 2007 end-page: 1353 article-title: The quiet embryo hypothesis: molecular characteristics favoring viability publication-title: Mol Reprod Dev – volume: 43 start-page: 195 year: 1998 end-page: 201 article-title: Metabolism of exogenous fatty acids by preimplantation rabbit embryos publication-title: Jpn J Fertil Steril – volume: 14 start-page: 667 year: 2008 end-page: 672 article-title: Metabolism of the viable mammalian embryo: quietness revisited publication-title: Mol Hum Reprod – volume: 29 start-page: 292 year: 1981 end-page: 296 article-title: Incidence and localization of lipids in the mouse oocyte and cleaving ovum publication-title: Folia Morphol (Praha) – volume: 74 start-page: 65 year: 1969 end-page: 75 article-title: Histochemical study of lipids in the developing ovarian oocyte of the golden hamster ( ) publication-title: Acta Anat – volume: 61 start-page: 271 year: 2002 end-page: 278 article-title: Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes publication-title: Mol Reprod Dev – volume: 36 start-page: 189 year: 2001 end-page: 194 article-title: Effects of acetoacetate on in vitro development of bovine embryos in medium containing citrate and myo‐inositol publication-title: Reprod Domest Anim – volume: 54 start-page: 135 year: 2008 end-page: 137 article-title: Preimplantation development of embryos in Labrador Retrievers publication-title: J Reprod Dev – start-page: 197 year: 2001 end-page: 200 – volume: 51 start-page: 618 year: 1994 end-page: 622 article-title: Removal of cytoplasmic lipid enhances the tolerance of porcine embryos to chilling publication-title: Biol Reprod – volume: 57 start-page: 1551 year: 2002 end-page: 1562 article-title: Effects of acetoacetate and D‐beta‐hydroxybutyrate on bovine in vitro embryo development in serum‐free medium publication-title: Theriogenology – year: 1999 – ident: e_1_2_8_22_1 doi: 10.1095/biolreprod64.5.1375 – start-page: 197 volume-title: Nutrition and the Egg: Safe‐Guarding Reproduction in Birds and Reptiles year: 2001 ident: e_1_2_8_64_1 – ident: e_1_2_8_11_1 doi: 10.1093/humrep/15.suppl_2.189 – ident: e_1_2_8_18_1 doi: 10.1530/rep.0.1240675 – ident: e_1_2_8_77_1 doi: 10.1016/j.anireprosci.2007.09.001 – ident: e_1_2_8_36_1 doi: 10.1159/000143363 – ident: e_1_2_8_55_1 doi: 10.1007/978-1-4613-9317-7_6 – ident: e_1_2_8_20_1 doi: 10.1002/mrd.1120180108 – ident: e_1_2_8_69_1 doi: 10.1038/374416a0 – ident: e_1_2_8_57_1 doi: 10.1002/bies.10137 – ident: e_1_2_8_31_1 doi: 10.1530/jrf.0.0290203 – ident: e_1_2_8_91_1 doi: 10.1093/humrep/17.2.393 – ident: e_1_2_8_93_1 doi: 10.1002/mrd.1120210306 – ident: e_1_2_8_78_1 doi: 10.1111/j.1439-0531.2008.01139.x – volume: 69 start-page: 385 year: 1999 ident: e_1_2_8_53_1 article-title: A dietary supplement of calcium soaps of fatty acids enhances luteal function in sheep publication-title: Anim Sci doi: 10.1017/S1357729800050955 – ident: e_1_2_8_72_1 doi: 10.1016/S0093-691X(01)00470-8 – ident: e_1_2_8_23_1 doi: 10.1016/S0093-691X(01)00454-X – ident: e_1_2_8_92_1 doi: 10.1002/mrd.20763 – ident: e_1_2_8_61_1 doi: 10.1111/j.1439-0531.2007.00961.x – ident: e_1_2_8_79_1 doi: 10.1530/jrf.0.1150079 – ident: e_1_2_8_81_1 doi: 10.1530/rep.0.1260197 – volume: 13 start-page: 35 year: 1991 ident: e_1_2_8_54_1 article-title: Metabolism of the preimplantation mammalian embryo publication-title: Oxf Rev Reprod Biol – ident: e_1_2_8_41_1 doi: 10.1530/jrf.0.0770425 – ident: e_1_2_8_75_1 doi: 10.1016/j.theriogenology.2006.01.049 – ident: e_1_2_8_56_1 doi: 10.1093/humupd/1.1.63 – ident: e_1_2_8_58_1 doi: 10.1080/1464770312331369463 – ident: e_1_2_8_4_1 doi: 10.1007/s004290050249 – ident: e_1_2_8_48_1 doi: 10.5713/ajas.1997.523 – ident: e_1_2_8_37_1 doi: 10.1159/000144509 – ident: e_1_2_8_43_1 doi: 10.1016/j.ydbio.2003.07.014 – ident: e_1_2_8_82_1 doi: 10.1071/RDv20n1Ab137 – ident: e_1_2_8_33_1 doi: 10.1046/j.1439-0531.2001.00284.x – ident: e_1_2_8_24_1 doi: 10.1002/(SICI)1098-2795(199906)53:2<171::AID-MRD6>3.0.CO;2-F – ident: e_1_2_8_35_1 doi: 10.1002/jez.1401600111 – ident: e_1_2_8_25_1 doi: 10.1017/S0967199400001131 – ident: e_1_2_8_32_1 doi: 10.1016/j.theriogenology.2004.06.006 – volume: 39 start-page: 497 year: 1980 ident: e_1_2_8_71_1 article-title: Lipid inclusions in oocytes and preimplantational embryos of different strains of mice publication-title: Folia Morphol (Warsz) – ident: e_1_2_8_87_1 doi: 10.1530/jrf.0.1060299 – ident: e_1_2_8_83_1 doi: 10.1530/REP-06-0073 – ident: e_1_2_8_26_1 doi: 10.1016/S0093-691X(98)00041-7 – ident: e_1_2_8_42_1 doi: 10.1002/(SICI)1098-2795(199608)44:4<476::AID-MRD7>3.0.CO;2-I – ident: e_1_2_8_76_1 doi: 10.1002/mrd.10138 – ident: e_1_2_8_5_1 doi: 10.1002/(SICI)1098-2795(199907)53:3<325::AID-MRD8>3.0.CO;2-T – ident: e_1_2_8_10_1 doi: 10.1002/mrd.20604 – ident: e_1_2_8_63_1 doi: 10.1093/humrep/13.8.2227 – volume: 12 start-page: 113 year: 1964 ident: e_1_2_8_62_1 article-title: Dry mass, lipid content and protein content of the intact and zona‐free mouse ovum publication-title: J Embryol Exp Morphol – ident: e_1_2_8_6_1 doi: 10.1002/mrd.1131 – ident: e_1_2_8_74_1 doi: 10.1071/RD05017 – ident: e_1_2_8_29_1 doi: 10.1530/jrf.0.1160373 – volume: 86 start-page: E188 year: 2008 ident: e_1_2_8_38_1 article-title: A decade of developments in the area of fat supplementation research with beef cattle and sheep publication-title: J Anim Sci doi: 10.2527/jas.2007-0546 – ident: e_1_2_8_30_1 doi: 10.1002/mrd.20494 – volume-title: Endogenous Energy Stores in the Bovine Oocyte and Early Embryo year: 1999 ident: e_1_2_8_28_1 – ident: e_1_2_8_34_1 doi: 10.1016/S0093-691X(02)00660-X – ident: e_1_2_8_44_1 doi: 10.1016/S0093-691X(96)00336-6 – ident: e_1_2_8_49_1 doi: 10.1530/rep.0.1220131 – start-page: 93 volume-title: Regulation and Evaluation of Ovarian Function and Embryogenesis in Normal and Transgenic Animals In Vitro and In Vivo year: 2003 ident: e_1_2_8_52_1 – ident: e_1_2_8_95_1 doi: 10.1002/mrd.1156 – volume: 43 issue: 5 year: 2008 ident: e_1_2_8_2_1 article-title: Lipid droplet dynamics during in vitro maturation of bovine oocytes publication-title: Reprod Domest Anim – ident: e_1_2_8_73_1 doi: 10.1071/RD03004 – ident: e_1_2_8_84_1 doi: 10.1530/rep.0.1220155 – ident: e_1_2_8_51_1 doi: 10.1002/mrd.1120080105 – ident: e_1_2_8_67_1 doi: 10.1016/j.theriogenology.2006.05.018 – ident: e_1_2_8_13_1 doi: 10.1194/jlr.R700014-JLR200 – volume: 20 start-page: 10 year: 1997 ident: e_1_2_8_65_1 article-title: Estimation of lipid and fatty acid composition of zona‐intact pig oocytes publication-title: J Reprod Fertil Abstr Ser – ident: e_1_2_8_88_1 doi: 10.1016/S0093-691X(00)00306-X – ident: e_1_2_8_16_1 doi: 10.1016/S0960-9822(01)00257-3 – volume: 43 start-page: 195 year: 1998 ident: e_1_2_8_47_1 article-title: Metabolism of exogenous fatty acids by preimplantation rabbit embryos publication-title: Jpn J Fertil Steril – ident: e_1_2_8_80_1 doi: 10.1095/biolreprod64.3.904 – ident: e_1_2_8_3_1 doi: 10.1054/plef.1999.0101 – volume: 157 start-page: 330 year: 1967 ident: e_1_2_8_85_1 article-title: Ultrastructure of the developing dog oocyte publication-title: Anat Rec – ident: e_1_2_8_68_1 doi: 10.1095/biolreprod51.4.618 – ident: e_1_2_8_9_1 doi: 10.1016/j.theriogenology.2008.08.002 – ident: e_1_2_8_94_1 doi: 10.1262/jrd.50.287 – ident: e_1_2_8_70_1 doi: 10.1095/biolreprod.106.052779 – volume: 15 start-page: 9750 year: 1984 ident: e_1_2_8_50_1 article-title: Identification of 2‐tetradecylglycidyl coenzyme‐A as the active form of methyl 2‐tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site‐directed inhibitor of carnitine palmitoyltransferase‐A in isolated rat‐liver mitochondria publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)42763-3 – ident: e_1_2_8_8_1 doi: 10.1262/jrd.19139 – volume: 16 start-page: 20 year: 1994 ident: e_1_2_8_12_1 article-title: The stoichiometry of proton pumping and ATP sythesis in mitochondria publication-title: Biochemist – ident: e_1_2_8_39_1 doi: 10.1002/(SICI)1098-2795(199603)43:3<323::AID-MRD6>3.0.CO;2-S – ident: e_1_2_8_59_1 doi: 10.1093/molehr/gan065 – ident: e_1_2_8_90_1 doi: 10.1016/j.semcdb.2008.12.005 – ident: e_1_2_8_66_1 doi: 10.1530/reprod/118.1.163 – ident: e_1_2_8_14_1 doi: 10.1016/j.anireprosci.2006.10.018 – ident: e_1_2_8_86_1 doi: 10.1095/biolreprod53.6.1385 – ident: e_1_2_8_15_1 doi: 10.1017/S0967199400001787 – ident: e_1_2_8_45_1 doi: 10.1095/biolreprod37.4.775 – ident: e_1_2_8_19_1 doi: 10.1530/rep.1.00974 – volume: 29 start-page: 292 year: 1981 ident: e_1_2_8_89_1 article-title: Incidence and localization of lipids in the mouse oocyte and cleaving ovum publication-title: Folia Morphol (Praha) – ident: e_1_2_8_21_1 doi: 10.1095/biolreprod62.5.1459 – ident: e_1_2_8_7_1 doi: 10.1016/S0093-691X(02)00634-9 – ident: e_1_2_8_17_1 doi: 10.1093/oxfordjournals.humrep.a137258 – ident: e_1_2_8_27_1 doi: 10.1095/biolreprod.103.026542 – volume: 56 start-page: 157 year: 1980 ident: e_1_2_8_40_1 article-title: The metabolism of exogenous fatty acids by pre‐implantation mouse embryos developing in vitro publication-title: J Embryol Exp Morphol – ident: e_1_2_8_46_1 doi: 10.1016/j.theriogenology.2005.04.029 – ident: e_1_2_8_60_1 doi: 10.1111/j.1439-0531.2004.00556.x |
SSID | ssj0015877 |
Score | 2.3785143 |
SecondaryResourceType | review_article |
Snippet | While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre-implantation mammalian... Contents While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre‐implantation... While much is known about the metabolism of exogenous nutrients such as glucose, lactate, pyruvate, amino acids by oocytes and pre‐implantation mammalian... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 50 |
SubjectTerms | Adenosine Triphosphate Adenosine Triphosphate - metabolism amino acids Animal reproduction Animals Cattle cryopreservation early development embryogenesis Embryonic Development Embryonic Development - physiology Embryos energy Energy Metabolism Fatty acids Fatty Acids - metabolism Female glucose growth & development Humans Lipid Peroxidation Lipids Lipids - physiology Metabolism Morula Morula - metabolism nutrients oocytes Oocytes - growth & development Oocytes - metabolism Oxidation Oxygen Consumption physiology pyruvic acid Sheep Swine |
Title | Role of Fatty Acids in Energy Provision During Oocyte Maturation and Early Embryo Development |
URI | https://api.istex.fr/ark:/67375/WNG-98KHMXD3-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1439-0531.2009.01402.x https://www.ncbi.nlm.nih.gov/pubmed/19660080 https://www.proquest.com/docview/213749182 https://www.proquest.com/docview/46327453 https://www.proquest.com/docview/733577188 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagJzjwCI8u5eED4rZR7fXa2WNEEiJQCgoEckGW1_ZWVcouSjZSw69nxrsJTVWkCnGzlNiKnZnxN_Y3nwl5LQ3zmXG92DhIUQQTKs45MnO4yxJhUAIPzyEnJ3I8E-_n6bzlP2EtTKMPsTtwQ88I8Rod3OSrK06ewKBgRK3sJOQKvIt4EqlbiI-mOyUplvbCI4yQv8tYAsTeJ_VcO9DeTnW7MBXgV1z6i-vA6D62DZvT6D5ZbKfVcFIW3XWdd-2vK4qP_2feD8i9FsPSfmN0D8ktX3bI3f7pstXx8B3S-Yo0m1DrSyft9f0j8n1anXtaFXRk6npD-_bMrehZSYehAJF-wuMNPL2jg1A8ST9WdlN7OkHx0WBB1JSOBk1mOvyRLzcVvUR6ekxmo-GXt-O4fd8htgBieJwprwpm8zQvwGQK1jNY9Ssg5kgIPNA4lgUEBW-OE1sAknBFJqx1Uhlvjw3svU_IQVmV_pBQw6TLnc08905wSBggkWQmU04ox41gEVHb_1LbVvwc3-A415eToCTTuKz4NCe0cFn1RUTYrufPRgDkBn0OwVy0gXVf6dlnjrfDTEJsTHhE3gQb2o1llgvk1qlUfzt5p7Peh_FkPkg0_OKjrZHpNqysNGfgOhmkhBF5tfsU4gFe8pjSV-uVFjLhSqRJROhfvqGSJFUASXoRedoY75-JoVYr5BARkcEEbzxjPR30sfXsXzsekTvNPR2y956Tg3q59i8A7tX5y-DIvwG-uz97 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgPAAP_CiMhQHzA-ItVeM4cfJY0ZbC1oLKCn1BlmM7aFpJUJtKK389d05a1mlIE-LNUmurdu_O353vviPkdawCmyqT-MqAi8IDLvyMYWYOM2nIFVLgYRxyNI6HU_5hFs2adkBYC1PzQ2wDbqgZzl6jgmNA-oqWh7AqSFHDOwnOAmsDoLyDDb6dfzXZckkFUeLaMIIHH_sxgOzdtJ5rV9q5q27nqgQEi4d_cR0c3UW37noaPCTzzcbqrJTz9qrK2vrXFc7H_7TzR-RBA2Npt5a7x-SWLVrkfvf7oqHysC3S-oKZNq7cl46aF_wn5NuknFta5nSgqmpNu_rMLOlZQfuuBpF-wggHBvBoz9VP0o-lXleWjpB_1AkRVYWhjpaZ9n9ki3VJL-U9PSXTQf_07dBvWjz4GnAM81NhRR7oLMpykJo8SBQW_nIwOzHYHhh04hzsglWdUOcAJkyecq1NLJTVHQXX7z7ZK8rCHhCqgthkRqeWWcMZ-AzgSwYqFYYLwxQPPCI2f6bUDf85tuGYy8t-UJhKPFbszgkjPFZ54ZFgO_NnzQFygzkHIC9Swbkv5fQzwwfiIAbzGDKPvHFCtF1LLc4xvU5E8uv4nUyT4-Fo1gsl_OLDjZTJxrIsJQtAe1LwCj1ytP0UTAK-86jClqul5HHIBI9Cj9C_fEOEYSQAlSQeeVZL75-NIV0ruBEeiZ0M3njHctLr4uj5v048IneHp6MTefJ-fHxI7tXPdpjM94LsVYuVfQnor8peOa3-Db5rQ5Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgSAge-FEYCwPmB8RbqtpxnOSxoi2F0TIVCn1BlmM7aOpIpjaVVv567pK0rNOQJsSbpdZW7X53_s6--0zIa6mZS7SNfW0hRBFMRH7KMTOH2yQQGiXw8BxyNJbDqfgwC2dN_hPWwtT6ENsDN7SMyl-jgZ_b7IqRBzAogKiRnYRYgbeBT94RshMjwnuTrZQUC-PqFUYI4KUvgWPvZvVcO9LOVnU70wUQWFz7i-vY6C65rXanwUMy38yrTkqZt1dl2ja_rkg-_p-JPyIPGhJLuzXqHpNbLm-R-90fi0bIw7VI6yvm2VTFvnTU3N8_Id8nxZmjRUYHuizXtGtO7ZKe5rRfVSDSEzzfwOM72quqJ-mnwqxLR0eoPlpBiOrc0kqUmfZ_pot1QS9lPT0l00H_y9uh3zzw4BtgMdxPIhdlzKRhmgFmMhZrLPsV4HQkeB5odGQGXsHpTmAyoBI2S4QxVkbamY6GzXef7OVF7g4I1Uza1JrEcWcFh4gBIkmmk8iKyHItmEeizX-pTKN-jo9wnKnLUVCQKFxWfJsTWris6sIjbNvzvFYAuUGfA4CL0rDuSzX9zPF6mElwjgH3yJsKQ9ux9GKOyXVRqL6N36kkPh6OZr1AwS8-3IBMNX5lqTgD20kgJvTI0fZTcAh4y6NzV6yWSsiARyIMPEL_8o0oCMIIOEnskWc1eP9MDMVaIYjwiKwgeOMZq0mvi63n_9rxiNw96Q3Ux_fj40Nyr76zw0y-F2SvXKzcS6B-ZfqqsunfvUhCTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Fatty+Acids+in+Energy+Provision+During+Oocyte+Maturation+and+Early+Embryo+Development&rft.jtitle=Reproduction+in+domestic+animals&rft.au=Sturmey%2C+RG&rft.au=Reis%2C+A&rft.au=Leese%2C+HJ&rft.au=McEvoy%2C+TG&rft.date=2009-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0936-6768&rft.eissn=1439-0531&rft.volume=44&rft.issue=s3&rft.spage=50&rft.epage=58&rft_id=info:doi/10.1111%2Fj.1439-0531.2009.01402.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_98KHMXD3_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0936-6768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0936-6768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0936-6768&client=summon |