Investigation on Properties of ECC Incorporating Crumb Rubber of Different Sizes
In the past decades, incorporating crumb rubber into concrete has attracted attention in the field of building materials due to the properties improvement it brought. In this study, crumb rubber of two particle sizes (40CR and 80CR, which have a sieve size of 400 μm and 220μm, respectively) is incor...
Saved in:
Published in | Journal of Advanced Concrete Technology Vol. 13; no. 5; pp. 241 - 251 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japan Concrete Institute
13.05.2015
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the past decades, incorporating crumb rubber into concrete has attracted attention in the field of building materials due to the properties improvement it brought. In this study, crumb rubber of two particle sizes (40CR and 80CR, which have a sieve size of 400 μm and 220μm, respectively) is incorporated into engineering cementitious composite (ECC) material to replace silica sand. Furthermore, three different replacement percentages (0, 15%, 25% by volume) for each crumb rubber size are conducted in this study. The influence of crumb rubber on the ECC is revealed via density, compressive strength, flexural performance, drying shrinkage, restrained shrinkage and environment footprint. The experimental results show that the incorporation of crumb rubber into ECC increases bending deformation capacity, decrease density and compressive strength. While the free drying shrinkage of ECC increases with the addition of crumb rubber, lesser crack number, crack width and cracking tendency were found in the restrained ring test when compared to ECC without crumb rubber. In terms of crumb rubber size, ECC with smaller crumb rubber appear to have lower density and higher bending defamation capacity and shrinkage than those with larger crumb rubber. In addition, incorporating crumb rubber into ECC reduces CO2 emission, thus improve the greenness of ECC to a certain degree. |
---|---|
AbstractList | In the past decades, incorporating crumb rubber into concrete has attracted attention in the field of building materials due to the properties improvement it brought. In this study, crumb rubber of two particle sizes (40CR and 80CR, which have a sieve size of 400 mu m and 220 mu m, respectively) is incorporated into engineering cementitious composite (ECC) material to replace silica sand. Furthermore, three different replacement percentages (0, 15%, 25% by volume) for each crumb rubber size are conducted in this study. The influence of crumb rubber on the ECC is revealed via density, compressive strength, flexural performance, drying shrinkage, restrained shrinkage and environment footprint. The experimental results show that the incorporation of crumb rubber into ECC increases bending deformation capacity, decrease density and compressive strength. While the free drying shrinkage of ECC increases with the addition of crumb rubber, lesser crack number, crack width and cracking tendency were found in the restrained ring test when compared to ECC without crumb rubber. In terms of crumb rubber size, ECC with smaller crumb rubber appear to have lower density and higher bending defamation capacity and shrinkage than those with larger crumb rubber. In addition, incorporating crumb rubber into ECC reduces CO2 emission, thus improve the greenness of ECC to a certain degree. In the past decades, incorporating crumb rubber into concrete has attracted attention in the field of building materials due to the properties improvement it brought. In this study, crumb rubber of two particle sizes (40CR and 80CR, which have a sieve size of 400 μm and 220μm, respectively) is incorporated into engineering cementitious composite (ECC) material to replace silica sand. Furthermore, three different replacement percentages (0, 15%, 25% by volume) for each crumb rubber size are conducted in this study. The influence of crumb rubber on the ECC is revealed via density, compressive strength, flexural performance, drying shrinkage, restrained shrinkage and environment footprint. The experimental results show that the incorporation of crumb rubber into ECC increases bending deformation capacity, decrease density and compressive strength. While the free drying shrinkage of ECC increases with the addition of crumb rubber, lesser crack number, crack width and cracking tendency were found in the restrained ring test when compared to ECC without crumb rubber. In terms of crumb rubber size, ECC with smaller crumb rubber appear to have lower density and higher bending defamation capacity and shrinkage than those with larger crumb rubber. In addition, incorporating crumb rubber into ECC reduces CO2 emission, thus improve the greenness of ECC to a certain degree. |
Author | Ma, Hui Qian, Shunzhi Zhang, Zhigang |
Author_xml | – sequence: 1 fullname: Zhang, Zhigang organization: School of Transportation, Southeast University, Nanjing, P R China – sequence: 2 fullname: Ma, Hui organization: School of Transportation, Southeast University, Nanjing, P R China – sequence: 3 fullname: Qian, Shunzhi organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore |
BookMark | eNp10F1rFDEUBuAgFWyrV_6BAW8EmXXOZJLJ3Agyre1CweLHdcgcT9Yss8maZAT99Wa7ZS8KQiCBPO8heS_YmQ-eGHsNzYqDgPdbg3kFfNV28IydA-_6mg_Azx7OslYNdC_YRUrbpuE97_tzdr_2vylltzHZBV-VdR_DnmJ2lKpgq-txrNYeQ9yHWIjfVGNcdlP1ZZkmigdx5aylSD5XX91fSi_Zc2vmRK8e90v2_dP1t_G2vvt8sx4_3tUoBM81diTEZFRHigO0qGiyfFLYyxYlkkL8gR1vWiNB2Um13EolZSOJt9i3YPkle3ucu4_h11K-oHcuIc2z8RSWpKFXEuQwDH2hb57QbViiL68rSnSCd-0ginp3VBhDSpGs3ke3M_GPhkYf2tWHdjVwXdotGp5odPmhwxyNm_-T-XDMbFM2GzrNN6VtnOlkxWPgdIE_TdTk-T8bmZYc |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2018_12_207 crossref_primary_10_3390_ma15144905 crossref_primary_10_1016_j_jobe_2024_110253 crossref_primary_10_1016_j_conbuildmat_2020_122033 crossref_primary_10_1016_j_conbuildmat_2018_11_089 crossref_primary_10_1016_j_cemconcomp_2024_105576 crossref_primary_10_3390_ma13112446 crossref_primary_10_1016_j_cemconcomp_2017_04_004 crossref_primary_10_1016_j_conbuildmat_2021_125259 crossref_primary_10_1016_j_jenvman_2018_03_035 crossref_primary_10_1016_j_jobe_2023_107512 crossref_primary_10_1016_j_cscm_2023_e02768 crossref_primary_10_3390_su142013530 crossref_primary_10_1061__ASCE_MT_1943_5533_0003700 crossref_primary_10_3389_fmats_2021_811110 crossref_primary_10_1016_j_conbuildmat_2021_125430 crossref_primary_10_1016_j_conbuildmat_2017_11_072 crossref_primary_10_1016_j_conbuildmat_2022_127153 crossref_primary_10_3151_jact_17_126 crossref_primary_10_3390_ma13143125 crossref_primary_10_1016_j_conbuildmat_2017_01_060 crossref_primary_10_1016_j_conbuildmat_2020_120116 crossref_primary_10_1016_j_jclepro_2022_133998 crossref_primary_10_3390_ma13163516 crossref_primary_10_1038_s41598_025_94382_7 crossref_primary_10_1016_j_conbuildmat_2019_117191 crossref_primary_10_1016_j_conbuildmat_2024_139446 crossref_primary_10_1177_0731684419877251 crossref_primary_10_2478_sjce_2023_0009 crossref_primary_10_1016_j_jobe_2024_110115 crossref_primary_10_3390_geotechnics3040070 crossref_primary_10_1088_1757_899X_518_2_022045 crossref_primary_10_3390_ma13122831 crossref_primary_10_1016_j_cemconcomp_2023_105347 crossref_primary_10_3390_buildings13082026 crossref_primary_10_14359_51720300 crossref_primary_10_1515_rams_2023_0110 crossref_primary_10_1007_s40996_023_01089_8 crossref_primary_10_1016_j_compstruct_2019_111198 crossref_primary_10_1016_j_conbuildmat_2017_08_166 crossref_primary_10_1016_j_cscm_2023_e02701 crossref_primary_10_1016_j_jclepro_2020_121113 crossref_primary_10_3390_buildings13082032 crossref_primary_10_1080_10298436_2017_1356173 crossref_primary_10_1007_s40996_020_00444_3 crossref_primary_10_1016_j_diamond_2024_110949 crossref_primary_10_3390_buildings13020280 crossref_primary_10_1016_j_cemconcomp_2022_104473 crossref_primary_10_1016_j_conbuildmat_2023_130672 crossref_primary_10_3390_ma15113934 crossref_primary_10_1016_j_jobe_2023_106998 crossref_primary_10_1016_j_conbuildmat_2019_03_117 crossref_primary_10_1016_j_conbuildmat_2025_140820 crossref_primary_10_1016_j_jobe_2023_106913 crossref_primary_10_1016_j_conbuildmat_2015_10_146 crossref_primary_10_1016_j_engstruct_2024_118096 crossref_primary_10_1177_07316844231213915 crossref_primary_10_1016_j_conbuildmat_2023_130813 crossref_primary_10_1061__ASCE_MT_1943_5533_0002894 crossref_primary_10_1016_j_ceramint_2022_12_057 crossref_primary_10_3141_2640_09 crossref_primary_10_1016_j_conbuildmat_2022_128692 crossref_primary_10_1016_j_coco_2023_101657 crossref_primary_10_23939_jtbp2021_01_106 crossref_primary_10_2478_ceer_2022_0013 crossref_primary_10_1016_j_conbuildmat_2019_07_108 crossref_primary_10_1016_j_cscm_2020_e00385 crossref_primary_10_1038_s41598_024_73566_7 crossref_primary_10_1016_j_conbuildmat_2018_01_041 crossref_primary_10_1016_j_conbuildmat_2023_133878 crossref_primary_10_1016_j_conbuildmat_2023_131064 crossref_primary_10_3390_buildings13071681 crossref_primary_10_1007_s40996_024_01629_w crossref_primary_10_14359_51720194 crossref_primary_10_1016_j_conbuildmat_2024_137100 crossref_primary_10_1016_j_jobe_2023_107706 crossref_primary_10_1061__ASCE_MT_1943_5533_0003405 crossref_primary_10_1088_2053_1591_ada233 crossref_primary_10_1016_j_conbuildmat_2022_129765 crossref_primary_10_1016_j_cscm_2025_e04450 crossref_primary_10_1016_j_cemconres_2023_107298 crossref_primary_10_1155_2019_5198583 crossref_primary_10_1007_s12205_021_1053_2 crossref_primary_10_1016_j_cemconcomp_2020_103808 crossref_primary_10_1016_j_cemconcomp_2018_01_007 crossref_primary_10_1016_j_matpr_2023_03_010 crossref_primary_10_1016_j_conbuildmat_2025_139933 crossref_primary_10_3390_ma12060858 crossref_primary_10_1016_j_conbuildmat_2018_10_056 crossref_primary_10_1088_1755_1315_140_1_012137 crossref_primary_10_1016_j_conbuildmat_2016_04_022 crossref_primary_10_1016_j_conbuildmat_2020_121959 crossref_primary_10_1617_s11527_022_01904_0 crossref_primary_10_14359_51738816 crossref_primary_10_3389_fmats_2024_1357094 crossref_primary_10_1016_j_conbuildmat_2022_129879 crossref_primary_10_1016_j_conbuildmat_2019_03_159 crossref_primary_10_1016_j_cscm_2021_e00536 crossref_primary_10_1002_suco_202200226 crossref_primary_10_1016_j_cemconcomp_2016_05_016 crossref_primary_10_1016_j_conbuildmat_2024_139183 |
Cites_doi | 10.1016/j.jclepro.2011.09.016 10.1061/(ASCE)0899-1561(2008)20:10(640) 10.3151/jact.5.235 10.1016/j.matdes.2008.12.011 10.1520/CCA10519J 10.1016/0008-8846(95)00014-3 10.1016/j.wasman.2004.01.006 10.1016/S1369-7021(10)70195-4 10.1016/0167-6636(88)90011-7 10.1061/(ASCE)0899-1561(1998)10:1(5) 10.1007/s40069-012-0018-8 10.1016/j.cemconcomp.2012.08.012 10.3151/jact.6.181 10.1617/s11527-007-9279-0 10.1016/j.conbuildmat.2011.07.032 10.1016/j.conbuildmat.2006.06.030 10.1061/(ASCE)1076-0342(2005)11:1(51) 10.1061/(ASCE)0733-9399(1992)118:11(2246) 10.1016/S0008-8846(02)00833-5 10.1016/j.conbuildmat.2013.04.027 10.1016/j.cemconres.2005.12.011 10.1061/(ASCE)0899-1561(1999)11:3(206) 10.1016/j.cemconcomp.2009.07.002 10.1016/j.resconrec.2008.06.012 10.1061/(ASCE)0899-1561(2001)13:6(399) 10.3151/jact.12.510 10.1016/j.conbuildmat.2005.01.040 |
ContentType | Journal Article |
Copyright | 2015 by Japan Concrete Institute Copyright Japan Science and Technology Agency 2015 |
Copyright_xml | – notice: 2015 by Japan Concrete Institute – notice: Copyright Japan Science and Technology Agency 2015 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.3151/jact.13.241 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-3913 |
EndPage | 251 |
ExternalDocumentID | 3914870201 10_3151_jact_13_241 article_jact_13_5_13_241_article_char_en |
GroupedDBID | 5GY ACIWK ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD JSF JSH KQ8 OK1 P2P RJT RZJ AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c553t-c4e55ba84e83112c8ebf3b8c762c6ce8ccdc4302a618fb823f686606e32c721f3 |
ISSN | 1346-8014 |
IngestDate | Fri Jul 11 12:20:08 EDT 2025 Mon Jun 30 09:56:03 EDT 2025 Tue Jul 01 01:31:04 EDT 2025 Thu Apr 24 23:09:07 EDT 2025 Wed Apr 05 05:37:17 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c553t-c4e55ba84e83112c8ebf3b8c762c6ce8ccdc4302a618fb823f686606e32c721f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jact/13/5/13_241/_article/-char/en |
PQID | 1754534295 |
PQPubID | 1996343 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1786169997 proquest_journals_1754534295 crossref_primary_10_3151_jact_13_241 crossref_citationtrail_10_3151_jact_13_241 jstage_primary_article_jact_13_5_13_241_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015/05/13 |
PublicationDateYYYYMMDD | 2015-05-13 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015/05/13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Advanced Concrete Technology |
PublicationTitleAlternate | ACT |
PublicationYear | 2015 |
Publisher | Japan Concrete Institute Japan Science and Technology Agency |
Publisher_xml | – name: Japan Concrete Institute – name: Japan Science and Technology Agency |
References | 40) Topcu, I. B., (1995). “The properties of rubberized concretes.” Cement and Concrete Research, 25(2), 304-310. 8) Garrick, G. M., (2005). “Analysis and testing of waste tire fiber modified concrete.” Thesis (PhD), B.S., Louisiana State University. 12) Hernández-Olivares, F., Barluenga, G., Parga-Landa, B., Bollati, M. and Witoszek, B., (2007). “Fatigue behavior of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements.” Construction and Building Materials, 21(10), 1918-1927. 4) ASTM E399-12, (2013). “Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials.” Philadelphia: American Society of Testing and Materials. 42) Turatsinze, A. and Garros, M., (2008). “On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates.” Resources, Conservation and Recycling, 52(10), 1209-1215. 18) Keoleian, G. A., Kendall, A. and Dettling, J. E., (2005). “Life cycle modeling of concrete bridge design: Comparison of engineered cementitious composite link slabs and conventional steel expansion joints.” Journal of Infrastructure Systems, 11(1), 51-60. 28) Marshall, D. B. and Cox, B. N., (1988). “A J-integral method for calculating steady-state matrix cracking stresses in composites,” Mechanics of Materials, 8, 127-133. 10) Gesoğlu, M. and Güneyisi, E., (2007). “Strength development and chloride penetration in rubberized concretes with and without silica fume.” Materials and Structures, 40(9), 953-964. 13) Hernandez-Olivarez F., Barluenga G., Bollati M. and Witoszek B., (2002). “Static and dynamic behavior of recycled tyre rubber-filled concrete.” Cement and Concrete Research, 32(10), 1587-1596. 33) Reda Taha, M. M., El-Dieb, A. S., Abd El-Wahab, M. A. and Abdel-Hameed, M. E., (2008). “Mechanical, fracture, and microstructural investigations of rubber concrete.” Journal of Materials in Civil Engineering, 20(10), 640-649. 35) Sahmaran, M., Li, M. and Li, V. C., (2007). “Transport properties of engineered cementitious composites under chloride exposure.” ACI Mater. J., 104(6), 604-611. 41) Topcu, I. B. and Bilir, T., (2009). “Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete.” Materials and Design, 30, 3056-3065. 36) Siddique, R. and Naik, T. R., (2004). “Properties of concrete containing scrap-tire rubber—An overview.” Waste Management, 24(6), 563-569. 38) Sukontasukkul, P. and Chaikaew, C., (2006). “Properties of concrete pedestrian block mixed with crumb rubber.” Construction and Building Materials, 20(7), 450-457. 15) Ho, A. C., Turatsinze, A., Hameed, R. and Vu, D. C., (2012). “Effects of rubber aggregates from grinded used tyres on the concrete resistance to cracking.” Journal of Cleaner Production, 23(1), 209-215. 17) Kanda, T. and Li, V. C., (1998). “Interface property and apparent strength of high strength hydrophilic fiber in cement Matrix.” ASCE Journal of Materials in Civil Engineering, 10(1), 5-13. 23) Li, V. C. (1993). “From micromechanics to structural engineering–the design of cementitious composites for civil engineering applications.” JSCE J Struct Mech Earthq Eng, 10(2), 37-48. 39) Sukontasukkul, P. and Tiamlom, S., (2012). “Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size.” Construction and Building Materials, 29(1), 520-526. 29) Naik, T. R. and Singh, S. S., (1991). “Utilization of discarded tires as construction materials for transportation facilities.” Report No. CBU-1991-02, UWM Center for By-products Utilization. University of Wisconsin-Milwaukee, Milwaukee. 43) Wang, S. X., (2005). “Micromechanics based matrix design for engineered cementitious composites.” PhD Thesis, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, USA. 20) Lawler, J. S, Zampini, D. and Shah, S. P., (2002). “Permeability of cracked hybrid fiber-reinforced mortar under load.” ACI Mater. J., 99(4), 379-385. 21) Lepech, M. D. and Li, V. C., (2009). “Water permeability of engineered cementitious composites.” Cement Concrete Composites, 31(10),744-753. 14) Ho, A. C., Turatsinze, A. and Vu, D. C., (2008). “On the potential of rubber aggregates obtained by grinding end-of-life tyres to improve the strain capacity of concrete.” In: Alexander, M. G., Beushausen, H. D, Dehn, F., Moyo, P. (Eds.) Taylor & Francis Group, London, 123-129. 25) Li, V. C., Wu, C., Wang, S., Ogawa, A. and Saito, T., (2002). “Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC).” ACI Materials Journal, 99(5), 463-472. 5) Bignozzi, M. C. and Sandrolini, F., (2006). “Tyre rubber waste recycling in self-compacting concrete.” Cement and Concrete Research, 36, 735-759. 19) Khatib, Z. K. and Bayomy, F. M., (1999). “Rubberized portland cement concrete.” Journal of Materials in Civil Engineering, 11(3), 206-213. 31) Qian, S. Z. and Li, V. C., (2007). “Simplified inverse method for determining the tensile strain capacity of strain hardening cementitious composites.” Journal of Advanced Concrete Technology, 5(2), 235-246. 34) Redon, C., Li, V. C., Wu, C., Hoshiro, H., Saito, T. and Ogawa, A., (2001). “Measuring and modifying interface properties of PVA fibers in ECC matrix.” ASCE J. Materials in Civil Engineering, 13(6), 399-406. 16) Huang, X. Y., Ravi, R., Ni, W. and Li, V. C., (2013). “On the use of recycled tire rubber to develop low E-modulus ECC for durable concrete repairs.” Construction and Building Materials, 46, 134-141. 27) Li, V. C., (2012). “Tailoring ECC For special attributes: A review.” Int. J. Concr. Struct. Mater., 6(3),135-44. 3) ASTM C-1581, (2009). “Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage.” Philadelphia: American Society of Testing and Materials. 30) Nehdi, M. and Khan, A., (2001). “Cementitious composites containing recycled tire rubber: An overview of engineering properties and potential applications.” Cement, Concrete and Aggregates, 23(1), 3-10. 44) Yang, E. H., Wang, S. X., Yang, Y. Z. and Li, V. C., (2008) “Fiber-bridging constitutive law of engineered cementitious composites.” Journal of Advanced Concrete Technology, 6(1), 181-193. 2) ASTM C157/C157M, (2008). “Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete.” Philadelphia: American Society of Testing and Materials. 37) Singh, S. S., “Innovative applications of scrap-tires.” (1993). Wisconsin Professional Engineer, 14-17. 22) Li, V. C., and Leung, C. K. Y., (1992). “Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites.” Journal of Engineering Mechanics, 118(11), 2246-2264. 45) Zhang, Z. G., Zhang, Q., Qian, S. Z. and Li, V. C., (2015). “Development of a low E-modulus early strength ECC for ultra-thin white topping overlay.” Transportation Research Board 94th Annual meeting, Washington D. C., U. S. Transportation Research Board of the National Academies, Paper No. 15-3158. 13P. 7) Donaldson, L., (2010). Research news: concrete revolution ises road construction. Materials Today, 13, 10. 6) Chen, Z. T., Yang, E. H., Yang, Y. Z. and Yao, Y., (2014). “Latex-modified engineerd cementitious composites (L-ECC).” Journal of advanced concrete technology, 12, 510-519. 32) Qian, S. Z., Li, V. C., Zhang, H. and Keoleian, G. A., (2013). “Life cycle analysis of pavement overlays made with engineered cementitious composites.” Cement and Concrete Composites, 35(1), 78-88. 26) Li, V. C. and Henrik, S., (2004). “Elevating FRC material ductility to infrastructure durability.” In: Proceedings of BEFIB, 171-86. 24) Li, V. C., (1998). “Engineered cementitious composites-Tailored composites through micromechanical modeling.” In: N. Banthia, A. A. Bentur, and A. Mufti, eds. Fiber Reinforced Concrete: Present and the Future, Canadian Society for Civil Engineering, Montreal, Quebec, Canada, 64-97. 1) ACI committee 231. (1987). “Guide for structural lightweight aggregate concrete.” American Concrete Institute. 9) Gerard, B., Reinhardt, H. W. and Breysse, D., (1997). “Measured transport in cracked concrete.”In: Reinhardt, H. W., editor. Penetration and permeability of concrete, RILEM report 16, 265-331. 11) Hearn, N., (1999). “Effect of shrinkage and load-induced cracking on water permeability of concrete.” ACI Mater. J., 96(2), 234-241. 22 44 23 45 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: 44) Yang, E. H., Wang, S. X., Yang, Y. Z. and Li, V. C., (2008) “Fiber-bridging constitutive law of engineered cementitious composites.” Journal of Advanced Concrete Technology, 6(1), 181-193. – reference: 20) Lawler, J. S, Zampini, D. and Shah, S. P., (2002). “Permeability of cracked hybrid fiber-reinforced mortar under load.” ACI Mater. J., 99(4), 379-385. – reference: 24) Li, V. C., (1998). “Engineered cementitious composites-Tailored composites through micromechanical modeling.” In: N. Banthia, A. A. Bentur, and A. Mufti, eds. Fiber Reinforced Concrete: Present and the Future, Canadian Society for Civil Engineering, Montreal, Quebec, Canada, 64-97. – reference: 21) Lepech, M. D. and Li, V. C., (2009). “Water permeability of engineered cementitious composites.” Cement Concrete Composites, 31(10),744-753. – reference: 3) ASTM C-1581, (2009). “Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage.” Philadelphia: American Society of Testing and Materials. – reference: 7) Donaldson, L., (2010). Research news: concrete revolution ises road construction. Materials Today, 13, 10. – reference: 23) Li, V. C. (1993). “From micromechanics to structural engineering–the design of cementitious composites for civil engineering applications.” JSCE J Struct Mech Earthq Eng, 10(2), 37-48. – reference: 2) ASTM C157/C157M, (2008). “Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete.” Philadelphia: American Society of Testing and Materials. – reference: 28) Marshall, D. B. and Cox, B. N., (1988). “A J-integral method for calculating steady-state matrix cracking stresses in composites,” Mechanics of Materials, 8, 127-133. – reference: 26) Li, V. C. and Henrik, S., (2004). “Elevating FRC material ductility to infrastructure durability.” In: Proceedings of BEFIB, 171-86. – reference: 45) Zhang, Z. G., Zhang, Q., Qian, S. Z. and Li, V. C., (2015). “Development of a low E-modulus early strength ECC for ultra-thin white topping overlay.” Transportation Research Board 94th Annual meeting, Washington D. C., U. S. Transportation Research Board of the National Academies, Paper No. 15-3158. 13P. – reference: 16) Huang, X. Y., Ravi, R., Ni, W. and Li, V. C., (2013). “On the use of recycled tire rubber to develop low E-modulus ECC for durable concrete repairs.” Construction and Building Materials, 46, 134-141. – reference: 4) ASTM E399-12, (2013). “Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials.” Philadelphia: American Society of Testing and Materials. – reference: 32) Qian, S. Z., Li, V. C., Zhang, H. and Keoleian, G. A., (2013). “Life cycle analysis of pavement overlays made with engineered cementitious composites.” Cement and Concrete Composites, 35(1), 78-88. – reference: 41) Topcu, I. B. and Bilir, T., (2009). “Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete.” Materials and Design, 30, 3056-3065. – reference: 13) Hernandez-Olivarez F., Barluenga G., Bollati M. and Witoszek B., (2002). “Static and dynamic behavior of recycled tyre rubber-filled concrete.” Cement and Concrete Research, 32(10), 1587-1596. – reference: 38) Sukontasukkul, P. and Chaikaew, C., (2006). “Properties of concrete pedestrian block mixed with crumb rubber.” Construction and Building Materials, 20(7), 450-457. – reference: 43) Wang, S. X., (2005). “Micromechanics based matrix design for engineered cementitious composites.” PhD Thesis, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, USA. – reference: 10) Gesoğlu, M. and Güneyisi, E., (2007). “Strength development and chloride penetration in rubberized concretes with and without silica fume.” Materials and Structures, 40(9), 953-964. – reference: 18) Keoleian, G. A., Kendall, A. and Dettling, J. E., (2005). “Life cycle modeling of concrete bridge design: Comparison of engineered cementitious composite link slabs and conventional steel expansion joints.” Journal of Infrastructure Systems, 11(1), 51-60. – reference: 31) Qian, S. Z. and Li, V. C., (2007). “Simplified inverse method for determining the tensile strain capacity of strain hardening cementitious composites.” Journal of Advanced Concrete Technology, 5(2), 235-246. – reference: 12) Hernández-Olivares, F., Barluenga, G., Parga-Landa, B., Bollati, M. and Witoszek, B., (2007). “Fatigue behavior of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements.” Construction and Building Materials, 21(10), 1918-1927. – reference: 27) Li, V. C., (2012). “Tailoring ECC For special attributes: A review.” Int. J. Concr. Struct. Mater., 6(3),135-44. – reference: 11) Hearn, N., (1999). “Effect of shrinkage and load-induced cracking on water permeability of concrete.” ACI Mater. J., 96(2), 234-241. – reference: 35) Sahmaran, M., Li, M. and Li, V. C., (2007). “Transport properties of engineered cementitious composites under chloride exposure.” ACI Mater. J., 104(6), 604-611. – reference: 15) Ho, A. C., Turatsinze, A., Hameed, R. and Vu, D. C., (2012). “Effects of rubber aggregates from grinded used tyres on the concrete resistance to cracking.” Journal of Cleaner Production, 23(1), 209-215. – reference: 33) Reda Taha, M. M., El-Dieb, A. S., Abd El-Wahab, M. A. and Abdel-Hameed, M. E., (2008). “Mechanical, fracture, and microstructural investigations of rubber concrete.” Journal of Materials in Civil Engineering, 20(10), 640-649. – reference: 30) Nehdi, M. and Khan, A., (2001). “Cementitious composites containing recycled tire rubber: An overview of engineering properties and potential applications.” Cement, Concrete and Aggregates, 23(1), 3-10. – reference: 8) Garrick, G. M., (2005). “Analysis and testing of waste tire fiber modified concrete.” Thesis (PhD), B.S., Louisiana State University. – reference: 37) Singh, S. S., “Innovative applications of scrap-tires.” (1993). Wisconsin Professional Engineer, 14-17. – reference: 39) Sukontasukkul, P. and Tiamlom, S., (2012). “Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size.” Construction and Building Materials, 29(1), 520-526. – reference: 42) Turatsinze, A. and Garros, M., (2008). “On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates.” Resources, Conservation and Recycling, 52(10), 1209-1215. – reference: 1) ACI committee 231. (1987). “Guide for structural lightweight aggregate concrete.” American Concrete Institute. – reference: 14) Ho, A. C., Turatsinze, A. and Vu, D. C., (2008). “On the potential of rubber aggregates obtained by grinding end-of-life tyres to improve the strain capacity of concrete.” In: Alexander, M. G., Beushausen, H. D, Dehn, F., Moyo, P. (Eds.) Taylor & Francis Group, London, 123-129. – reference: 6) Chen, Z. T., Yang, E. H., Yang, Y. Z. and Yao, Y., (2014). “Latex-modified engineerd cementitious composites (L-ECC).” Journal of advanced concrete technology, 12, 510-519. – reference: 19) Khatib, Z. K. and Bayomy, F. M., (1999). “Rubberized portland cement concrete.” Journal of Materials in Civil Engineering, 11(3), 206-213. – reference: 5) Bignozzi, M. C. and Sandrolini, F., (2006). “Tyre rubber waste recycling in self-compacting concrete.” Cement and Concrete Research, 36, 735-759. – reference: 34) Redon, C., Li, V. C., Wu, C., Hoshiro, H., Saito, T. and Ogawa, A., (2001). “Measuring and modifying interface properties of PVA fibers in ECC matrix.” ASCE J. Materials in Civil Engineering, 13(6), 399-406. – reference: 22) Li, V. C., and Leung, C. K. Y., (1992). “Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites.” Journal of Engineering Mechanics, 118(11), 2246-2264. – reference: 29) Naik, T. R. and Singh, S. S., (1991). “Utilization of discarded tires as construction materials for transportation facilities.” Report No. CBU-1991-02, UWM Center for By-products Utilization. University of Wisconsin-Milwaukee, Milwaukee. – reference: 25) Li, V. C., Wu, C., Wang, S., Ogawa, A. and Saito, T., (2002). “Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC).” ACI Materials Journal, 99(5), 463-472. – reference: 9) Gerard, B., Reinhardt, H. W. and Breysse, D., (1997). “Measured transport in cracked concrete.”In: Reinhardt, H. W., editor. Penetration and permeability of concrete, RILEM report 16, 265-331. – reference: 17) Kanda, T. and Li, V. C., (1998). “Interface property and apparent strength of high strength hydrophilic fiber in cement Matrix.” ASCE Journal of Materials in Civil Engineering, 10(1), 5-13. – reference: 40) Topcu, I. B., (1995). “The properties of rubberized concretes.” Cement and Concrete Research, 25(2), 304-310. – reference: 36) Siddique, R. and Naik, T. R., (2004). “Properties of concrete containing scrap-tire rubber—An overview.” Waste Management, 24(6), 563-569. – ident: 2 – ident: 43 – ident: 4 – ident: 15 doi: 10.1016/j.jclepro.2011.09.016 – ident: 33 doi: 10.1061/(ASCE)0899-1561(2008)20:10(640) – ident: 31 doi: 10.3151/jact.5.235 – ident: 41 doi: 10.1016/j.matdes.2008.12.011 – ident: 35 – ident: 37 – ident: 30 doi: 10.1520/CCA10519J – ident: 40 doi: 10.1016/0008-8846(95)00014-3 – ident: 14 – ident: 36 doi: 10.1016/j.wasman.2004.01.006 – ident: 7 doi: 10.1016/S1369-7021(10)70195-4 – ident: 28 doi: 10.1016/0167-6636(88)90011-7 – ident: 17 doi: 10.1061/(ASCE)0899-1561(1998)10:1(5) – ident: 24 – ident: 27 doi: 10.1007/s40069-012-0018-8 – ident: 9 – ident: 45 – ident: 20 – ident: 26 – ident: 32 doi: 10.1016/j.cemconcomp.2012.08.012 – ident: 44 doi: 10.3151/jact.6.181 – ident: 3 – ident: 10 doi: 10.1617/s11527-007-9279-0 – ident: 39 doi: 10.1016/j.conbuildmat.2011.07.032 – ident: 12 doi: 10.1016/j.conbuildmat.2006.06.030 – ident: 18 doi: 10.1061/(ASCE)1076-0342(2005)11:1(51) – ident: 1 – ident: 11 – ident: 22 doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246) – ident: 13 doi: 10.1016/S0008-8846(02)00833-5 – ident: 16 doi: 10.1016/j.conbuildmat.2013.04.027 – ident: 5 doi: 10.1016/j.cemconres.2005.12.011 – ident: 19 doi: 10.1061/(ASCE)0899-1561(1999)11:3(206) – ident: 29 – ident: 21 doi: 10.1016/j.cemconcomp.2009.07.002 – ident: 42 doi: 10.1016/j.resconrec.2008.06.012 – ident: 34 doi: 10.1061/(ASCE)0899-1561(2001)13:6(399) – ident: 6 doi: 10.3151/jact.12.510 – ident: 38 doi: 10.1016/j.conbuildmat.2005.01.040 – ident: 8 – ident: 25 – ident: 23 |
SSID | ssj0037377 |
Score | 2.3967025 |
Snippet | In the past decades, incorporating crumb rubber into concrete has attracted attention in the field of building materials due to the properties improvement it... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 241 |
SubjectTerms | Compressive strength Cracks Density Drying Rubber Sand Shrinkage Sieves |
Title | Investigation on Properties of ECC Incorporating Crumb Rubber of Different Sizes |
URI | https://www.jstage.jst.go.jp/article/jact/13/5/13_241/_article/-char/en https://www.proquest.com/docview/1754534295 https://www.proquest.com/docview/1786169997 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Advanced Concrete Technology, 2015/05/13, Vol.13(5), pp.241-251 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0ILBAzwgPrXCQEbaE1VKkotd7xGNThOM8dVKFS9R7Nq0CNJpJC_99Zw_6qZ0DwOpilLnYkV35_uy746QQ50alZtilpiKpeig4N1RxUSCzFOwWaqNdEWSPpzz00nxbsqmm2acLrukkQO1ujKv5H-oimNIV5sl-w-UjZPiAN4jffGKFMbrtWjcKZJhzb7aHvu_sAelfSXZ0bFb_6FWsdvgv2x_yf6XVkrtdgfehvYoTf_rYhVOE-5aqvGcAPrOaGQ2ut_sBORj4PnbHL8nqEMX6XbKrV3ECOsihFznbb2aL7pRh4zZDXOfNBoEJRS2kLFPAB3o9RgKrKMAtpau0OEi1hWVvuBV0Lrh398CHdAgcY0EVDPIYBDf6ZbNPv9YnkzOzsrxaDq-SW7l6C9Ygff-c9xOgiG4Fpzxo32ipp38dWfqLdPk9g-0zr_vqmhnd4zvk3uBDPSNp_4DckPXD8ndThnJR-TTFh9Q_G34gC4NRT6gW3xAHR9QzwcWIvIBdXzwmExORuPj0yR0ykgUY9AkqtCMyUoUWgAa0EpoaUAKhZpOcaWFUjNVQJpXPBO4-nIwXHB0XTXkaphnBp6QvXpZ631Cua0WhJNkoFNUolBVRs8qBlwpQO9W9cirNZJKFcrI224mP0t0Jy1GS4vRMoMSMdojhxH4wldPuRps6LEdgcKSikAsQMYHNicRRUCPHKzJU4aF-btEi7hggIYW65GX8TGKTbsXVtV62VoYwTOO3tHw6TVgnpE7m0VwQPaay1Y_R2O0kS8co_0B9TmOWA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+Properties+of+ECC+Incorporating+Crumb+Rubber+of+Different+Sizes&rft.jtitle=Journal+of+advanced+concrete+technology&rft.au=Zhang%2C+Zhigang&rft.au=Ma%2C+Hui&rft.au=Qian%2C+Shunzhi&rft.date=2015-05-13&rft.issn=1346-8014&rft.eissn=1347-3913&rft.volume=13&rft.issue=5&rft.spage=241&rft.epage=241&rft_id=info:doi/10.3151%2Fjact.13.241&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon |