circRNA.33186 Contributes to the Pathogenesis of Osteoarthritis by Sponging miR-127-5p
Osteoarthritis (OA), the most prevalent age-related joint disorder, is characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral bone sclerosis. Accumulating evidences indicate that circular RNAs (circRNAs) play a critical role in various diseases, but the f...
Saved in:
Published in | Molecular therapy Vol. 27; no. 3; pp. 531 - 541 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.03.2019
Elsevier Limited American Society of Gene & Cell Therapy |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Osteoarthritis (OA), the most prevalent age-related joint disorder, is characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral bone sclerosis. Accumulating evidences indicate that circular RNAs (circRNAs) play a critical role in various diseases, but the function of circRNAs in OA remains largely unknown. Here we showed that circRNA.33186 was significantly upregulated in IL-1β)-treated chondrocytes and in cartilage tissues of a destabilized medial meniscus (DMM)-induced OA mouse model. Knockdown of circRNA.33186 increased anabolic factor (type II collagen) expression and decreased catabolic factor (MMP-13) expression. Knockdown of circRNA.33186 also promoted proliferation and inhibited apoptosis in IL-1β-treated chondrocytes. Silencing of circRNA.33186 in vivo markedly alleviated DMM-induced OA. Mechanistic study showed that circRNA.33186 directly binds to and inhibits miR-127-5p, thereby increasing MMP-13 expression, and contributes to OA pathogenesis. Taken together, our findings demonstrated a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy.
Zhu and colleagues demonstrate that circRNA.33186 regulates chondrocyte functions, including ECM catabolism, proliferation, and apoptosis. Silencing of circRNA.33186 alleviated OA by acting as a sponge of miR-127-5p. These findings reveal a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy. |
---|---|
AbstractList | Osteoarthritis (OA), the most prevalent age-related joint disorder, is characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral bone sclerosis. Accumulating evidences indicate that circular RNAs (circRNAs) play a critical role in various diseases, but the function of circRNAs in OA remains largely unknown. Here we showed that circRNA.33186 was significantly upregulated in IL-1β)-treated chondrocytes and in cartilage tissues of a destabilized medial meniscus (DMM)-induced OA mouse model. Knockdown of circRNA.33186 increased anabolic factor (type II collagen) expression and decreased catabolic factor (MMP-13) expression. Knockdown of circRNA.33186 also promoted proliferation and inhibited apoptosis in IL-1β-treated chondrocytes. Silencing of circRNA.33186 in vivo markedly alleviated DMM-induced OA. Mechanistic study showed that circRNA.33186 directly binds to and inhibits miR-127-5p, thereby increasing MMP-13 expression, and contributes to OA pathogenesis. Taken together, our findings demonstrated a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy.Osteoarthritis (OA), the most prevalent age-related joint disorder, is characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral bone sclerosis. Accumulating evidences indicate that circular RNAs (circRNAs) play a critical role in various diseases, but the function of circRNAs in OA remains largely unknown. Here we showed that circRNA.33186 was significantly upregulated in IL-1β)-treated chondrocytes and in cartilage tissues of a destabilized medial meniscus (DMM)-induced OA mouse model. Knockdown of circRNA.33186 increased anabolic factor (type II collagen) expression and decreased catabolic factor (MMP-13) expression. Knockdown of circRNA.33186 also promoted proliferation and inhibited apoptosis in IL-1β-treated chondrocytes. Silencing of circRNA.33186 in vivo markedly alleviated DMM-induced OA. Mechanistic study showed that circRNA.33186 directly binds to and inhibits miR-127-5p, thereby increasing MMP-13 expression, and contributes to OA pathogenesis. Taken together, our findings demonstrated a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy. Osteoarthritis (OA), the most prevalent age-related joint disorder, is characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral bone sclerosis. Accumulating evidences indicate that circular RNAs (circRNAs) play a critical role in various diseases, but the function of circRNAs in OA remains largely unknown. Here we showed that circRNA.33186 was significantly upregulated in IL-1β)-treated chondrocytes and in cartilage tissues of a destabilized medial meniscus (DMM)-induced OA mouse model. Knockdown of circRNA.33186 increased anabolic factor (type II collagen) expression and decreased catabolic factor (MMP-13) expression. Knockdown of circRNA.33186 also promoted proliferation and inhibited apoptosis in IL-1β-treated chondrocytes. Silencing of circRNA.33186 in vivo markedly alleviated DMM-induced OA. Mechanistic study showed that circRNA.33186 directly binds to and inhibits miR-127-5p, thereby increasing MMP-13 expression, and contributes to OA pathogenesis. Taken together, our findings demonstrated a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy. Osteoarthritis (OA), the most prevalent age-related joint disorder, is characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral bone sclerosis. Accumulating evidences indicate that circular RNAs (circRNAs) play a critical role in various diseases, but the function of circRNAs in OA remains largely unknown. Here we showed that circRNA.33186 was significantly upregulated in IL-1β)-treated chondrocytes and in cartilage tissues of a destabilized medial meniscus (DMM)-induced OA mouse model. Knockdown of circRNA.33186 increased anabolic factor (type II collagen) expression and decreased catabolic factor (MMP-13) expression. Knockdown of circRNA.33186 also promoted proliferation and inhibited apoptosis in IL-1β-treated chondrocytes. Silencing of circRNA.33186 in vivo markedly alleviated DMM-induced OA. Mechanistic study showed that circRNA.33186 directly binds to and inhibits miR-127-5p, thereby increasing MMP-13 expression, and contributes to OA pathogenesis. Taken together, our findings demonstrated a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy. Osteoarthritis (OA), the most prevalent age-related joint disorder, is characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral bone sclerosis. Accumulating evidences indicate that circular RNAs (circRNAs) play a critical role in various diseases, but the function of circRNAs in OA remains largely unknown. Here we showed that circRNA.33186 was significantly upregulated in IL-1β)-treated chondrocytes and in cartilage tissues of a destabilized medial meniscus (DMM)-induced OA mouse model. Knockdown of circRNA.33186 increased anabolic factor (type II collagen) expression and decreased catabolic factor (MMP-13) expression. Knockdown of circRNA.33186 also promoted proliferation and inhibited apoptosis in IL-1β-treated chondrocytes. Silencing of circRNA.33186 in vivo markedly alleviated DMM-induced OA. Mechanistic study showed that circRNA.33186 directly binds to and inhibits miR-127-5p, thereby increasing MMP-13 expression, and contributes to OA pathogenesis. Taken together, our findings demonstrated a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy. Zhu and colleagues demonstrate that circRNA.33186 regulates chondrocyte functions, including ECM catabolism, proliferation, and apoptosis. Silencing of circRNA.33186 alleviated OA by acting as a sponge of miR-127-5p. These findings reveal a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy. Osteoarthritis (OA), the most prevalent age-related joint disorder, is characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral bone sclerosis. Accumulating evidences indicate that circular RNAs (circRNAs) play a critical role in various diseases, but the function of circRNAs in OA remains largely unknown. Here we showed that circRNA.33186 was significantly upregulated in IL-1β)-treated chondrocytes and in cartilage tissues of a destabilized medial meniscus (DMM)-induced OA mouse model. Knockdown of circRNA.33186 increased anabolic factor (type II collagen) expression and decreased catabolic factor (MMP-13) expression. Knockdown of circRNA.33186 also promoted proliferation and inhibited apoptosis in IL-1β-treated chondrocytes. Silencing of circRNA.33186 in vivo markedly alleviated DMM-induced OA. Mechanistic study showed that circRNA.33186 directly binds to and inhibits miR-127-5p, thereby increasing MMP-13 expression, and contributes to OA pathogenesis. Taken together, our findings demonstrated a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy. Zhu and colleagues demonstrate that circRNA.33186 regulates chondrocyte functions, including ECM catabolism, proliferation, and apoptosis. Silencing of circRNA.33186 alleviated OA by acting as a sponge of miR-127-5p. These findings reveal a fundamental role of circRNA.33186 in OA progression and provide a potential drug target in OA therapy. |
Author | Huang, Gao-xiang Zhu, Lei Chen, Ai-min Zhou, Zhi-bin Fu, Qiang Han, Bin Lu, Jia-jia |
AuthorAffiliation | 1 Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China 2 Department of Pathology, No.924 (No.181) Hospital of People's Liberation Army, Guilin, Guangxi, 541002, China |
AuthorAffiliation_xml | – name: 2 Department of Pathology, No.924 (No.181) Hospital of People's Liberation Army, Guilin, Guangxi, 541002, China – name: 1 Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China |
Author_xml | – sequence: 1 givenname: Zhi-bin surname: Zhou fullname: Zhou, Zhi-bin organization: Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China – sequence: 2 givenname: Gao-xiang surname: Huang fullname: Huang, Gao-xiang organization: Department of Pathology, No.924 (No.181) Hospital of People's Liberation Army, Guilin, Guangxi, 541002, China – sequence: 3 givenname: Qiang surname: Fu fullname: Fu, Qiang organization: Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China – sequence: 4 givenname: Bin surname: Han fullname: Han, Bin organization: Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China – sequence: 5 givenname: Jia-jia surname: Lu fullname: Lu, Jia-jia organization: Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China – sequence: 6 givenname: Ai-min surname: Chen fullname: Chen, Ai-min email: aiminchen@smmu.edu.cn organization: Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China – sequence: 7 givenname: Lei surname: Zhu fullname: Zhu, Lei email: hailangzhulei@smmu.edu.cn organization: Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30692016$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJaR7tLygUQzfd2NXDkuVFC2Fo0kBISvrYClm-ntFgS1NJDsy_r6aThCSLrHSRznc4uucYHTjvAKH3BFcEE_F5XW2ntIKKYtJWmFQYi1foiHDKS4xpffAwE3GIjmNc54nwVrxBhwyLNmPiCP0xNpibq9OKMSJFsfAuBdvNCWKRfJHtix86rfwSHEQbCz8U1zGB1yGtgk35ptsWPzfeLa1bFpO9KQltSr55i14Peozw7u48Qb_Pvv1afC8vr88vFqeXpeGcpdJQrBs5MMYMJRxLA0PTdbwzBve4hRxSAAMppRCt6Uld141pGdVcdEPTC8lO0Ne972buJugN5Ph6VJtgJx22ymurnr44u1JLf6tEjWnLcTb4dGcQ_N8ZYlKTjQbGUTvwc1SUNG0tCJM0Sz8-k679HFz-nqIMS05qwkRWfXic6CHK_cqzoN0LTPAxBhiUsUknu9u8tqMiWO3qVWv1v161q1dhonK9mWXP2Hv7l6kvewpyE7cWgorGgjPQ2wAmqd7bF_l_jru-Fg |
CitedBy_id | crossref_primary_10_1111_1759_7714_15165 crossref_primary_10_1016_j_bioactmat_2021_04_031 crossref_primary_10_1016_j_ijbiomac_2024_136175 crossref_primary_10_1002_jcp_31116 crossref_primary_10_1007_s11926_022_01061_x crossref_primary_10_1002_jgm_3263 crossref_primary_10_1111_os_12923 crossref_primary_10_1007_s10528_021_10146_8 crossref_primary_10_1186_s13018_023_03638_3 crossref_primary_10_1166_jbn_2024_3740 crossref_primary_10_3389_fgene_2021_779195 crossref_primary_10_1016_j_bbrc_2019_03_010 crossref_primary_10_1002_jcla_23858 crossref_primary_10_1038_s12276_022_00885_y crossref_primary_10_1016_j_bioactmat_2022_10_012 crossref_primary_10_1016_j_omtn_2021_04_006 crossref_primary_10_1186_s13018_021_02323_7 crossref_primary_10_1038_s41420_021_00624_8 crossref_primary_10_1080_21655979_2021_2022074 crossref_primary_10_1002_jcb_29202 crossref_primary_10_1007_s00438_022_01856_8 crossref_primary_10_3389_fcell_2020_579945 crossref_primary_10_1016_j_ymthe_2020_03_002 crossref_primary_10_3390_cells12081159 crossref_primary_10_1111_1756_185X_70035 crossref_primary_10_1038_s41467_023_40975_7 crossref_primary_10_1016_j_pan_2020_12_023 crossref_primary_10_1093_jb_mvaa119 crossref_primary_10_1016_j_ymthe_2021_01_018 crossref_primary_10_1080_13813455_2024_2404975 crossref_primary_10_1016_j_yexmp_2021_104617 crossref_primary_10_1016_j_clim_2021_108718 crossref_primary_10_1016_j_waojou_2021_100548 crossref_primary_10_1016_j_archger_2022_104626 crossref_primary_10_1002_jbt_23846 crossref_primary_10_1186_s10020_021_00319_x crossref_primary_10_1007_s12033_023_00868_y crossref_primary_10_1302_2046_3758_112_BJR_2020_0482_R2 crossref_primary_10_1038_s41598_024_63068_x crossref_primary_10_1016_j_ajpath_2023_05_019 crossref_primary_10_1016_j_arr_2020_101058 crossref_primary_10_1186_s13018_023_04026_7 crossref_primary_10_1093_pcmedi_pbad014 crossref_primary_10_18632_aging_203073 crossref_primary_10_2174_1566523219666190716092203 crossref_primary_10_1186_s13018_023_04370_8 crossref_primary_10_1186_s13018_020_01722_6 crossref_primary_10_1016_j_trim_2022_101548 crossref_primary_10_1186_s12903_022_02560_0 crossref_primary_10_1007_s11010_022_04362_y crossref_primary_10_1016_j_ncrna_2023_10_007 crossref_primary_10_1080_15384101_2022_2051293 crossref_primary_10_3389_fgene_2022_886898 crossref_primary_10_1080_26895293_2021_2020172 crossref_primary_10_18632_aging_204018 crossref_primary_10_1007_s10528_021_10148_6 crossref_primary_10_1016_j_omtn_2020_09_034 crossref_primary_10_3389_fcell_2021_774370 crossref_primary_10_1002_biof_1715 crossref_primary_10_1631_jzus_B2200211 crossref_primary_10_3389_fgene_2022_920493 crossref_primary_10_1210_endocr_bqac138 crossref_primary_10_1186_s11658_021_00269_6 crossref_primary_10_1016_j_heliyon_2024_e34251 crossref_primary_10_3390_cancers13184618 crossref_primary_10_1038_s41420_021_00771_y crossref_primary_10_1080_08820139_2022_2027961 crossref_primary_10_1111_cbdd_14215 crossref_primary_10_1016_j_heliyon_2025_e42258 crossref_primary_10_1080_08916934_2022_2081843 crossref_primary_10_18632_aging_102989 crossref_primary_10_1093_nar_gkab1036 crossref_primary_10_1016_j_intimp_2022_109425 crossref_primary_10_1093_mr_roac158 crossref_primary_10_1186_s13018_023_03990_4 crossref_primary_10_1177_10225536221139887 crossref_primary_10_1016_j_omtn_2021_11_027 crossref_primary_10_1016_j_reth_2024_04_011 crossref_primary_10_18632_aging_104035 crossref_primary_10_1186_s12935_021_02144_y crossref_primary_10_1186_s13018_021_02391_9 crossref_primary_10_1016_j_envint_2020_105755 crossref_primary_10_1007_s11010_022_04360_0 crossref_primary_10_1016_j_ijbiomac_2023_123783 crossref_primary_10_1177_1947603519855759 crossref_primary_10_1002_tox_24041 crossref_primary_10_1080_08820139_2021_1981930 crossref_primary_10_1186_s13018_022_02970_4 crossref_primary_10_1038_s41419_020_02945_5 crossref_primary_10_1002_advs_202207715 crossref_primary_10_3390_jcm12041449 crossref_primary_10_1186_s12943_020_01225_2 crossref_primary_10_1038_s41419_020_03217_y crossref_primary_10_1002_kjm2_12564 crossref_primary_10_1111_cpr_13113 crossref_primary_10_1080_08916934_2021_1969550 crossref_primary_10_1016_j_canlet_2021_04_030 crossref_primary_10_1016_j_arcmed_2021_05_004 crossref_primary_10_3389_fphar_2022_927126 crossref_primary_10_3892_etm_2021_10906 crossref_primary_10_1016_j_intimp_2021_107857 crossref_primary_10_2147_JPR_S291472 crossref_primary_10_3389_fcvm_2021_650374 crossref_primary_10_1016_j_fitote_2024_105870 crossref_primary_10_3389_fgene_2021_656759 crossref_primary_10_1016_j_gene_2020_145172 crossref_primary_10_1016_j_intimp_2022_109064 crossref_primary_10_1155_2020_9743037 crossref_primary_10_3389_fcell_2021_811666 crossref_primary_10_2147_OTT_S247847 crossref_primary_10_1016_j_bcp_2023_115580 crossref_primary_10_1016_j_archger_2024_105696 crossref_primary_10_1136_annrheumdis_2021_219969 crossref_primary_10_1186_s12964_022_00881_9 crossref_primary_10_1155_2021_6278526 crossref_primary_10_2485_jhtb_32_111 crossref_primary_10_1007_s10863_022_09932_9 crossref_primary_10_3389_fcell_2024_1409662 crossref_primary_10_1111_cpr_13294 crossref_primary_10_18632_aging_202937 crossref_primary_10_3389_fcell_2021_719898 crossref_primary_10_1002_jcb_29014 crossref_primary_10_1002_jemt_24147 crossref_primary_10_3389_fphys_2022_778116 crossref_primary_10_1007_s10529_020_03070_1 crossref_primary_10_1002_wrna_1584 crossref_primary_10_1016_j_ebiom_2019_09_051 crossref_primary_10_1155_2023_5911546 crossref_primary_10_2147_DDDT_S432056 crossref_primary_10_1111_cpr_13047 crossref_primary_10_1016_j_ijbiomac_2023_128453 crossref_primary_10_1111_cpr_13285 crossref_primary_10_1002_jcp_30091 crossref_primary_10_3389_fgene_2022_834111 crossref_primary_10_1007_s43032_021_00625_z crossref_primary_10_1097_MD_0000000000035119 crossref_primary_10_1177_20417314231164765 crossref_primary_10_3389_fimmu_2021_773171 crossref_primary_10_1007_s13577_025_01186_y crossref_primary_10_3390_ijms23158381 crossref_primary_10_1016_j_prp_2024_155186 crossref_primary_10_3892_ijmm_2021_5061 crossref_primary_10_1038_s41419_020_2447_7 crossref_primary_10_3389_fphar_2021_772678 crossref_primary_10_1016_j_jff_2024_106623 crossref_primary_10_1186_s13287_021_02431_5 crossref_primary_10_1007_s10528_022_10290_9 crossref_primary_10_1111_cpr_13302 crossref_primary_10_1016_j_bone_2021_116185 crossref_primary_10_1186_s13018_021_02526_y crossref_primary_10_1002_jcp_30625 crossref_primary_10_1002_jcp_29509 crossref_primary_10_3389_fgene_2021_689916 crossref_primary_10_1155_2021_7629176 crossref_primary_10_3892_etm_2023_12082 crossref_primary_10_1016_j_ebiom_2021_103283 crossref_primary_10_1080_08820139_2021_2001496 crossref_primary_10_1016_j_prp_2024_155446 crossref_primary_10_1080_15257770_2022_2057535 crossref_primary_10_1111_jcmm_16419 crossref_primary_10_1093_abbs_gmab058 crossref_primary_10_1186_s13018_021_02428_z crossref_primary_10_1080_15476286_2019_1669391 crossref_primary_10_1155_2019_1625381 crossref_primary_10_1016_j_imbio_2024_152799 crossref_primary_10_3390_membranes12080739 crossref_primary_10_3389_fcell_2021_753931 crossref_primary_10_1016_j_intimp_2021_107704 crossref_primary_10_1016_j_bbrc_2019_11_186 crossref_primary_10_1038_s41392_021_00569_5 crossref_primary_10_1002_jcp_29754 crossref_primary_10_1016_j_cellsig_2023_111017 crossref_primary_10_1111_1759_7714_14794 crossref_primary_10_1186_s42358_024_00429_0 crossref_primary_10_3892_etm_2021_10714 crossref_primary_10_1080_14017431_2024_2441114 crossref_primary_10_1186_s40001_022_00893_8 crossref_primary_10_3389_fgene_2023_1173812 crossref_primary_10_1016_j_tice_2024_102504 crossref_primary_10_18632_aging_203420 crossref_primary_10_1038_s41419_022_04677_0 crossref_primary_10_1186_s13075_021_02420_2 crossref_primary_10_1016_j_jare_2024_01_007 crossref_primary_10_1111_odi_14687 crossref_primary_10_1016_j_reth_2024_01_006 crossref_primary_10_1016_j_intimp_2023_110455 crossref_primary_10_3389_fcell_2021_634690 crossref_primary_10_1080_21691401_2019_1652187 crossref_primary_10_1155_2021_2793379 crossref_primary_10_1007_s00210_024_03646_y crossref_primary_10_3390_ijms22105182 crossref_primary_10_1186_s13018_023_04073_0 crossref_primary_10_1016_j_ymthe_2022_12_005 crossref_primary_10_1089_dna_2020_5718 crossref_primary_10_1155_2021_5712280 crossref_primary_10_1016_j_ymthe_2021_09_017 crossref_primary_10_3892_etm_2022_11453 crossref_primary_10_1016_j_intimp_2022_109289 crossref_primary_10_1007_s10863_020_09868_y |
Cites_doi | 10.1093/eurheartj/ehv713 10.1002/art.27329 10.1038/nature11928 10.1371/journal.pone.0021679 10.1002/art.38188 10.1016/j.ymthe.2017.08.009 10.1016/S0140-6736(11)60243-2 10.3390/ijms18030597 10.1093/rheumatology/keq247 10.1016/j.trsl.2011.01.007 10.1038/nrg.2016.114 10.1038/onc.2017.89 10.1136/annrheumdis-2017-212056 10.1002/hep.29270 10.1038/nature11993 10.1038/cddis.2017.146 10.2174/13816128113196660701 10.1038/cddis.2017.522 10.1038/ncomms11215 10.1007/BF00270463 10.1016/j.joca.2017.06.002 10.1016/j.joca.2007.03.006 10.1038/srep12453 10.1016/j.berh.2006.06.003 10.1016/j.gene.2017.12.020 10.1111/febs.14132 10.1016/j.canlet.2017.06.027 10.1038/mt.2015.61 10.1038/nrrheum.2014.162 10.1016/j.cell.2009.01.002 10.1038/nprot.2008.95 10.1136/annrheumdis-2013-204763 10.1002/art.34453 10.1016/0014-5793(95)01539-6 10.1038/ncprheum0885 10.1186/ar2592 |
ContentType | Journal Article |
Copyright | 2019 The American Society of Gene and Cell Therapy Copyright © 2019 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved. 2019. The American Society of Gene and Cell Therapy 2019 The American Society of Gene and Cell Therapy. 2019 The American Society of Gene and Cell Therapy |
Copyright_xml | – notice: 2019 The American Society of Gene and Cell Therapy – notice: Copyright © 2019 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved. – notice: 2019. The American Society of Gene and Cell Therapy – notice: 2019 The American Society of Gene and Cell Therapy. 2019 The American Society of Gene and Cell Therapy |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1016/j.ymthe.2019.01.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1525-0024 |
EndPage | 541 |
ExternalDocumentID | PMC6402950 30692016 10_1016_j_ymthe_2019_01_006 S1525001619300097 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom--UK United States--US |
GeographicLocations_xml | – name: United Kingdom--UK – name: United States--US |
GroupedDBID | --- 0R~ 123 29M 2WC 36B 39C 4.4 53G 7X7 8FE 8FH AACTN AAEDW AAIAV AALRI AAVLU AAXUO ABJNI ABMAC ABUDA ABVKL ACGFO ACGFS ACPRK ADBBV ADFRT ADJPV AENEX AFTJW AGAYW AHMBA AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FDB FEDTE FRP FYUFA GX1 HCIFZ HVGLF HYE HZ~ JIG KQ8 LG5 LK8 M41 M7P O9- OK1 P2P PROAC RCE RIG RNTTT RPM SSZ TR2 W2D ZA5 --K 1B1 88E 8FI 8FJ AAMRU AAYWO AAYXX ABAWZ ABDGV ABUWG ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFKRA AFPUW AGCQF AIGII AKAPO AKBMS AKRWK AKYEP ALIPV APXCP BHPHI CAG CCPQU CITATION COF EMB EMOBN HMCUK IHE JSO M1P NQ- PHGZM PHGZT PQQKQ PSQYO RNS ROL RPZ SEW SV3 UHS UKHRP XPP ZMT CGR CUY CVF ECM EIF NPM EFKBS K9. 7X8 5PM |
ID | FETCH-LOGICAL-c553t-c20a78f333c21508cef7bb5bcc0d09e6926e3e888669cd14447c932a56bf7d683 |
ISSN | 1525-0016 1525-0024 |
IngestDate | Thu Aug 21 14:07:13 EDT 2025 Fri Jul 11 09:01:41 EDT 2025 Fri Jul 25 11:01:06 EDT 2025 Wed Feb 19 02:30:48 EST 2025 Tue Jul 01 03:53:42 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Fri Feb 23 02:31:46 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | circular RNAs osteoarthritis miR-127-5p circRNA.33186 |
Language | English |
License | Copyright © 2019 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c553t-c20a78f333c21508cef7bb5bcc0d09e6926e3e888669cd14447c932a56bf7d683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | http://www.cell.com/article/S1525001619300097/pdf |
PMID | 30692016 |
PQID | 2308514136 |
PQPubID | 2042164 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6402950 proquest_miscellaneous_2179461382 proquest_journals_2308514136 pubmed_primary_30692016 crossref_citationtrail_10_1016_j_ymthe_2019_01_006 crossref_primary_10_1016_j_ymthe_2019_01_006 elsevier_sciencedirect_doi_10_1016_j_ymthe_2019_01_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-06 |
PublicationDateYYYYMMDD | 2019-03-06 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Milwaukee |
PublicationTitle | Molecular therapy |
PublicationTitleAlternate | Mol Ther |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier Limited American Society of Gene & Cell Therapy |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: American Society of Gene & Cell Therapy |
References | Lu, Ji, Zhang, Shi, Wu, Wang, Im (bib15) 2017; 25 Zhong, Huang, Lv, He, Duan, Zhang, Chen (bib12) 2017; 403 Bartel (bib13) 2009; 136 Fosang, Last, Knäuper, Murphy, Neame (bib33) 1996; 380 Han, Li, Wang, Su, Hou, Gu, Qian, Lin, Liu, Huang (bib11) 2017; 66 Goldring (bib4) 2006; 20 Cross, Smith, Hoy, Nolte, Ackerman, Fransen, Bridgett, Williams, Guillemin, Hill (bib1) 2014; 73 Akhtar, Rasheed, Ramamurthy, Anbazhagan, Voss, Haqqi (bib26) 2010; 62 Dai, Zhang, Hu, Liu, Man, Huang, Meng, Zhou, Ao (bib25) 2015; 23 Abouheif, Nakasa, Shibuya, Niimoto, Kongcharoensombat, Ochi (bib30) 2010; 49 Loeser, Goldring, Scanzello, Goldring (bib2) 2012; 64 Smith, Ghosh (bib23) 1987; 7 Tili, Michaille, Costinean, Croce (bib29) 2008; 4 Li, Zhong, Jiao, Li, Cui, Ji, Ma (bib20) 2017; 18 Xu, Guo, Li, Yu (bib8) 2015; 5 Gargiulo, Gamba, Poli, Leonarduzzi (bib32) 2014; 20 Glasson, Blanchet, Morris (bib35) 2007; 15 Hansen, Jensen, Clausen, Bramsen, Finsen, Damgaard, Kjems (bib16) 2013; 495 Zheng, Bao, Guo, Li, Chen, Chen, Luo, Lyu, Li, Shi (bib17) 2016; 7 Zhou, Du, Chen, Zhu (bib18) 2018; 644 Zhu, Wang, Wei, Chen, Chen, Fan, Han, Wu (bib21) 2017; 284 Liu-Bryan, Terkeltaub (bib5) 2015; 11 Zhang, Wang, Zhao, Xu, Geng, Dai, Huang, Fu, Dai, Zhang (bib14) 2017; 8 Dai, Ahmed (bib28) 2011; 157 Hu, Zhao, Wang, Geng, Zhao, Xu, Zuo, Zhao, Wang, Zhang (bib31) 2017; 8 Goldring, Marcu (bib34) 2009; 11 Wang, Long, Liu, Wang, Liu, Zhao, Zhou, Sun, Wang, Yu (bib9) 2016; 37 Memczak, Jens, Elefsinioti, Torti, Krueger, Rybak, Maier, Mackowiak, Gregersen, Munschauer (bib6) 2013; 495 Si, Zeng, Liu, Zhou, Chen, Cheng, Lu, Shen (bib24) 2017; 25 Chen, Zhang, Wu, Cui, Zhong, Zeng, Ge (bib10) 2017; 36 Bijlsma, Berenbaum, Lafeber (bib3) 2011; 377 Gosset, Berenbaum, Thirion, Jacques (bib36) 2008; 3 Park, Cheon, Lee, Kim (bib19) 2013; 65 Szabo, Salzman (bib7) 2016; 17 Cheng, Zhang, Zhang, Zhang, Hu, Sun, Zhao, Li, Li, Zhao (bib22) 2018; 77 Yang, Guo, Zhang, Chen, Ying, Dong (bib27) 2011; 6 Park (10.1016/j.ymthe.2019.01.006_bib19) 2013; 65 Dai (10.1016/j.ymthe.2019.01.006_bib25) 2015; 23 Li (10.1016/j.ymthe.2019.01.006_bib20) 2017; 18 Cheng (10.1016/j.ymthe.2019.01.006_bib22) 2018; 77 Hu (10.1016/j.ymthe.2019.01.006_bib31) 2017; 8 Liu-Bryan (10.1016/j.ymthe.2019.01.006_bib5) 2015; 11 Zhang (10.1016/j.ymthe.2019.01.006_bib14) 2017; 8 Zhou (10.1016/j.ymthe.2019.01.006_bib18) 2018; 644 Zhu (10.1016/j.ymthe.2019.01.006_bib21) 2017; 284 Yang (10.1016/j.ymthe.2019.01.006_bib27) 2011; 6 Tili (10.1016/j.ymthe.2019.01.006_bib29) 2008; 4 Han (10.1016/j.ymthe.2019.01.006_bib11) 2017; 66 Hansen (10.1016/j.ymthe.2019.01.006_bib16) 2013; 495 Gargiulo (10.1016/j.ymthe.2019.01.006_bib32) 2014; 20 Zhong (10.1016/j.ymthe.2019.01.006_bib12) 2017; 403 Lu (10.1016/j.ymthe.2019.01.006_bib15) 2017; 25 Cross (10.1016/j.ymthe.2019.01.006_bib1) 2014; 73 Bartel (10.1016/j.ymthe.2019.01.006_bib13) 2009; 136 Loeser (10.1016/j.ymthe.2019.01.006_bib2) 2012; 64 Smith (10.1016/j.ymthe.2019.01.006_bib23) 1987; 7 Zheng (10.1016/j.ymthe.2019.01.006_bib17) 2016; 7 Dai (10.1016/j.ymthe.2019.01.006_bib28) 2011; 157 Memczak (10.1016/j.ymthe.2019.01.006_bib6) 2013; 495 Goldring (10.1016/j.ymthe.2019.01.006_bib4) 2006; 20 Wang (10.1016/j.ymthe.2019.01.006_bib9) 2016; 37 Xu (10.1016/j.ymthe.2019.01.006_bib8) 2015; 5 Bijlsma (10.1016/j.ymthe.2019.01.006_bib3) 2011; 377 Chen (10.1016/j.ymthe.2019.01.006_bib10) 2017; 36 Glasson (10.1016/j.ymthe.2019.01.006_bib35) 2007; 15 Szabo (10.1016/j.ymthe.2019.01.006_bib7) 2016; 17 Abouheif (10.1016/j.ymthe.2019.01.006_bib30) 2010; 49 Gosset (10.1016/j.ymthe.2019.01.006_bib36) 2008; 3 Si (10.1016/j.ymthe.2019.01.006_bib24) 2017; 25 Fosang (10.1016/j.ymthe.2019.01.006_bib33) 1996; 380 Akhtar (10.1016/j.ymthe.2019.01.006_bib26) 2010; 62 Goldring (10.1016/j.ymthe.2019.01.006_bib34) 2009; 11 |
References_xml | – volume: 20 start-page: 1003 year: 2006 end-page: 1025 ident: bib4 article-title: Update on the biology of the chondrocyte and new approaches to treating cartilage diseases publication-title: Best Pract. Res. Clin. Rheumatol. – volume: 136 start-page: 215 year: 2009 end-page: 233 ident: bib13 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell – volume: 495 start-page: 384 year: 2013 end-page: 388 ident: bib16 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature – volume: 284 start-page: 2170 year: 2017 end-page: 2182 ident: bib21 article-title: hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma publication-title: FEBS J. – volume: 644 start-page: 20 year: 2018 end-page: 26 ident: bib18 article-title: Circular RNA expression profile of articular chondrocytes in an IL-1β-induced mouse model of osteoarthritis publication-title: Gene – volume: 7 start-page: 11215 year: 2016 ident: bib17 article-title: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs publication-title: Nat. Commun. – volume: 62 start-page: 1361 year: 2010 end-page: 1371 ident: bib26 article-title: MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes publication-title: Arthritis Rheum. – volume: 380 start-page: 17 year: 1996 end-page: 20 ident: bib33 article-title: Degradation of cartilage aggrecan by collagenase-3 (MMP-13) publication-title: FEBS Lett. – volume: 6 start-page: e21679 year: 2011 ident: bib27 article-title: MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9 publication-title: PLoS ONE – volume: 15 start-page: 1061 year: 2007 end-page: 1069 ident: bib35 article-title: The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse publication-title: Osteoarthritis Cartilage – volume: 49 start-page: 2054 year: 2010 end-page: 2060 ident: bib30 article-title: Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro publication-title: Rheumatology (Oxford) – volume: 157 start-page: 163 year: 2011 end-page: 179 ident: bib28 article-title: MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases publication-title: Transl. Res. – volume: 4 start-page: 534 year: 2008 end-page: 541 ident: bib29 article-title: MicroRNAs, the immune system and rheumatic disease publication-title: Nat. Clin. Pract. Rheumatol. – volume: 77 start-page: 770 year: 2018 end-page: 779 ident: bib22 article-title: Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein publication-title: Ann. Rheum. Dis. – volume: 7 start-page: 113 year: 1987 end-page: 122 ident: bib23 article-title: The synthesis of hyaluronic acid by human synovial fibroblasts is influenced by the nature of the hyaluronate in the extracellular environment publication-title: Rheumatol. Int. – volume: 23 start-page: 1331 year: 2015 end-page: 1340 ident: bib25 article-title: Silencing of miR-101 prevents cartilage degradation by regulating extracellular matrix-related genes in a rat model of osteoarthritis publication-title: Mol. Ther. – volume: 66 start-page: 1151 year: 2017 end-page: 1164 ident: bib11 article-title: Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression publication-title: Hepatology – volume: 25 start-page: 1698 year: 2017 end-page: 1707 ident: bib24 article-title: Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats publication-title: Osteoarthritis Cartilage – volume: 36 start-page: 4551 year: 2017 end-page: 4561 ident: bib10 article-title: circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family publication-title: Oncogene – volume: 37 start-page: 2602 year: 2016 end-page: 2611 ident: bib9 article-title: A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223 publication-title: Eur. Heart J. – volume: 11 start-page: 35 year: 2015 end-page: 44 ident: bib5 article-title: Emerging regulators of the inflammatory process in osteoarthritis publication-title: Nat. Rev. Rheumatol. – volume: 20 start-page: 2993 year: 2014 end-page: 3018 ident: bib32 article-title: Metalloproteinases and metalloproteinase inhibitors in age-related diseases publication-title: Curr. Pharm. Des. – volume: 3 start-page: 1253 year: 2008 end-page: 1260 ident: bib36 article-title: Primary culture and phenotyping of murine chondrocytes publication-title: Nat. Protoc. – volume: 17 start-page: 679 year: 2016 end-page: 692 ident: bib7 article-title: Detecting circular RNAs: bioinformatic and experimental challenges publication-title: Nat. Rev. Genet. – volume: 73 start-page: 1323 year: 2014 end-page: 1330 ident: bib1 article-title: The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study publication-title: Ann. Rheum. Dis. – volume: 25 start-page: 2676 year: 2017 end-page: 2688 ident: bib15 article-title: MicroRNA-218-5p as a potential target for the treatment of human osteoarthritis publication-title: Mol. Ther. – volume: 5 start-page: 12453 year: 2015 ident: bib8 article-title: The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells publication-title: Sci. Rep. – volume: 403 start-page: 305 year: 2017 end-page: 317 ident: bib12 article-title: Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway publication-title: Cancer Lett. – volume: 65 start-page: 3141 year: 2013 end-page: 3152 ident: bib19 article-title: MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1β-induced catabolic effects in human chondrocytes publication-title: Arthritis Rheum. – volume: 495 start-page: 333 year: 2013 end-page: 338 ident: bib6 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature – volume: 8 start-page: e2734 year: 2017 ident: bib14 article-title: miR-146a facilitates osteoarthritis by regulating cartilage homeostasis via targeting Camk2d and Ppp3r2 publication-title: Cell Death Dis. – volume: 8 start-page: e3140 year: 2017 ident: bib31 article-title: MicroRNA-145 attenuates TNF-α-driven cartilage matrix degradation in osteoarthritis via direct suppression of MKK4 publication-title: Cell Death Dis. – volume: 18 start-page: E597 year: 2017 ident: bib20 article-title: Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis publication-title: Int. J. Mol. Sci. – volume: 64 start-page: 1697 year: 2012 end-page: 1707 ident: bib2 article-title: Osteoarthritis: a disease of the joint as an organ publication-title: Arthritis Rheum. – volume: 377 start-page: 2115 year: 2011 end-page: 2126 ident: bib3 article-title: Osteoarthritis: an update with relevance for clinical practice publication-title: Lancet – volume: 11 start-page: 224 year: 2009 ident: bib34 article-title: Cartilage homeostasis in health and rheumatic diseases publication-title: Arthritis Res. Ther. – volume: 37 start-page: 2602 year: 2016 ident: 10.1016/j.ymthe.2019.01.006_bib9 article-title: A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehv713 – volume: 62 start-page: 1361 year: 2010 ident: 10.1016/j.ymthe.2019.01.006_bib26 article-title: MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes publication-title: Arthritis Rheum. doi: 10.1002/art.27329 – volume: 495 start-page: 333 year: 2013 ident: 10.1016/j.ymthe.2019.01.006_bib6 article-title: Circular RNAs are a large class of animal RNAs with regulatory potency publication-title: Nature doi: 10.1038/nature11928 – volume: 6 start-page: e21679 year: 2011 ident: 10.1016/j.ymthe.2019.01.006_bib27 article-title: MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9 publication-title: PLoS ONE doi: 10.1371/journal.pone.0021679 – volume: 65 start-page: 3141 year: 2013 ident: 10.1016/j.ymthe.2019.01.006_bib19 article-title: MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1β-induced catabolic effects in human chondrocytes publication-title: Arthritis Rheum. doi: 10.1002/art.38188 – volume: 25 start-page: 2676 year: 2017 ident: 10.1016/j.ymthe.2019.01.006_bib15 article-title: MicroRNA-218-5p as a potential target for the treatment of human osteoarthritis publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.08.009 – volume: 377 start-page: 2115 year: 2011 ident: 10.1016/j.ymthe.2019.01.006_bib3 article-title: Osteoarthritis: an update with relevance for clinical practice publication-title: Lancet doi: 10.1016/S0140-6736(11)60243-2 – volume: 18 start-page: E597 year: 2017 ident: 10.1016/j.ymthe.2019.01.006_bib20 article-title: Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18030597 – volume: 49 start-page: 2054 year: 2010 ident: 10.1016/j.ymthe.2019.01.006_bib30 article-title: Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/keq247 – volume: 157 start-page: 163 year: 2011 ident: 10.1016/j.ymthe.2019.01.006_bib28 article-title: MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases publication-title: Transl. Res. doi: 10.1016/j.trsl.2011.01.007 – volume: 17 start-page: 679 year: 2016 ident: 10.1016/j.ymthe.2019.01.006_bib7 article-title: Detecting circular RNAs: bioinformatic and experimental challenges publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.114 – volume: 36 start-page: 4551 year: 2017 ident: 10.1016/j.ymthe.2019.01.006_bib10 article-title: circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family publication-title: Oncogene doi: 10.1038/onc.2017.89 – volume: 77 start-page: 770 year: 2018 ident: 10.1016/j.ymthe.2019.01.006_bib22 article-title: Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2017-212056 – volume: 66 start-page: 1151 year: 2017 ident: 10.1016/j.ymthe.2019.01.006_bib11 article-title: Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression publication-title: Hepatology doi: 10.1002/hep.29270 – volume: 495 start-page: 384 year: 2013 ident: 10.1016/j.ymthe.2019.01.006_bib16 article-title: Natural RNA circles function as efficient microRNA sponges publication-title: Nature doi: 10.1038/nature11993 – volume: 8 start-page: e2734 year: 2017 ident: 10.1016/j.ymthe.2019.01.006_bib14 article-title: miR-146a facilitates osteoarthritis by regulating cartilage homeostasis via targeting Camk2d and Ppp3r2 publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.146 – volume: 20 start-page: 2993 year: 2014 ident: 10.1016/j.ymthe.2019.01.006_bib32 article-title: Metalloproteinases and metalloproteinase inhibitors in age-related diseases publication-title: Curr. Pharm. Des. doi: 10.2174/13816128113196660701 – volume: 8 start-page: e3140 year: 2017 ident: 10.1016/j.ymthe.2019.01.006_bib31 article-title: MicroRNA-145 attenuates TNF-α-driven cartilage matrix degradation in osteoarthritis via direct suppression of MKK4 publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.522 – volume: 7 start-page: 11215 year: 2016 ident: 10.1016/j.ymthe.2019.01.006_bib17 article-title: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs publication-title: Nat. Commun. doi: 10.1038/ncomms11215 – volume: 7 start-page: 113 year: 1987 ident: 10.1016/j.ymthe.2019.01.006_bib23 article-title: The synthesis of hyaluronic acid by human synovial fibroblasts is influenced by the nature of the hyaluronate in the extracellular environment publication-title: Rheumatol. Int. doi: 10.1007/BF00270463 – volume: 25 start-page: 1698 year: 2017 ident: 10.1016/j.ymthe.2019.01.006_bib24 article-title: Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2017.06.002 – volume: 15 start-page: 1061 year: 2007 ident: 10.1016/j.ymthe.2019.01.006_bib35 article-title: The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2007.03.006 – volume: 5 start-page: 12453 year: 2015 ident: 10.1016/j.ymthe.2019.01.006_bib8 article-title: The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells publication-title: Sci. Rep. doi: 10.1038/srep12453 – volume: 20 start-page: 1003 year: 2006 ident: 10.1016/j.ymthe.2019.01.006_bib4 article-title: Update on the biology of the chondrocyte and new approaches to treating cartilage diseases publication-title: Best Pract. Res. Clin. Rheumatol. doi: 10.1016/j.berh.2006.06.003 – volume: 644 start-page: 20 year: 2018 ident: 10.1016/j.ymthe.2019.01.006_bib18 article-title: Circular RNA expression profile of articular chondrocytes in an IL-1β-induced mouse model of osteoarthritis publication-title: Gene doi: 10.1016/j.gene.2017.12.020 – volume: 284 start-page: 2170 year: 2017 ident: 10.1016/j.ymthe.2019.01.006_bib21 article-title: hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma publication-title: FEBS J. doi: 10.1111/febs.14132 – volume: 403 start-page: 305 year: 2017 ident: 10.1016/j.ymthe.2019.01.006_bib12 article-title: Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway publication-title: Cancer Lett. doi: 10.1016/j.canlet.2017.06.027 – volume: 23 start-page: 1331 year: 2015 ident: 10.1016/j.ymthe.2019.01.006_bib25 article-title: Silencing of miR-101 prevents cartilage degradation by regulating extracellular matrix-related genes in a rat model of osteoarthritis publication-title: Mol. Ther. doi: 10.1038/mt.2015.61 – volume: 11 start-page: 35 year: 2015 ident: 10.1016/j.ymthe.2019.01.006_bib5 article-title: Emerging regulators of the inflammatory process in osteoarthritis publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2014.162 – volume: 136 start-page: 215 year: 2009 ident: 10.1016/j.ymthe.2019.01.006_bib13 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 3 start-page: 1253 year: 2008 ident: 10.1016/j.ymthe.2019.01.006_bib36 article-title: Primary culture and phenotyping of murine chondrocytes publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.95 – volume: 73 start-page: 1323 year: 2014 ident: 10.1016/j.ymthe.2019.01.006_bib1 article-title: The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2013-204763 – volume: 64 start-page: 1697 year: 2012 ident: 10.1016/j.ymthe.2019.01.006_bib2 article-title: Osteoarthritis: a disease of the joint as an organ publication-title: Arthritis Rheum. doi: 10.1002/art.34453 – volume: 380 start-page: 17 year: 1996 ident: 10.1016/j.ymthe.2019.01.006_bib33 article-title: Degradation of cartilage aggrecan by collagenase-3 (MMP-13) publication-title: FEBS Lett. doi: 10.1016/0014-5793(95)01539-6 – volume: 4 start-page: 534 year: 2008 ident: 10.1016/j.ymthe.2019.01.006_bib29 article-title: MicroRNAs, the immune system and rheumatic disease publication-title: Nat. Clin. Pract. Rheumatol. doi: 10.1038/ncprheum0885 – volume: 11 start-page: 224 year: 2009 ident: 10.1016/j.ymthe.2019.01.006_bib34 article-title: Cartilage homeostasis in health and rheumatic diseases publication-title: Arthritis Res. Ther. doi: 10.1186/ar2592 |
SSID | ssj0011596 |
Score | 2.639581 |
Snippet | Osteoarthritis (OA), the most prevalent age-related joint disorder, is characterized by chronic inflammation, progressive articular cartilage destruction, and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 531 |
SubjectTerms | Age Animals Apoptosis Apoptosis - genetics Apoptosis - physiology Arthritis Blotting, Western Cartilage (articular) Cartilage diseases Cell Proliferation - genetics Cell Proliferation - physiology Cells, Cultured Chondrocytes circRNA.33186 circular RNAs Collagen Collagen (type II) Collagen Type II - genetics Collagen Type II - metabolism Collagenase 3 Experiments Flow cytometry Fluorescent Antibody Technique IL-1β Immunoglobulins Immunohistochemistry Interleukin-1beta - metabolism Male Matrix Metalloproteinase 13 - genetics Matrix Metalloproteinase 13 - metabolism Meniscus Mice Mice, Inbred C57BL MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miR-127-5p Morphology Original Osteoarthritis Osteoarthritis - genetics Osteoarthritis - metabolism Osteoarthritis - pathology Pathogenesis Proteins RNA, Circular - genetics RNA, Circular - metabolism Sclerosis Statistical analysis Subchondral bone |
Title | circRNA.33186 Contributes to the Pathogenesis of Osteoarthritis by Sponging miR-127-5p |
URI | https://dx.doi.org/10.1016/j.ymthe.2019.01.006 https://www.ncbi.nlm.nih.gov/pubmed/30692016 https://www.proquest.com/docview/2308514136 https://www.proquest.com/docview/2179461382 https://pubmed.ncbi.nlm.nih.gov/PMC6402950 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgiGkvE4xbYSAj8QauEid2kseBgALqgLGhihcrcZK1E02qLX0ov57jW5qsbAJeoip2nDTfl-NzfPkOQi9CXuaRxzIiS1kSJdhFEl5SEsZllCYxlWmh9g6PD_noJPw4YZN1VlS9u6TJhvLXH_eV_A-qcA5wVbtk_wHZtlE4Ab8BXzgCwnD8K4zl7FweHR4MA_hkuNq8Z9JXGdUG5VF-Af-uPlXmzMiOfAZMa2hoqqWMlOv5bVFXOk_RfHZEfBoRtuj6q2OXPfdl05cf-DGtl3piYzojr2fVmh12_Pl9WpMJUO-0JYiu_rV7amQGX93lduxBbXdSqSBM12HtJWVE9fNdg2o2-1viBB3ryIzB37DaZgDhbLiaw39Ry-0SLaVq7tTBcTHXQEKUk0ClSwrapk-2RTfRLQpxg46xP3xqp5XAd-NOekov8tu44w7adm1c5alsRiKXF9R2PJTjO2jXhhb4wPDkLrpRVHvotkk2utpD22O7jOIe-t4jDu4QBzc1hmfFXeLgusR94uBshR1x8Jo499HJu7fHb0bEJtggkrGgIZJ6aRSXQRBIqvICyKKMsoxlUnq5lxTwGngRFHEcc57IHELvMJLg76eMZ2WU8zh4gLaquioeIcwjj1M_9BOp5J0gjM6DDFxdFvpQEwzFAFH3MoW06vMqCcpP4ZYZngkNhlBgCM8XAMYAvWovWhjxleurc4eSsP6j8QsFEO36C_cdpsJ-3hcCYnOIRsDHg-LnbTEYXzWjllZFvYQ6qjvjSsZzgB4aCrQP6mg0QFGPHG0FJezeL6lmUy3wzkOPJsx7fGWbT9DO-nPcR1vN-bJ4Cs5xkz3ThP8N7_K17g |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=circRNA.33186+Contributes+to+the+Pathogenesis+of+Osteoarthritis+by+Sponging+miR-127-5p&rft.jtitle=Molecular+therapy&rft.au=Zhou%2C+Zhi-Bin&rft.au=Huang%2C+Gao-Xiang&rft.au=Fu%2C+Qiang&rft.au=Han%2C+Bin&rft.date=2019-03-06&rft.eissn=1525-0024&rft.volume=27&rft.issue=3&rft.spage=531&rft_id=info:doi/10.1016%2Fj.ymthe.2019.01.006&rft_id=info%3Apmid%2F30692016&rft.externalDocID=30692016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-0016&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-0016&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-0016&client=summon |