Robust Self-Healing Concrete for Sustainable Infrastructure
This article introduces the concept of self-healing concrete for sustainable infrastructure through reduction of maintenance and repair in the use phase. To realize this goal, self-healing must observe at least six robustness criteria - long shelf life, pervasive, quality, reliable, versatile, and r...
Saved in:
Published in | Journal of Advanced Concrete Technology Vol. 10; no. 6; pp. 207 - 218 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japan Concrete Institute
28.06.2012
Japan Science and Technology Agency |
Online Access | Get full text |
Cover
Loading…
Abstract | This article introduces the concept of self-healing concrete for sustainable infrastructure through reduction of maintenance and repair in the use phase. To realize this goal, self-healing must observe at least six robustness criteria - long shelf life, pervasive, quality, reliable, versatile, and repeatable. Five broad categories of self-healing approaches, namely chemical encapsulation, bacterial encapsulation, mineral admixtures, chemical in glass tubing, and intrinsic healing with self-controlled tight crack width, are evaluated against the robustness criteria. It is suggested that while significant progress has been made over the last decade in laboratory studies, important knowledge gaps must be filled in all categories of self-healing approaches to attain the goal of smart sustainable infrastructures that possess self-repair capability in the field. |
---|---|
AbstractList | This article introduces the concept of self-healing concrete for sustainable infrastructure through reduction of maintenance and repair in the use phase. To realize this goal, self-healing must observe at least six robustness criteria - long shelf life, pervasive, quality, reliable, versatile, and repeatable. Five broad categories of self-healing approaches, namely chemical encapsulation, bacterial encapsulation, mineral admixtures, chemical in glass tubing, and intrinsic healing with self-controlled tight crack width, are evaluated against the robustness criteria. It is suggested that while significant progress has been made over the last decade in laboratory studies, important knowledge gaps must be filled in all categories of self-healing approaches to attain the goal of smart sustainable infrastructures that possess self-repair capability in the field. |
Author | Li, Victor C. Herbert, Emily |
Author_xml | – sequence: 1 fullname: Li, Victor C. organization: Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109-2125 USA – sequence: 2 fullname: Herbert, Emily organization: Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109-2125 USA |
BookMark | eNp1kFFLwzAUhYNMcJs--QcKvgjSmTRpkiIIMtQNBoLT55JmN7OlS2aSPvjv7dzYw8Cney_nO4fLGaGBdRYQuiZ4QklO7hul46Q_MizO0JBQJlJaEDr423kqMWEXaBRCgzEVVIghenh3VRdisoTWpDNQbW3XydRZ7SFCYpxPlr2saquqFpK5NV6F6DsdOw-X6NyoNsDVYY7R58vzx3SWLt5e59OnRarznMZUCwlEgKRsJaQBwiueVUJrxrMVkwIE5VJgJQuOmZBsled5hVlVVCB1ro2hY3S7z916991BiOWmDhraVllwXShJlhEpec6zHr05QRvXedt_VxImhMSFwLSn7vaU9i4ED6bc-nqj_E9JcLkrstwVuTv6InuanNC6jirWzkav6vYfz-Pe0_TlreGYr3ysdQtHlh8MR0F_KV-Cpb95Go5o |
CitedBy_id | crossref_primary_10_1680_jmacr_21_00312 crossref_primary_10_1061__ASCE_MT_1943_5533_0001360 crossref_primary_10_1016_j_conbuildmat_2016_07_143 crossref_primary_10_1016_j_cemconcomp_2019_04_004 crossref_primary_10_3390_ma15051710 crossref_primary_10_1061_JMCEE7_MTENG_16130 crossref_primary_10_3390_infrastructures6070094 crossref_primary_10_1016_j_jobe_2023_106264 crossref_primary_10_1016_j_xcrp_2023_101298 crossref_primary_10_3151_jact_13_112 crossref_primary_10_31796_ogummf_1348428 crossref_primary_10_1016_j_conbuildmat_2015_03_094 crossref_primary_10_1007_s44174_023_00107_7 crossref_primary_10_1016_j_cemconcomp_2018_02_006 crossref_primary_10_1080_21650373_2024_2441432 crossref_primary_10_14359_5168730 crossref_primary_10_3141_2629_09 crossref_primary_10_3390_ma15176040 crossref_primary_10_3390_ma6072831 crossref_primary_10_1016_j_envres_2022_113975 crossref_primary_10_1061__ASCE_MT_1943_5533_0004521 crossref_primary_10_1051_matecconf_201928904005 crossref_primary_10_1016_j_conbuildmat_2019_117110 crossref_primary_10_1016_j_jmrt_2023_03_036 crossref_primary_10_1016_j_conbuildmat_2015_10_018 crossref_primary_10_1109_ACCESS_2024_3373188 crossref_primary_10_1016_j_dibe_2025_100648 crossref_primary_10_1061__ASCE_MT_1943_5533_0001145 crossref_primary_10_1016_j_ndteint_2015_08_005 crossref_primary_10_1016_j_trd_2019_10_002 crossref_primary_10_14359_51687308 crossref_primary_10_1007_s10311_021_01375_9 crossref_primary_10_1016_j_conbuildmat_2021_125280 crossref_primary_10_1016_j_jobe_2023_105839 crossref_primary_10_1016_j_conbuildmat_2015_02_054 crossref_primary_10_1016_j_engstruct_2020_111330 crossref_primary_10_1155_2022_6907314 crossref_primary_10_1021_acssuschemeng_6b03142 crossref_primary_10_1038_s41598_023_34500_5 crossref_primary_10_1680_adcr_14_00111 crossref_primary_10_1016_j_conbuildmat_2020_121999 crossref_primary_10_1016_j_conbuildmat_2019_01_007 crossref_primary_10_3390_buildings14123916 crossref_primary_10_1016_j_jobe_2024_109932 crossref_primary_10_1007_s41024_021_00158_7 crossref_primary_10_1016_j_jobe_2024_111432 crossref_primary_10_1016_j_jobe_2024_111550 crossref_primary_10_1016_j_matpr_2020_03_116 crossref_primary_10_21926_rpm_2401006 crossref_primary_10_1016_j_ijfatigue_2022_106839 crossref_primary_10_1016_j_jwpe_2021_102139 crossref_primary_10_1016_j_conbuildmat_2018_12_193 crossref_primary_10_3390_ma10040342 crossref_primary_10_1061__ASCE_MT_1943_5533_0001717 crossref_primary_10_1016_j_conbuildmat_2017_04_111 crossref_primary_10_3390_ma16145052 crossref_primary_10_1016_j_jenvman_2024_122702 crossref_primary_10_1061__ASCE_MT_1943_5533_0002134 crossref_primary_10_1016_j_conbuildmat_2017_11_164 crossref_primary_10_3141_2577_02 crossref_primary_10_1016_j_cemconres_2019_03_001 crossref_primary_10_1002_suco_202100214 crossref_primary_10_1088_2053_1591_ac513d crossref_primary_10_1617_s11527_021_01827_2 crossref_primary_10_1016_j_conbuildmat_2024_137699 crossref_primary_10_1002_bit_28184 crossref_primary_10_1520_ACEM20190023 crossref_primary_10_1098_rsos_180121 crossref_primary_10_1016_j_jobe_2023_105890 crossref_primary_10_3151_jact_11_167 crossref_primary_10_1016_j_conbuildmat_2015_12_191 crossref_primary_10_1016_j_promfg_2020_05_002 crossref_primary_10_1088_1755_1315_907_1_012006 crossref_primary_10_1016_j_cemconcomp_2020_103757 crossref_primary_10_1016_j_matpr_2023_03_676 crossref_primary_10_1617_s11527_024_02444_5 crossref_primary_10_1016_j_conbuildmat_2020_118521 crossref_primary_10_1016_j_tafmec_2019_102468 crossref_primary_10_1016_j_resconrec_2021_105740 crossref_primary_10_21041_ra_v12i1_559 crossref_primary_10_1016_j_cemconcomp_2015_03_010 crossref_primary_10_1080_21650373_2022_2031334 crossref_primary_10_1016_j_cemconcomp_2020_103641 crossref_primary_10_1061_JMCEE7_MTENG_15986 crossref_primary_10_14359_51737331 crossref_primary_10_1007_s41062_023_01319_y crossref_primary_10_1016_j_matpr_2023_05_256 crossref_primary_10_1016_j_conbuildmat_2023_133594 crossref_primary_10_1016_j_engstruct_2023_116305 crossref_primary_10_1016_j_conbuildmat_2017_09_041 crossref_primary_10_1016_j_conbuildmat_2017_07_203 crossref_primary_10_1016_j_jmrt_2024_01_261 crossref_primary_10_1061__ASCE_MT_1943_5533_0004572 crossref_primary_10_1680_jadcr_14_00111 crossref_primary_10_1016_j_conbuildmat_2021_122524 crossref_primary_10_1016_j_conbuildmat_2014_08_045 crossref_primary_10_1016_j_cemconcomp_2018_08_007 crossref_primary_10_1016_j_cemconcomp_2021_104006 crossref_primary_10_14359_51734299 crossref_primary_10_1080_02652048_2024_2386278 crossref_primary_10_1007_s11595_015_1304_5 crossref_primary_10_1016_j_conbuildmat_2020_120059 crossref_primary_10_1016_j_rser_2017_04_114 crossref_primary_10_1016_j_jmrt_2020_04_053 crossref_primary_10_1088_2631_8695_abfa30 crossref_primary_10_3390_ma14227005 crossref_primary_10_1007_s40030_021_00562_9 crossref_primary_10_1016_j_conbuildmat_2015_07_018 crossref_primary_10_1088_1757_899X_603_3_032016 crossref_primary_10_3390_biomimetics5040047 crossref_primary_10_1088_1361_665X_ac4577 crossref_primary_10_3390_su15043831 crossref_primary_10_1016_j_cemconcomp_2023_105177 crossref_primary_10_1002_admi_201800074 crossref_primary_10_1002_suco_202200257 crossref_primary_10_1016_j_conbuildmat_2019_117060 crossref_primary_10_1007_s00253_016_7316_z crossref_primary_10_1016_j_cemconcomp_2023_105172 crossref_primary_10_1051_matecconf_201928901001 crossref_primary_10_1080_21650373_2022_2153389 crossref_primary_10_1016_j_cscm_2024_e03298 crossref_primary_10_3390_polym15122718 crossref_primary_10_1016_j_jobe_2019_01_032 crossref_primary_10_1080_21650373_2019_1640141 crossref_primary_10_1016_j_jobe_2022_104661 crossref_primary_10_3390_buildings13030809 crossref_primary_10_26634_jce_9_1_14341 crossref_primary_10_1016_j_conbuildmat_2020_119805 crossref_primary_10_4028_p_AjwO0C crossref_primary_10_1088_1755_1315_664_1_012082 crossref_primary_10_1061__ASCE_MT_1943_5533_0002503 crossref_primary_10_1016_j_cemconcomp_2021_104193 crossref_primary_10_1061__ASCE_MT_1943_5533_0002632 crossref_primary_10_3390_app10217918 crossref_primary_10_3390_su12020696 crossref_primary_10_1016_j_matpr_2019_12_077 crossref_primary_10_1080_21650373_2023_2263447 crossref_primary_10_1061__ASCE_MT_1943_5533_0002072 crossref_primary_10_1080_15567036_2019_1669740 crossref_primary_10_3390_ma9030152 crossref_primary_10_1016_j_conbuildmat_2019_05_077 crossref_primary_10_1016_j_jclepro_2021_129665 crossref_primary_10_12989_cac_2016_17_6_831 crossref_primary_10_1007_s11595_018_1942_5 crossref_primary_10_1016_j_cemconres_2014_03_010 crossref_primary_10_1016_j_cemconcomp_2019_02_017 crossref_primary_10_1016_j_jobe_2021_102880 crossref_primary_10_1016_j_matpr_2020_01_478 crossref_primary_10_1016_j_compstruct_2016_01_028 crossref_primary_10_1061__ASCE_MT_1943_5533_0001673 crossref_primary_10_1016_j_matdes_2015_12_091 crossref_primary_10_1061__ASCE_MT_1943_5533_0004709 crossref_primary_10_1016_j_ijsolstr_2021_111346 crossref_primary_10_1016_j_jobe_2024_110988 crossref_primary_10_3390_ma13030589 crossref_primary_10_1016_j_conbuildmat_2015_03_117 crossref_primary_10_1617_s11527_021_01649_2 crossref_primary_10_1680_macr_13_00250 crossref_primary_10_1590_s1983_41952022000400004 crossref_primary_10_3390_app8060916 crossref_primary_10_3390_buildings12081196 crossref_primary_10_3390_ma15030847 crossref_primary_10_1016_j_conbuildmat_2020_119030 crossref_primary_10_1016_j_compositesb_2020_107892 crossref_primary_10_1088_1748_9326_ab466e crossref_primary_10_1007_s13369_022_06562_6 crossref_primary_10_1002_adma_201705679 crossref_primary_10_1680_jmacr_24_00070 crossref_primary_10_3390_ma17184508 crossref_primary_10_1016_j_jmps_2017_06_013 crossref_primary_10_1016_j_matpr_2021_03_304 crossref_primary_10_1016_j_proeng_2015_11_100 crossref_primary_10_1016_j_cemconcomp_2016_07_013 crossref_primary_10_4028_www_scientific_net_MSF_913_1090 crossref_primary_10_3390_jcs6010023 crossref_primary_10_1016_j_matpr_2020_08_762 crossref_primary_10_1016_j_cemconres_2018_09_016 crossref_primary_10_3390_cryst12040445 crossref_primary_10_1016_j_jmps_2020_103933 crossref_primary_10_1155_2022_9781273 crossref_primary_10_1016_j_powtec_2025_120834 crossref_primary_10_1016_j_conbuildmat_2022_126700 crossref_primary_10_2478_cee_2020_0018 crossref_primary_10_1016_j_conbuildmat_2022_128323 crossref_primary_10_14359_51689484 crossref_primary_10_3390_cryst12070993 crossref_primary_10_1002_suco_202400222 crossref_primary_10_1155_2018_5153041 crossref_primary_10_14359_51688831 crossref_primary_10_3390_s20123402 crossref_primary_10_1016_j_geothermics_2019_101790 crossref_primary_10_1016_j_conbuildmat_2019_117672 crossref_primary_10_1080_13467581_2023_2257298 crossref_primary_10_1177_1045389X14525490 crossref_primary_10_1016_j_dibe_2024_100486 crossref_primary_10_3151_coj_54_5_565 crossref_primary_10_1016_j_cemconres_2014_01_005 crossref_primary_10_4028_www_scientific_net_MSF_1002_541 crossref_primary_10_3390_ma13225265 crossref_primary_10_1016_j_conbuildmat_2016_06_075 crossref_primary_10_3390_ma6062182 crossref_primary_10_3151_jact_16_549 crossref_primary_10_1155_2016_8271214 crossref_primary_10_3389_fmicb_2015_01228 crossref_primary_10_1016_j_conbuildmat_2016_09_155 crossref_primary_10_1016_j_istruc_2020_10_070 crossref_primary_10_1016_j_apor_2023_103874 crossref_primary_10_1016_j_conbuildmat_2024_137966 crossref_primary_10_3390_ma9070555 crossref_primary_10_1016_j_jobe_2021_102834 crossref_primary_10_1177_03611981221126513 crossref_primary_10_3390_ma13214947 crossref_primary_10_1016_j_conbuildmat_2017_02_160 crossref_primary_10_1061__ASCE_MT_1943_5533_0002568 |
Cites_doi | 10.1016/j.conbuildmat.2011.06.054 10.1016/j.cemconres.2010.11.002 10.3151/jact.8.171 10.1016/j.conbuildmat.2011.08.086 10.1016/j.cemconres.2009.01.013 10.1016/j.ecoleng.2008.12.036 10.1016/j.cemconcomp.2009.07.002 10.1016/j.cemconcomp.2011.01.004 10.1021/ma801718v 10.1680/macr.2010.62.11.831 10.1016/j.cemconcomp.2007.09.004 10.1016/j.cemconcomp.2011.03.012 10.1088/0964-1726/5/3/007 10.1016/S1359-8368(98)00034-1 |
ContentType | Journal Article |
Copyright | 2012 by Japan Concrete Institute Copyright Japan Science and Technology Agency 2012 |
Copyright_xml | – notice: 2012 by Japan Concrete Institute – notice: Copyright Japan Science and Technology Agency 2012 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 7ST 7U6 C1K |
DOI | 10.3151/jact.10.207 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-3913 |
EndPage | 218 |
ExternalDocumentID | 3183080451 10_3151_jact_10_207 article_jact_10_6_10_207_article_char_en |
GroupedDBID | 5GY ACIWK ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD JSF JSH KQ8 OK1 P2P RJT RZJ AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 7ST 7U6 C1K |
ID | FETCH-LOGICAL-c553t-c78e17e834d78fe16b62b7cc462d487e736870a89604784d555b04b9be8c5cff3 |
ISSN | 1346-8014 |
IngestDate | Fri Jul 11 15:50:26 EDT 2025 Mon Jun 30 10:03:12 EDT 2025 Tue Jul 01 01:31:03 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Wed Apr 05 02:38:49 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c553t-c78e17e834d78fe16b62b7cc462d487e736870a89604784d555b04b9be8c5cff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jact/10/6/10_207/_article/-char/en |
PQID | 1477809703 |
PQPubID | 1996343 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1221886562 proquest_journals_1477809703 crossref_primary_10_3151_jact_10_207 crossref_citationtrail_10_3151_jact_10_207 jstage_primary_article_jact_10_6_10_207_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012/06/28 |
PublicationDateYYYYMMDD | 2012-06-28 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012/06/28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Advanced Concrete Technology |
PublicationTitleAlternate | ACT |
PublicationYear | 2012 |
Publisher | Japan Concrete Institute Japan Science and Technology Agency |
Publisher_xml | – name: Japan Concrete Institute – name: Japan Science and Technology Agency |
References | Huang, H., and Ye, G., (2011). “Application of sodium silicate solution as self-healing agent in cementitious materials.” International Conference on Advances in Construction Materials through Science and Engineering, Hong Kong, China, September 5-7. Ahn, T. H. and Kishi, T., (2010). “Crack self-healing behavior of cementitious composites incorporating various mineral admixtures.” Journal of Advanced Concrete Technology, 8(2), 171-186. Kishi, T., Ahn, T., Hosoda, A., Suzuki, S. and Takaoka, H., (2007). “Self-healing behaviour by cementitious recrystallization of cracked concrete incorporating expansive agent.” In: 1st International Conference on Self-Healing Materials, Noordwijk aan Zee, The Netherlands, April 18-20. Sisomphon, K. and Copuroglu, O., (2011). “Self healing mortars by using different cementitious materials.” In: International Conference on Advances in Construction Materials through Science and Engineering, Hong Kong, China, September 5-7. Wiktor, V. and Jonkers, H. M., (2011). “Quantification of crack-healing in novel bacteria-based self-healing concrete.” Cement and Concrete Composites, 33, 763-770. Yang, J., Keller, M. W., Moore, J. S. White, S. R. and Sottos, N. R., (2008). “Microencapsulation of isocyanates for self-healing polymers.” Macromolecules, 41, 9650-9655. Wang, J., van Tittelboom, K. De Belie, N. and Verstraete, W., (2012). “Use of silica gel or polyurethane immobilized bacteria for self-healing concrete.” Construction and Building Materials, 26, 532-540. Life-365, 2012. http://www.life-365.org/installation.html, Assessed March 2nd, 2012. Yang, Y., Yang, E. H. and Li, V. C., (2011). “Autogenous healing of engineering cementitious composites at early age.” Cement and Concrete Research, 41(2), 176-183. Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. and Schlangen, E., (2010). “Application of bacteria as self-healing agent for the development of sustainable concrete.” Ecological Engineering 36, 230-235. Li, V. C., (2003). “On engineered cementitious composites (ECC) - A review of the material and its applications.” J. Advanced Concrete Technology, 1(3) 215-230. Lepech, M. D., (2006). “A paradigm for integrated structures and materials design for sustainable transportation infrastructure.” PhD Thesis, University of Michigan. Lepech, M. D. and Li, V. C., (2009). “Water permeability in engineered cementitious composites.” Cement and Concrete Composites, 31(10), 744-753. Yang, Y., Lepech, M. D., Yang, E. and Li, V. C., (2009). “Autogenous healing of engineered cementitious composites under wet-dry cycles.” Cement and Concrete Research, 39, 382-390. American Concrete Institute, (1995). “Building code requirements for structural concrete (ACI 318-95) and commentary (ACI 318R-95).” ACI Committee 318, Detroit, Michigan,. Sahmaran, M. and Li, V. C., (2008). “Durability of mechanically loaded engineered cementitious composites under highly alkaline environments.” Cement and Concrete Composites, 30, 72-81. RILEM TC-221-SHC, (2012). “State-of-the-art report - Self-healing phenomena in cement-based materials, Ed. by de Rooij et al. van Tittelboom, K., De Belie, N., Van Loo, D. and Jacobs, P., (2011). “Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent.” Cement and Concrete Composites, 33, 497-505. AASHTO, (2004). “LRFD Bridge Design Specifications.” 3rd Ed., AASHTO, Washington, D.C,. Sahmaran, M., Li, M. and Li, V. C., (2007). “Transport properties of engineered cementitious composites under chloride exposure.” ACI Materials J., 104(6) 604-611. Hosoda, A., Kishi, T., Arita, H. and Takakuwa, Y., (2007). “Self healing of crack and water permeability of expansive concrete.” In: 1st International Conference on Self-Healing Materials, Noordwijk aan Zee, The Netherlands, April 18-20. Li, M., Ranade, R. Kan, L. and Li, V. C., (2010). “On improving the infrastructure service life using ECC to mitigate rebar corrosion.” In: van Breugel, K. Ye, G. and Yuan, Y. eds. Proc., 2nd Int'l Symp. on Service Life Design for Infrastructure, Delft, The Netherlands, RILEM PRO 70, 773-782. Mather, B. and Warner, J., (2003). “Why do concrete repairs fail.” Interview held at Univ. of Wisconsin, Dept. of Eng. Professional Development, MD, WI, <http://aec.engr.wisc.edu/resources/rsrc07.html>. Accessed, Nov., 2003. Wu, M., Johannesson, B. and Geiker, M., (2012). “A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material.” Construction and Building Materials, 28, 571-583. Joseph, C., Jefferson, A. D., Isaacs, B., Lark, R. and Gardner, D., (2010). “Experimental investigation of adhesive-based self-healing of cementitious materials.” Magazine of Concrete Research, 62(11), 831-843. van Breugel, K., (2007). “Is there a market for self-healing cement-based materials.” In: Proceedings of the first international conference on self-healing materials, Noordwijk aan zee, the Netherlands; April 2007. Kishi, T., Ahn, T. H., Morita, M. and Koide, T., (2011). “Field test of self-healing concrete on the recovery of water tightness to leakage through cracks.” In: 3rd Int'l Conf. on Self-Healing Materials, Bath, UK 2011. Dry, C, and McMillan, W., (1996). “Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete.” Smart Mater Struct, 5(3), 297-300. ter Heide, N. and Schlangen, E., (2007). “Self-healing of early age cracks in concrete.” In: Proceedings of the First International Conference on Self Healing Materials, 18-20 April 2007, Noordwijk aan Zee, The Netherlands. American Concrete Institute, (2002). “Building code requirements for structural concrete (ACI 318-02) and commentary (ACI 318R-02).” ACI Committee 318, Detroit, Michigan. Herbert, E. N. and Li, V. C., (2001). “Self-healing of engineered cementitious composites in the natural environment.” In: High Performance Fiber Reinforced Cement Composites 6, Ann Arbor, MI, USA, June 20-22. Yamamoto, A., Watanabe, K., Li, V. C. and Niwa, J., (2010). “Effect of wet-dry condition on self-healing property of early-age ECC.” Proc. Japan Concrete Institute, 32(1) 251-256. Li, V. C., Lim, Y. M. and Chan, Y., (1998). “Feasibility study of a passive smart self-healing cementitious composite.” Composites Part B: Engineering, 29B, 819-827. Li, V. C., Wu, C., Wang, S., Ogawa, A. and Saito, T., (2002). “Interface tailoring for strain-hardening PVA-ECC.” ACI Materials J., 99(5) 463-472. Keoleian, G. A., Kendall, A., Chandler, R., Helfand, G. E., Lepech, M. and Li., V. C., (2005). “Life cycle cost model for evaluating the sustainability of bridge decks.” In: Andrzej S. Nowak & Dan M. Frangopol, Eds., Proc. Advances in Life-Cycle Analysis & Design of Civil Infrastructure Systems, 143-150. Jonkers, H. M., (2011). “Bacteria-based self-healing concrete.” Heron, 56(1/2), 1-12. Li, M., and Li, V. C., (2011). “Cracking and healing of engineered cementitious composites under chloride environment.” ACI Materials J., 108(3), 333-340. Sisomphon, K., Copuroglu, O. and Koenders, E. A. B., (2011). “Surface crack self healing behaviour of mortars with expansive additives.” In: 3rd International Conference on Self-Healing Materials, Bath, UK, June 27-29. Vision 2020, (2006). “A vision for the concrete repair protection and strengthening industry.” The Strategic Development Council (SDC. http://www.concretesdc.org/_pdfs/Vision2020-Version1.0_%20May2006.pdf 22 23 24 25 26 27 28 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 20 cr-split#-29.1 21 cr-split#-29.2 |
References_xml | – reference: Yang, Y., Yang, E. H. and Li, V. C., (2011). “Autogenous healing of engineering cementitious composites at early age.” Cement and Concrete Research, 41(2), 176-183. – reference: Dry, C, and McMillan, W., (1996). “Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete.” Smart Mater Struct, 5(3), 297-300. – reference: Hosoda, A., Kishi, T., Arita, H. and Takakuwa, Y., (2007). “Self healing of crack and water permeability of expansive concrete.” In: 1st International Conference on Self-Healing Materials, Noordwijk aan Zee, The Netherlands, April 18-20. – reference: Sahmaran, M., Li, M. and Li, V. C., (2007). “Transport properties of engineered cementitious composites under chloride exposure.” ACI Materials J., 104(6) 604-611. – reference: Ahn, T. H. and Kishi, T., (2010). “Crack self-healing behavior of cementitious composites incorporating various mineral admixtures.” Journal of Advanced Concrete Technology, 8(2), 171-186. – reference: Mather, B. and Warner, J., (2003). “Why do concrete repairs fail.” Interview held at Univ. of Wisconsin, Dept. of Eng. Professional Development, MD, WI, <http://aec.engr.wisc.edu/resources/rsrc07.html>. Accessed, Nov., 2003. – reference: AASHTO, (2004). “LRFD Bridge Design Specifications.” 3rd Ed., AASHTO, Washington, D.C,. – reference: Li, M., Ranade, R. Kan, L. and Li, V. C., (2010). “On improving the infrastructure service life using ECC to mitigate rebar corrosion.” In: van Breugel, K. Ye, G. and Yuan, Y. eds. Proc., 2nd Int'l Symp. on Service Life Design for Infrastructure, Delft, The Netherlands, RILEM PRO 70, 773-782. – reference: Kishi, T., Ahn, T. H., Morita, M. and Koide, T., (2011). “Field test of self-healing concrete on the recovery of water tightness to leakage through cracks.” In: 3rd Int'l Conf. on Self-Healing Materials, Bath, UK 2011. – reference: Yang, Y., Lepech, M. D., Yang, E. and Li, V. C., (2009). “Autogenous healing of engineered cementitious composites under wet-dry cycles.” Cement and Concrete Research, 39, 382-390. – reference: Li, V. C., (2003). “On engineered cementitious composites (ECC) - A review of the material and its applications.” J. Advanced Concrete Technology, 1(3) 215-230. – reference: Joseph, C., Jefferson, A. D., Isaacs, B., Lark, R. and Gardner, D., (2010). “Experimental investigation of adhesive-based self-healing of cementitious materials.” Magazine of Concrete Research, 62(11), 831-843. – reference: ter Heide, N. and Schlangen, E., (2007). “Self-healing of early age cracks in concrete.” In: Proceedings of the First International Conference on Self Healing Materials, 18-20 April 2007, Noordwijk aan Zee, The Netherlands. – reference: Yamamoto, A., Watanabe, K., Li, V. C. and Niwa, J., (2010). “Effect of wet-dry condition on self-healing property of early-age ECC.” Proc. Japan Concrete Institute, 32(1) 251-256. – reference: Herbert, E. N. and Li, V. C., (2001). “Self-healing of engineered cementitious composites in the natural environment.” In: High Performance Fiber Reinforced Cement Composites 6, Ann Arbor, MI, USA, June 20-22. – reference: Li, V. C., Lim, Y. M. and Chan, Y., (1998). “Feasibility study of a passive smart self-healing cementitious composite.” Composites Part B: Engineering, 29B, 819-827. – reference: Li, M., and Li, V. C., (2011). “Cracking and healing of engineered cementitious composites under chloride environment.” ACI Materials J., 108(3), 333-340. – reference: Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. and Schlangen, E., (2010). “Application of bacteria as self-healing agent for the development of sustainable concrete.” Ecological Engineering 36, 230-235. – reference: Wang, J., van Tittelboom, K. De Belie, N. and Verstraete, W., (2012). “Use of silica gel or polyurethane immobilized bacteria for self-healing concrete.” Construction and Building Materials, 26, 532-540. – reference: Yang, J., Keller, M. W., Moore, J. S. White, S. R. and Sottos, N. R., (2008). “Microencapsulation of isocyanates for self-healing polymers.” Macromolecules, 41, 9650-9655. – reference: Li, V. C., Wu, C., Wang, S., Ogawa, A. and Saito, T., (2002). “Interface tailoring for strain-hardening PVA-ECC.” ACI Materials J., 99(5) 463-472. – reference: Sahmaran, M. and Li, V. C., (2008). “Durability of mechanically loaded engineered cementitious composites under highly alkaline environments.” Cement and Concrete Composites, 30, 72-81. – reference: Sisomphon, K. and Copuroglu, O., (2011). “Self healing mortars by using different cementitious materials.” In: International Conference on Advances in Construction Materials through Science and Engineering, Hong Kong, China, September 5-7. – reference: American Concrete Institute, (2002). “Building code requirements for structural concrete (ACI 318-02) and commentary (ACI 318R-02).” ACI Committee 318, Detroit, Michigan. – reference: van Tittelboom, K., De Belie, N., Van Loo, D. and Jacobs, P., (2011). “Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent.” Cement and Concrete Composites, 33, 497-505. – reference: Wu, M., Johannesson, B. and Geiker, M., (2012). “A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material.” Construction and Building Materials, 28, 571-583. – reference: Vision 2020, (2006). “A vision for the concrete repair protection and strengthening industry.” The Strategic Development Council (SDC. http://www.concretesdc.org/_pdfs/Vision2020-Version1.0_%20May2006.pdf – reference: Jonkers, H. M., (2011). “Bacteria-based self-healing concrete.” Heron, 56(1/2), 1-12. – reference: Kishi, T., Ahn, T., Hosoda, A., Suzuki, S. and Takaoka, H., (2007). “Self-healing behaviour by cementitious recrystallization of cracked concrete incorporating expansive agent.” In: 1st International Conference on Self-Healing Materials, Noordwijk aan Zee, The Netherlands, April 18-20. – reference: Lepech, M. D., (2006). “A paradigm for integrated structures and materials design for sustainable transportation infrastructure.” PhD Thesis, University of Michigan. – reference: Wiktor, V. and Jonkers, H. M., (2011). “Quantification of crack-healing in novel bacteria-based self-healing concrete.” Cement and Concrete Composites, 33, 763-770. – reference: Keoleian, G. A., Kendall, A., Chandler, R., Helfand, G. E., Lepech, M. and Li., V. C., (2005). “Life cycle cost model for evaluating the sustainability of bridge decks.” In: Andrzej S. Nowak & Dan M. Frangopol, Eds., Proc. Advances in Life-Cycle Analysis & Design of Civil Infrastructure Systems, 143-150. – reference: RILEM TC-221-SHC, (2012). “State-of-the-art report - Self-healing phenomena in cement-based materials, Ed. by de Rooij et al. – reference: Huang, H., and Ye, G., (2011). “Application of sodium silicate solution as self-healing agent in cementitious materials.” International Conference on Advances in Construction Materials through Science and Engineering, Hong Kong, China, September 5-7. – reference: van Breugel, K., (2007). “Is there a market for self-healing cement-based materials.” In: Proceedings of the first international conference on self-healing materials, Noordwijk aan zee, the Netherlands; April 2007. – reference: American Concrete Institute, (1995). “Building code requirements for structural concrete (ACI 318-95) and commentary (ACI 318R-95).” ACI Committee 318, Detroit, Michigan,. – reference: Lepech, M. D. and Li, V. C., (2009). “Water permeability in engineered cementitious composites.” Cement and Concrete Composites, 31(10), 744-753. – reference: Life-365, 2012. http://www.life-365.org/installation.html, Assessed March 2nd, 2012. – reference: Sisomphon, K., Copuroglu, O. and Koenders, E. A. B., (2011). “Surface crack self healing behaviour of mortars with expansive additives.” In: 3rd International Conference on Self-Healing Materials, Bath, UK, June 27-29. – ident: 18 – ident: 30 doi: 10.1016/j.conbuildmat.2011.06.054 – ident: 39 – ident: 4 – ident: 12 – ident: 38 doi: 10.1016/j.cemconres.2010.11.002 – ident: 35 – ident: 2 doi: 10.3151/jact.8.171 – ident: 32 doi: 10.1016/j.conbuildmat.2011.08.086 – ident: 33 – ident: 10 – ident: 14 – ident: 28 – ident: 37 doi: 10.1016/j.cemconres.2009.01.013 – ident: 24 – ident: #cr-split#-29.1 – ident: 7 – ident: 9 doi: 10.1016/j.ecoleng.2008.12.036 – ident: 22 – ident: 17 – ident: 3 – ident: 16 doi: 10.1016/j.cemconcomp.2009.07.002 – ident: 1 – ident: 34 doi: 10.1016/j.cemconcomp.2011.01.004 – ident: 36 doi: 10.1021/ma801718v – ident: 11 doi: 10.1680/macr.2010.62.11.831 – ident: 19 – ident: 13 – ident: 15 – ident: 26 doi: 10.1016/j.cemconcomp.2007.09.004 – ident: 31 doi: 10.1016/j.cemconcomp.2011.03.012 – ident: #cr-split#-29.2 – ident: 6 – ident: 8 – ident: 21 – ident: 5 doi: 10.1088/0964-1726/5/3/007 – ident: 27 – ident: 20 doi: 10.1016/S1359-8368(98)00034-1 – ident: 25 – ident: 23 |
SSID | ssj0037377 |
Score | 2.4202256 |
Snippet | This article introduces the concept of self-healing concrete for sustainable infrastructure through reduction of maintenance and repair in the use phase. To... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 207 |
Title | Robust Self-Healing Concrete for Sustainable Infrastructure |
URI | https://www.jstage.jst.go.jp/article/jact/10/6/10_207/_article/-char/en https://www.proquest.com/docview/1477809703 https://www.proquest.com/docview/1221886562 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Advanced Concrete Technology, 2012/06/28, Vol.10(6), pp.207-218 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgcIADYvzQCgMFaadJGW3s2K44IdSpjLJpo0W9RbFrT0NTOm3Zhb-ez7HjpqyHwSXKjxcf3md_fn72e4-QPUXVwGrBU8EsFihM2rS0Q5oKqTG8FBO6qdbw_ZiPZ-xons9XtfWa6JJaHejfG-NK_gdVvAOuLkr2H5CNjeIF7oEvrkAY13thfLZUtzc1xvulTV08kd_Dr2AI1j6X949OeNTXyl6XPl1syCKywSiNRwJ020x9x_c-aQ4A_Lxw7v6Vk3UMfEL8z8j5TLruBHcug7fh2cZTIGWgnaGPEI0c2e_0hTXC8zVrw9yZeS79m5YpzIqmHIB2CbsP4j_d5NfHJ8XhbDIppqP59CF5lMHqd7T17TRuClFBhfAhlq7Bj53m1oyKx7-g2vO7k2tjMUyfk2dBq8lnj9s2eWCqF-RpJwHkS_LJI5h0EUxaBBMgmHQQTNYRfEVmh6Ppl3EaylmkOs9pnWohzUAYSdlCSGsGXPFMCa0ZzxZYNhpBOcizlC5djpBskee56jM1VAbjRltLX5OtalmZHZIoELWV3PEtWmNlmUtNlVSLXFjV17RH9lt9FDrkenclRy4LrPmc8gqnPPcA5fXIXhS-8ilONosJr9goFPp9FOJBMn5wgYMYpz2y2yJRhNFzgyWnELI_xITTIx_iZ3Cb27AqK7O8hUyGDiWx4sje3EPmLXmy6tC7ZAtwmHewGGv1vulHfwDnN3HP |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Self-Healing+Concrete+for+Sustainable+Infrastructure&rft.jtitle=Journal+of+advanced+concrete+technology&rft.au=Li%2C+Victor+C&rft.au=Herbert%2C+Emily&rft.date=2012-06-28&rft.eissn=1347-3913&rft.volume=10&rft.issue=6&rft.spage=207&rft.epage=218&rft_id=info:doi/10.3151%2Fjact.10.207&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon |