Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression

Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities an...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 7; no. 6
Main Authors Hu, Jie, Wei, Zhong, Friman, Ville-Petri, Gu, Shao-hua, Wang, Xiao-fang, Eisenhauer, Nico, Yang, Tian-jie, Ma, Jing, Shen, Qi-rong, Xu, Yang-chun, Jousset, Alexandre
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 13.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications. IMPORTANCE The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future. The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future.
AbstractList Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications. The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future.
Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications. The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future.
ABSTRACT Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications. IMPORTANCE The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future.
Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications. IMPORTANCE The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future. The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future.
Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications.Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications.The increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future.IMPORTANCEThe increasing demand for food supply requires more-efficient control of plant diseases. The use of probiotics, i.e., naturally occurring bacterial antagonists and competitors that suppress pathogens, has recently reemerged as a promising alternative to agrochemical use. It is, however, still unclear how many and which strains we should choose for constructing effective probiotic consortia. Here we present a general ecological framework for assembling effective probiotic communities based on in vitro characterization of community functioning. Specifically, we show that increasing the diversity of probiotic consortia enhances community survival in the naturally diverse rhizosphere microbiome, leading to increased pathogen suppression via intensified resource competition and interference with the pathogen. We propose that these ecological guidelines can be put to the test in microbiome engineering more widely in the future.
Author Yang, Tian-jie
Ma, Jing
Wang, Xiao-fang
Shen, Qi-rong
Xu, Yang-chun
Gu, Shao-hua
Hu, Jie
Wei, Zhong
Jousset, Alexandre
Eisenhauer, Nico
Friman, Ville-Petri
Author_xml – sequence: 1
  givenname: Jie
  surname: Hu
  fullname: Hu, Jie
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China, Utrecht University, Institute for Environmental Biology, Ecology and Biodiversity, Utrecht, the Netherlands
– sequence: 2
  givenname: Zhong
  surname: Wei
  fullname: Wei, Zhong
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China
– sequence: 3
  givenname: Ville-Petri
  surname: Friman
  fullname: Friman, Ville-Petri
  organization: Department of Biology, University of York, Wentworth Way, York, United Kingdom
– sequence: 4
  givenname: Shao-hua
  surname: Gu
  fullname: Gu, Shao-hua
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China
– sequence: 5
  givenname: Xiao-fang
  surname: Wang
  fullname: Wang, Xiao-fang
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China
– sequence: 6
  givenname: Nico
  surname: Eisenhauer
  fullname: Eisenhauer, Nico
  organization: German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany, Leipzig University, Institute of Biology, Leipzig, Germany
– sequence: 7
  givenname: Tian-jie
  surname: Yang
  fullname: Yang, Tian-jie
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China, Utrecht University, Institute for Environmental Biology, Ecology and Biodiversity, Utrecht, the Netherlands
– sequence: 8
  givenname: Jing
  surname: Ma
  fullname: Ma, Jing
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China
– sequence: 9
  givenname: Qi-rong
  surname: Shen
  fullname: Shen, Qi-rong
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China
– sequence: 10
  givenname: Yang-chun
  surname: Xu
  fullname: Xu, Yang-chun
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China
– sequence: 11
  givenname: Alexandre
  surname: Jousset
  fullname: Jousset, Alexandre
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People’s Republic of China, Utrecht University, Institute for Environmental Biology, Ecology and Biodiversity, Utrecht, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27965449$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03037359$$DView record in HAL
BookMark eNptkk1P3DAQhq2KqtAtx16rHNtDqD_i2L5UohQK0lZF_bj0YjnOhBglcbCTleDX4-xCVVB9sTXzzjPjmXmN9gY_AEJvCT4ihMqP_WfnjzARCuekfIEOKOE4F5yQveVdkpwSqvbRYYzXOB3GiGT4FdqnQpW8KNQB-nMZfOX85Gz2xW0gRDfdZqdDawYLMfvRujsfxxYCZN-c3Up7yM7mwU7OD5kZ6uyyM8OUgiOYCNnPeRwDxJi8b9DLxnQRDh_uFfp9dvrr5Dxff_96cXK8zi3nbMprVddEVKxqysZgo1jBcakKiUVjcc0kxlwJAoqRkkmmiCVVVVNuKGZAC9WwFbrYcWtvrvUYXG_CrfbG6a3BhyttQvpgB7pSjTS15JTSlEZaaQBUSoyFFZLZKrE-7VjjXPVQWximYLon0KeewbX6ym80J7xkmCbAhx2gfRZ2frzWiw0zzATjakOS9v1DsuBvZoiT7l200KWGgp-jJqnQUghc8iR9929df8mPg0wCthOkIcUYoNHWTWYZUirTdZpgvWyMXjZGbzdGp36uUP4s6hH8f_09fc3CWQ
CitedBy_id crossref_primary_10_1093_femsec_fiaa225
crossref_primary_10_1016_j_soilbio_2017_11_012
crossref_primary_10_1007_s00253_022_12019_5
crossref_primary_10_1093_femsec_fiaa226
crossref_primary_10_1111_nph_18793
crossref_primary_10_1007_s00203_024_03935_3
crossref_primary_10_3390_f13111932
crossref_primary_10_3390_ijms26020860
crossref_primary_10_1007_s41348_023_00824_7
crossref_primary_10_3389_fmicb_2020_00701
crossref_primary_10_1111_evo_14092
crossref_primary_10_3390_plants11070990
crossref_primary_10_1094_PBIOMES_09_20_0065_R
crossref_primary_10_1128_msystems_00951_22
crossref_primary_10_1128_msystems_01159_21
crossref_primary_10_1111_1462_2920_15862
crossref_primary_10_1038_s41467_022_35452_6
crossref_primary_10_1002_ldr_4811
crossref_primary_10_1111_1751_7915_13640
crossref_primary_10_1186_s40168_023_01463_8
crossref_primary_10_1111_lam_13332
crossref_primary_10_3390_antibiotics11081117
crossref_primary_10_1016_j_micres_2025_128054
crossref_primary_10_1002_ece3_5614
crossref_primary_10_1098_rsif_2017_0563
crossref_primary_10_1128_msystems_00349_18
crossref_primary_10_1016_j_jare_2019_03_004
crossref_primary_10_1051_bioconf_202411801035
crossref_primary_10_1111_jipb_13881
crossref_primary_10_3389_fmicb_2018_02573
crossref_primary_10_3389_fpls_2021_655673
crossref_primary_10_1093_lambio_ovae037
crossref_primary_10_3390_ijms242216118
crossref_primary_10_1038_s41396_022_01322_8
crossref_primary_10_1111_ele_13177
crossref_primary_10_1016_j_ejsobi_2023_103492
crossref_primary_10_1016_j_cej_2024_157510
crossref_primary_10_1128_mbio_00972_24
crossref_primary_10_1016_j_mib_2019_10_010
crossref_primary_10_1016_j_molp_2023_08_004
crossref_primary_10_1016_j_isci_2024_110319
crossref_primary_10_1016_j_aquaculture_2023_740192
crossref_primary_10_1007_s11104_024_07177_6
crossref_primary_10_1146_annurev_ecolsys_110617_062605
crossref_primary_10_12677_AMB_2022_112017
crossref_primary_10_2478_hppj_2019_0007
crossref_primary_10_1094_PHYTO_10_21_0418_RVW
crossref_primary_10_1094_PBIOMES_09_23_0091_MF
crossref_primary_10_1016_j_apsoil_2022_104503
crossref_primary_10_1016_j_oneear_2024_06_005
crossref_primary_10_3390_f14112230
crossref_primary_10_1016_j_soilbio_2023_109179
crossref_primary_10_3390_microorganisms12071370
crossref_primary_10_1098_rspb_2021_1396
crossref_primary_10_1016_j_jip_2020_107503
crossref_primary_10_1038_s41477_020_00830_9
crossref_primary_10_3390_crops4010004
crossref_primary_10_1186_s40168_024_01947_1
crossref_primary_10_1094_PBIOMES_04_20_0035_R
crossref_primary_10_1016_j_gfs_2019_01_007
crossref_primary_10_1016_j_pbiomolbio_2018_12_002
crossref_primary_10_1016_j_ecoenv_2024_116313
crossref_primary_10_1111_1462_2920_15097
crossref_primary_10_3389_fmicb_2018_01604
crossref_primary_10_1111_1462_2920_16184
crossref_primary_10_1016_j_stress_2022_100072
crossref_primary_10_1093_jeb_voae002
crossref_primary_10_1016_j_micres_2020_126690
crossref_primary_10_1007_s00248_020_01535_4
crossref_primary_10_1007_s11356_018_3346_7
crossref_primary_10_1080_03650340_2020_1827232
crossref_primary_10_3390_app14062380
crossref_primary_10_1002_ps_8429
crossref_primary_10_3390_microorganisms10091759
crossref_primary_10_1186_s12870_023_04690_1
crossref_primary_10_1111_tpj_14781
crossref_primary_10_1016_j_tplants_2022_06_004
crossref_primary_10_7554_eLife_90726
crossref_primary_10_1111_nph_18221
crossref_primary_10_1128_spectrum_03611_22
crossref_primary_10_13080_z_a_2023_110_020
crossref_primary_10_1016_j_apsoil_2024_105735
crossref_primary_10_1111_1462_2920_16194
crossref_primary_10_1139_cjm_2020_0085
crossref_primary_10_17660_ActaHortic_2023_1377_101
crossref_primary_10_1016_j_scitotenv_2024_175297
crossref_primary_10_1111_1365_2435_13292
crossref_primary_10_1016_j_pbi_2017_04_018
crossref_primary_10_21769_BioProtoc_4001
crossref_primary_10_1094_PBIOMES_5_2
crossref_primary_10_1134_S0026261722100769
crossref_primary_10_1038_s41598_020_80543_3
crossref_primary_10_1186_s13213_020_01572_x
crossref_primary_10_1111_1365_2664_12873
crossref_primary_10_3389_fmicb_2020_622926
crossref_primary_10_3390_biom13101443
crossref_primary_10_1016_j_mib_2019_10_006
crossref_primary_10_3390_ijerph20010021
crossref_primary_10_3390_microorganisms11010224
crossref_primary_10_15302_J_FASE_2020346
crossref_primary_10_3390_microorganisms11122864
crossref_primary_10_1016_j_rhisph_2022_100524
crossref_primary_10_1093_femsec_fiaa245
crossref_primary_10_1128_msystems_00811_19
crossref_primary_10_1126_sciadv_aaw0759
crossref_primary_10_1016_j_indcrop_2022_115138
crossref_primary_10_1007_s00374_024_01836_7
crossref_primary_10_1111_jipb_13073
crossref_primary_10_1016_j_agee_2021_107503
crossref_primary_10_3390_microorganisms11030726
crossref_primary_10_1038_s41579_024_01079_1
crossref_primary_10_31857_S0002188124050111
crossref_primary_10_1128_AEM_00162_19
crossref_primary_10_1094_PHYTO_06_17_0212_R
crossref_primary_10_3389_fmicb_2023_1141720
crossref_primary_10_1016_j_apsoil_2024_105714
crossref_primary_10_1098_rspb_2018_2035
crossref_primary_10_1093_hr_uhae186
crossref_primary_10_3390_plants13030364
crossref_primary_10_3390_plants13192686
crossref_primary_10_1016_j_jhazmat_2023_131621
crossref_primary_10_1016_j_molp_2019_05_006
crossref_primary_10_3389_fbioe_2022_1054757
crossref_primary_10_3389_fpls_2021_738611
crossref_primary_10_1016_j_copbio_2021_06_009
crossref_primary_10_1016_j_pmpp_2024_102393
crossref_primary_10_3390_agronomy13030643
crossref_primary_10_1038_s43705_022_00094_8
crossref_primary_10_1038_s41396_021_01126_2
crossref_primary_10_1186_s40793_022_00406_4
crossref_primary_10_3389_fpls_2019_01741
crossref_primary_10_1016_j_envpol_2019_06_019
crossref_primary_10_1016_j_cub_2018_05_085
crossref_primary_10_1038_s41598_018_26181_2
crossref_primary_10_1007_s00248_024_02374_3
crossref_primary_10_1111_jam_15799
crossref_primary_10_1016_j_micres_2024_128036
crossref_primary_10_1016_j_chom_2017_07_004
crossref_primary_10_1016_j_tplants_2017_05_009
crossref_primary_10_1038_s41587_019_0328_3
crossref_primary_10_1016_j_apsoil_2021_104037
crossref_primary_10_1016_j_apsoil_2021_104158
crossref_primary_10_3389_fmicb_2024_1500260
crossref_primary_10_1111_1462_2920_15902
crossref_primary_10_1016_j_agwat_2021_107446
crossref_primary_10_1016_j_soilbio_2023_109231
crossref_primary_10_1093_femsec_fiab153
crossref_primary_10_3389_fpls_2023_1273330
crossref_primary_10_3390_microorganisms12040779
crossref_primary_10_3389_fpls_2017_01549
crossref_primary_10_3390_jof7100788
crossref_primary_10_3390_plants12244074
crossref_primary_10_1111_1751_7915_14422
crossref_primary_10_3390_agronomy12051024
crossref_primary_10_1186_s41938_021_00442_1
crossref_primary_10_1093_ismejo_wraf025
crossref_primary_10_1016_j_scienta_2023_112575
crossref_primary_10_1111_1462_2920_15322
crossref_primary_10_3389_fmicb_2022_853176
crossref_primary_10_1016_j_micres_2020_126446
crossref_primary_10_1073_pnas_1900102116
crossref_primary_10_7717_peerj_18793
crossref_primary_10_3389_fmicb_2022_922660
crossref_primary_10_1111_1462_2920_13708
crossref_primary_10_1016_j_ejsobi_2023_103532
crossref_primary_10_1016_j_soilbio_2017_05_029
crossref_primary_10_1016_j_celrep_2019_09_061
crossref_primary_10_1002_mbo3_1283
crossref_primary_10_1016_j_pt_2023_12_004
crossref_primary_10_1094_MPMI_07_19_0198_R
crossref_primary_10_3389_fmicb_2022_923515
crossref_primary_10_1016_j_heliyon_2024_e40762
crossref_primary_10_1038_s41598_022_25731_z
crossref_primary_10_1016_j_eja_2023_126971
crossref_primary_10_7717_peerj_12601
crossref_primary_10_1016_j_tibtech_2018_11_011
crossref_primary_10_1111_nph_70011
crossref_primary_10_1016_j_scitotenv_2023_165801
crossref_primary_10_3389_fgene_2021_697090
crossref_primary_10_1016_j_apsoil_2021_104101
crossref_primary_10_1016_j_mib_2023_102286
crossref_primary_10_1016_j_apsoil_2023_105032
crossref_primary_10_1080_17429145_2022_2029963
crossref_primary_10_1016_j_apsoil_2018_08_022
crossref_primary_10_1007_s11356_020_10981_z
crossref_primary_10_3390_foods10030602
crossref_primary_10_3389_fmicb_2022_870900
crossref_primary_10_1094_PBIOMES_06_23_0046_R
crossref_primary_10_1016_j_apsoil_2019_103364
crossref_primary_10_1080_15592324_2022_2104004
crossref_primary_10_3390_microorganisms8121941
crossref_primary_10_1093_bbb_zbac181
crossref_primary_10_1016_j_chom_2018_06_011
crossref_primary_10_3390_cells11223686
crossref_primary_10_1016_j_micres_2023_127491
crossref_primary_10_1016_j_apsoil_2022_104658
crossref_primary_10_1007_s10973_020_10011_7
crossref_primary_10_1016_j_apsoil_2023_104857
crossref_primary_10_1039_D1NP00034A
crossref_primary_10_3389_fmicb_2021_628373
crossref_primary_10_3390_biology11060918
crossref_primary_10_1186_s40168_020_00892_z
crossref_primary_10_1186_s12870_024_04910_2
crossref_primary_10_1128_AEM_02135_19
crossref_primary_10_1128_spectrum_03525_22
crossref_primary_10_3389_fmicb_2020_585404
crossref_primary_10_1016_j_apsoil_2022_104420
crossref_primary_10_1016_j_envpol_2021_116758
crossref_primary_10_1111_1462_2920_15240
crossref_primary_10_1128_msystems_00198_23
crossref_primary_10_1093_femsec_fiz139
crossref_primary_10_1021_acs_jafc_0c00073
crossref_primary_10_1016_j_apsoil_2023_104842
crossref_primary_10_15377_2409_9813_2021_08_14
crossref_primary_10_1111_1365_2745_13678
crossref_primary_10_3389_fpls_2020_00291
crossref_primary_10_1128_spectrum_02333_21
crossref_primary_10_1016_S1002_0160_20_60064_9
crossref_primary_10_3389_fmicb_2022_1066807
crossref_primary_10_3390_biology14020116
crossref_primary_10_1128_spectrum_00390_22
crossref_primary_10_1016_j_soilbio_2019_05_020
crossref_primary_10_1111_1365_2745_14081
crossref_primary_10_1007_s10343_022_00746_8
crossref_primary_10_1128_msystems_00224_22
crossref_primary_10_3389_fmicb_2021_731764
Cites_doi 10.1890/14-1001.1
10.1016/j.tplants.2012.04.001
10.1016/j.copbio.2015.03.012
10.1093/jpe/rtn011
10.1007/s10529-014-1480-y
10.1038/ismej.2011.9
10.1016/j.soilbio.2012.09.003
10.1111/j.1461-0248.2012.01759.x
10.1038/nature03891
10.3892/etm.2013.1231
10.1371/journal.pbio.1001330
10.1128/JB.182.5.1215-1225.2000
10.1128/AEM.69.12.7248-7256.2003
10.1038/ismej.2010.196
10.1016/j.tibtech.2008.05.004
10.1890/09-0188.1
10.1038/ncomms9413
10.1128/AEM.68.9.4383-4389.2002
10.1016/j.pedobi.2015.03.002
10.1111/j.1461-0248.2009.01388.x
10.1186/s13073-016-0300-5
10.1111/j.1365-2745.2011.01940.x
10.1111/1462-2920.12343
10.1126/science.aad2602
10.1016/j.apsoil.2011.03.013
10.1073/pnas.1109326109
10.1016/j.biocontrol.2012.12.010
10.1073/pnas.96.4.1463
10.1016/j.mib.2014.02.002
10.1890/13-1215.1
10.1038/nrmicro1129
10.1128/AEM.71.9.4951-4959.2005
10.1111/j.1348-0421.1995.tb03275.x
10.1017/CBO9780511617799
10.1038/nature11550
10.1126/science.aab0946
10.1111/j.1752-4571.2010.00145.x
10.1038/srep15500
10.1111/jph.12504
10.1094/PHYTO-97-2-0244
10.1371/journal.pgen.1002784
10.1073/pnas.1218447110
10.1094/MPMI.1998.11.2.144
ContentType Journal Article
Copyright Copyright © 2016 Hu et al.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2016 Hu et al. 2016 Hu et al.
Copyright_xml – notice: Copyright © 2016 Hu et al.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2016 Hu et al. 2016 Hu et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
5PM
DOA
DOI 10.1128/mBio.01790-16
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Environmental Sciences
DocumentTitleAlternate Microbial Diversity and Plant Disease Suppression
EISSN 2150-7511
ExternalDocumentID oai_doaj_org_article_b9f8ad852223458c8aee9bf607c783cb
PMC5156302
oai_HAL_hal_03037359v1
27965449
10_1128_mBio_01790_16
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 105624
– fundername: Wellcome Trust
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
5PM
ID FETCH-LOGICAL-c553t-d9dd17b3bf6fa0a93450694807fc0d38005971e931638391c1bbd25a203e249f3
IEDL.DBID DOA
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:31:44 EDT 2025
Thu Aug 21 18:27:07 EDT 2025
Wed Jul 02 06:32:36 EDT 2025
Fri Jul 11 10:31:25 EDT 2025
Thu Apr 03 07:06:53 EDT 2025
Tue Jul 01 01:52:32 EDT 2025
Thu Apr 24 23:11:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2016 Hu et al.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c553t-d9dd17b3bf6fa0a93450694807fc0d38005971e931638391c1bbd25a203e249f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC5156302
Editor Nicole Dubilier, Max Planck Institute for Marine Microbiology
J.H. and Z.W. contributed equally to this article.
ORCID 0000-0002-7967-4897
0000-0002-6805-2486
OpenAccessLink https://doaj.org/article/b9f8ad852223458c8aee9bf607c783cb
PMID 27965449
PQID 1852677065
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b9f8ad852223458c8aee9bf607c783cb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5156302
hal_primary_oai_HAL_hal_03037359v1
proquest_miscellaneous_1852677065
pubmed_primary_27965449
crossref_citationtrail_10_1128_mBio_01790_16
crossref_primary_10_1128_mBio_01790_16
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161213
PublicationDateYYYYMMDD 2016-12-13
PublicationDate_xml – month: 12
  year: 2016
  text: 20161213
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
French ER (e_1_3_2_39_2) 1995; 30
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_10_2
  doi: 10.1890/14-1001.1
– ident: e_1_3_2_25_2
  doi: 10.1016/j.tplants.2012.04.001
– ident: e_1_3_2_37_2
  doi: 10.1016/j.copbio.2015.03.012
– ident: e_1_3_2_24_2
  doi: 10.1093/jpe/rtn011
– ident: e_1_3_2_35_2
  doi: 10.1007/s10529-014-1480-y
– ident: e_1_3_2_21_2
  doi: 10.1038/ismej.2011.9
– ident: e_1_3_2_41_2
  doi: 10.1016/j.soilbio.2012.09.003
– ident: e_1_3_2_20_2
  doi: 10.1111/j.1461-0248.2012.01759.x
– ident: e_1_3_2_3_2
  doi: 10.1038/nature03891
– ident: e_1_3_2_18_2
  doi: 10.3892/etm.2013.1231
– ident: e_1_3_2_29_2
  doi: 10.1371/journal.pbio.1001330
– ident: e_1_3_2_38_2
  doi: 10.1128/JB.182.5.1215-1225.2000
– ident: e_1_3_2_42_2
  doi: 10.1128/AEM.69.12.7248-7256.2003
– ident: e_1_3_2_28_2
  doi: 10.1038/ismej.2010.196
– ident: e_1_3_2_36_2
  doi: 10.1016/j.tibtech.2008.05.004
– ident: e_1_3_2_11_2
  doi: 10.1890/09-0188.1
– ident: e_1_3_2_6_2
  doi: 10.1038/ncomms9413
– ident: e_1_3_2_12_2
  doi: 10.1128/AEM.68.9.4383-4389.2002
– ident: e_1_3_2_45_2
  doi: 10.1016/j.pedobi.2015.03.002
– ident: e_1_3_2_2_2
  doi: 10.1111/j.1461-0248.2009.01388.x
– ident: e_1_3_2_4_2
  doi: 10.1186/s13073-016-0300-5
– ident: e_1_3_2_43_2
  doi: 10.1111/j.1365-2745.2011.01940.x
– volume: 30
  start-page: 126
  year: 1995
  ident: e_1_3_2_39_2
  article-title: Culture media for Ralstonia solanacearum isolation, identification and maintenance
  publication-title: Fitopatologia
– ident: e_1_3_2_32_2
  doi: 10.1111/1462-2920.12343
– ident: e_1_3_2_8_2
  doi: 10.1126/science.aad2602
– ident: e_1_3_2_14_2
  doi: 10.1016/j.apsoil.2011.03.013
– ident: e_1_3_2_5_2
  doi: 10.1073/pnas.1109326109
– ident: e_1_3_2_40_2
  doi: 10.1016/j.biocontrol.2012.12.010
– ident: e_1_3_2_9_2
  doi: 10.1073/pnas.96.4.1463
– ident: e_1_3_2_34_2
  doi: 10.1016/j.mib.2014.02.002
– ident: e_1_3_2_15_2
  doi: 10.1890/13-1215.1
– ident: e_1_3_2_13_2
  doi: 10.1038/nrmicro1129
– ident: e_1_3_2_7_2
  doi: 10.1128/AEM.71.9.4951-4959.2005
– ident: e_1_3_2_23_2
  doi: 10.1111/j.1348-0421.1995.tb03275.x
– ident: e_1_3_2_44_2
  doi: 10.1017/CBO9780511617799
– ident: e_1_3_2_26_2
  doi: 10.1038/nature11550
– ident: e_1_3_2_30_2
  doi: 10.1126/science.aab0946
– ident: e_1_3_2_33_2
  doi: 10.1111/j.1752-4571.2010.00145.x
– ident: e_1_3_2_27_2
  doi: 10.1038/srep15500
– ident: e_1_3_2_19_2
  doi: 10.1111/jph.12504
– ident: e_1_3_2_22_2
  doi: 10.1094/PHYTO-97-2-0244
– ident: e_1_3_2_17_2
  doi: 10.1371/journal.pgen.1002784
– ident: e_1_3_2_31_2
  doi: 10.1073/pnas.1218447110
– ident: e_1_3_2_16_2
  doi: 10.1094/MPMI.1998.11.2.144
SSID ssj0000331830
Score 2.5781858
Snippet Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may...
ABSTRACT Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Biodiversity
Biodiversity and Ecology
Biota
Environmental Sciences
Lycopersicon esculentum - microbiology
Microbial Consortia - physiology
Microbial Interactions
Microbiota - physiology
Plant Diseases - microbiology
Plant Diseases - prevention & control
Plant Roots - microbiology
Probiotics
Pseudomonas - physiology
Ralstonia solanacearum - physiology
Rhizosphere
Soil Microbiology
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoEVIviHfDSwYhTqQ4cRzbB4Ra6GqFKEKIlSoull_prtRmYXeL6L9nxskupMCNW-RX5BmP57M8_oaQZ5a52nLP87KJLq9sVYFJafhy3orYBADBKcr3Qz2eVO-OxfEvSqFegMu_Hu0wn9Rkcbr349vFazD4V90DGPXy7GA238OVxfKi3iJXwSlJtNGjHumnTZnj4mVrls3LvQZeKZH3g6-ZYmjkn7jzcvjkb_5odINc74Ek3e80f5Ncie0tcq1LLXlxm3z5mAiWoJK-XYde0MN2ikpe0k8YabdERoFIj2YdF9NZpCNwcqgoattAMZ3RCjqnCxyK2T-7kNn2DpmMDj-_Ged9HoXcC8FXedABZO64a-rGMqt5JfC5q2Ky8SxwhQ9QZRE1R2zGdeEL50IpbMl4hNNZw--S7Xbexl1CpdDRWVdaFpA8zDotIheNBRRSMRtiRl6s5Wh8TzKOuS5OTTpslMqg2E0SuynqjDzfNP_asWv8q-EBKmXTCEmxU8F8cWJ6GzNON8oGJRDyVEJ5ZWPUMGkmvVTcu4w8BZUOxhjvvzdYBlsdl1zo70VGnqw1bsDS8PrEtnF-vjT4zLyWeC2ckXvdCtiMVUpdi6rSGZGDtTH42bCmnU0TmzcAypqz8v7_mOEDsgOALiVWKvhDsr1anMdHAJpW7nEyh5_QsRfl
  priority: 102
  providerName: Scholars Portal
Title Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression
URI https://www.ncbi.nlm.nih.gov/pubmed/27965449
https://www.proquest.com/docview/1852677065
https://hal.science/hal-03037359
https://pubmed.ncbi.nlm.nih.gov/PMC5156302
https://doaj.org/article/b9f8ad852223458c8aee9bf607c783cb
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRq1a3VYlFfHJtdpNsksd-XQ-xUsTC4UvI13IHvb3Suwr-985k7447RXzxZVmSbHZ3ZpKZkMnvR8g7x3zjeOBl3SZfCicEDCkDdz44mdoIQXDO8v3SDK_Fp5EcbVB9YU5YDw_cC-7Im1a7qCX6MSF10C4l49uGqaA0Dx5nX_B5G4upPAdztFW2AtWs9dH0ZDL7iObHSuQ233BCGasfXMsYMyH_DDN_z5bccD-DJ-TxMm6kx_337pIHqXtKHvZMkj-fke9XGU8JKunZKtOCnndj1OmcfsXEujkCCCR6Oemhl6aJDsCnoV6o6yJF9qIFPJz3ayiSffYZst1zcj04_3Y6LJe0CWWQki_KaCKI2HMQUuuYMyA2PN2qmWoDi1zjeVNVJcMxFOOmCpX3sZauZjzBYqzle2Snm3XpJaFKmuSdrx2LiBXmvJGJy9ZB0CGYi6kgH1ZytGGJKY7UFjc2ry1qbVHsNovdVk1B3q-b3_ZgGn9reIJKWTdCDOxcAJZhl5Zh_2UZBTkElW71MTz-bLEMZjauuDQ_qoK8XWncwsDC3RLXpdn93OKp8kbhLnBBXvQWsO6rVqaRQpiCqC3b2HrZdk03GWfwbogfG87q_f_xhwfkEcRvmUep4q_IzuLuPr2GGGnh3-ThANeLUQXXS6F_AUZ5Etc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probiotic+Diversity+Enhances+Rhizosphere+Microbiome+Function+and+Plant+Disease+Suppression&rft.jtitle=mBio&rft.au=Jie+Hu&rft.au=Zhong+Wei&rft.au=Ville-Petri+Friman&rft.au=Shao-hua+Gu&rft.date=2016-12-13&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=7&rft.issue=6&rft_id=info:doi/10.1128%2FmBio.01790-16&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b9f8ad852223458c8aee9bf607c783cb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon