Cardiorespiratory fitness estimation in free-living using wearable sensors
Highlights • Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data • Estimated cardiorespiratory fitness (CRF) using contextualized heart rate in free living, without laboratory protocols • Reduced CRF estimation error by up to 22.6% co...
Saved in:
Published in | Artificial intelligence in medicine Vol. 68; pp. 37 - 46 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights • Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data • Estimated cardiorespiratory fitness (CRF) using contextualized heart rate in free living, without laboratory protocols • Reduced CRF estimation error by up to 22.6% compared to other methods • The proposed CRF estimation method does not require specific exercise and was validated against VO2max |
---|---|
AbstractList | In this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data.
Our methods rely on a computational framework able to contextualize heart rate (HR) in free-living, and use context-specific HR as predictor of CRF without need for laboratory tests. In particular, we propose three estimation steps. Initially, we recognize activity primitives using accelerometer and location data. Using topic models, we group activity primitives and derive activities composites. We subsequently rank activity composites, and analyze the relation between ranked activity composites and CRF across individuals. Finally, HR data in specific activity primitives and composites is used as predictor in a hierarchical Bayesian regression model to estimate CRF level from the participant's habitual behavior in free-living.
We show that by combining activity primitives and activity composites the proposed framework can adapt to the user and context, and outperforms other CRF estimation models, reducing estimation error between 10.3% and 22.6% on a study population of 46 participants.
Our investigation showed that HR can be contextualized in free-living using activity primitives and activity composites and robust CRF estimation in free-living is feasible. Highlights • Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data • Estimated cardiorespiratory fitness (CRF) using contextualized heart rate in free living, without laboratory protocols • Reduced CRF estimation error by up to 22.6% compared to other methods • The proposed CRF estimation method does not require specific exercise and was validated against VO2max Objective In this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data. Methods Our methods rely on a computational framework able to contextualize heart rate (HR) in free-living, and use context-specific HR as predictor of CRF without need for laboratory tests. In particular, we propose three estimation steps. Initially, we recognize activity primitives using accelerometer and location data. Using topic models, we group activity primitives and derive activities composites. We subsequently rank activity composites, and analyze the relation between ranked activity composites and CRF across individuals. Finally, HR data in specific activity primitives and composites is used as predictor in a hierarchical Bayesian regression model to estimate CRF level from the participant's habitual behavior in free-living. Results We show that by combining activity primitives and activity composites the proposed framework can adapt to the user and context, and outperforms other CRF estimation models, reducing estimation error between 10.3% and 22.6% on a study population of 46 participants. Conclusions Our investigation showed that HR can be contextualized in free-living using activity primitives and activity composites and robust CRF estimation in free-living is feasible. OBJECTIVEIn this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data.METHODSOur methods rely on a computational framework able to contextualize heart rate (HR) in free-living, and use context-specific HR as predictor of CRF without need for laboratory tests. In particular, we propose three estimation steps. Initially, we recognize activity primitives using accelerometer and location data. Using topic models, we group activity primitives and derive activities composites. We subsequently rank activity composites, and analyze the relation between ranked activity composites and CRF across individuals. Finally, HR data in specific activity primitives and composites is used as predictor in a hierarchical Bayesian regression model to estimate CRF level from the participant's habitual behavior in free-living.RESULTSWe show that by combining activity primitives and activity composites the proposed framework can adapt to the user and context, and outperforms other CRF estimation models, reducing estimation error between 10.3% and 22.6% on a study population of 46 participants.CONCLUSIONSOur investigation showed that HR can be contextualized in free-living using activity primitives and activity composites and robust CRF estimation in free-living is feasible. •Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data.•Estimated cardiorespiratory fitness (CRF) using contextualized heart rate in free living, without laboratory protocols.•Reduced CRF estimation error by up to 22.6% compared to other methods.•The proposed CRF estimation method does not require specific exercise and was validated against VO2max. In this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data. Our methods rely on a computational framework able to contextualize heart rate (HR) in free-living, and use context-specific HR as predictor of CRF without need for laboratory tests. In particular, we propose three estimation steps. Initially, we recognize activity primitives using accelerometer and location data. Using topic models, we group activity primitives and derive activities composites. We subsequently rank activity composites, and analyze the relation between ranked activity composites and CRF across individuals. Finally, HR data in specific activity primitives and composites is used as predictor in a hierarchical Bayesian regression model to estimate CRF level from the participant's habitual behavior in free-living. We show that by combining activity primitives and activity composites the proposed framework can adapt to the user and context, and outperforms other CRF estimation models, reducing estimation error between 10.3% and 22.6% on a study population of 46 participants. Our investigation showed that HR can be contextualized in free-living using activity primitives and activity composites and robust CRF estimation in free-living is feasible. |
Author | Amft, Oliver Casale, Pierluigi Altini, Marco Penders, Julien |
Author_xml | – sequence: 1 fullname: Altini, Marco – sequence: 2 fullname: Casale, Pierluigi – sequence: 3 fullname: Penders, Julien – sequence: 4 fullname: Amft, Oliver |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26948954$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhq2qqN0W_gFCOXJJGNuJ7VyQ0Ip-oEocgLPlOGPkJWsvdlK0_x5H2164lIutmXlmxp53rsh5iAEJeUuhoUDFh11j0rzHsWHFaoA1AOyMbKiSvGZKwDnZQM95zUUnL8lVzjsAkC0VF-SSib5VfdduyJetSaOPCfPBJzPHdKycnwPmXGGe_d7MPobKh8olxHryjz78rJa8nn_QJDNMWGUMOab8mrxyZsr45um-Jj9uPn_f3tUPX2_vt58eatt1fK5H7gbFewPKgGiLyw1ctVZaYXshLJpiyoEPjJtRDsqhdeBkiYCgnPbAr8n7U91Dir-X8kq999niNJmAccmaKlCUUSHUy6hUsldU9OJ_UMZoK-mKtifUpphzQqcPqUwqHTUFvWqjd_qkjV610cB00aakvXvqsAxr7DnpWYwCfDwBWKb36DHpbD0Gi6NPaGc9Rv9Sh38L2MkHb830C4-Yd3FJoSijqc4lQX9b92Ndj_IngK5X_C9pabhB |
CitedBy_id | crossref_primary_10_1155_2017_4593956 crossref_primary_10_2196_13327 crossref_primary_10_1371_journal_pone_0191875 crossref_primary_10_1109_MPRV_2020_2997616 crossref_primary_10_3390_s24020482 crossref_primary_10_3390_s21175726 crossref_primary_10_3389_fbioe_2018_00057 crossref_primary_10_3390_s20123601 crossref_primary_10_1098_rsos_230806 crossref_primary_10_3390_app13074175 crossref_primary_10_1038_s41746_022_00719_1 crossref_primary_10_2196_29434 crossref_primary_10_1016_j_smhl_2019_100100 |
Cites_doi | 10.1177/1559827610395487 10.1002/j.1550-8528.1995.tb00007.x 10.1152/japplphysiol.00150.2009 10.1007/s00421-003-0988-y 10.1177/1089313X0400800301 10.1109/JBHI.2014.2313039 10.1177/1359786810382057 10.1200/JCO.2005.04.106 10.1007/s40279-013-0068-3 10.1016/j.artmed.2008.06.004 10.1016/j.artmed.2012.12.003 10.1249/MSS.0b013e3181c37458 10.1016/j.artmed.2007.11.006 10.1007/s00421-008-0902-8 10.1016/j.artmed.2012.09.003 10.1097/00149831-200504000-00004 10.1152/jappl.2000.89.5.1825 10.1016/j.pmcj.2014.05.007 10.1249/01.mss.0000228942.55152.84 10.1001/jama.282.16.1547 10.1093/ptj/80.8.782 10.1016/j.artmed.2007.11.004 10.1016/j.jbi.2015.06.008 10.1249/00005768-199012000-00021 10.1109/10.554760 10.1001/jama.1996.03540030039029 10.1152/jappl.1954.7.2.218 10.1109/JBHI.2015.2418256 10.1249/01.MSS.0000161805.61893.C0 10.1249/MSS.0b013e31821d3f6f 10.1097/00005768-200305001-01078 10.1109/TBME.2011.2159840 10.1055/s-2008-1025839 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
DOI | 10.1016/j.artmed.2016.02.002 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | MEDLINE Engineering Research Database Computer and Information Systems Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1873-2860 |
EndPage | 46 |
ExternalDocumentID | 10_1016_j_artmed_2016_02_002 26948954 S0933365716300598 1_s2_0_S0933365716300598 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77K 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXKI AAXUO AAYFN ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABXDB ACDAQ ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AEVXI AFCTW AFJKZ AFKWA AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AJRQY AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR CGR CUY CVF ECM EIF NPM AAYXX ACRPL ADNMO CITATION 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c553t-d3fb839a08a064553fb384c7c6c966ceab387b3b23ad7b8fecf0f766c06131903 |
IEDL.DBID | AIKHN |
ISSN | 0933-3657 |
IngestDate | Fri Oct 25 22:43:34 EDT 2024 Fri Oct 25 21:31:01 EDT 2024 Sat Oct 26 00:13:32 EDT 2024 Fri Dec 06 05:48:19 EST 2024 Sat Sep 28 07:57:08 EDT 2024 Fri Feb 23 02:25:16 EST 2024 Tue Oct 15 23:01:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bayesian models Cardiorespiratory fitness Topic models Context recognition |
Language | English |
License | Copyright © 2016 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c553t-d3fb839a08a064553fb384c7c6c966ceab387b3b23ad7b8fecf0f766c06131903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26948954 |
PQID | 1782214716 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1808121668 proquest_miscellaneous_1787981696 proquest_miscellaneous_1782214716 crossref_primary_10_1016_j_artmed_2016_02_002 pubmed_primary_26948954 elsevier_sciencedirect_doi_10_1016_j_artmed_2016_02_002 elsevier_clinicalkeyesjournals_1_s2_0_S0933365716300598 |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Artificial intelligence in medicine |
PublicationTitleAlternate | Artif Intell Med |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Noonan, Dean (bib0115) 2000; 80 Chan, Estève, Fourniols, Escriba, Campo (bib0010) 2012; 56 Nes, Janszky, Vatten, Nilsen, Aspenes, Wisløff (bib0125) 2011; 43 Esco, Mugu, Williford, McHugh, Bloomquist (bib0135) 2011; 14 Ruiz, Ramirez-Lechuga, Ortega, Castro-Pinero, Benitez, Arauzo-Azofra (bib0145) 2008; 44 Redding, Wyon, Shearman, Doggart (bib0200) 2004; 8 Westerterp, Wouters, van Marken (bib0190) 1995; 3 Lee, Artero, Sui, Blair (bib0040) 2010; 24 Altini, Penders, Amft (bib0095) 2012 Zheng, Zhang, Xie, Ma (bib0195) 2009 Marshall, Ramirez (bib0005) 2011; 5 Crouter, Bassett (bib0075) 2010; 42 Amft, Lombriser, Stiefmeier, Tröster (bib0160) 2007 Bonomi (bib0085) 2009; 107 Sartor, Vernillo, de Morree, Bonomi, La Torre, Kubis (bib0050) 2013; 43 Tapia (bib0090) 2008 Buttussi, Chittaro (bib0015) 2008; 42 Wu, Bui, Batalin, Au, Binney, Kaiser (bib0020) 2008; 42 Kuipers, Verstappen, Keizer, Geurten, Van Kranenburg (bib0185) 1985; 6 Altini, Penders, Vullers, Amft (bib0100) 2015; 19 Crumpton, Williford, O’Mailia, Olson, Woolen (bib0140) 2003; 35 Plasqui, Westerterp (bib0045) 2005; 37 Bao, Intille (bib0080) 2004 Altini, Casale, Penders, Amft (bib0180) 2015; 19 Seiter, Amft, Rossi, Tröster (bib0175) 2014; 15 Blei, Ng, Jordan (bib0165) 2003; 3 Plasqui, Westerterp (bib0130) 2006; 38 Loimaala, Huikuri, Oja, Pasanen, Vuori (bib0205) 2000; 89 Wei, Kampert, Barlow, Nichaman, Gibbons, Paffenbarger (bib0060) 1999; 282 Vathsangam, Emken, Schroeder, Spruijt-Metz, Sukhatme (bib0035) 2011; 58 Blair, Kampert, Kohl, Barlow, Macera, Paffenbarger (bib0065) 1996; 276 Bennett, Hauser (bib0025) 2013; 57 Bouten, Koekkoek, Verduin, Kodde, Janssen (bib0030) 1997; 44 Uth, Sørensen, Overgaard, Pedersen (bib0210) 2004; 91 Altini, Casale, Penders, Amft (bib0105) 2015; 56 Cao, Miyatake, Higuchi, Ishikawa-Takata, Miyachi, Tabata (bib0150) 2009; 105 Huynh, Fritz, Schiele (bib0170) 2008 Thorsen, Skovlund, Strømme, Hornslien, Dahl, Fosså (bib0055) 2005; 23 Åstrand, Ryhming (bib0070) 1954; 7 Tönis, Gorter, Vollenbroek-Hutten, Hermens (bib0155) 2012; 52 Vanhees, Lefevre, Philippaerts, Martens, Huygens, Troosters (bib0110) 2005; 12 Jackson, Blair, Mahar, Wier, Ross, Stuteville (bib0120) 1990; 22 Plasqui (10.1016/j.artmed.2016.02.002_bib0130) 2006; 38 Chan (10.1016/j.artmed.2016.02.002_bib0010) 2012; 56 Bennett (10.1016/j.artmed.2016.02.002_bib0025) 2013; 57 Blei (10.1016/j.artmed.2016.02.002_bib0165) 2003; 3 Tönis (10.1016/j.artmed.2016.02.002_bib0155) 2012; 52 Sartor (10.1016/j.artmed.2016.02.002_bib0050) 2013; 43 Vathsangam (10.1016/j.artmed.2016.02.002_bib0035) 2011; 58 Buttussi (10.1016/j.artmed.2016.02.002_bib0015) 2008; 42 Noonan (10.1016/j.artmed.2016.02.002_bib0115) 2000; 80 Bouten (10.1016/j.artmed.2016.02.002_bib0030) 1997; 44 Marshall (10.1016/j.artmed.2016.02.002_bib0005) 2011; 5 Plasqui (10.1016/j.artmed.2016.02.002_bib0045) 2005; 37 Seiter (10.1016/j.artmed.2016.02.002_bib0175) 2014; 15 Jackson (10.1016/j.artmed.2016.02.002_bib0120) 1990; 22 Wu (10.1016/j.artmed.2016.02.002_bib0020) 2008; 42 Lee (10.1016/j.artmed.2016.02.002_bib0040) 2010; 24 Altini (10.1016/j.artmed.2016.02.002_bib0100) 2015; 19 Crouter (10.1016/j.artmed.2016.02.002_bib0075) 2010; 42 Altini (10.1016/j.artmed.2016.02.002_bib0180) 2015; 19 Kuipers (10.1016/j.artmed.2016.02.002_bib0185) 1985; 6 Esco (10.1016/j.artmed.2016.02.002_bib0135) 2011; 14 Zheng (10.1016/j.artmed.2016.02.002_bib0195) 2009 Loimaala (10.1016/j.artmed.2016.02.002_bib0205) 2000; 89 Amft (10.1016/j.artmed.2016.02.002_bib0160) 2007 Blair (10.1016/j.artmed.2016.02.002_bib0065) 1996; 276 Bonomi (10.1016/j.artmed.2016.02.002_bib0085) 2009; 107 Huynh (10.1016/j.artmed.2016.02.002_bib0170) 2008 Ruiz (10.1016/j.artmed.2016.02.002_bib0145) 2008; 44 Cao (10.1016/j.artmed.2016.02.002_bib0150) 2009; 105 Nes (10.1016/j.artmed.2016.02.002_bib0125) 2011; 43 Vanhees (10.1016/j.artmed.2016.02.002_bib0110) 2005; 12 Altini (10.1016/j.artmed.2016.02.002_bib0105) 2015; 56 Redding (10.1016/j.artmed.2016.02.002_bib0200) 2004; 8 Wei (10.1016/j.artmed.2016.02.002_bib0060) 1999; 282 Thorsen (10.1016/j.artmed.2016.02.002_bib0055) 2005; 23 Altini (10.1016/j.artmed.2016.02.002_bib0095) 2012 Crumpton (10.1016/j.artmed.2016.02.002_bib0140) 2003; 35 Westerterp (10.1016/j.artmed.2016.02.002_bib0190) 1995; 3 Uth (10.1016/j.artmed.2016.02.002_bib0210) 2004; 91 Åstrand (10.1016/j.artmed.2016.02.002_bib0070) 1954; 7 Tapia (10.1016/j.artmed.2016.02.002_bib0090) 2008 Bao (10.1016/j.artmed.2016.02.002_bib0080) 2004 |
References_xml | – volume: 105 start-page: 289 year: 2009 end-page: 296 ident: bib0150 article-title: Prediction of VO publication-title: Eur J Appl Physiol contributor: fullname: Tabata – volume: 19 start-page: 219 year: 2015 end-page: 226 ident: bib0100 article-title: Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning publication-title: IEEE J Biomed Health Inform contributor: fullname: Amft – volume: 3 start-page: 49 year: 1995 end-page: 57 ident: bib0190 article-title: The Maastricht protocol for the measurement of body composition and energy expenditure with labeled water publication-title: Obesity Res contributor: fullname: van Marken – volume: 15 start-page: 215 year: 2014 end-page: 227 ident: bib0175 article-title: Discovery of activity composites using topic models: an analysis of unsupervised methods publication-title: Pervasive Mob Comput contributor: fullname: Tröster – volume: 282 start-page: 1547 year: 1999 end-page: 1553 ident: bib0060 article-title: Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men publication-title: J Am Med Assoc contributor: fullname: Paffenbarger – volume: 12 start-page: 102 year: 2005 end-page: 114 ident: bib0110 article-title: How to assess physical activity? How to assess physical fitness? publication-title: Eur J Cardiovasc Prev Rehabil contributor: fullname: Troosters – volume: 276 start-page: 205 year: 1996 end-page: 210 ident: bib0065 article-title: Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women publication-title: J Am Med Assoc contributor: fullname: Paffenbarger – volume: 6 start-page: 197 year: 1985 end-page: 201 ident: bib0185 article-title: Variability of aerobic performance in the laboratory and its physiologic correlates publication-title: Int J Sports Med contributor: fullname: Van Kranenburg – year: 2008 ident: bib0090 article-title: Using machine learning for real-time activity recognition and estimation of energy expenditure contributor: fullname: Tapia – start-page: 126 year: 2007 end-page: 141 ident: bib0160 article-title: Recognition of user activity sequences using distributed event detection publication-title: Smart Sensing and Context contributor: fullname: Tröster – volume: 24 start-page: 27 year: 2010 end-page: 35 ident: bib0040 article-title: Review: mortality trends in the general population: the importance of cardiorespiratory fitness publication-title: J Psychopharmacol contributor: fullname: Blair – volume: 56 start-page: 195 year: 2015 end-page: 204 ident: bib0105 article-title: Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models publication-title: J Biomed Inform contributor: fullname: Amft – volume: 80 start-page: 782 year: 2000 end-page: 807 ident: bib0115 article-title: Submaximal exercise testing: clinical application and interpretation publication-title: Phys Therapy contributor: fullname: Dean – volume: 42 start-page: 153 year: 2008 end-page: 163 ident: bib0015 article-title: Mopet: a context-aware and user-adaptive wearable system for fitness training publication-title: Artif Intell Med contributor: fullname: Chittaro – volume: 89 start-page: 1825 year: 2000 end-page: 1829 ident: bib0205 article-title: Controlled 5-mo aerobic training improves heart rate but not heart rate variability or baroreflex sensitivity publication-title: J Appl Physiol contributor: fullname: Vuori – volume: 22 start-page: 863 year: 1990 end-page: 870 ident: bib0120 article-title: Prediction of functional aerobic capacity without exercise testing publication-title: Med Sci Sports Exerc contributor: fullname: Stuteville – start-page: 1 year: 2004 end-page: 17 ident: bib0080 article-title: Activity recognition from user-annotated acceleration data publication-title: Pervasive '04, vol. 3001 contributor: fullname: Intille – volume: 52 start-page: 337 year: 2012 end-page: 343 ident: bib0155 article-title: Comparing VO publication-title: J Sports Med Phys Fit contributor: fullname: Hermens – volume: 58 start-page: 2804 year: 2011 end-page: 2815 ident: bib0035 article-title: Determining energy expenditure from treadmill walking using hip-worn inertial sensors: an experimental study publication-title: IEEE Trans Biomed Eng contributor: fullname: Sukhatme – start-page: 791 year: 2009 end-page: 800 ident: bib0195 article-title: Mining interesting locations and travel sequences from GPS trajectories publication-title: Proceedings of the 18th International Conference on World Wide Web contributor: fullname: Ma – volume: 5 start-page: 518 year: 2011 end-page: 530 ident: bib0005 article-title: Reducing sedentary behavior a new paradigm in physical activity promotion publication-title: Am J Lifestyle Med contributor: fullname: Ramirez – volume: 44 start-page: 233 year: 2008 end-page: 245 ident: bib0145 article-title: Artificial neural network-based equation for estimating VO publication-title: Artif Intell Med contributor: fullname: Arauzo-Azofra – volume: 43 start-page: 865 year: 2013 end-page: 873 ident: bib0050 article-title: Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings publication-title: Sports Med contributor: fullname: Kubis – volume: 7 start-page: 218 year: 1954 end-page: 221 ident: bib0070 article-title: A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work publication-title: J Appl Physiol contributor: fullname: Ryhming – volume: 23 start-page: 2378 year: 2005 end-page: 2388 ident: bib0055 article-title: Effectiveness of physical activity on cardiorespiratory fitness and health-related quality of life in young and middle-aged cancer patients shortly after chemotherapy publication-title: J Clin Oncol contributor: fullname: Fosså – volume: 42 start-page: 137 year: 2008 end-page: 152 ident: bib0020 article-title: Medic: medical embedded device for individualized care publication-title: Artif Intell Med contributor: fullname: Kaiser – volume: 57 start-page: 9 year: 2013 end-page: 19 ident: bib0025 article-title: Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach publication-title: Artif Intell Med contributor: fullname: Hauser – volume: 42 start-page: 1029 year: 2010 end-page: 1037 ident: bib0075 article-title: A refined 2-regression model for the actigraph accelerometer publication-title: Med Sci Sports Exerc contributor: fullname: Bassett – volume: 8 start-page: 69 year: 2004 end-page: 72 ident: bib0200 article-title: Validity of using heart rate as a predictor of oxygen consumption in dance publication-title: J Dance Med Sci contributor: fullname: Doggart – volume: 35 start-page: S193 year: 2003 ident: bib0140 article-title: Validity of the polar m52 heart rate monitor in predicting VO publication-title: Med Sci Sports Exerc contributor: fullname: Woolen – volume: 107 start-page: 655 year: 2009 end-page: 661 ident: bib0085 article-title: Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer publication-title: J Appl Physiol contributor: fullname: Bonomi – volume: 43 start-page: 2024 year: 2011 end-page: 2030 ident: bib0125 article-title: Estimating VO publication-title: Med Sci Sports Exerc contributor: fullname: Wisløff – volume: 91 start-page: 111 year: 2004 end-page: 115 ident: bib0210 article-title: Estimation of VO publication-title: Eur J Appl Physiol contributor: fullname: Pedersen – volume: 14 start-page: 31 year: 2011 end-page: 37 ident: bib0135 article-title: Cross-validation of the polar fitness test via the polar f11 heart rate monitor in predicting VO publication-title: J Exerc Physiol contributor: fullname: Bloomquist – start-page: 10 year: 2008 end-page: 19 ident: bib0170 article-title: Discovery of activity patterns using topic models publication-title: Proceedings of the 10th International Conference on Ubiquitous Computing contributor: fullname: Schiele – year: 2012 ident: bib0095 article-title: Energy expenditure estimation using wearable sensors: a new methodology for activity-specific models publication-title: Proceedings of the Conference on Wireless Health, WH '12 contributor: fullname: Amft – volume: 3 start-page: 993 year: 2003 end-page: 1022 ident: bib0165 article-title: Latent Dirichlet allocation publication-title: J Mach Learn Res contributor: fullname: Jordan – volume: 19 start-page: 1577 year: 2015 end-page: 1586 ident: bib0180 article-title: Personalization of energy expenditure estimation in free living using topic models publication-title: IEEE J Biomed Health Inform contributor: fullname: Amft – volume: 44 start-page: 136 year: 1997 end-page: 147 ident: bib0030 article-title: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity publication-title: IEEE Trans Biomed Eng contributor: fullname: Janssen – volume: 37 start-page: 872 year: 2005 end-page: 876 ident: bib0045 article-title: Accelerometry and heart rate as a measure of physical fitness: proof of concept publication-title: Med Sci Sports Exerc contributor: fullname: Westerterp – volume: 38 start-page: 1510 year: 2006 end-page: 1514 ident: bib0130 article-title: Accelerometry and heart rate as a measure of physical fitness: cross-validation publication-title: Med Sci Sports Exerc contributor: fullname: Westerterp – volume: 56 start-page: 137 year: 2012 end-page: 156 ident: bib0010 article-title: Smart wearable systems: current status and future challenges publication-title: Artif Intell Med contributor: fullname: Campo – volume: 5 start-page: 518 issue: 6 year: 2011 ident: 10.1016/j.artmed.2016.02.002_bib0005 article-title: Reducing sedentary behavior a new paradigm in physical activity promotion publication-title: Am J Lifestyle Med doi: 10.1177/1559827610395487 contributor: fullname: Marshall – start-page: 126 year: 2007 ident: 10.1016/j.artmed.2016.02.002_bib0160 article-title: Recognition of user activity sequences using distributed event detection contributor: fullname: Amft – volume: 3 start-page: 49 year: 1995 ident: 10.1016/j.artmed.2016.02.002_bib0190 article-title: The Maastricht protocol for the measurement of body composition and energy expenditure with labeled water publication-title: Obesity Res doi: 10.1002/j.1550-8528.1995.tb00007.x contributor: fullname: Westerterp – start-page: 1 year: 2004 ident: 10.1016/j.artmed.2016.02.002_bib0080 article-title: Activity recognition from user-annotated acceleration data contributor: fullname: Bao – volume: 107 start-page: 655 issue: 3 year: 2009 ident: 10.1016/j.artmed.2016.02.002_bib0085 article-title: Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00150.2009 contributor: fullname: Bonomi – year: 2008 ident: 10.1016/j.artmed.2016.02.002_bib0090 contributor: fullname: Tapia – volume: 91 start-page: 111 issue: 1 year: 2004 ident: 10.1016/j.artmed.2016.02.002_bib0210 article-title: Estimation of VO2max from the ratio between hrmax and hrrest – the heart rate ratio method publication-title: Eur J Appl Physiol doi: 10.1007/s00421-003-0988-y contributor: fullname: Uth – volume: 14 start-page: 31 year: 2011 ident: 10.1016/j.artmed.2016.02.002_bib0135 article-title: Cross-validation of the polar fitness test via the polar f11 heart rate monitor in predicting VO2max publication-title: J Exerc Physiol contributor: fullname: Esco – volume: 8 start-page: 69 issue: 3 year: 2004 ident: 10.1016/j.artmed.2016.02.002_bib0200 article-title: Validity of using heart rate as a predictor of oxygen consumption in dance publication-title: J Dance Med Sci doi: 10.1177/1089313X0400800301 contributor: fullname: Redding – volume: 19 start-page: 219 issue: 1 year: 2015 ident: 10.1016/j.artmed.2016.02.002_bib0100 article-title: Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2014.2313039 contributor: fullname: Altini – volume: 24 start-page: 27 issue: 4 suppl year: 2010 ident: 10.1016/j.artmed.2016.02.002_bib0040 article-title: Review: mortality trends in the general population: the importance of cardiorespiratory fitness publication-title: J Psychopharmacol doi: 10.1177/1359786810382057 contributor: fullname: Lee – volume: 23 start-page: 2378 issue: 10 year: 2005 ident: 10.1016/j.artmed.2016.02.002_bib0055 article-title: Effectiveness of physical activity on cardiorespiratory fitness and health-related quality of life in young and middle-aged cancer patients shortly after chemotherapy publication-title: J Clin Oncol doi: 10.1200/JCO.2005.04.106 contributor: fullname: Thorsen – volume: 43 start-page: 865 issue: 9 year: 2013 ident: 10.1016/j.artmed.2016.02.002_bib0050 article-title: Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings publication-title: Sports Med doi: 10.1007/s40279-013-0068-3 contributor: fullname: Sartor – volume: 44 start-page: 233 issue: 3 year: 2008 ident: 10.1016/j.artmed.2016.02.002_bib0145 article-title: Artificial neural network-based equation for estimating VO2max from the 20m shuttle run test in adolescents publication-title: Artif Intell Med doi: 10.1016/j.artmed.2008.06.004 contributor: fullname: Ruiz – volume: 57 start-page: 9 issue: 1 year: 2013 ident: 10.1016/j.artmed.2016.02.002_bib0025 article-title: Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach publication-title: Artif Intell Med doi: 10.1016/j.artmed.2012.12.003 contributor: fullname: Bennett – volume: 42 start-page: 1029 issue: 5 year: 2010 ident: 10.1016/j.artmed.2016.02.002_bib0075 article-title: A refined 2-regression model for the actigraph accelerometer publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e3181c37458 contributor: fullname: Crouter – start-page: 10 year: 2008 ident: 10.1016/j.artmed.2016.02.002_bib0170 article-title: Discovery of activity patterns using topic models contributor: fullname: Huynh – volume: 42 start-page: 137 issue: 2 year: 2008 ident: 10.1016/j.artmed.2016.02.002_bib0020 article-title: Medic: medical embedded device for individualized care publication-title: Artif Intell Med doi: 10.1016/j.artmed.2007.11.006 contributor: fullname: Wu – volume: 105 start-page: 289 issue: 2 year: 2009 ident: 10.1016/j.artmed.2016.02.002_bib0150 article-title: Prediction of VO2max with daily step counts for Japanese adult women publication-title: Eur J Appl Physiol doi: 10.1007/s00421-008-0902-8 contributor: fullname: Cao – volume: 56 start-page: 137 issue: 3 year: 2012 ident: 10.1016/j.artmed.2016.02.002_bib0010 article-title: Smart wearable systems: current status and future challenges publication-title: Artif Intell Med doi: 10.1016/j.artmed.2012.09.003 contributor: fullname: Chan – volume: 12 start-page: 102 issue: 2 year: 2005 ident: 10.1016/j.artmed.2016.02.002_bib0110 article-title: How to assess physical activity? How to assess physical fitness? publication-title: Eur J Cardiovasc Prev Rehabil doi: 10.1097/00149831-200504000-00004 contributor: fullname: Vanhees – volume: 89 start-page: 1825 issue: 5 year: 2000 ident: 10.1016/j.artmed.2016.02.002_bib0205 article-title: Controlled 5-mo aerobic training improves heart rate but not heart rate variability or baroreflex sensitivity publication-title: J Appl Physiol doi: 10.1152/jappl.2000.89.5.1825 contributor: fullname: Loimaala – volume: 15 start-page: 215 year: 2014 ident: 10.1016/j.artmed.2016.02.002_bib0175 article-title: Discovery of activity composites using topic models: an analysis of unsupervised methods publication-title: Pervasive Mob Comput doi: 10.1016/j.pmcj.2014.05.007 contributor: fullname: Seiter – volume: 38 start-page: 1510 issue: 8 year: 2006 ident: 10.1016/j.artmed.2016.02.002_bib0130 article-title: Accelerometry and heart rate as a measure of physical fitness: cross-validation publication-title: Med Sci Sports Exerc doi: 10.1249/01.mss.0000228942.55152.84 contributor: fullname: Plasqui – volume: 282 start-page: 1547 issue: 16 year: 1999 ident: 10.1016/j.artmed.2016.02.002_bib0060 article-title: Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men publication-title: J Am Med Assoc doi: 10.1001/jama.282.16.1547 contributor: fullname: Wei – volume: 80 start-page: 782 issue: 8 year: 2000 ident: 10.1016/j.artmed.2016.02.002_bib0115 article-title: Submaximal exercise testing: clinical application and interpretation publication-title: Phys Therapy doi: 10.1093/ptj/80.8.782 contributor: fullname: Noonan – volume: 42 start-page: 153 issue: 2 year: 2008 ident: 10.1016/j.artmed.2016.02.002_bib0015 article-title: Mopet: a context-aware and user-adaptive wearable system for fitness training publication-title: Artif Intell Med doi: 10.1016/j.artmed.2007.11.004 contributor: fullname: Buttussi – year: 2012 ident: 10.1016/j.artmed.2016.02.002_bib0095 article-title: Energy expenditure estimation using wearable sensors: a new methodology for activity-specific models contributor: fullname: Altini – volume: 56 start-page: 195 year: 2015 ident: 10.1016/j.artmed.2016.02.002_bib0105 article-title: Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models publication-title: J Biomed Inform doi: 10.1016/j.jbi.2015.06.008 contributor: fullname: Altini – volume: 22 start-page: 863 issue: 6 year: 1990 ident: 10.1016/j.artmed.2016.02.002_bib0120 article-title: Prediction of functional aerobic capacity without exercise testing publication-title: Med Sci Sports Exerc doi: 10.1249/00005768-199012000-00021 contributor: fullname: Jackson – volume: 44 start-page: 136 issue: 3 year: 1997 ident: 10.1016/j.artmed.2016.02.002_bib0030 article-title: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.554760 contributor: fullname: Bouten – volume: 276 start-page: 205 issue: 3 year: 1996 ident: 10.1016/j.artmed.2016.02.002_bib0065 article-title: Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women publication-title: J Am Med Assoc doi: 10.1001/jama.1996.03540030039029 contributor: fullname: Blair – volume: 7 start-page: 218 issue: 2 year: 1954 ident: 10.1016/j.artmed.2016.02.002_bib0070 article-title: A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work publication-title: J Appl Physiol doi: 10.1152/jappl.1954.7.2.218 contributor: fullname: Åstrand – volume: 19 start-page: 1577 issue: 5 year: 2015 ident: 10.1016/j.artmed.2016.02.002_bib0180 article-title: Personalization of energy expenditure estimation in free living using topic models publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2015.2418256 contributor: fullname: Altini – volume: 3 start-page: 993 year: 2003 ident: 10.1016/j.artmed.2016.02.002_bib0165 article-title: Latent Dirichlet allocation publication-title: J Mach Learn Res contributor: fullname: Blei – volume: 37 start-page: 872 issue: 5 year: 2005 ident: 10.1016/j.artmed.2016.02.002_bib0045 article-title: Accelerometry and heart rate as a measure of physical fitness: proof of concept publication-title: Med Sci Sports Exerc doi: 10.1249/01.MSS.0000161805.61893.C0 contributor: fullname: Plasqui – volume: 43 start-page: 2024 issue: 11 year: 2011 ident: 10.1016/j.artmed.2016.02.002_bib0125 article-title: Estimating VO2 peak from a nonexercise prediction model: the hunt study, Norway publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e31821d3f6f contributor: fullname: Nes – volume: 35 start-page: S193 issue: 5 year: 2003 ident: 10.1016/j.artmed.2016.02.002_bib0140 article-title: Validity of the polar m52 heart rate monitor in predicting VO2max publication-title: Med Sci Sports Exerc doi: 10.1097/00005768-200305001-01078 contributor: fullname: Crumpton – volume: 58 start-page: 2804 issue: 10 year: 2011 ident: 10.1016/j.artmed.2016.02.002_bib0035 article-title: Determining energy expenditure from treadmill walking using hip-worn inertial sensors: an experimental study publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2159840 contributor: fullname: Vathsangam – volume: 52 start-page: 337 issue: 4 year: 2012 ident: 10.1016/j.artmed.2016.02.002_bib0155 article-title: Comparing VO2max determined by using the relation between heart rate and accelerometry with submaximal estimated VO2max publication-title: J Sports Med Phys Fit contributor: fullname: Tönis – start-page: 791 year: 2009 ident: 10.1016/j.artmed.2016.02.002_bib0195 article-title: Mining interesting locations and travel sequences from GPS trajectories contributor: fullname: Zheng – volume: 6 start-page: 197 issue: 4 year: 1985 ident: 10.1016/j.artmed.2016.02.002_bib0185 article-title: Variability of aerobic performance in the laboratory and its physiologic correlates publication-title: Int J Sports Med doi: 10.1055/s-2008-1025839 contributor: fullname: Kuipers |
SSID | ssj0007416 |
Score | 2.2890396 |
Snippet | Highlights • Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data • Estimated... •Used machine learning methods to determine multiple level of context in free living and contextualize heart rate data.•Estimated cardiorespiratory fitness... In this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data. Our methods... OBJECTIVEIn this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor... Objective In this paper we propose artificial intelligence methods to estimate cardiorespiratory fitness (CRF) in free-living using wearable sensor data.... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 37 |
SubjectTerms | Adult Artificial Intelligence Bayesian models Biosensing Techniques Cardiorespiratory Fitness Context recognition Estimates Expert systems Female Fitness Heart rate Humans Internal Medicine Male Mathematical models Other Sensors Topic models Wearable Young Adult |
Title | Cardiorespiratory fitness estimation in free-living using wearable sensors |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S0933365716300598 https://dx.doi.org/10.1016/j.artmed.2016.02.002 https://www.ncbi.nlm.nih.gov/pubmed/26948954 https://search.proquest.com/docview/1782214716 https://search.proquest.com/docview/1787981696 https://search.proquest.com/docview/1808121668 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkBCXQinPtshIvZrdxInjHFerrrZUcClI3Czba6MglEWbRb3x25lJHNqqAiSOTuzYGntmvsk8DPDNk3MuWMOlCQXPhPS8dJnkUjrjTWlcUJTvfH4hp1fZ2XV-vQLjPheGwiqj7O9keiut45NBpObgvqoGv8gWFzJHwE8l10u1CuuojshXuz768XN68SyQCXS0JfeE4DSgz6Brw7zwk6h2KMZLdsU705c01EsItNVEk234ECEkG3Wr_Agrvt6Brf56Bha5dQc2zqPf_BOcjduw08UfvzoL1ZKkHKMqG136IqtqFhbe87uK_jIwCom_Yb-RFSi9ijVo8M4XzS5cTb5fjqc83qLAXZ6LJZ-JYBEFmaEyVJsux6ZQmSucdGjqOG-wWVhhU2FmhVXBuzAMBb4hTY9wQezBWj2v_QEwhF42lcKqzKRZgcZzZoeOauLNclvOjDoE3lNO33fFMnQfRXarO0prorQephopfQhFT17dJ4Ki6PJN5KNGJ7rBnvq_vf575D_HRaMmeGPOk34fNXISuUdM7ecPOBeBpQSVtXy1T1GqRJav9aHLTNJESlzlfndQnqlBecOqzLOjd6__M2xSqwuD-wJry8WD_4q4aGmPYfX0MTmOp_8JU2MMqw |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLeAScDL-BwwNggSr-HumjRNH6fT0I1xvAASb1GSS1DR1EPXQ7ztb5_dD2BCMGmPadwmcmL758Z2AI4DHc5FZ7myMeNSqMBzLxVXyttgc-ujpnzn8YUaXcuzm_RmAYZdLgyFVba6v9HptbZun_Rabvbui6J3Sb64UCkCfiq5nutF-CBTRL-4qU9-P8d5EOSoC-4JwYm8y5-rg7zwg2h0KMJLNaU7k7fs01v4s7ZDp-vwsQWQ7Fszxw1YCOUmrHWXM7BWVjdhedyemm_B2bAOOp09n6qzWMxJxzGqsdEkL7KiZHEWAv9V0D8GRgHxt-wRBYGSq1iF7u50Vm3D9en3q-GIt3cocJ-mYs4nIjrEQLavLVWmS7EptPSZVx4dHR8sNjMnXCLsJHM6Bh_7McMesvMIFsQnWCqnZdgFhsDLJUo4LW0iM3Sdpet7qog3SV0-sXoPeMc5c9-UyjBdDNmdaThtiNOmnxjk9B5kHXtNlwaKiitUrRRVZmAqpDSvVvrlm39tFoN24B9jHnXraFCO6HDElmH6gGMRVBqgqVbv0mS5Hqj8PRq6yiQZKIWz3Gk2yhM3KGtY56n8_N_zP4SV0dX43Jz_uPi5D6vU0wTEfYGl-ewhfEWENHcHtQT8AcVHDYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiorespiratory+fitness+estimation+in+free-living+using+wearable+sensors&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Altini%2C+Marco&rft.au=Casale%2C+Pierluigi&rft.au=Penders%2C+Julien&rft.au=Amft%2C+Oliver&rft.date=2016-03-01&rft.issn=0933-3657&rft.volume=68&rft.spage=37&rft.epage=46&rft_id=info:doi/10.1016%2Fj.artmed.2016.02.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_artmed_2016_02_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon |