Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression
Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities an...
Saved in:
Published in | mBio Vol. 7; no. 6 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
13.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined
Pseudomonas
species consortia into naturally complex microbial communities and measured the importance of
Pseudomonas
community diversity for their survival and the suppression of the bacterial plant pathogen
Ralstonia solanacearum
in the tomato rhizosphere microbiome. The survival of introduced
Pseudomonas
consortia increased with increasing diversity. Further, high
Pseudomonas
diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications.
IMPORTANCE
The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on
in vitro
characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future.
The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on
in vitro
characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future. |
---|---|
AbstractList | Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications.
The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future. Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications. The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future. ABSTRACT Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications. IMPORTANCE The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future. Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications. IMPORTANCE The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future. The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future. Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications.Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications.The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future.IMPORTANCEThe increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future. |
Author | Yang, Tian-jie Ma, Jing Wang, Xiao-fang Shen, Qi-rong Xu, Yang-chun Gu, Shao-hua Hu, Jie Wei, Zhong Jousset, Alexandre Eisenhauer, Nico Friman, Ville-Petri |
Author_xml | – sequence: 1 givenname: Jie surname: Hu fullname: Hu, Jie organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China, Utrecht University, Institute for Environmental Biology, Ecology and Biodiversity, Utrecht, the Netherlands – sequence: 2 givenname: Zhong surname: Wei fullname: Wei, Zhong organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 3 givenname: Ville-Petri surname: Friman fullname: Friman, Ville-Petri organization: Department of Biology, University of York, Wentworth Way, York, United Kingdom – sequence: 4 givenname: Shao-hua surname: Gu fullname: Gu, Shao-hua organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 5 givenname: Xiao-fang surname: Wang fullname: Wang, Xiao-fang organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 6 givenname: Nico surname: Eisenhauer fullname: Eisenhauer, Nico organization: German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany, Leipzig University, Institute of Biology, Leipzig, Germany – sequence: 7 givenname: Tian-jie surname: Yang fullname: Yang, Tian-jie organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China, Utrecht University, Institute for Environmental Biology, Ecology and Biodiversity, Utrecht, the Netherlands – sequence: 8 givenname: Jing surname: Ma fullname: Ma, Jing organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 9 givenname: Qi-rong surname: Shen fullname: Shen, Qi-rong organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 10 givenname: Yang-chun surname: Xu fullname: Xu, Yang-chun organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China – sequence: 11 givenname: Alexandre surname: Jousset fullname: Jousset, Alexandre organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China, Utrecht University, Institute for Environmental Biology, Ecology and Biodiversity, Utrecht, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27965449$$D View this record in MEDLINE/PubMed https://hal.science/hal-03037359$$DView record in HAL |
BookMark | eNptkk1P3DAQhq2KqtAtx16rHNtDqD_i2L5UohQK0lZF_bj0YjnOhBglcbCTleDX4-xCVVB9sTXzzjPjmXmN9gY_AEJvCT4ihMqP_WfnjzARCuekfIEOKOE4F5yQveVdkpwSqvbRYYzXOB3GiGT4FdqnQpW8KNQB-nMZfOX85Gz2xW0gRDfdZqdDawYLMfvRujsfxxYCZN-c3Up7yM7mwU7OD5kZ6uyyM8OUgiOYCNnPeRwDxJi8b9DLxnQRDh_uFfp9dvrr5Dxff_96cXK8zi3nbMprVddEVKxqysZgo1jBcakKiUVjcc0kxlwJAoqRkkmmiCVVVVNuKGZAC9WwFbrYcWtvrvUYXG_CrfbG6a3BhyttQvpgB7pSjTS15JTSlEZaaQBUSoyFFZLZKrE-7VjjXPVQWximYLon0KeewbX6ym80J7xkmCbAhx2gfRZ2frzWiw0zzATjakOS9v1DsuBvZoiT7l200KWGgp-jJqnQUghc8iR9929df8mPg0wCthOkIcUYoNHWTWYZUirTdZpgvWyMXjZGbzdGp36uUP4s6hH8f_09fc3CWQ |
CitedBy_id | crossref_primary_10_1093_femsec_fiaa225 crossref_primary_10_1016_j_soilbio_2017_11_012 crossref_primary_10_1007_s00253_022_12019_5 crossref_primary_10_1093_femsec_fiaa226 crossref_primary_10_1111_nph_18793 crossref_primary_10_1007_s00203_024_03935_3 crossref_primary_10_3390_f13111932 crossref_primary_10_3390_ijms26020860 crossref_primary_10_1007_s41348_023_00824_7 crossref_primary_10_3389_fmicb_2020_00701 crossref_primary_10_1111_evo_14092 crossref_primary_10_3390_plants11070990 crossref_primary_10_1094_PBIOMES_09_20_0065_R crossref_primary_10_1128_msystems_00951_22 crossref_primary_10_1128_msystems_01159_21 crossref_primary_10_1111_1462_2920_15862 crossref_primary_10_1038_s41467_022_35452_6 crossref_primary_10_1002_ldr_4811 crossref_primary_10_1111_1751_7915_13640 crossref_primary_10_1186_s40168_023_01463_8 crossref_primary_10_1111_lam_13332 crossref_primary_10_3390_antibiotics11081117 crossref_primary_10_1016_j_micres_2025_128054 crossref_primary_10_1002_ece3_5614 crossref_primary_10_1098_rsif_2017_0563 crossref_primary_10_1128_msystems_00349_18 crossref_primary_10_1016_j_jare_2019_03_004 crossref_primary_10_1051_bioconf_202411801035 crossref_primary_10_1111_jipb_13881 crossref_primary_10_3389_fmicb_2018_02573 crossref_primary_10_3389_fpls_2021_655673 crossref_primary_10_1093_lambio_ovae037 crossref_primary_10_3390_ijms242216118 crossref_primary_10_1038_s41396_022_01322_8 crossref_primary_10_1111_ele_13177 crossref_primary_10_1016_j_ejsobi_2023_103492 crossref_primary_10_1016_j_cej_2024_157510 crossref_primary_10_1128_mbio_00972_24 crossref_primary_10_1016_j_mib_2019_10_010 crossref_primary_10_1016_j_molp_2023_08_004 crossref_primary_10_1016_j_isci_2024_110319 crossref_primary_10_1016_j_aquaculture_2023_740192 crossref_primary_10_1007_s11104_024_07177_6 crossref_primary_10_1146_annurev_ecolsys_110617_062605 crossref_primary_10_12677_AMB_2022_112017 crossref_primary_10_2478_hppj_2019_0007 crossref_primary_10_1094_PHYTO_10_21_0418_RVW crossref_primary_10_1094_PBIOMES_09_23_0091_MF crossref_primary_10_1016_j_apsoil_2022_104503 crossref_primary_10_1016_j_oneear_2024_06_005 crossref_primary_10_3390_f14112230 crossref_primary_10_1016_j_soilbio_2023_109179 crossref_primary_10_3390_microorganisms12071370 crossref_primary_10_1098_rspb_2021_1396 crossref_primary_10_1016_j_jip_2020_107503 crossref_primary_10_1038_s41477_020_00830_9 crossref_primary_10_3390_crops4010004 crossref_primary_10_1186_s40168_024_01947_1 crossref_primary_10_1094_PBIOMES_04_20_0035_R crossref_primary_10_1016_j_gfs_2019_01_007 crossref_primary_10_1016_j_pbiomolbio_2018_12_002 crossref_primary_10_1016_j_ecoenv_2024_116313 crossref_primary_10_1111_1462_2920_15097 crossref_primary_10_3389_fmicb_2018_01604 crossref_primary_10_1111_1462_2920_16184 crossref_primary_10_1016_j_stress_2022_100072 crossref_primary_10_1093_jeb_voae002 crossref_primary_10_1016_j_micres_2020_126690 crossref_primary_10_1007_s00248_020_01535_4 crossref_primary_10_1007_s11356_018_3346_7 crossref_primary_10_1080_03650340_2020_1827232 crossref_primary_10_3390_app14062380 crossref_primary_10_1002_ps_8429 crossref_primary_10_3390_microorganisms10091759 crossref_primary_10_1186_s12870_023_04690_1 crossref_primary_10_1111_tpj_14781 crossref_primary_10_1016_j_tplants_2022_06_004 crossref_primary_10_7554_eLife_90726 crossref_primary_10_1111_nph_18221 crossref_primary_10_1128_spectrum_03611_22 crossref_primary_10_13080_z_a_2023_110_020 crossref_primary_10_1016_j_apsoil_2024_105735 crossref_primary_10_1111_1462_2920_16194 crossref_primary_10_1139_cjm_2020_0085 crossref_primary_10_17660_ActaHortic_2023_1377_101 crossref_primary_10_1016_j_scitotenv_2024_175297 crossref_primary_10_1111_1365_2435_13292 crossref_primary_10_1016_j_pbi_2017_04_018 crossref_primary_10_21769_BioProtoc_4001 crossref_primary_10_1094_PBIOMES_5_2 crossref_primary_10_1134_S0026261722100769 crossref_primary_10_1038_s41598_020_80543_3 crossref_primary_10_1186_s13213_020_01572_x crossref_primary_10_1111_1365_2664_12873 crossref_primary_10_3389_fmicb_2020_622926 crossref_primary_10_3390_biom13101443 crossref_primary_10_1016_j_mib_2019_10_006 crossref_primary_10_3390_ijerph20010021 crossref_primary_10_3390_microorganisms11010224 crossref_primary_10_15302_J_FASE_2020346 crossref_primary_10_3390_microorganisms11122864 crossref_primary_10_1016_j_rhisph_2022_100524 crossref_primary_10_1093_femsec_fiaa245 crossref_primary_10_1128_msystems_00811_19 crossref_primary_10_1126_sciadv_aaw0759 crossref_primary_10_1016_j_indcrop_2022_115138 crossref_primary_10_1007_s00374_024_01836_7 crossref_primary_10_1111_jipb_13073 crossref_primary_10_1016_j_agee_2021_107503 crossref_primary_10_3390_microorganisms11030726 crossref_primary_10_1038_s41579_024_01079_1 crossref_primary_10_31857_S0002188124050111 crossref_primary_10_1128_AEM_00162_19 crossref_primary_10_1094_PHYTO_06_17_0212_R crossref_primary_10_3389_fmicb_2023_1141720 crossref_primary_10_1016_j_apsoil_2024_105714 crossref_primary_10_1098_rspb_2018_2035 crossref_primary_10_1093_hr_uhae186 crossref_primary_10_3390_plants13030364 crossref_primary_10_3390_plants13192686 crossref_primary_10_1016_j_jhazmat_2023_131621 crossref_primary_10_1016_j_molp_2019_05_006 crossref_primary_10_3389_fbioe_2022_1054757 crossref_primary_10_3389_fpls_2021_738611 crossref_primary_10_1016_j_copbio_2021_06_009 crossref_primary_10_1016_j_pmpp_2024_102393 crossref_primary_10_3390_agronomy13030643 crossref_primary_10_1038_s43705_022_00094_8 crossref_primary_10_1038_s41396_021_01126_2 crossref_primary_10_1186_s40793_022_00406_4 crossref_primary_10_3389_fpls_2019_01741 crossref_primary_10_1016_j_envpol_2019_06_019 crossref_primary_10_1016_j_cub_2018_05_085 crossref_primary_10_1038_s41598_018_26181_2 crossref_primary_10_1007_s00248_024_02374_3 crossref_primary_10_1111_jam_15799 crossref_primary_10_1016_j_micres_2024_128036 crossref_primary_10_1016_j_chom_2017_07_004 crossref_primary_10_1016_j_tplants_2017_05_009 crossref_primary_10_1038_s41587_019_0328_3 crossref_primary_10_1016_j_apsoil_2021_104037 crossref_primary_10_1016_j_apsoil_2021_104158 crossref_primary_10_3389_fmicb_2024_1500260 crossref_primary_10_1111_1462_2920_15902 crossref_primary_10_1016_j_agwat_2021_107446 crossref_primary_10_1016_j_soilbio_2023_109231 crossref_primary_10_1093_femsec_fiab153 crossref_primary_10_3389_fpls_2023_1273330 crossref_primary_10_3390_microorganisms12040779 crossref_primary_10_3389_fpls_2017_01549 crossref_primary_10_3390_jof7100788 crossref_primary_10_3390_plants12244074 crossref_primary_10_1111_1751_7915_14422 crossref_primary_10_3390_agronomy12051024 crossref_primary_10_1186_s41938_021_00442_1 crossref_primary_10_1093_ismejo_wraf025 crossref_primary_10_1016_j_scienta_2023_112575 crossref_primary_10_1111_1462_2920_15322 crossref_primary_10_3389_fmicb_2022_853176 crossref_primary_10_1016_j_micres_2020_126446 crossref_primary_10_1073_pnas_1900102116 crossref_primary_10_7717_peerj_18793 crossref_primary_10_3389_fmicb_2022_922660 crossref_primary_10_1111_1462_2920_13708 crossref_primary_10_1016_j_ejsobi_2023_103532 crossref_primary_10_1016_j_soilbio_2017_05_029 crossref_primary_10_1016_j_celrep_2019_09_061 crossref_primary_10_1002_mbo3_1283 crossref_primary_10_1016_j_pt_2023_12_004 crossref_primary_10_1094_MPMI_07_19_0198_R crossref_primary_10_3389_fmicb_2022_923515 crossref_primary_10_1016_j_heliyon_2024_e40762 crossref_primary_10_1038_s41598_022_25731_z crossref_primary_10_1016_j_eja_2023_126971 crossref_primary_10_7717_peerj_12601 crossref_primary_10_1016_j_tibtech_2018_11_011 crossref_primary_10_1111_nph_70011 crossref_primary_10_1016_j_scitotenv_2023_165801 crossref_primary_10_3389_fgene_2021_697090 crossref_primary_10_1016_j_apsoil_2021_104101 crossref_primary_10_1016_j_mib_2023_102286 crossref_primary_10_1016_j_apsoil_2023_105032 crossref_primary_10_1080_17429145_2022_2029963 crossref_primary_10_1016_j_apsoil_2018_08_022 crossref_primary_10_1007_s11356_020_10981_z crossref_primary_10_3390_foods10030602 crossref_primary_10_3389_fmicb_2022_870900 crossref_primary_10_1094_PBIOMES_06_23_0046_R crossref_primary_10_1016_j_apsoil_2019_103364 crossref_primary_10_1080_15592324_2022_2104004 crossref_primary_10_3390_microorganisms8121941 crossref_primary_10_1093_bbb_zbac181 crossref_primary_10_1016_j_chom_2018_06_011 crossref_primary_10_3390_cells11223686 crossref_primary_10_1016_j_micres_2023_127491 crossref_primary_10_1016_j_apsoil_2022_104658 crossref_primary_10_1007_s10973_020_10011_7 crossref_primary_10_1016_j_apsoil_2023_104857 crossref_primary_10_1039_D1NP00034A crossref_primary_10_3389_fmicb_2021_628373 crossref_primary_10_3390_biology11060918 crossref_primary_10_1186_s40168_020_00892_z crossref_primary_10_1186_s12870_024_04910_2 crossref_primary_10_1128_AEM_02135_19 crossref_primary_10_1128_spectrum_03525_22 crossref_primary_10_3389_fmicb_2020_585404 crossref_primary_10_1016_j_apsoil_2022_104420 crossref_primary_10_1016_j_envpol_2021_116758 crossref_primary_10_1111_1462_2920_15240 crossref_primary_10_1128_msystems_00198_23 crossref_primary_10_1093_femsec_fiz139 crossref_primary_10_1021_acs_jafc_0c00073 crossref_primary_10_1016_j_apsoil_2023_104842 crossref_primary_10_15377_2409_9813_2021_08_14 crossref_primary_10_1111_1365_2745_13678 crossref_primary_10_3389_fpls_2020_00291 crossref_primary_10_1128_spectrum_02333_21 crossref_primary_10_1016_S1002_0160_20_60064_9 crossref_primary_10_3389_fmicb_2022_1066807 crossref_primary_10_3390_biology14020116 crossref_primary_10_1128_spectrum_00390_22 crossref_primary_10_1016_j_soilbio_2019_05_020 crossref_primary_10_1111_1365_2745_14081 crossref_primary_10_1007_s10343_022_00746_8 crossref_primary_10_1128_msystems_00224_22 crossref_primary_10_3389_fmicb_2021_731764 |
Cites_doi | 10.1890/14-1001.1 10.1016/j.tplants.2012.04.001 10.1016/j.copbio.2015.03.012 10.1093/jpe/rtn011 10.1007/s10529-014-1480-y 10.1038/ismej.2011.9 10.1016/j.soilbio.2012.09.003 10.1111/j.1461-0248.2012.01759.x 10.1038/nature03891 10.3892/etm.2013.1231 10.1371/journal.pbio.1001330 10.1128/JB.182.5.1215-1225.2000 10.1128/AEM.69.12.7248-7256.2003 10.1038/ismej.2010.196 10.1016/j.tibtech.2008.05.004 10.1890/09-0188.1 10.1038/ncomms9413 10.1128/AEM.68.9.4383-4389.2002 10.1016/j.pedobi.2015.03.002 10.1111/j.1461-0248.2009.01388.x 10.1186/s13073-016-0300-5 10.1111/j.1365-2745.2011.01940.x 10.1111/1462-2920.12343 10.1126/science.aad2602 10.1016/j.apsoil.2011.03.013 10.1073/pnas.1109326109 10.1016/j.biocontrol.2012.12.010 10.1073/pnas.96.4.1463 10.1016/j.mib.2014.02.002 10.1890/13-1215.1 10.1038/nrmicro1129 10.1128/AEM.71.9.4951-4959.2005 10.1111/j.1348-0421.1995.tb03275.x 10.1017/CBO9780511617799 10.1038/nature11550 10.1126/science.aab0946 10.1111/j.1752-4571.2010.00145.x 10.1038/srep15500 10.1111/jph.12504 10.1094/PHYTO-97-2-0244 10.1371/journal.pgen.1002784 10.1073/pnas.1218447110 10.1094/MPMI.1998.11.2.144 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Hu et al. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2016 Hu et al. 2016 Hu et al. |
Copyright_xml | – notice: Copyright © 2016 Hu et al. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2016 Hu et al. 2016 Hu et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM DOA |
DOI | 10.1128/mBio.01790-16 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Environmental Sciences |
DocumentTitleAlternate | Microbial Diversity and Plant Disease Suppression |
EISSN | 2150-7511 |
ExternalDocumentID | oai_doaj_org_article_b9f8ad852223458c8aee9bf607c783cb PMC5156302 oai_HAL_hal_03037359v1 27965449 10_1128_mBio_01790_16 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 105624 – fundername: Wellcome Trust |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS EJD FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c553t-d9dd17b3bf6fa0a93450694807fc0d38005971e931638391c1bbd25a203e249f3 |
IEDL.DBID | DOA |
ISSN | 2161-2129 2150-7511 |
IngestDate | Wed Aug 27 01:31:44 EDT 2025 Thu Aug 21 18:27:07 EDT 2025 Wed Jul 02 06:32:36 EDT 2025 Fri Jul 11 10:31:25 EDT 2025 Thu Apr 03 07:06:53 EDT 2025 Tue Jul 01 01:52:32 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright © 2016 Hu et al. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c553t-d9dd17b3bf6fa0a93450694807fc0d38005971e931638391c1bbd25a203e249f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC5156302 Editor Nicole Dubilier, Max Planck Institute for Marine Microbiology J.H. and Z.W. contributed equally to this article. |
ORCID | 0000-0002-7967-4897 0000-0002-6805-2486 |
OpenAccessLink | https://doaj.org/article/b9f8ad852223458c8aee9bf607c783cb |
PMID | 27965449 |
PQID | 1852677065 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b9f8ad852223458c8aee9bf607c783cb pubmedcentral_primary_oai_pubmedcentral_nih_gov_5156302 hal_primary_oai_HAL_hal_03037359v1 proquest_miscellaneous_1852677065 pubmed_primary_27965449 crossref_citationtrail_10_1128_mBio_01790_16 crossref_primary_10_1128_mBio_01790_16 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161213 |
PublicationDateYYYYMMDD | 2016-12-13 |
PublicationDate_xml | – month: 12 year: 2016 text: 20161213 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2016 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 French ER (e_1_3_2_39_2) 1995; 30 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_10_2 doi: 10.1890/14-1001.1 – ident: e_1_3_2_25_2 doi: 10.1016/j.tplants.2012.04.001 – ident: e_1_3_2_37_2 doi: 10.1016/j.copbio.2015.03.012 – ident: e_1_3_2_24_2 doi: 10.1093/jpe/rtn011 – ident: e_1_3_2_35_2 doi: 10.1007/s10529-014-1480-y – ident: e_1_3_2_21_2 doi: 10.1038/ismej.2011.9 – ident: e_1_3_2_41_2 doi: 10.1016/j.soilbio.2012.09.003 – ident: e_1_3_2_20_2 doi: 10.1111/j.1461-0248.2012.01759.x – ident: e_1_3_2_3_2 doi: 10.1038/nature03891 – ident: e_1_3_2_18_2 doi: 10.3892/etm.2013.1231 – ident: e_1_3_2_29_2 doi: 10.1371/journal.pbio.1001330 – ident: e_1_3_2_38_2 doi: 10.1128/JB.182.5.1215-1225.2000 – ident: e_1_3_2_42_2 doi: 10.1128/AEM.69.12.7248-7256.2003 – ident: e_1_3_2_28_2 doi: 10.1038/ismej.2010.196 – ident: e_1_3_2_36_2 doi: 10.1016/j.tibtech.2008.05.004 – ident: e_1_3_2_11_2 doi: 10.1890/09-0188.1 – ident: e_1_3_2_6_2 doi: 10.1038/ncomms9413 – ident: e_1_3_2_12_2 doi: 10.1128/AEM.68.9.4383-4389.2002 – ident: e_1_3_2_45_2 doi: 10.1016/j.pedobi.2015.03.002 – ident: e_1_3_2_2_2 doi: 10.1111/j.1461-0248.2009.01388.x – ident: e_1_3_2_4_2 doi: 10.1186/s13073-016-0300-5 – ident: e_1_3_2_43_2 doi: 10.1111/j.1365-2745.2011.01940.x – volume: 30 start-page: 126 year: 1995 ident: e_1_3_2_39_2 article-title: Culture media for Ralstonia solanacearum isolation, identification and maintenance publication-title: Fitopatologia – ident: e_1_3_2_32_2 doi: 10.1111/1462-2920.12343 – ident: e_1_3_2_8_2 doi: 10.1126/science.aad2602 – ident: e_1_3_2_14_2 doi: 10.1016/j.apsoil.2011.03.013 – ident: e_1_3_2_5_2 doi: 10.1073/pnas.1109326109 – ident: e_1_3_2_40_2 doi: 10.1016/j.biocontrol.2012.12.010 – ident: e_1_3_2_9_2 doi: 10.1073/pnas.96.4.1463 – ident: e_1_3_2_34_2 doi: 10.1016/j.mib.2014.02.002 – ident: e_1_3_2_15_2 doi: 10.1890/13-1215.1 – ident: e_1_3_2_13_2 doi: 10.1038/nrmicro1129 – ident: e_1_3_2_7_2 doi: 10.1128/AEM.71.9.4951-4959.2005 – ident: e_1_3_2_23_2 doi: 10.1111/j.1348-0421.1995.tb03275.x – ident: e_1_3_2_44_2 doi: 10.1017/CBO9780511617799 – ident: e_1_3_2_26_2 doi: 10.1038/nature11550 – ident: e_1_3_2_30_2 doi: 10.1126/science.aab0946 – ident: e_1_3_2_33_2 doi: 10.1111/j.1752-4571.2010.00145.x – ident: e_1_3_2_27_2 doi: 10.1038/srep15500 – ident: e_1_3_2_19_2 doi: 10.1111/jph.12504 – ident: e_1_3_2_22_2 doi: 10.1094/PHYTO-97-2-0244 – ident: e_1_3_2_17_2 doi: 10.1371/journal.pgen.1002784 – ident: e_1_3_2_31_2 doi: 10.1073/pnas.1218447110 – ident: e_1_3_2_16_2 doi: 10.1094/MPMI.1998.11.2.144 |
SSID | ssj0000331830 |
Score | 2.5781858 |
Snippet | Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may... ABSTRACT Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Biodiversity Biodiversity and Ecology Biota Environmental Sciences Lycopersicon esculentum - microbiology Microbial Consortia - physiology Microbial Interactions Microbiota - physiology Plant Diseases - microbiology Plant Diseases - prevention & control Plant Roots - microbiology Probiotics Pseudomonas - physiology Ralstonia solanacearum - physiology Rhizosphere Soil Microbiology |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoEVIviHfDSwYhTqQ4cRzbB4Ra6GqFKEKIlSoull_prtRmYXeL6L9nxskupMCNW-RX5BmP57M8_oaQZ5a52nLP87KJLq9sVYFJafhy3orYBADBKcr3Qz2eVO-OxfEvSqFegMu_Hu0wn9Rkcbr349vFazD4V90DGPXy7GA238OVxfKi3iJXwSlJtNGjHumnTZnj4mVrls3LvQZeKZH3g6-ZYmjkn7jzcvjkb_5odINc74Ek3e80f5Ncie0tcq1LLXlxm3z5mAiWoJK-XYde0MN2ikpe0k8YabdERoFIj2YdF9NZpCNwcqgoattAMZ3RCjqnCxyK2T-7kNn2DpmMDj-_Ged9HoXcC8FXedABZO64a-rGMqt5JfC5q2Ky8SxwhQ9QZRE1R2zGdeEL50IpbMl4hNNZw--S7Xbexl1CpdDRWVdaFpA8zDotIheNBRRSMRtiRl6s5Wh8TzKOuS5OTTpslMqg2E0SuynqjDzfNP_asWv8q-EBKmXTCEmxU8F8cWJ6GzNON8oGJRDyVEJ5ZWPUMGkmvVTcu4w8BZUOxhjvvzdYBlsdl1zo70VGnqw1bsDS8PrEtnF-vjT4zLyWeC2ckXvdCtiMVUpdi6rSGZGDtTH42bCmnU0TmzcAypqz8v7_mOEDsgOALiVWKvhDsr1anMdHAJpW7nEyh5_QsRfl priority: 102 providerName: Scholars Portal |
Title | Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27965449 https://www.proquest.com/docview/1852677065 https://hal.science/hal-03037359 https://pubmed.ncbi.nlm.nih.gov/PMC5156302 https://doaj.org/article/b9f8ad852223458c8aee9bf607c783cb |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRq1a3VYlFfHJtdpNsksd-XQ-xUsTC4UvI13IHvb3Suwr-985k7447RXzxZVmSbHZ3ZpKZkMnvR8g7x3zjeOBl3SZfCicEDCkDdz44mdoIQXDO8v3SDK_Fp5EcbVB9YU5YDw_cC-7Im1a7qCX6MSF10C4l49uGqaA0Dx5nX_B5G4upPAdztFW2AtWs9dH0ZDL7iObHSuQ233BCGasfXMsYMyH_DDN_z5bccD-DJ-TxMm6kx_337pIHqXtKHvZMkj-fke9XGU8JKunZKtOCnndj1OmcfsXEujkCCCR6Oemhl6aJDsCnoV6o6yJF9qIFPJz3ayiSffYZst1zcj04_3Y6LJe0CWWQki_KaCKI2HMQUuuYMyA2PN2qmWoDi1zjeVNVJcMxFOOmCpX3sZauZjzBYqzle2Snm3XpJaFKmuSdrx2LiBXmvJGJy9ZB0CGYi6kgH1ZytGGJKY7UFjc2ry1qbVHsNovdVk1B3q-b3_ZgGn9reIJKWTdCDOxcAJZhl5Zh_2UZBTkElW71MTz-bLEMZjauuDQ_qoK8XWncwsDC3RLXpdn93OKp8kbhLnBBXvQWsO6rVqaRQpiCqC3b2HrZdk03GWfwbogfG87q_f_xhwfkEcRvmUep4q_IzuLuPr2GGGnh3-ThANeLUQXXS6F_AUZ5Etc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probiotic+Diversity+Enhances+Rhizosphere+Microbiome+Function+and+Plant+Disease+Suppression&rft.jtitle=mBio&rft.au=Jie+Hu&rft.au=Zhong+Wei&rft.au=Ville-Petri+Friman&rft.au=Shao-hua+Gu&rft.date=2016-12-13&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=7&rft.issue=6&rft_id=info:doi/10.1128%2FmBio.01790-16&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b9f8ad852223458c8aee9bf607c783cb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |