利用轨迹大数据进行城市道路交叉口识别及结构提取

交叉口是城市交通路网生成、更新的重要组成部分。本文基于车辆时空轨迹大数据,提出了一种城市交叉口自动识别方法。该方法首先通过轨迹跟踪识别轨迹数据中包含的车辆转向点对;然后基于距离和角度的生长聚类方法进行转向点对的空间聚类,并采用基于局部点连通性的聚类方法识别交叉口;最后利用交叉口范围圆和转向点对提取城市各级别路网下的交叉口结构。以武汉市出租车轨迹大数据为例,对武汉市城区内189个交叉口进行了探测。试验结果表明,本文所提方法可以准确地从轨迹大数据中识别出城市交叉口及其结构。...

Full description

Saved in:
Bibliographic Details
Published inCe hui xue bao Vol. 46; no. 6; pp. 770 - 779
Main Author 唐炉亮 牛乐 杨雪 张霞 李清泉 萧世伦
Format Journal Article
LanguageChinese
English
Published Beijing Surveying and Mapping Press 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 交叉口是城市交通路网生成、更新的重要组成部分。本文基于车辆时空轨迹大数据,提出了一种城市交叉口自动识别方法。该方法首先通过轨迹跟踪识别轨迹数据中包含的车辆转向点对;然后基于距离和角度的生长聚类方法进行转向点对的空间聚类,并采用基于局部点连通性的聚类方法识别交叉口;最后利用交叉口范围圆和转向点对提取城市各级别路网下的交叉口结构。以武汉市出租车轨迹大数据为例,对武汉市城区内189个交叉口进行了探测。试验结果表明,本文所提方法可以准确地从轨迹大数据中识别出城市交叉口及其结构。
AbstractList 交叉口是城市交通路网生成、更新的重要组成部分。本文基于车辆时空轨迹大数据,提出了一种城市交叉口自动识别方法。该方法首先通过轨迹跟踪识别轨迹数据中包含的车辆转向点对;然后基于距离和角度的生长聚类方法进行转向点对的空间聚类,并采用基于局部点连通性的聚类方法识别交叉口;最后利用交叉口范围圆和转向点对提取城市各级别路网下的交叉口结构。以武汉市出租车轨迹大数据为例,对武汉市城区内189个交叉口进行了探测。试验结果表明,本文所提方法可以准确地从轨迹大数据中识别出城市交叉口及其结构。
Author 唐炉亮 牛乐 杨雪 张霞 李清泉 萧世伦
AuthorAffiliation 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079 深圳大学土木工程学院空间信息智能感知与服务深圳市重点实验室,广东深圳518060 田纳西大学地理系,美国田纳西州诺克斯维尔市37996-0925
Author_xml – sequence: 1
  fullname: 唐炉亮 牛乐 杨雪 张霞 李清泉 萧世伦
BookMark eNpNjT1Lw0AAhg-pYK39CS46p97lPpIbS6lVKDjYPaTJXW3RpE3s4KiIVFEjVF0ERSxYEaybX0j_jJfGf2GlDi7v8w4P7zsLUp7vCQDmEcwhxImx1MjlS4X1nA6R8RsMMkSmQBpBiDREOU396zMgG4b1KoSUYINingZF1XkYnfeTz34yfFO9-_jiOT55SoZXye2xujlVr3vfu93kZfD13lPRoYruksGB6jyq6Gj00Y2v9-PoTEWXc2Ba2puhyP4xAyrLxUphRSuvlVYL-bLmUEo0p4qFKR1XMiYZFwTaGCKMsLBtRFzuSls3pOkiymxdMAId5nCToqqQrsldKnEGLE5mm4Hfaotw22r47cAbP1o6NTHXDZOQsbUwsZwN36u16l7Nagb1LTvYsZihU4iRyfEPy4Rz4g
ContentType Journal Article
Copyright Jun 2017. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Jun 2017. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 2RA
92L
CQIGP
W94
~WA
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOI 10.11947/j.AGCS.2017.20160614
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Agriculture Science Database
Biological Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DatabaseTitle Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate Urban Intersection Recognition and Construction Based on Big Trace Data
EISSN 1001-1595
EndPage 779
ExternalDocumentID 672503189
GroupedDBID -01
2B.
2C.
2RA
5VS
5XA
5XB
7X2
92E
92I
92L
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CQIGP
CW9
GROUPED_DOAJ
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PIMPY
PYCSY
RIG
TCJ
TGP
U1G
U5K
W94
~WA
3V.
8FE
8FH
8FK
ABJNI
ABUWG
AEUYN
AZQEC
DWQXO
GNUQQ
LK8
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c554-cb3e8fcdf66f69e40a301313eaa14d9dfa27f8d156a2e640c6c9851befd89d5f3
IEDL.DBID BENPR
ISSN 1001-1595
IngestDate Fri Jul 25 09:43:21 EDT 2025
Wed Feb 14 10:00:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554-cb3e8fcdf66f69e40a301313eaa14d9dfa27f8d156a2e640c6c9851befd89d5f3
Notes 11-2089/P
Intersection is an important part of the generation and renewal of urban traffic network.In this paper, a new method was proposed to detect urban intersections automatically from the spatiotemporal big trace data.Firstly, the turning point pairs were based on tracking the trace data collected by vehicles.Secondly, different types of turning point pairs were clustered by using spatial growing clustering method based on angle and distance differences, and the clustering methods of local connectivity was used to recognize the intersection.Finally, the intersection structure of multi-level road network was constructed with the range of the intersection and turning point pairs.Taking the taxi trajectory data in Wuhan city as an example, the experimental results showed that the method proposed in this paper can automatically detect and recognize the road intersection and its structure.
TANG Luliang1,NIU Le1 ,YANG Xue1,ZHANG Xia2,LI Qingquan1,2 ,XIAO Shilun1,3 (1. State Key Laboratory of kiformation Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China ; 2. Shenzhen Key Laboratory of Spatial Smart Sensing and Services, College of Civil Engineering, Shenzhen University, Shenzhen 518060, China; 3. Department of Geography, University of Tennessee, Knoxville, 37996-0925, USA)
urban traffic network;automatic intersection recognition;intersection structure;similarity clustering;big trace data
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2583927844?pq-origsite=%requestingapplication%
PQID 2583927844
PQPubID 5229093
PageCount 10
ParticipantIDs proquest_journals_2583927844
chongqing_primary_672503189
PublicationCentury 2000
PublicationDate 20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 20170601
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Ce hui xue bao
PublicationTitleAlternate Acta Geodaetica et Cartographica Sinica
PublicationYear 2017
Publisher Surveying and Mapping Press
Publisher_xml – name: Surveying and Mapping Press
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.0373542
Snippet ...
SourceID proquest
chongqing
SourceType Aggregation Database
Publisher
StartPage 770
SubjectTerms Clustering
Point pairs
Roads & highways
Traffic intersections
交叉口结构
交叉口自动识别
城市交通路网
相似度聚类
轨迹大数据
Title 利用轨迹大数据进行城市道路交叉口识别及结构提取
URI http://lib.cqvip.com/qk/90069X/201706/672503189.html
https://www.proquest.com/docview/2583927844
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMTdONUxLtDTUBdZ9lqBDtQ2A5WBymq5ZqqUpsEhONjQHz-j6-pl5hJp4RZhGQAfciqHLKmFlIrigTslPBo2R6xuZgqpycwsTE_uCQl3QrVGg2VXoFRrMDKzAItgC2PlidXL1CwiClcWg2tUUPN8J7DQDK25T6B4eYM_dXD9Lz9HdORi0usscRJiB-kagExYy8vPSC4H1BkbpDK5y3AQZ-KFtRQVHSOQKMTCl5gkzSDgWg0av83MrFdQUwGzI4ESxCIPr046Vz6eseLF3xYv9O58uWf5s6oZnvete7J_9YmHP0_l9T3c0vWyc_GL7-ie7ljzt73zav_jF-ranHauf9nc93z352byWZ_0TnvZPE2UIcXMNcfbQhV6ToJsMbAvoJicZp1qkJaekmZmlmVmmmhgkGoPO0DFOTUw0NEmxTElLNDJPs0gB9tMSjVLNTAySzZItgc2spNS0FAvLFNM0YzEGlrz8vFQJ0DInM0uTpBQLYLwC-32miZYmRimmlskGJilJiSnAikuSQRoeOvEFkNMw4s3Mga0oYMkAlJWBhVc8NCMUxyOiTQq_tDQDFygmIKuwZBhYSopKU2WB9X1Jkhw0UuUYmL0DLQC34sIt
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMTdONUxLtDTUBdZ9lqBDtQ2A5WBymq5ZqqUpsEhONjQHz-j6-pl5hJp4RZhGMDGshe2FAS2rhJWJ4II6JT8ZNEaub2QKqsrNLUxM7AsKdUG3RoFmV2FXaECShXdqZTmwy1Zs6-kCjF9VIyM31xBnD13orQK6ycCqUzc5yTjVIi05Jc3MLM3MMtXEINEYdOSMcWpioqFJimVKWqKReZpFCrBbk2iUamZikGyWbAlslSSlpqVYWKaYphkDjWVmYDUxBvZkWBhYnVz9AoJgRT-oMjcFT68C--jAdoIpdMuQoaWJuX6WnqO7czBoMZk5iDADdcVABzpk5OelFwKrKYzKAFzDuQky8EObpgqOkLQkxMCUmifMIOFYDBosz8-tVFBTALMhYyHFIgyuTztWPp-y4sXeFS_273y6ZPmzqRue9a57sX_2i4U9T-f3Pd3R9LJx8ovt65_sWvK0v_Np_-IX69uedqx-2t_1fPfkZ_NanvVPeNo_TZQhhBbhJ8bAkpeflyoBWlVlZmmSlGIBTEbAbqZpoqWJUYqpZbKBSUpSYgqwnpRkkIaHTnwB5PCNeDNzYKMNWBABZWVg4RUPzXfF8YhUIoVfWp6B0yPE1yfex9PPW5qBCxQrkAVgMgwsJUWlqbLApkZJkhw0ghUY4mmcpABzN_7p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%88%A9%E7%94%A8%E8%BD%A8%E8%BF%B9%E5%A4%A7%E6%95%B0%E6%8D%AE%E8%BF%9B%E8%A1%8C%E5%9F%8E%E5%B8%82%E9%81%93%E8%B7%AF%E4%BA%A4%E5%8F%89%E5%8F%A3%E8%AF%86%E5%88%AB%E5%8F%8A%E7%BB%93%E6%9E%84%E6%8F%90%E5%8F%96&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E5%94%90%E7%82%89%E4%BA%AE+%E7%89%9B%E4%B9%90+%E6%9D%A8%E9%9B%AA+%E5%BC%A0%E9%9C%9E+%E6%9D%8E%E6%B8%85%E6%B3%89+%E8%90%A7%E4%B8%96%E4%BC%A6&rft.date=2017-06-01&rft.issn=1001-1595&rft.volume=46&rft.issue=6&rft.spage=770&rft.epage=779&rft_id=info:doi/10.11947%2Fj.AGCS.2017.20160614&rft.externalDocID=672503189
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg