Cardiorespiratory fitness estimation in free-living using wearable sensors

Highlights • Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data • Estimated cardiorespiratory fitness (CRF) using contextualized heart rate in free living, without laboratory protocols • Reduced CRF estimation error by up to 22.6% co...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 68; pp. 37 - 46
Main Authors Altini, Marco, Casale, Pierluigi, Penders, Julien, Amft, Oliver
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights • Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data • Estimated cardiorespiratory fitness (CRF) using contextualized heart rate in free living, without laboratory protocols • Reduced CRF estimation error by up to 22.6% compared to other methods • The proposed CRF estimation method does not require specific exercise and was validated against VO2max
AbstractList In this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data. Our methods rely on a computational framework able to contextualize heart rate (HR) in free-living, and use context-specific HR as predictor of CRF without need for laboratory tests. In particular, we propose three estimation steps. Initially, we recognize activity primitives using accelerometer and location data. Using topic models, we group activity primitives and derive activities composites. We subsequently rank activity composites, and analyze the relation between ranked activity composites and CRF across individuals. Finally, HR data in specific activity primitives and composites is used as predictor in a hierarchical Bayesian regression model to estimate CRF level from the participant's habitual behavior in free-living. We show that by combining activity primitives and activity composites the proposed framework can adapt to the user and context, and outperforms other CRF estimation models, reducing estimation error between 10.3% and 22.6% on a study population of 46 participants. Our investigation showed that HR can be contextualized in free-living using activity primitives and activity composites and robust CRF estimation in free-living is feasible.
Highlights • Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data • Estimated cardiorespiratory fitness (CRF) using contextualized heart rate in free living, without laboratory protocols • Reduced CRF estimation error by up to 22.6% compared to other methods • The proposed CRF estimation method does not require specific exercise and was validated against VO2max
Objective In this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data. Methods Our methods rely on a computational framework able to contextualize heart rate (HR) in free-living, and use context-specific HR as predictor of CRF without need for laboratory tests. In particular, we propose three estimation steps. Initially, we recognize activity primitives using accelerometer and location data. Using topic models, we group activity primitives and derive activities composites. We subsequently rank activity composites, and analyze the relation between ranked activity composites and CRF across individuals. Finally, HR data in specific activity primitives and composites is used as predictor in a hierarchical Bayesian regression model to estimate CRF level from the participant's habitual behavior in free-living. Results We show that by combining activity primitives and activity composites the proposed framework can adapt to the user and context, and outperforms other CRF estimation models, reducing estimation error between 10.3% and 22.6% on a study population of 46 participants. Conclusions Our investigation showed that HR can be contextualized in free-living using activity primitives and activity composites and robust CRF estimation in free-living is feasible.
OBJECTIVEIn this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data.METHODSOur methods rely on a computational framework able to contextualize heart rate (HR) in free-living, and use context-specific HR as predictor of CRF without need for laboratory tests. In particular, we propose three estimation steps. Initially, we recognize activity primitives using accelerometer and location data. Using topic models, we group activity primitives and derive activities composites. We subsequently rank activity composites, and analyze the relation between ranked activity composites and CRF across individuals. Finally, HR data in specific activity primitives and composites is used as predictor in a hierarchical Bayesian regression model to estimate CRF level from the participant's habitual behavior in free-living.RESULTSWe show that by combining activity primitives and activity composites the proposed framework can adapt to the user and context, and outperforms other CRF estimation models, reducing estimation error between 10.3% and 22.6% on a study population of 46 participants.CONCLUSIONSOur investigation showed that HR can be contextualized in free-living using activity primitives and activity composites and robust CRF estimation in free-living is feasible.
•Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data.•Estimated cardiorespiratory fitness (CRF) using contextualized heart rate in free living, without laboratory protocols.•Reduced CRF estimation error by up to 22.6% compared to other methods.•The proposed CRF estimation method does not require specific exercise and was validated against VO2max. In this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data. Our methods rely on a computational framework able to contextualize heart rate (HR) in free-living, and use context-specific HR as predictor of CRF without need for laboratory tests. In particular, we propose three estimation steps. Initially, we recognize activity primitives using accelerometer and location data. Using topic models, we group activity primitives and derive activities composites. We subsequently rank activity composites, and analyze the relation between ranked activity composites and CRF across individuals. Finally, HR data in specific activity primitives and composites is used as predictor in a hierarchical Bayesian regression model to estimate CRF level from the participant's habitual behavior in free-living. We show that by combining activity primitives and activity composites the proposed framework can adapt to the user and context, and outperforms other CRF estimation models, reducing estimation error between 10.3% and 22.6% on a study population of 46 participants. Our investigation showed that HR can be contextualized in free-living using activity primitives and activity composites and robust CRF estimation in free-living is feasible.
Author Amft, Oliver
Casale, Pierluigi
Altini, Marco
Penders, Julien
Author_xml – sequence: 1
  fullname: Altini, Marco
– sequence: 2
  fullname: Casale, Pierluigi
– sequence: 3
  fullname: Penders, Julien
– sequence: 4
  fullname: Amft, Oliver
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26948954$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhq2qqN0W_gFCOXJJGNuJ7VyQ0Ip-oEocgLPlOGPkJWsvdlK0_x5H2164lIutmXlmxp53rsh5iAEJeUuhoUDFh11j0rzHsWHFaoA1AOyMbKiSvGZKwDnZQM95zUUnL8lVzjsAkC0VF-SSib5VfdduyJetSaOPCfPBJzPHdKycnwPmXGGe_d7MPobKh8olxHryjz78rJa8nn_QJDNMWGUMOab8mrxyZsr45um-Jj9uPn_f3tUPX2_vt58eatt1fK5H7gbFewPKgGiLyw1ctVZaYXshLJpiyoEPjJtRDsqhdeBkiYCgnPbAr8n7U91Dir-X8kq999niNJmAccmaKlCUUSHUy6hUsldU9OJ_UMZoK-mKtifUpphzQqcPqUwqHTUFvWqjd_qkjV610cB00aakvXvqsAxr7DnpWYwCfDwBWKb36DHpbD0Gi6NPaGc9Rv9Sh38L2MkHb830C4-Yd3FJoSijqc4lQX9b92Ndj_IngK5X_C9pabhB
CitedBy_id crossref_primary_10_1155_2017_4593956
crossref_primary_10_2196_13327
crossref_primary_10_1371_journal_pone_0191875
crossref_primary_10_1109_MPRV_2020_2997616
crossref_primary_10_3390_s24020482
crossref_primary_10_3390_s21175726
crossref_primary_10_3389_fbioe_2018_00057
crossref_primary_10_3390_s20123601
crossref_primary_10_1098_rsos_230806
crossref_primary_10_3390_app13074175
crossref_primary_10_1038_s41746_022_00719_1
crossref_primary_10_2196_29434
crossref_primary_10_1016_j_smhl_2019_100100
Cites_doi 10.1177/1559827610395487
10.1002/j.1550-8528.1995.tb00007.x
10.1152/japplphysiol.00150.2009
10.1007/s00421-003-0988-y
10.1177/1089313X0400800301
10.1109/JBHI.2014.2313039
10.1177/1359786810382057
10.1200/JCO.2005.04.106
10.1007/s40279-013-0068-3
10.1016/j.artmed.2008.06.004
10.1016/j.artmed.2012.12.003
10.1249/MSS.0b013e3181c37458
10.1016/j.artmed.2007.11.006
10.1007/s00421-008-0902-8
10.1016/j.artmed.2012.09.003
10.1097/00149831-200504000-00004
10.1152/jappl.2000.89.5.1825
10.1016/j.pmcj.2014.05.007
10.1249/01.mss.0000228942.55152.84
10.1001/jama.282.16.1547
10.1093/ptj/80.8.782
10.1016/j.artmed.2007.11.004
10.1016/j.jbi.2015.06.008
10.1249/00005768-199012000-00021
10.1109/10.554760
10.1001/jama.1996.03540030039029
10.1152/jappl.1954.7.2.218
10.1109/JBHI.2015.2418256
10.1249/01.MSS.0000161805.61893.C0
10.1249/MSS.0b013e31821d3f6f
10.1097/00005768-200305001-01078
10.1109/TBME.2011.2159840
10.1055/s-2008-1025839
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1016/j.artmed.2016.02.002
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE

Engineering Research Database
Computer and Information Systems Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
EndPage 46
ExternalDocumentID 10_1016_j_artmed_2016_02_002
26948954
S0933365716300598
1_s2_0_S0933365716300598
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77K
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABXDB
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AEVXI
AFCTW
AFJKZ
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ACRPL
ADNMO
CITATION
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c553t-d3fb839a08a064553fb384c7c6c966ceab387b3b23ad7b8fecf0f766c06131903
IEDL.DBID AIKHN
ISSN 0933-3657
IngestDate Fri Oct 25 22:43:34 EDT 2024
Fri Oct 25 21:31:01 EDT 2024
Sat Oct 26 00:13:32 EDT 2024
Fri Dec 06 05:48:19 EST 2024
Sat Sep 28 07:57:08 EDT 2024
Fri Feb 23 02:25:16 EST 2024
Tue Oct 15 23:01:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Bayesian models
Cardiorespiratory fitness
Topic models
Context recognition
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c553t-d3fb839a08a064553fb384c7c6c966ceab387b3b23ad7b8fecf0f766c06131903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26948954
PQID 1782214716
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1808121668
proquest_miscellaneous_1787981696
proquest_miscellaneous_1782214716
crossref_primary_10_1016_j_artmed_2016_02_002
pubmed_primary_26948954
elsevier_sciencedirect_doi_10_1016_j_artmed_2016_02_002
elsevier_clinicalkeyesjournals_1_s2_0_S0933365716300598
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Noonan, Dean (bib0115) 2000; 80
Chan, Estève, Fourniols, Escriba, Campo (bib0010) 2012; 56
Nes, Janszky, Vatten, Nilsen, Aspenes, Wisløff (bib0125) 2011; 43
Esco, Mugu, Williford, McHugh, Bloomquist (bib0135) 2011; 14
Ruiz, Ramirez-Lechuga, Ortega, Castro-Pinero, Benitez, Arauzo-Azofra (bib0145) 2008; 44
Redding, Wyon, Shearman, Doggart (bib0200) 2004; 8
Westerterp, Wouters, van Marken (bib0190) 1995; 3
Lee, Artero, Sui, Blair (bib0040) 2010; 24
Altini, Penders, Amft (bib0095) 2012
Zheng, Zhang, Xie, Ma (bib0195) 2009
Marshall, Ramirez (bib0005) 2011; 5
Crouter, Bassett (bib0075) 2010; 42
Amft, Lombriser, Stiefmeier, Tröster (bib0160) 2007
Bonomi (bib0085) 2009; 107
Sartor, Vernillo, de Morree, Bonomi, La Torre, Kubis (bib0050) 2013; 43
Tapia (bib0090) 2008
Buttussi, Chittaro (bib0015) 2008; 42
Wu, Bui, Batalin, Au, Binney, Kaiser (bib0020) 2008; 42
Kuipers, Verstappen, Keizer, Geurten, Van Kranenburg (bib0185) 1985; 6
Altini, Penders, Vullers, Amft (bib0100) 2015; 19
Crumpton, Williford, O’Mailia, Olson, Woolen (bib0140) 2003; 35
Plasqui, Westerterp (bib0045) 2005; 37
Bao, Intille (bib0080) 2004
Altini, Casale, Penders, Amft (bib0180) 2015; 19
Seiter, Amft, Rossi, Tröster (bib0175) 2014; 15
Blei, Ng, Jordan (bib0165) 2003; 3
Plasqui, Westerterp (bib0130) 2006; 38
Loimaala, Huikuri, Oja, Pasanen, Vuori (bib0205) 2000; 89
Wei, Kampert, Barlow, Nichaman, Gibbons, Paffenbarger (bib0060) 1999; 282
Vathsangam, Emken, Schroeder, Spruijt-Metz, Sukhatme (bib0035) 2011; 58
Blair, Kampert, Kohl, Barlow, Macera, Paffenbarger (bib0065) 1996; 276
Bennett, Hauser (bib0025) 2013; 57
Bouten, Koekkoek, Verduin, Kodde, Janssen (bib0030) 1997; 44
Uth, Sørensen, Overgaard, Pedersen (bib0210) 2004; 91
Altini, Casale, Penders, Amft (bib0105) 2015; 56
Cao, Miyatake, Higuchi, Ishikawa-Takata, Miyachi, Tabata (bib0150) 2009; 105
Huynh, Fritz, Schiele (bib0170) 2008
Thorsen, Skovlund, Strømme, Hornslien, Dahl, Fosså (bib0055) 2005; 23
Åstrand, Ryhming (bib0070) 1954; 7
Tönis, Gorter, Vollenbroek-Hutten, Hermens (bib0155) 2012; 52
Vanhees, Lefevre, Philippaerts, Martens, Huygens, Troosters (bib0110) 2005; 12
Jackson, Blair, Mahar, Wier, Ross, Stuteville (bib0120) 1990; 22
Plasqui (10.1016/j.artmed.2016.02.002_bib0130) 2006; 38
Chan (10.1016/j.artmed.2016.02.002_bib0010) 2012; 56
Bennett (10.1016/j.artmed.2016.02.002_bib0025) 2013; 57
Blei (10.1016/j.artmed.2016.02.002_bib0165) 2003; 3
Tönis (10.1016/j.artmed.2016.02.002_bib0155) 2012; 52
Sartor (10.1016/j.artmed.2016.02.002_bib0050) 2013; 43
Vathsangam (10.1016/j.artmed.2016.02.002_bib0035) 2011; 58
Buttussi (10.1016/j.artmed.2016.02.002_bib0015) 2008; 42
Noonan (10.1016/j.artmed.2016.02.002_bib0115) 2000; 80
Bouten (10.1016/j.artmed.2016.02.002_bib0030) 1997; 44
Marshall (10.1016/j.artmed.2016.02.002_bib0005) 2011; 5
Plasqui (10.1016/j.artmed.2016.02.002_bib0045) 2005; 37
Seiter (10.1016/j.artmed.2016.02.002_bib0175) 2014; 15
Jackson (10.1016/j.artmed.2016.02.002_bib0120) 1990; 22
Wu (10.1016/j.artmed.2016.02.002_bib0020) 2008; 42
Lee (10.1016/j.artmed.2016.02.002_bib0040) 2010; 24
Altini (10.1016/j.artmed.2016.02.002_bib0100) 2015; 19
Crouter (10.1016/j.artmed.2016.02.002_bib0075) 2010; 42
Altini (10.1016/j.artmed.2016.02.002_bib0180) 2015; 19
Kuipers (10.1016/j.artmed.2016.02.002_bib0185) 1985; 6
Esco (10.1016/j.artmed.2016.02.002_bib0135) 2011; 14
Zheng (10.1016/j.artmed.2016.02.002_bib0195) 2009
Loimaala (10.1016/j.artmed.2016.02.002_bib0205) 2000; 89
Amft (10.1016/j.artmed.2016.02.002_bib0160) 2007
Blair (10.1016/j.artmed.2016.02.002_bib0065) 1996; 276
Bonomi (10.1016/j.artmed.2016.02.002_bib0085) 2009; 107
Huynh (10.1016/j.artmed.2016.02.002_bib0170) 2008
Ruiz (10.1016/j.artmed.2016.02.002_bib0145) 2008; 44
Cao (10.1016/j.artmed.2016.02.002_bib0150) 2009; 105
Nes (10.1016/j.artmed.2016.02.002_bib0125) 2011; 43
Vanhees (10.1016/j.artmed.2016.02.002_bib0110) 2005; 12
Altini (10.1016/j.artmed.2016.02.002_bib0105) 2015; 56
Redding (10.1016/j.artmed.2016.02.002_bib0200) 2004; 8
Wei (10.1016/j.artmed.2016.02.002_bib0060) 1999; 282
Thorsen (10.1016/j.artmed.2016.02.002_bib0055) 2005; 23
Altini (10.1016/j.artmed.2016.02.002_bib0095) 2012
Crumpton (10.1016/j.artmed.2016.02.002_bib0140) 2003; 35
Westerterp (10.1016/j.artmed.2016.02.002_bib0190) 1995; 3
Uth (10.1016/j.artmed.2016.02.002_bib0210) 2004; 91
Åstrand (10.1016/j.artmed.2016.02.002_bib0070) 1954; 7
Tapia (10.1016/j.artmed.2016.02.002_bib0090) 2008
Bao (10.1016/j.artmed.2016.02.002_bib0080) 2004
References_xml – volume: 105
  start-page: 289
  year: 2009
  end-page: 296
  ident: bib0150
  article-title: Prediction of VO
  publication-title: Eur J Appl Physiol
  contributor:
    fullname: Tabata
– volume: 19
  start-page: 219
  year: 2015
  end-page: 226
  ident: bib0100
  article-title: Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning
  publication-title: IEEE J Biomed Health Inform
  contributor:
    fullname: Amft
– volume: 3
  start-page: 49
  year: 1995
  end-page: 57
  ident: bib0190
  article-title: The Maastricht protocol for the measurement of body composition and energy expenditure with labeled water
  publication-title: Obesity Res
  contributor:
    fullname: van Marken
– volume: 15
  start-page: 215
  year: 2014
  end-page: 227
  ident: bib0175
  article-title: Discovery of activity composites using topic models: an analysis of unsupervised methods
  publication-title: Pervasive Mob Comput
  contributor:
    fullname: Tröster
– volume: 282
  start-page: 1547
  year: 1999
  end-page: 1553
  ident: bib0060
  article-title: Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men
  publication-title: J Am Med Assoc
  contributor:
    fullname: Paffenbarger
– volume: 12
  start-page: 102
  year: 2005
  end-page: 114
  ident: bib0110
  article-title: How to assess physical activity? How to assess physical fitness?
  publication-title: Eur J Cardiovasc Prev Rehabil
  contributor:
    fullname: Troosters
– volume: 276
  start-page: 205
  year: 1996
  end-page: 210
  ident: bib0065
  article-title: Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women
  publication-title: J Am Med Assoc
  contributor:
    fullname: Paffenbarger
– volume: 6
  start-page: 197
  year: 1985
  end-page: 201
  ident: bib0185
  article-title: Variability of aerobic performance in the laboratory and its physiologic correlates
  publication-title: Int J Sports Med
  contributor:
    fullname: Van Kranenburg
– year: 2008
  ident: bib0090
  article-title: Using machine learning for real-time activity recognition and estimation of energy expenditure
  contributor:
    fullname: Tapia
– start-page: 126
  year: 2007
  end-page: 141
  ident: bib0160
  article-title: Recognition of user activity sequences using distributed event detection
  publication-title: Smart Sensing and Context
  contributor:
    fullname: Tröster
– volume: 24
  start-page: 27
  year: 2010
  end-page: 35
  ident: bib0040
  article-title: Review: mortality trends in the general population: the importance of cardiorespiratory fitness
  publication-title: J Psychopharmacol
  contributor:
    fullname: Blair
– volume: 56
  start-page: 195
  year: 2015
  end-page: 204
  ident: bib0105
  article-title: Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models
  publication-title: J Biomed Inform
  contributor:
    fullname: Amft
– volume: 80
  start-page: 782
  year: 2000
  end-page: 807
  ident: bib0115
  article-title: Submaximal exercise testing: clinical application and interpretation
  publication-title: Phys Therapy
  contributor:
    fullname: Dean
– volume: 42
  start-page: 153
  year: 2008
  end-page: 163
  ident: bib0015
  article-title: Mopet: a context-aware and user-adaptive wearable system for fitness training
  publication-title: Artif Intell Med
  contributor:
    fullname: Chittaro
– volume: 89
  start-page: 1825
  year: 2000
  end-page: 1829
  ident: bib0205
  article-title: Controlled 5-mo aerobic training improves heart rate but not heart rate variability or baroreflex sensitivity
  publication-title: J Appl Physiol
  contributor:
    fullname: Vuori
– volume: 22
  start-page: 863
  year: 1990
  end-page: 870
  ident: bib0120
  article-title: Prediction of functional aerobic capacity without exercise testing
  publication-title: Med Sci Sports Exerc
  contributor:
    fullname: Stuteville
– start-page: 1
  year: 2004
  end-page: 17
  ident: bib0080
  article-title: Activity recognition from user-annotated acceleration data
  publication-title: Pervasive '04, vol. 3001
  contributor:
    fullname: Intille
– volume: 52
  start-page: 337
  year: 2012
  end-page: 343
  ident: bib0155
  article-title: Comparing VO
  publication-title: J Sports Med Phys Fit
  contributor:
    fullname: Hermens
– volume: 58
  start-page: 2804
  year: 2011
  end-page: 2815
  ident: bib0035
  article-title: Determining energy expenditure from treadmill walking using hip-worn inertial sensors: an experimental study
  publication-title: IEEE Trans Biomed Eng
  contributor:
    fullname: Sukhatme
– start-page: 791
  year: 2009
  end-page: 800
  ident: bib0195
  article-title: Mining interesting locations and travel sequences from GPS trajectories
  publication-title: Proceedings of the 18th International Conference on World Wide Web
  contributor:
    fullname: Ma
– volume: 5
  start-page: 518
  year: 2011
  end-page: 530
  ident: bib0005
  article-title: Reducing sedentary behavior a new paradigm in physical activity promotion
  publication-title: Am J Lifestyle Med
  contributor:
    fullname: Ramirez
– volume: 44
  start-page: 233
  year: 2008
  end-page: 245
  ident: bib0145
  article-title: Artificial neural network-based equation for estimating VO
  publication-title: Artif Intell Med
  contributor:
    fullname: Arauzo-Azofra
– volume: 43
  start-page: 865
  year: 2013
  end-page: 873
  ident: bib0050
  article-title: Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings
  publication-title: Sports Med
  contributor:
    fullname: Kubis
– volume: 7
  start-page: 218
  year: 1954
  end-page: 221
  ident: bib0070
  article-title: A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work
  publication-title: J Appl Physiol
  contributor:
    fullname: Ryhming
– volume: 23
  start-page: 2378
  year: 2005
  end-page: 2388
  ident: bib0055
  article-title: Effectiveness of physical activity on cardiorespiratory fitness and health-related quality of life in young and middle-aged cancer patients shortly after chemotherapy
  publication-title: J Clin Oncol
  contributor:
    fullname: Fosså
– volume: 42
  start-page: 137
  year: 2008
  end-page: 152
  ident: bib0020
  article-title: Medic: medical embedded device for individualized care
  publication-title: Artif Intell Med
  contributor:
    fullname: Kaiser
– volume: 57
  start-page: 9
  year: 2013
  end-page: 19
  ident: bib0025
  article-title: Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach
  publication-title: Artif Intell Med
  contributor:
    fullname: Hauser
– volume: 42
  start-page: 1029
  year: 2010
  end-page: 1037
  ident: bib0075
  article-title: A refined 2-regression model for the actigraph accelerometer
  publication-title: Med Sci Sports Exerc
  contributor:
    fullname: Bassett
– volume: 8
  start-page: 69
  year: 2004
  end-page: 72
  ident: bib0200
  article-title: Validity of using heart rate as a predictor of oxygen consumption in dance
  publication-title: J Dance Med Sci
  contributor:
    fullname: Doggart
– volume: 35
  start-page: S193
  year: 2003
  ident: bib0140
  article-title: Validity of the polar m52 heart rate monitor in predicting VO
  publication-title: Med Sci Sports Exerc
  contributor:
    fullname: Woolen
– volume: 107
  start-page: 655
  year: 2009
  end-page: 661
  ident: bib0085
  article-title: Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer
  publication-title: J Appl Physiol
  contributor:
    fullname: Bonomi
– volume: 43
  start-page: 2024
  year: 2011
  end-page: 2030
  ident: bib0125
  article-title: Estimating VO
  publication-title: Med Sci Sports Exerc
  contributor:
    fullname: Wisløff
– volume: 91
  start-page: 111
  year: 2004
  end-page: 115
  ident: bib0210
  article-title: Estimation of VO
  publication-title: Eur J Appl Physiol
  contributor:
    fullname: Pedersen
– volume: 14
  start-page: 31
  year: 2011
  end-page: 37
  ident: bib0135
  article-title: Cross-validation of the polar fitness test via the polar f11 heart rate monitor in predicting VO
  publication-title: J Exerc Physiol
  contributor:
    fullname: Bloomquist
– start-page: 10
  year: 2008
  end-page: 19
  ident: bib0170
  article-title: Discovery of activity patterns using topic models
  publication-title: Proceedings of the 10th International Conference on Ubiquitous Computing
  contributor:
    fullname: Schiele
– year: 2012
  ident: bib0095
  article-title: Energy expenditure estimation using wearable sensors: a new methodology for activity-specific models
  publication-title: Proceedings of the Conference on Wireless Health, WH '12
  contributor:
    fullname: Amft
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  ident: bib0165
  article-title: Latent Dirichlet allocation
  publication-title: J Mach Learn Res
  contributor:
    fullname: Jordan
– volume: 19
  start-page: 1577
  year: 2015
  end-page: 1586
  ident: bib0180
  article-title: Personalization of energy expenditure estimation in free living using topic models
  publication-title: IEEE J Biomed Health Inform
  contributor:
    fullname: Amft
– volume: 44
  start-page: 136
  year: 1997
  end-page: 147
  ident: bib0030
  article-title: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity
  publication-title: IEEE Trans Biomed Eng
  contributor:
    fullname: Janssen
– volume: 37
  start-page: 872
  year: 2005
  end-page: 876
  ident: bib0045
  article-title: Accelerometry and heart rate as a measure of physical fitness: proof of concept
  publication-title: Med Sci Sports Exerc
  contributor:
    fullname: Westerterp
– volume: 38
  start-page: 1510
  year: 2006
  end-page: 1514
  ident: bib0130
  article-title: Accelerometry and heart rate as a measure of physical fitness: cross-validation
  publication-title: Med Sci Sports Exerc
  contributor:
    fullname: Westerterp
– volume: 56
  start-page: 137
  year: 2012
  end-page: 156
  ident: bib0010
  article-title: Smart wearable systems: current status and future challenges
  publication-title: Artif Intell Med
  contributor:
    fullname: Campo
– volume: 5
  start-page: 518
  issue: 6
  year: 2011
  ident: 10.1016/j.artmed.2016.02.002_bib0005
  article-title: Reducing sedentary behavior a new paradigm in physical activity promotion
  publication-title: Am J Lifestyle Med
  doi: 10.1177/1559827610395487
  contributor:
    fullname: Marshall
– start-page: 126
  year: 2007
  ident: 10.1016/j.artmed.2016.02.002_bib0160
  article-title: Recognition of user activity sequences using distributed event detection
  contributor:
    fullname: Amft
– volume: 3
  start-page: 49
  year: 1995
  ident: 10.1016/j.artmed.2016.02.002_bib0190
  article-title: The Maastricht protocol for the measurement of body composition and energy expenditure with labeled water
  publication-title: Obesity Res
  doi: 10.1002/j.1550-8528.1995.tb00007.x
  contributor:
    fullname: Westerterp
– start-page: 1
  year: 2004
  ident: 10.1016/j.artmed.2016.02.002_bib0080
  article-title: Activity recognition from user-annotated acceleration data
  contributor:
    fullname: Bao
– volume: 107
  start-page: 655
  issue: 3
  year: 2009
  ident: 10.1016/j.artmed.2016.02.002_bib0085
  article-title: Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00150.2009
  contributor:
    fullname: Bonomi
– year: 2008
  ident: 10.1016/j.artmed.2016.02.002_bib0090
  contributor:
    fullname: Tapia
– volume: 91
  start-page: 111
  issue: 1
  year: 2004
  ident: 10.1016/j.artmed.2016.02.002_bib0210
  article-title: Estimation of VO2max from the ratio between hrmax and hrrest – the heart rate ratio method
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-003-0988-y
  contributor:
    fullname: Uth
– volume: 14
  start-page: 31
  year: 2011
  ident: 10.1016/j.artmed.2016.02.002_bib0135
  article-title: Cross-validation of the polar fitness test via the polar f11 heart rate monitor in predicting VO2max
  publication-title: J Exerc Physiol
  contributor:
    fullname: Esco
– volume: 8
  start-page: 69
  issue: 3
  year: 2004
  ident: 10.1016/j.artmed.2016.02.002_bib0200
  article-title: Validity of using heart rate as a predictor of oxygen consumption in dance
  publication-title: J Dance Med Sci
  doi: 10.1177/1089313X0400800301
  contributor:
    fullname: Redding
– volume: 19
  start-page: 219
  issue: 1
  year: 2015
  ident: 10.1016/j.artmed.2016.02.002_bib0100
  article-title: Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2014.2313039
  contributor:
    fullname: Altini
– volume: 24
  start-page: 27
  issue: 4 suppl
  year: 2010
  ident: 10.1016/j.artmed.2016.02.002_bib0040
  article-title: Review: mortality trends in the general population: the importance of cardiorespiratory fitness
  publication-title: J Psychopharmacol
  doi: 10.1177/1359786810382057
  contributor:
    fullname: Lee
– volume: 23
  start-page: 2378
  issue: 10
  year: 2005
  ident: 10.1016/j.artmed.2016.02.002_bib0055
  article-title: Effectiveness of physical activity on cardiorespiratory fitness and health-related quality of life in young and middle-aged cancer patients shortly after chemotherapy
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2005.04.106
  contributor:
    fullname: Thorsen
– volume: 43
  start-page: 865
  issue: 9
  year: 2013
  ident: 10.1016/j.artmed.2016.02.002_bib0050
  article-title: Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings
  publication-title: Sports Med
  doi: 10.1007/s40279-013-0068-3
  contributor:
    fullname: Sartor
– volume: 44
  start-page: 233
  issue: 3
  year: 2008
  ident: 10.1016/j.artmed.2016.02.002_bib0145
  article-title: Artificial neural network-based equation for estimating VO2max from the 20m shuttle run test in adolescents
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2008.06.004
  contributor:
    fullname: Ruiz
– volume: 57
  start-page: 9
  issue: 1
  year: 2013
  ident: 10.1016/j.artmed.2016.02.002_bib0025
  article-title: Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2012.12.003
  contributor:
    fullname: Bennett
– volume: 42
  start-page: 1029
  issue: 5
  year: 2010
  ident: 10.1016/j.artmed.2016.02.002_bib0075
  article-title: A refined 2-regression model for the actigraph accelerometer
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e3181c37458
  contributor:
    fullname: Crouter
– start-page: 10
  year: 2008
  ident: 10.1016/j.artmed.2016.02.002_bib0170
  article-title: Discovery of activity patterns using topic models
  contributor:
    fullname: Huynh
– volume: 42
  start-page: 137
  issue: 2
  year: 2008
  ident: 10.1016/j.artmed.2016.02.002_bib0020
  article-title: Medic: medical embedded device for individualized care
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.11.006
  contributor:
    fullname: Wu
– volume: 105
  start-page: 289
  issue: 2
  year: 2009
  ident: 10.1016/j.artmed.2016.02.002_bib0150
  article-title: Prediction of VO2max with daily step counts for Japanese adult women
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-008-0902-8
  contributor:
    fullname: Cao
– volume: 56
  start-page: 137
  issue: 3
  year: 2012
  ident: 10.1016/j.artmed.2016.02.002_bib0010
  article-title: Smart wearable systems: current status and future challenges
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2012.09.003
  contributor:
    fullname: Chan
– volume: 12
  start-page: 102
  issue: 2
  year: 2005
  ident: 10.1016/j.artmed.2016.02.002_bib0110
  article-title: How to assess physical activity? How to assess physical fitness?
  publication-title: Eur J Cardiovasc Prev Rehabil
  doi: 10.1097/00149831-200504000-00004
  contributor:
    fullname: Vanhees
– volume: 89
  start-page: 1825
  issue: 5
  year: 2000
  ident: 10.1016/j.artmed.2016.02.002_bib0205
  article-title: Controlled 5-mo aerobic training improves heart rate but not heart rate variability or baroreflex sensitivity
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.2000.89.5.1825
  contributor:
    fullname: Loimaala
– volume: 15
  start-page: 215
  year: 2014
  ident: 10.1016/j.artmed.2016.02.002_bib0175
  article-title: Discovery of activity composites using topic models: an analysis of unsupervised methods
  publication-title: Pervasive Mob Comput
  doi: 10.1016/j.pmcj.2014.05.007
  contributor:
    fullname: Seiter
– volume: 38
  start-page: 1510
  issue: 8
  year: 2006
  ident: 10.1016/j.artmed.2016.02.002_bib0130
  article-title: Accelerometry and heart rate as a measure of physical fitness: cross-validation
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/01.mss.0000228942.55152.84
  contributor:
    fullname: Plasqui
– volume: 282
  start-page: 1547
  issue: 16
  year: 1999
  ident: 10.1016/j.artmed.2016.02.002_bib0060
  article-title: Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.282.16.1547
  contributor:
    fullname: Wei
– volume: 80
  start-page: 782
  issue: 8
  year: 2000
  ident: 10.1016/j.artmed.2016.02.002_bib0115
  article-title: Submaximal exercise testing: clinical application and interpretation
  publication-title: Phys Therapy
  doi: 10.1093/ptj/80.8.782
  contributor:
    fullname: Noonan
– volume: 42
  start-page: 153
  issue: 2
  year: 2008
  ident: 10.1016/j.artmed.2016.02.002_bib0015
  article-title: Mopet: a context-aware and user-adaptive wearable system for fitness training
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.11.004
  contributor:
    fullname: Buttussi
– year: 2012
  ident: 10.1016/j.artmed.2016.02.002_bib0095
  article-title: Energy expenditure estimation using wearable sensors: a new methodology for activity-specific models
  contributor:
    fullname: Altini
– volume: 56
  start-page: 195
  year: 2015
  ident: 10.1016/j.artmed.2016.02.002_bib0105
  article-title: Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.06.008
  contributor:
    fullname: Altini
– volume: 22
  start-page: 863
  issue: 6
  year: 1990
  ident: 10.1016/j.artmed.2016.02.002_bib0120
  article-title: Prediction of functional aerobic capacity without exercise testing
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/00005768-199012000-00021
  contributor:
    fullname: Jackson
– volume: 44
  start-page: 136
  issue: 3
  year: 1997
  ident: 10.1016/j.artmed.2016.02.002_bib0030
  article-title: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.554760
  contributor:
    fullname: Bouten
– volume: 276
  start-page: 205
  issue: 3
  year: 1996
  ident: 10.1016/j.artmed.2016.02.002_bib0065
  article-title: Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.1996.03540030039029
  contributor:
    fullname: Blair
– volume: 7
  start-page: 218
  issue: 2
  year: 1954
  ident: 10.1016/j.artmed.2016.02.002_bib0070
  article-title: A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1954.7.2.218
  contributor:
    fullname: Åstrand
– volume: 19
  start-page: 1577
  issue: 5
  year: 2015
  ident: 10.1016/j.artmed.2016.02.002_bib0180
  article-title: Personalization of energy expenditure estimation in free living using topic models
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2015.2418256
  contributor:
    fullname: Altini
– volume: 3
  start-page: 993
  year: 2003
  ident: 10.1016/j.artmed.2016.02.002_bib0165
  article-title: Latent Dirichlet allocation
  publication-title: J Mach Learn Res
  contributor:
    fullname: Blei
– volume: 37
  start-page: 872
  issue: 5
  year: 2005
  ident: 10.1016/j.artmed.2016.02.002_bib0045
  article-title: Accelerometry and heart rate as a measure of physical fitness: proof of concept
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/01.MSS.0000161805.61893.C0
  contributor:
    fullname: Plasqui
– volume: 43
  start-page: 2024
  issue: 11
  year: 2011
  ident: 10.1016/j.artmed.2016.02.002_bib0125
  article-title: Estimating VO2 peak from a nonexercise prediction model: the hunt study, Norway
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e31821d3f6f
  contributor:
    fullname: Nes
– volume: 35
  start-page: S193
  issue: 5
  year: 2003
  ident: 10.1016/j.artmed.2016.02.002_bib0140
  article-title: Validity of the polar m52 heart rate monitor in predicting VO2max
  publication-title: Med Sci Sports Exerc
  doi: 10.1097/00005768-200305001-01078
  contributor:
    fullname: Crumpton
– volume: 58
  start-page: 2804
  issue: 10
  year: 2011
  ident: 10.1016/j.artmed.2016.02.002_bib0035
  article-title: Determining energy expenditure from treadmill walking using hip-worn inertial sensors: an experimental study
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2159840
  contributor:
    fullname: Vathsangam
– volume: 52
  start-page: 337
  issue: 4
  year: 2012
  ident: 10.1016/j.artmed.2016.02.002_bib0155
  article-title: Comparing VO2max determined by using the relation between heart rate and accelerometry with submaximal estimated VO2max
  publication-title: J Sports Med Phys Fit
  contributor:
    fullname: Tönis
– start-page: 791
  year: 2009
  ident: 10.1016/j.artmed.2016.02.002_bib0195
  article-title: Mining interesting locations and travel sequences from GPS trajectories
  contributor:
    fullname: Zheng
– volume: 6
  start-page: 197
  issue: 4
  year: 1985
  ident: 10.1016/j.artmed.2016.02.002_bib0185
  article-title: Variability of aerobic performance in the laboratory and its physiologic correlates
  publication-title: Int J Sports Med
  doi: 10.1055/s-2008-1025839
  contributor:
    fullname: Kuipers
SSID ssj0007416
Score 2.2890396
Snippet Highlights • Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data • Estimated...
•Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data.•Estimated cardiorespiratory fitness...
In this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data. Our methods...
OBJECTIVEIn this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor...
Objective In this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data....
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 37
SubjectTerms Adult
Artificial Intelligence
Bayesian models
Biosensing Techniques
Cardiorespiratory Fitness
Context recognition
Estimates
Expert systems
Female
Fitness
Heart rate
Humans
Internal Medicine
Male
Mathematical models
Other
Sensors
Topic models
Wearable
Young Adult
Title Cardiorespiratory fitness estimation in free-living using wearable sensors
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0933365716300598
https://dx.doi.org/10.1016/j.artmed.2016.02.002
https://www.ncbi.nlm.nih.gov/pubmed/26948954
https://search.proquest.com/docview/1782214716
https://search.proquest.com/docview/1787981696
https://search.proquest.com/docview/1808121668
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkBCXQinPtshIvZrdxInjHFerrrZUcClI3Czba6MglEWbRb3x25lJHNqqAiSOTuzYGntmvsk8DPDNk3MuWMOlCQXPhPS8dJnkUjrjTWlcUJTvfH4hp1fZ2XV-vQLjPheGwiqj7O9keiut45NBpObgvqoGv8gWFzJHwE8l10u1CuuojshXuz768XN68SyQCXS0JfeE4DSgz6Brw7zwk6h2KMZLdsU705c01EsItNVEk234ECEkG3Wr_Agrvt6Brf56Bha5dQc2zqPf_BOcjduw08UfvzoL1ZKkHKMqG136IqtqFhbe87uK_jIwCom_Yb-RFSi9ijVo8M4XzS5cTb5fjqc83qLAXZ6LJZ-JYBEFmaEyVJsux6ZQmSucdGjqOG-wWVhhU2FmhVXBuzAMBb4hTY9wQezBWj2v_QEwhF42lcKqzKRZgcZzZoeOauLNclvOjDoE3lNO33fFMnQfRXarO0prorQephopfQhFT17dJ4Ki6PJN5KNGJ7rBnvq_vf575D_HRaMmeGPOk34fNXISuUdM7ecPOBeBpQSVtXy1T1GqRJav9aHLTNJESlzlfndQnqlBecOqzLOjd6__M2xSqwuD-wJry8WD_4q4aGmPYfX0MTmOp_8JU2MMqw
link.rule.ids 314,780,784,4502,24116,27924,27925,45585,45679
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLeAScDL-BwwNggSr-HumjRNH6fT0I1xvAASb1GSS1DR1EPXQ7ztb5_dD2BCMGmPadwmcmL758Z2AI4DHc5FZ7myMeNSqMBzLxVXyttgc-ujpnzn8YUaXcuzm_RmAYZdLgyFVba6v9HptbZun_Rabvbui6J3Sb64UCkCfiq5nutF-CBTRL-4qU9-P8d5EOSoC-4JwYm8y5-rg7zwg2h0KMJLNaU7k7fs01v4s7ZDp-vwsQWQ7Fszxw1YCOUmrHWXM7BWVjdhedyemm_B2bAOOp09n6qzWMxJxzGqsdEkL7KiZHEWAv9V0D8GRgHxt-wRBYGSq1iF7u50Vm3D9en3q-GIt3cocJ-mYs4nIjrEQLavLVWmS7EptPSZVx4dHR8sNjMnXCLsJHM6Bh_7McMesvMIFsQnWCqnZdgFhsDLJUo4LW0iM3Sdpet7qog3SV0-sXoPeMc5c9-UyjBdDNmdaThtiNOmnxjk9B5kHXtNlwaKiitUrRRVZmAqpDSvVvrlm39tFoN24B9jHnXraFCO6HDElmH6gGMRVBqgqVbv0mS5Hqj8PRq6yiQZKIWz3Gk2yhM3KGtY56n8_N_zP4SV0dX43Jz_uPi5D6vU0wTEfYGl-ewhfEWENHcHtQT8AcVHDYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiorespiratory+fitness+estimation+in+free-living+using+wearable+sensors&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Altini%2C+Marco&rft.au=Casale%2C+Pierluigi&rft.au=Penders%2C+Julien&rft.au=Amft%2C+Oliver&rft.date=2016-03-01&rft.issn=0933-3657&rft.volume=68&rft.spage=37&rft.epage=46&rft_id=info:doi/10.1016%2Fj.artmed.2016.02.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_artmed_2016_02_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon