Investigation on Properties of ECC Incorporating Crumb Rubber of Different Sizes

In the past decades, incorporating crumb rubber into concrete has attracted attention in the field of building materials due to the properties improvement it brought. In this study, crumb rubber of two particle sizes (40CR and 80CR, which have a sieve size of 400 μm and 220μm, respectively) is incor...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Concrete Technology Vol. 13; no. 5; pp. 241 - 251
Main Authors Zhang, Zhigang, Ma, Hui, Qian, Shunzhi
Format Journal Article
LanguageEnglish
Published Tokyo Japan Concrete Institute 13.05.2015
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the past decades, incorporating crumb rubber into concrete has attracted attention in the field of building materials due to the properties improvement it brought. In this study, crumb rubber of two particle sizes (40CR and 80CR, which have a sieve size of 400 μm and 220μm, respectively) is incorporated into engineering cementitious composite (ECC) material to replace silica sand. Furthermore, three different replacement percentages (0, 15%, 25% by volume) for each crumb rubber size are conducted in this study. The influence of crumb rubber on the ECC is revealed via density, compressive strength, flexural performance, drying shrinkage, restrained shrinkage and environment footprint. The experimental results show that the incorporation of crumb rubber into ECC increases bending deformation capacity, decrease density and compressive strength. While the free drying shrinkage of ECC increases with the addition of crumb rubber, lesser crack number, crack width and cracking tendency were found in the restrained ring test when compared to ECC without crumb rubber. In terms of crumb rubber size, ECC with smaller crumb rubber appear to have lower density and higher bending defamation capacity and shrinkage than those with larger crumb rubber. In addition, incorporating crumb rubber into ECC reduces CO2 emission, thus improve the greenness of ECC to a certain degree.
AbstractList In the past decades, incorporating crumb rubber into concrete has attracted attention in the field of building materials due to the properties improvement it brought. In this study, crumb rubber of two particle sizes (40CR and 80CR, which have a sieve size of 400 mu m and 220 mu m, respectively) is incorporated into engineering cementitious composite (ECC) material to replace silica sand. Furthermore, three different replacement percentages (0, 15%, 25% by volume) for each crumb rubber size are conducted in this study. The influence of crumb rubber on the ECC is revealed via density, compressive strength, flexural performance, drying shrinkage, restrained shrinkage and environment footprint. The experimental results show that the incorporation of crumb rubber into ECC increases bending deformation capacity, decrease density and compressive strength. While the free drying shrinkage of ECC increases with the addition of crumb rubber, lesser crack number, crack width and cracking tendency were found in the restrained ring test when compared to ECC without crumb rubber. In terms of crumb rubber size, ECC with smaller crumb rubber appear to have lower density and higher bending defamation capacity and shrinkage than those with larger crumb rubber. In addition, incorporating crumb rubber into ECC reduces CO2 emission, thus improve the greenness of ECC to a certain degree.
In the past decades, incorporating crumb rubber into concrete has attracted attention in the field of building materials due to the properties improvement it brought. In this study, crumb rubber of two particle sizes (40CR and 80CR, which have a sieve size of 400 μm and 220μm, respectively) is incorporated into engineering cementitious composite (ECC) material to replace silica sand. Furthermore, three different replacement percentages (0, 15%, 25% by volume) for each crumb rubber size are conducted in this study. The influence of crumb rubber on the ECC is revealed via density, compressive strength, flexural performance, drying shrinkage, restrained shrinkage and environment footprint. The experimental results show that the incorporation of crumb rubber into ECC increases bending deformation capacity, decrease density and compressive strength. While the free drying shrinkage of ECC increases with the addition of crumb rubber, lesser crack number, crack width and cracking tendency were found in the restrained ring test when compared to ECC without crumb rubber. In terms of crumb rubber size, ECC with smaller crumb rubber appear to have lower density and higher bending defamation capacity and shrinkage than those with larger crumb rubber. In addition, incorporating crumb rubber into ECC reduces CO2 emission, thus improve the greenness of ECC to a certain degree.
Author Ma, Hui
Qian, Shunzhi
Zhang, Zhigang
Author_xml – sequence: 1
  fullname: Zhang, Zhigang
  organization: School of Transportation, Southeast University, Nanjing, P R China
– sequence: 2
  fullname: Ma, Hui
  organization: School of Transportation, Southeast University, Nanjing, P R China
– sequence: 3
  fullname: Qian, Shunzhi
  organization: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
BookMark eNp10F1rFDEUBuAgFWyrV_6BAW8EmXXOZJLJ3Agyre1CweLHdcgcT9Yss8maZAT99Wa7ZS8KQiCBPO8heS_YmQ-eGHsNzYqDgPdbg3kFfNV28IydA-_6mg_Azx7OslYNdC_YRUrbpuE97_tzdr_2vylltzHZBV-VdR_DnmJ2lKpgq-txrNYeQ9yHWIjfVGNcdlP1ZZkmigdx5aylSD5XX91fSi_Zc2vmRK8e90v2_dP1t_G2vvt8sx4_3tUoBM81diTEZFRHigO0qGiyfFLYyxYlkkL8gR1vWiNB2Um13EolZSOJt9i3YPkle3ucu4_h11K-oHcuIc2z8RSWpKFXEuQwDH2hb57QbViiL68rSnSCd-0ginp3VBhDSpGs3ke3M_GPhkYf2tWHdjVwXdotGp5odPmhwxyNm_-T-XDMbFM2GzrNN6VtnOlkxWPgdIE_TdTk-T8bmZYc
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2018_12_207
crossref_primary_10_3390_ma15144905
crossref_primary_10_1016_j_jobe_2024_110253
crossref_primary_10_1016_j_conbuildmat_2020_122033
crossref_primary_10_1016_j_conbuildmat_2018_11_089
crossref_primary_10_1016_j_cemconcomp_2024_105576
crossref_primary_10_3390_ma13112446
crossref_primary_10_1016_j_cemconcomp_2017_04_004
crossref_primary_10_1016_j_conbuildmat_2021_125259
crossref_primary_10_1016_j_jenvman_2018_03_035
crossref_primary_10_1016_j_jobe_2023_107512
crossref_primary_10_1016_j_cscm_2023_e02768
crossref_primary_10_3390_su142013530
crossref_primary_10_1061__ASCE_MT_1943_5533_0003700
crossref_primary_10_3389_fmats_2021_811110
crossref_primary_10_1016_j_conbuildmat_2021_125430
crossref_primary_10_1016_j_conbuildmat_2017_11_072
crossref_primary_10_1016_j_conbuildmat_2022_127153
crossref_primary_10_3151_jact_17_126
crossref_primary_10_3390_ma13143125
crossref_primary_10_1016_j_conbuildmat_2017_01_060
crossref_primary_10_1016_j_conbuildmat_2020_120116
crossref_primary_10_1016_j_jclepro_2022_133998
crossref_primary_10_3390_ma13163516
crossref_primary_10_1038_s41598_025_94382_7
crossref_primary_10_1016_j_conbuildmat_2019_117191
crossref_primary_10_1016_j_conbuildmat_2024_139446
crossref_primary_10_1177_0731684419877251
crossref_primary_10_2478_sjce_2023_0009
crossref_primary_10_1016_j_jobe_2024_110115
crossref_primary_10_3390_geotechnics3040070
crossref_primary_10_1088_1757_899X_518_2_022045
crossref_primary_10_3390_ma13122831
crossref_primary_10_1016_j_cemconcomp_2023_105347
crossref_primary_10_3390_buildings13082026
crossref_primary_10_14359_51720300
crossref_primary_10_1515_rams_2023_0110
crossref_primary_10_1007_s40996_023_01089_8
crossref_primary_10_1016_j_compstruct_2019_111198
crossref_primary_10_1016_j_conbuildmat_2017_08_166
crossref_primary_10_1016_j_cscm_2023_e02701
crossref_primary_10_1016_j_jclepro_2020_121113
crossref_primary_10_3390_buildings13082032
crossref_primary_10_1080_10298436_2017_1356173
crossref_primary_10_1007_s40996_020_00444_3
crossref_primary_10_1016_j_diamond_2024_110949
crossref_primary_10_3390_buildings13020280
crossref_primary_10_1016_j_cemconcomp_2022_104473
crossref_primary_10_1016_j_conbuildmat_2023_130672
crossref_primary_10_3390_ma15113934
crossref_primary_10_1016_j_jobe_2023_106998
crossref_primary_10_1016_j_conbuildmat_2019_03_117
crossref_primary_10_1016_j_conbuildmat_2025_140820
crossref_primary_10_1016_j_jobe_2023_106913
crossref_primary_10_1016_j_conbuildmat_2015_10_146
crossref_primary_10_1016_j_engstruct_2024_118096
crossref_primary_10_1177_07316844231213915
crossref_primary_10_1016_j_conbuildmat_2023_130813
crossref_primary_10_1061__ASCE_MT_1943_5533_0002894
crossref_primary_10_1016_j_ceramint_2022_12_057
crossref_primary_10_3141_2640_09
crossref_primary_10_1016_j_conbuildmat_2022_128692
crossref_primary_10_1016_j_coco_2023_101657
crossref_primary_10_23939_jtbp2021_01_106
crossref_primary_10_2478_ceer_2022_0013
crossref_primary_10_1016_j_conbuildmat_2019_07_108
crossref_primary_10_1016_j_cscm_2020_e00385
crossref_primary_10_1038_s41598_024_73566_7
crossref_primary_10_1016_j_conbuildmat_2018_01_041
crossref_primary_10_1016_j_conbuildmat_2023_133878
crossref_primary_10_1016_j_conbuildmat_2023_131064
crossref_primary_10_3390_buildings13071681
crossref_primary_10_1007_s40996_024_01629_w
crossref_primary_10_14359_51720194
crossref_primary_10_1016_j_conbuildmat_2024_137100
crossref_primary_10_1016_j_jobe_2023_107706
crossref_primary_10_1061__ASCE_MT_1943_5533_0003405
crossref_primary_10_1088_2053_1591_ada233
crossref_primary_10_1016_j_conbuildmat_2022_129765
crossref_primary_10_1016_j_cscm_2025_e04450
crossref_primary_10_1016_j_cemconres_2023_107298
crossref_primary_10_1155_2019_5198583
crossref_primary_10_1007_s12205_021_1053_2
crossref_primary_10_1016_j_cemconcomp_2020_103808
crossref_primary_10_1016_j_cemconcomp_2018_01_007
crossref_primary_10_1016_j_matpr_2023_03_010
crossref_primary_10_1016_j_conbuildmat_2025_139933
crossref_primary_10_3390_ma12060858
crossref_primary_10_1016_j_conbuildmat_2018_10_056
crossref_primary_10_1088_1755_1315_140_1_012137
crossref_primary_10_1016_j_conbuildmat_2016_04_022
crossref_primary_10_1016_j_conbuildmat_2020_121959
crossref_primary_10_1617_s11527_022_01904_0
crossref_primary_10_14359_51738816
crossref_primary_10_3389_fmats_2024_1357094
crossref_primary_10_1016_j_conbuildmat_2022_129879
crossref_primary_10_1016_j_conbuildmat_2019_03_159
crossref_primary_10_1016_j_cscm_2021_e00536
crossref_primary_10_1002_suco_202200226
crossref_primary_10_1016_j_cemconcomp_2016_05_016
crossref_primary_10_1016_j_conbuildmat_2024_139183
Cites_doi 10.1016/j.jclepro.2011.09.016
10.1061/(ASCE)0899-1561(2008)20:10(640)
10.3151/jact.5.235
10.1016/j.matdes.2008.12.011
10.1520/CCA10519J
10.1016/0008-8846(95)00014-3
10.1016/j.wasman.2004.01.006
10.1016/S1369-7021(10)70195-4
10.1016/0167-6636(88)90011-7
10.1061/(ASCE)0899-1561(1998)10:1(5)
10.1007/s40069-012-0018-8
10.1016/j.cemconcomp.2012.08.012
10.3151/jact.6.181
10.1617/s11527-007-9279-0
10.1016/j.conbuildmat.2011.07.032
10.1016/j.conbuildmat.2006.06.030
10.1061/(ASCE)1076-0342(2005)11:1(51)
10.1061/(ASCE)0733-9399(1992)118:11(2246)
10.1016/S0008-8846(02)00833-5
10.1016/j.conbuildmat.2013.04.027
10.1016/j.cemconres.2005.12.011
10.1061/(ASCE)0899-1561(1999)11:3(206)
10.1016/j.cemconcomp.2009.07.002
10.1016/j.resconrec.2008.06.012
10.1061/(ASCE)0899-1561(2001)13:6(399)
10.3151/jact.12.510
10.1016/j.conbuildmat.2005.01.040
ContentType Journal Article
Copyright 2015 by Japan Concrete Institute
Copyright Japan Science and Technology Agency 2015
Copyright_xml – notice: 2015 by Japan Concrete Institute
– notice: Copyright Japan Science and Technology Agency 2015
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
DOI 10.3151/jact.13.241
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-3913
EndPage 251
ExternalDocumentID 3914870201
10_3151_jact_13_241
article_jact_13_5_13_241_article_char_en
GroupedDBID 5GY
ACIWK
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c553t-c4e55ba84e83112c8ebf3b8c762c6ce8ccdc4302a618fb823f686606e32c721f3
ISSN 1346-8014
IngestDate Fri Jul 11 12:20:08 EDT 2025
Mon Jun 30 09:56:03 EDT 2025
Tue Jul 01 01:31:04 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Wed Apr 05 05:37:17 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c553t-c4e55ba84e83112c8ebf3b8c762c6ce8ccdc4302a618fb823f686606e32c721f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jact/13/5/13_241/_article/-char/en
PQID 1754534295
PQPubID 1996343
PageCount 11
ParticipantIDs proquest_miscellaneous_1786169997
proquest_journals_1754534295
crossref_primary_10_3151_jact_13_241
crossref_citationtrail_10_3151_jact_13_241
jstage_primary_article_jact_13_5_13_241_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015/05/13
PublicationDateYYYYMMDD 2015-05-13
PublicationDate_xml – month: 05
  year: 2015
  text: 2015/05/13
  day: 13
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Advanced Concrete Technology
PublicationTitleAlternate ACT
PublicationYear 2015
Publisher Japan Concrete Institute
Japan Science and Technology Agency
Publisher_xml – name: Japan Concrete Institute
– name: Japan Science and Technology Agency
References 40) Topcu, I. B., (1995). “The properties of rubberized concretes.” Cement and Concrete Research, 25(2), 304-310.
8) Garrick, G. M., (2005). “Analysis and testing of waste tire fiber modified concrete.” Thesis (PhD), B.S., Louisiana State University.
12) Hernández-Olivares, F., Barluenga, G., Parga-Landa, B., Bollati, M. and Witoszek, B., (2007). “Fatigue behavior of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements.” Construction and Building Materials, 21(10), 1918-1927.
4) ASTM E399-12, (2013). “Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials.” Philadelphia: American Society of Testing and Materials.
42) Turatsinze, A. and Garros, M., (2008). “On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates.” Resources, Conservation and Recycling, 52(10), 1209-1215.
18) Keoleian, G. A., Kendall, A. and Dettling, J. E., (2005). “Life cycle modeling of concrete bridge design: Comparison of engineered cementitious composite link slabs and conventional steel expansion joints.” Journal of Infrastructure Systems, 11(1), 51-60.
28) Marshall, D. B. and Cox, B. N., (1988). “A J-integral method for calculating steady-state matrix cracking stresses in composites,” Mechanics of Materials, 8, 127-133.
10) Gesoğlu, M. and Güneyisi, E., (2007). “Strength development and chloride penetration in rubberized concretes with and without silica fume.” Materials and Structures, 40(9), 953-964.
13) Hernandez-Olivarez F., Barluenga G., Bollati M. and Witoszek B., (2002). “Static and dynamic behavior of recycled tyre rubber-filled concrete.” Cement and Concrete Research, 32(10), 1587-1596.
33) Reda Taha, M. M., El-Dieb, A. S., Abd El-Wahab, M. A. and Abdel-Hameed, M. E., (2008). “Mechanical, fracture, and microstructural investigations of rubber concrete.” Journal of Materials in Civil Engineering, 20(10), 640-649.
35) Sahmaran, M., Li, M. and Li, V. C., (2007). “Transport properties of engineered cementitious composites under chloride exposure.” ACI Mater. J., 104(6), 604-611.
41) Topcu, I. B. and Bilir, T., (2009). “Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete.” Materials and Design, 30, 3056-3065.
36) Siddique, R. and Naik, T. R., (2004). “Properties of concrete containing scrap-tire rubber—An overview.” Waste Management, 24(6), 563-569.
38) Sukontasukkul, P. and Chaikaew, C., (2006). “Properties of concrete pedestrian block mixed with crumb rubber.” Construction and Building Materials, 20(7), 450-457.
15) Ho, A. C., Turatsinze, A., Hameed, R. and Vu, D. C., (2012). “Effects of rubber aggregates from grinded used tyres on the concrete resistance to cracking.” Journal of Cleaner Production, 23(1), 209-215.
17) Kanda, T. and Li, V. C., (1998). “Interface property and apparent strength of high strength hydrophilic fiber in cement Matrix.” ASCE Journal of Materials in Civil Engineering, 10(1), 5-13.
23) Li, V. C. (1993). “From micromechanics to structural engineering–the design of cementitious composites for civil engineering applications.” JSCE J Struct Mech Earthq Eng, 10(2), 37-48.
39) Sukontasukkul, P. and Tiamlom, S., (2012). “Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size.” Construction and Building Materials, 29(1), 520-526.
29) Naik, T. R. and Singh, S. S., (1991). “Utilization of discarded tires as construction materials for transportation facilities.” Report No. CBU-1991-02, UWM Center for By-products Utilization. University of Wisconsin-Milwaukee, Milwaukee.
43) Wang, S. X., (2005). “Micromechanics based matrix design for engineered cementitious composites.” PhD Thesis, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, USA.
20) Lawler, J. S, Zampini, D. and Shah, S. P., (2002). “Permeability of cracked hybrid fiber-reinforced mortar under load.” ACI Mater. J., 99(4), 379-385.
21) Lepech, M. D. and Li, V. C., (2009). “Water permeability of engineered cementitious composites.” Cement Concrete Composites, 31(10),744-753.
14) Ho, A. C., Turatsinze, A. and Vu, D. C., (2008). “On the potential of rubber aggregates obtained by grinding end-of-life tyres to improve the strain capacity of concrete.” In: Alexander, M. G., Beushausen, H. D, Dehn, F., Moyo, P. (Eds.) Taylor & Francis Group, London, 123-129.
25) Li, V. C., Wu, C., Wang, S., Ogawa, A. and Saito, T., (2002). “Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC).” ACI Materials Journal, 99(5), 463-472.
5) Bignozzi, M. C. and Sandrolini, F., (2006). “Tyre rubber waste recycling in self-compacting concrete.” Cement and Concrete Research, 36, 735-759.
19) Khatib, Z. K. and Bayomy, F. M., (1999). “Rubberized portland cement concrete.” Journal of Materials in Civil Engineering, 11(3), 206-213.
31) Qian, S. Z. and Li, V. C., (2007). “Simplified inverse method for determining the tensile strain capacity of strain hardening cementitious composites.” Journal of Advanced Concrete Technology, 5(2), 235-246.
34) Redon, C., Li, V. C., Wu, C., Hoshiro, H., Saito, T. and Ogawa, A., (2001). “Measuring and modifying interface properties of PVA fibers in ECC matrix.” ASCE J. Materials in Civil Engineering, 13(6), 399-406.
16) Huang, X. Y., Ravi, R., Ni, W. and Li, V. C., (2013). “On the use of recycled tire rubber to develop low E-modulus ECC for durable concrete repairs.” Construction and Building Materials, 46, 134-141.
27) Li, V. C., (2012). “Tailoring ECC For special attributes: A review.” Int. J. Concr. Struct. Mater., 6(3),135-44.
3) ASTM C-1581, (2009). “Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage.” Philadelphia: American Society of Testing and Materials.
30) Nehdi, M. and Khan, A., (2001). “Cementitious composites containing recycled tire rubber: An overview of engineering properties and potential applications.” Cement, Concrete and Aggregates, 23(1), 3-10.
44) Yang, E. H., Wang, S. X., Yang, Y. Z. and Li, V. C., (2008) “Fiber-bridging constitutive law of engineered cementitious composites.” Journal of Advanced Concrete Technology, 6(1), 181-193.
2) ASTM C157/C157M, (2008). “Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete.” Philadelphia: American Society of Testing and Materials.
37) Singh, S. S., “Innovative applications of scrap-tires.” (1993). Wisconsin Professional Engineer, 14-17.
22) Li, V. C., and Leung, C. K. Y., (1992). “Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites.” Journal of Engineering Mechanics, 118(11), 2246-2264.
45) Zhang, Z. G., Zhang, Q., Qian, S. Z. and Li, V. C., (2015). “Development of a low E-modulus early strength ECC for ultra-thin white topping overlay.” Transportation Research Board 94th Annual meeting, Washington D. C., U. S. Transportation Research Board of the National Academies, Paper No. 15-3158. 13P.
7) Donaldson, L., (2010). Research news: concrete revolution ises road construction. Materials Today, 13, 10.
6) Chen, Z. T., Yang, E. H., Yang, Y. Z. and Yao, Y., (2014). “Latex-modified engineerd cementitious composites (L-ECC).” Journal of advanced concrete technology, 12, 510-519.
32) Qian, S. Z., Li, V. C., Zhang, H. and Keoleian, G. A., (2013). “Life cycle analysis of pavement overlays made with engineered cementitious composites.” Cement and Concrete Composites, 35(1), 78-88.
26) Li, V. C. and Henrik, S., (2004). “Elevating FRC material ductility to infrastructure durability.” In: Proceedings of BEFIB, 171-86.
24) Li, V. C., (1998). “Engineered cementitious composites-Tailored composites through micromechanical modeling.” In: N. Banthia, A. A. Bentur, and A. Mufti, eds. Fiber Reinforced Concrete: Present and the Future, Canadian Society for Civil Engineering, Montreal, Quebec, Canada, 64-97.
1) ACI committee 231. (1987). “Guide for structural lightweight aggregate concrete.” American Concrete Institute.
9) Gerard, B., Reinhardt, H. W. and Breysse, D., (1997). “Measured transport in cracked concrete.”In: Reinhardt, H. W., editor. Penetration and permeability of concrete, RILEM report 16, 265-331.
11) Hearn, N., (1999). “Effect of shrinkage and load-induced cracking on water permeability of concrete.” ACI Mater. J., 96(2), 234-241.
22
44
23
45
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: 44) Yang, E. H., Wang, S. X., Yang, Y. Z. and Li, V. C., (2008) “Fiber-bridging constitutive law of engineered cementitious composites.” Journal of Advanced Concrete Technology, 6(1), 181-193.
– reference: 20) Lawler, J. S, Zampini, D. and Shah, S. P., (2002). “Permeability of cracked hybrid fiber-reinforced mortar under load.” ACI Mater. J., 99(4), 379-385.
– reference: 24) Li, V. C., (1998). “Engineered cementitious composites-Tailored composites through micromechanical modeling.” In: N. Banthia, A. A. Bentur, and A. Mufti, eds. Fiber Reinforced Concrete: Present and the Future, Canadian Society for Civil Engineering, Montreal, Quebec, Canada, 64-97.
– reference: 21) Lepech, M. D. and Li, V. C., (2009). “Water permeability of engineered cementitious composites.” Cement Concrete Composites, 31(10),744-753.
– reference: 3) ASTM C-1581, (2009). “Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage.” Philadelphia: American Society of Testing and Materials.
– reference: 7) Donaldson, L., (2010). Research news: concrete revolution ises road construction. Materials Today, 13, 10.
– reference: 23) Li, V. C. (1993). “From micromechanics to structural engineering–the design of cementitious composites for civil engineering applications.” JSCE J Struct Mech Earthq Eng, 10(2), 37-48.
– reference: 2) ASTM C157/C157M, (2008). “Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete.” Philadelphia: American Society of Testing and Materials.
– reference: 28) Marshall, D. B. and Cox, B. N., (1988). “A J-integral method for calculating steady-state matrix cracking stresses in composites,” Mechanics of Materials, 8, 127-133.
– reference: 26) Li, V. C. and Henrik, S., (2004). “Elevating FRC material ductility to infrastructure durability.” In: Proceedings of BEFIB, 171-86.
– reference: 45) Zhang, Z. G., Zhang, Q., Qian, S. Z. and Li, V. C., (2015). “Development of a low E-modulus early strength ECC for ultra-thin white topping overlay.” Transportation Research Board 94th Annual meeting, Washington D. C., U. S. Transportation Research Board of the National Academies, Paper No. 15-3158. 13P.
– reference: 16) Huang, X. Y., Ravi, R., Ni, W. and Li, V. C., (2013). “On the use of recycled tire rubber to develop low E-modulus ECC for durable concrete repairs.” Construction and Building Materials, 46, 134-141.
– reference: 4) ASTM E399-12, (2013). “Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials.” Philadelphia: American Society of Testing and Materials.
– reference: 32) Qian, S. Z., Li, V. C., Zhang, H. and Keoleian, G. A., (2013). “Life cycle analysis of pavement overlays made with engineered cementitious composites.” Cement and Concrete Composites, 35(1), 78-88.
– reference: 41) Topcu, I. B. and Bilir, T., (2009). “Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete.” Materials and Design, 30, 3056-3065.
– reference: 13) Hernandez-Olivarez F., Barluenga G., Bollati M. and Witoszek B., (2002). “Static and dynamic behavior of recycled tyre rubber-filled concrete.” Cement and Concrete Research, 32(10), 1587-1596.
– reference: 38) Sukontasukkul, P. and Chaikaew, C., (2006). “Properties of concrete pedestrian block mixed with crumb rubber.” Construction and Building Materials, 20(7), 450-457.
– reference: 43) Wang, S. X., (2005). “Micromechanics based matrix design for engineered cementitious composites.” PhD Thesis, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, USA.
– reference: 10) Gesoğlu, M. and Güneyisi, E., (2007). “Strength development and chloride penetration in rubberized concretes with and without silica fume.” Materials and Structures, 40(9), 953-964.
– reference: 18) Keoleian, G. A., Kendall, A. and Dettling, J. E., (2005). “Life cycle modeling of concrete bridge design: Comparison of engineered cementitious composite link slabs and conventional steel expansion joints.” Journal of Infrastructure Systems, 11(1), 51-60.
– reference: 31) Qian, S. Z. and Li, V. C., (2007). “Simplified inverse method for determining the tensile strain capacity of strain hardening cementitious composites.” Journal of Advanced Concrete Technology, 5(2), 235-246.
– reference: 12) Hernández-Olivares, F., Barluenga, G., Parga-Landa, B., Bollati, M. and Witoszek, B., (2007). “Fatigue behavior of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements.” Construction and Building Materials, 21(10), 1918-1927.
– reference: 27) Li, V. C., (2012). “Tailoring ECC For special attributes: A review.” Int. J. Concr. Struct. Mater., 6(3),135-44.
– reference: 11) Hearn, N., (1999). “Effect of shrinkage and load-induced cracking on water permeability of concrete.” ACI Mater. J., 96(2), 234-241.
– reference: 35) Sahmaran, M., Li, M. and Li, V. C., (2007). “Transport properties of engineered cementitious composites under chloride exposure.” ACI Mater. J., 104(6), 604-611.
– reference: 15) Ho, A. C., Turatsinze, A., Hameed, R. and Vu, D. C., (2012). “Effects of rubber aggregates from grinded used tyres on the concrete resistance to cracking.” Journal of Cleaner Production, 23(1), 209-215.
– reference: 33) Reda Taha, M. M., El-Dieb, A. S., Abd El-Wahab, M. A. and Abdel-Hameed, M. E., (2008). “Mechanical, fracture, and microstructural investigations of rubber concrete.” Journal of Materials in Civil Engineering, 20(10), 640-649.
– reference: 30) Nehdi, M. and Khan, A., (2001). “Cementitious composites containing recycled tire rubber: An overview of engineering properties and potential applications.” Cement, Concrete and Aggregates, 23(1), 3-10.
– reference: 8) Garrick, G. M., (2005). “Analysis and testing of waste tire fiber modified concrete.” Thesis (PhD), B.S., Louisiana State University.
– reference: 37) Singh, S. S., “Innovative applications of scrap-tires.” (1993). Wisconsin Professional Engineer, 14-17.
– reference: 39) Sukontasukkul, P. and Tiamlom, S., (2012). “Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size.” Construction and Building Materials, 29(1), 520-526.
– reference: 42) Turatsinze, A. and Garros, M., (2008). “On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates.” Resources, Conservation and Recycling, 52(10), 1209-1215.
– reference: 1) ACI committee 231. (1987). “Guide for structural lightweight aggregate concrete.” American Concrete Institute.
– reference: 14) Ho, A. C., Turatsinze, A. and Vu, D. C., (2008). “On the potential of rubber aggregates obtained by grinding end-of-life tyres to improve the strain capacity of concrete.” In: Alexander, M. G., Beushausen, H. D, Dehn, F., Moyo, P. (Eds.) Taylor & Francis Group, London, 123-129.
– reference: 6) Chen, Z. T., Yang, E. H., Yang, Y. Z. and Yao, Y., (2014). “Latex-modified engineerd cementitious composites (L-ECC).” Journal of advanced concrete technology, 12, 510-519.
– reference: 19) Khatib, Z. K. and Bayomy, F. M., (1999). “Rubberized portland cement concrete.” Journal of Materials in Civil Engineering, 11(3), 206-213.
– reference: 5) Bignozzi, M. C. and Sandrolini, F., (2006). “Tyre rubber waste recycling in self-compacting concrete.” Cement and Concrete Research, 36, 735-759.
– reference: 34) Redon, C., Li, V. C., Wu, C., Hoshiro, H., Saito, T. and Ogawa, A., (2001). “Measuring and modifying interface properties of PVA fibers in ECC matrix.” ASCE J. Materials in Civil Engineering, 13(6), 399-406.
– reference: 22) Li, V. C., and Leung, C. K. Y., (1992). “Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites.” Journal of Engineering Mechanics, 118(11), 2246-2264.
– reference: 29) Naik, T. R. and Singh, S. S., (1991). “Utilization of discarded tires as construction materials for transportation facilities.” Report No. CBU-1991-02, UWM Center for By-products Utilization. University of Wisconsin-Milwaukee, Milwaukee.
– reference: 25) Li, V. C., Wu, C., Wang, S., Ogawa, A. and Saito, T., (2002). “Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC).” ACI Materials Journal, 99(5), 463-472.
– reference: 9) Gerard, B., Reinhardt, H. W. and Breysse, D., (1997). “Measured transport in cracked concrete.”In: Reinhardt, H. W., editor. Penetration and permeability of concrete, RILEM report 16, 265-331.
– reference: 17) Kanda, T. and Li, V. C., (1998). “Interface property and apparent strength of high strength hydrophilic fiber in cement Matrix.” ASCE Journal of Materials in Civil Engineering, 10(1), 5-13.
– reference: 40) Topcu, I. B., (1995). “The properties of rubberized concretes.” Cement and Concrete Research, 25(2), 304-310.
– reference: 36) Siddique, R. and Naik, T. R., (2004). “Properties of concrete containing scrap-tire rubber—An overview.” Waste Management, 24(6), 563-569.
– ident: 2
– ident: 43
– ident: 4
– ident: 15
  doi: 10.1016/j.jclepro.2011.09.016
– ident: 33
  doi: 10.1061/(ASCE)0899-1561(2008)20:10(640)
– ident: 31
  doi: 10.3151/jact.5.235
– ident: 41
  doi: 10.1016/j.matdes.2008.12.011
– ident: 35
– ident: 37
– ident: 30
  doi: 10.1520/CCA10519J
– ident: 40
  doi: 10.1016/0008-8846(95)00014-3
– ident: 14
– ident: 36
  doi: 10.1016/j.wasman.2004.01.006
– ident: 7
  doi: 10.1016/S1369-7021(10)70195-4
– ident: 28
  doi: 10.1016/0167-6636(88)90011-7
– ident: 17
  doi: 10.1061/(ASCE)0899-1561(1998)10:1(5)
– ident: 24
– ident: 27
  doi: 10.1007/s40069-012-0018-8
– ident: 9
– ident: 45
– ident: 20
– ident: 26
– ident: 32
  doi: 10.1016/j.cemconcomp.2012.08.012
– ident: 44
  doi: 10.3151/jact.6.181
– ident: 3
– ident: 10
  doi: 10.1617/s11527-007-9279-0
– ident: 39
  doi: 10.1016/j.conbuildmat.2011.07.032
– ident: 12
  doi: 10.1016/j.conbuildmat.2006.06.030
– ident: 18
  doi: 10.1061/(ASCE)1076-0342(2005)11:1(51)
– ident: 1
– ident: 11
– ident: 22
  doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
– ident: 13
  doi: 10.1016/S0008-8846(02)00833-5
– ident: 16
  doi: 10.1016/j.conbuildmat.2013.04.027
– ident: 5
  doi: 10.1016/j.cemconres.2005.12.011
– ident: 19
  doi: 10.1061/(ASCE)0899-1561(1999)11:3(206)
– ident: 29
– ident: 21
  doi: 10.1016/j.cemconcomp.2009.07.002
– ident: 42
  doi: 10.1016/j.resconrec.2008.06.012
– ident: 34
  doi: 10.1061/(ASCE)0899-1561(2001)13:6(399)
– ident: 6
  doi: 10.3151/jact.12.510
– ident: 38
  doi: 10.1016/j.conbuildmat.2005.01.040
– ident: 8
– ident: 25
– ident: 23
SSID ssj0037377
Score 2.3967025
Snippet In the past decades, incorporating crumb rubber into concrete has attracted attention in the field of building materials due to the properties improvement it...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 241
SubjectTerms Compressive strength
Cracks
Density
Drying
Rubber
Sand
Shrinkage
Sieves
Title Investigation on Properties of ECC Incorporating Crumb Rubber of Different Sizes
URI https://www.jstage.jst.go.jp/article/jact/13/5/13_241/_article/-char/en
https://www.proquest.com/docview/1754534295
https://www.proquest.com/docview/1786169997
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Concrete Technology, 2015/05/13, Vol.13(5), pp.241-251
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0ILBAzwgPrXCQEbaE1VKkotd7xGNThOM8dVKFS9R7Nq0CNJpJC_99Zw_6qZ0DwOpilLnYkV35_uy746QQ50alZtilpiKpeig4N1RxUSCzFOwWaqNdEWSPpzz00nxbsqmm2acLrukkQO1ujKv5H-oimNIV5sl-w-UjZPiAN4jffGKFMbrtWjcKZJhzb7aHvu_sAelfSXZ0bFb_6FWsdvgv2x_yf6XVkrtdgfehvYoTf_rYhVOE-5aqvGcAPrOaGQ2ut_sBORj4PnbHL8nqEMX6XbKrV3ECOsihFznbb2aL7pRh4zZDXOfNBoEJRS2kLFPAB3o9RgKrKMAtpau0OEi1hWVvuBV0Lrh398CHdAgcY0EVDPIYBDf6ZbNPv9YnkzOzsrxaDq-SW7l6C9Ygff-c9xOgiG4Fpzxo32ipp38dWfqLdPk9g-0zr_vqmhnd4zvk3uBDPSNp_4DckPXD8ndThnJR-TTFh9Q_G34gC4NRT6gW3xAHR9QzwcWIvIBdXzwmExORuPj0yR0ykgUY9AkqtCMyUoUWgAa0EpoaUAKhZpOcaWFUjNVQJpXPBO4-nIwXHB0XTXkaphnBp6QvXpZ631Cua0WhJNkoFNUolBVRs8qBlwpQO9W9cirNZJKFcrI224mP0t0Jy1GS4vRMoMSMdojhxH4wldPuRps6LEdgcKSikAsQMYHNicRRUCPHKzJU4aF-btEi7hggIYW65GX8TGKTbsXVtV62VoYwTOO3tHw6TVgnpE7m0VwQPaay1Y_R2O0kS8co_0B9TmOWA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+Properties+of+ECC+Incorporating+Crumb+Rubber+of+Different+Sizes&rft.jtitle=Journal+of+advanced+concrete+technology&rft.au=Zhang%2C+Zhigang&rft.au=Ma%2C+Hui&rft.au=Qian%2C+Shunzhi&rft.date=2015-05-13&rft.issn=1346-8014&rft.eissn=1347-3913&rft.volume=13&rft.issue=5&rft.spage=241&rft.epage=241&rft_id=info:doi/10.3151%2Fjact.13.241&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon