Diffusion-weighted magnetic resonance imaging of human skeletal muscles: gender-, age- and muscle-related differences in apparent diffusion coefficient

To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to determine ADC differences in skeletal muscles between genders, age groups and muscles. Diffusion-weighted images ( b values in the range of 0–750 s/mm 2 a...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 27; no. 1; pp. 69 - 78
Main Authors Yanagisawa, Osamu, Shimao, Daisuke, Maruyama, Katsuya, Nielsen, Matthew, Irie, Takeo, Niitsu, Mamoru
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 2009
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
DOI10.1016/j.mri.2008.05.011

Cover

Abstract To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to determine ADC differences in skeletal muscles between genders, age groups and muscles. Diffusion-weighted images ( b values in the range of 0–750 s/mm 2 at increments of 50 s/mm 2) of the ankle dorsiflexors (116 subjects) and the erector spinae muscles (86 subjects) were acquired with a 1.5-T MR device. From the two different slopes obtained in SI vs. b-value logarithmic plots, ADC b0–50 ( b values=0 and 50 s/mm 2) reflected diffusion and perfusion, while ADC b50–750 ( b values in the range of 50–750 s/mm 2 at increments of 50 s/mm 2) approximated the true diffusion coefficient. Moreover, to evaluate whether this b-value combination is appropriate for assessing the flow component within muscles, diffusion-weighted images of the ankle dorsiflexors (10 subjects) were obtained before and during temporal arterial occlusion. ADC b0–50 and ADC b50–750 were found to be 2.64×10 –3 and 1.44×10 –3 mm 2/s in the ankle dorsiflexors, and 3.02×10 –3 and 1.49×10 –3 mm 2/s in the erector spinae muscles, respectively. ADC b0–50 was significantly higher than ADC b50–750 in each muscle ( P<.01). The erector spinae muscles showed significantly higher ADC values than the ankle dorsiflexors ( P<.01). However, for each muscle, there were few significant gender- and age-related ADC differences. Following temporal occlusion, ADC b0–50 of the ankle dorsiflexors decreased significantly from 2.49 to 1.6×10 –3 mm 2/s ( P<.01); however, ADC b50–750 showed no significant change. Based on the SI attenuation pattern, muscle ADC could be divided into ADC that reflects both diffusion and perfusion, and ADC that approximates a true diffusion coefficient. There were significant differences in ADC of functionally distinct muscles. However, we barely found any gender- or age-related ADC differences for each muscle.
AbstractList Abstract Purpose To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to determine ADC differences in skeletal muscles between genders, age groups and muscles. Materials and Methods Diffusion-weighted images ( b values in the range of 0–750 s/mm2 at increments of 50 s/mm2 ) of the ankle dorsiflexors (116 subjects) and the erector spinae muscles (86 subjects) were acquired with a 1.5-T MR device. From the two different slopes obtained in SI vs. b -value logarithmic plots, ADCb0–50 ( b values=0 and 50 s/mm2 ) reflected diffusion and perfusion, while ADCb50–750 ( b values in the range of 50–750 s/mm2 at increments of 50 s/mm2 ) approximated the true diffusion coefficient. Moreover, to evaluate whether this b -value combination is appropriate for assessing the flow component within muscles, diffusion-weighted images of the ankle dorsiflexors (10 subjects) were obtained before and during temporal arterial occlusion. Results ADCb0–50 and ADCb50–750 were found to be 2.64×10–3 and 1.44×10–3 mm2 /s in the ankle dorsiflexors, and 3.02×10–3 and 1.49×10–3 mm2 /s in the erector spinae muscles, respectively. ADCb0–50 was significantly higher than ADCb50–750 in each muscle ( P <.01). The erector spinae muscles showed significantly higher ADC values than the ankle dorsiflexors ( P <.01). However, for each muscle, there were few significant gender- and age-related ADC differences. Following temporal occlusion, ADCb0–50 of the ankle dorsiflexors decreased significantly from 2.49 to 1.6×10–3 mm2 /s ( P <.01); however, ADCb50–750 showed no significant change. Conclusion Based on the SI attenuation pattern, muscle ADC could be divided into ADC that reflects both diffusion and perfusion, and ADC that approximates a true diffusion coefficient. There were significant differences in ADC of functionally distinct muscles. However, we barely found any gender- or age-related ADC differences for each muscle.
To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to determine ADC differences in skeletal muscles between genders, age groups and muscles. Diffusion-weighted images (b values in the range of 0-750 s/mm2 at increments of 50 s/mm2) of the ankle dorsiflexors (116 subjects) and the erector spinae muscles (86 subjects) were acquired with a 1.5-T MR device. From the two different slopes obtained in SI vs. b-value logarithmic plots, ADCb0-50 (b values=0 and 50 s/mm2) reflected diffusion and perfusion, while ADCb50-750 (b values in the range of 50-750 s/mm2 at increments of 50 s/mm2) approximated the true diffusion coefficient. Moreover, to evaluate whether this b-value combination is appropriate for assessing the flow component within muscles, diffusion-weighted images of the ankle dorsiflexors (10 subjects) were obtained before and during temporal arterial occlusion. ADCb0-50 and ADCb50-750 were found to be 2.64x10(-3) and 1.44x10(-3) mm2/s in the ankle dorsiflexors, and 3.02x10(-3) and 1.49x10(-3) mm2/s in the erector spinae muscles, respectively. ADCb0-50 was significantly higher than ADCb50-750 in each muscle (P<.01). The erector spinae muscles showed significantly higher ADC values than the ankle dorsiflexors (P<.01). However, for each muscle, there were few significant gender- and age-related ADC differences. Following temporal occlusion, ADCb0-50 of the ankle dorsiflexors decreased significantly from 2.49 to 1.6x10(-3) mm2/s (P<.01); however, ADCb50-750 showed no significant change. Based on the SI attenuation pattern, muscle ADC could be divided into ADC that reflects both diffusion and perfusion, and ADC that approximates a true diffusion coefficient. There were significant differences in ADC of functionally distinct muscles. However, we barely found any gender- or age-related ADC differences for each muscle.
To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to determine ADC differences in skeletal muscles between genders, age groups and muscles. Diffusion-weighted images ( b values in the range of 0–750 s/mm 2 at increments of 50 s/mm 2) of the ankle dorsiflexors (116 subjects) and the erector spinae muscles (86 subjects) were acquired with a 1.5-T MR device. From the two different slopes obtained in SI vs. b-value logarithmic plots, ADC b0–50 ( b values=0 and 50 s/mm 2) reflected diffusion and perfusion, while ADC b50–750 ( b values in the range of 50–750 s/mm 2 at increments of 50 s/mm 2) approximated the true diffusion coefficient. Moreover, to evaluate whether this b-value combination is appropriate for assessing the flow component within muscles, diffusion-weighted images of the ankle dorsiflexors (10 subjects) were obtained before and during temporal arterial occlusion. ADC b0–50 and ADC b50–750 were found to be 2.64×10 –3 and 1.44×10 –3 mm 2/s in the ankle dorsiflexors, and 3.02×10 –3 and 1.49×10 –3 mm 2/s in the erector spinae muscles, respectively. ADC b0–50 was significantly higher than ADC b50–750 in each muscle ( P<.01). The erector spinae muscles showed significantly higher ADC values than the ankle dorsiflexors ( P<.01). However, for each muscle, there were few significant gender- and age-related ADC differences. Following temporal occlusion, ADC b0–50 of the ankle dorsiflexors decreased significantly from 2.49 to 1.6×10 –3 mm 2/s ( P<.01); however, ADC b50–750 showed no significant change. Based on the SI attenuation pattern, muscle ADC could be divided into ADC that reflects both diffusion and perfusion, and ADC that approximates a true diffusion coefficient. There were significant differences in ADC of functionally distinct muscles. However, we barely found any gender- or age-related ADC differences for each muscle.
Purpose To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to determine ADC differences in skeletal muscles between genders, age groups and muscles. Materials and Methods Diffusion-weighted images (b values in the range of 0-750 s/mm2 at increments of 50 s/mm2) of the ankle dorsiflexors (116 subjects) and the erector spinae muscles (86 subjects) were acquired with a 1.5-T MR device. From the two different slopes obtained in SI vs. b-value logarithmic plots, ADCb0-50 (b values=0 and 50 s/mm2) reflected diffusion and perfusion, while ADCb50-750 (b values in the range of 50-750 s/mm2 at increments of 50 s/mm2) approximated the true diffusion coefficient. Moreover, to evaluate whether this b-value combination is appropriate for assessing the flow component within muscles, diffusion-weighted images of the ankle dorsiflexors (10 subjects) were obtained before and during temporal arterial occlusion. Results ADCb0-50 and ADCb50-750 were found to be 2.64X10-3 and 1.44X10-3 mm2/s in the ankle dorsiflexors, and 3.02X10-3 and 1.49X10-3 mm2/s in the erector spinae muscles, respectively. ADCb0-50 was significantly higher than ADCb50-750 in each muscle (P<.01). The erector spinae muscles showed significantly higher ADC values than the ankle dorsiflexors (P<.01). However, for each muscle, there were few significant gender- and age-related ADC differences. Following temporal occlusion, ADCb0-50 of the ankle dorsiflexors decreased significantly from 2.49 to 1.6X10-3 mm2/s (P<.01); however, ADCb50-750 showed no significant change. Conclusion Based on the SI attenuation pattern, muscle ADC could be divided into ADC that reflects both diffusion and perfusion, and ADC that approximates a true diffusion coefficient. There were significant differences in ADC of functionally distinct muscles. However, we barely found any gender- or age-related ADC differences for each muscle.
To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to determine ADC differences in skeletal muscles between genders, age groups and muscles.PURPOSETo evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to determine ADC differences in skeletal muscles between genders, age groups and muscles.Diffusion-weighted images (b values in the range of 0-750 s/mm2 at increments of 50 s/mm2) of the ankle dorsiflexors (116 subjects) and the erector spinae muscles (86 subjects) were acquired with a 1.5-T MR device. From the two different slopes obtained in SI vs. b-value logarithmic plots, ADCb0-50 (b values=0 and 50 s/mm2) reflected diffusion and perfusion, while ADCb50-750 (b values in the range of 50-750 s/mm2 at increments of 50 s/mm2) approximated the true diffusion coefficient. Moreover, to evaluate whether this b-value combination is appropriate for assessing the flow component within muscles, diffusion-weighted images of the ankle dorsiflexors (10 subjects) were obtained before and during temporal arterial occlusion.MATERIALS AND METHODSDiffusion-weighted images (b values in the range of 0-750 s/mm2 at increments of 50 s/mm2) of the ankle dorsiflexors (116 subjects) and the erector spinae muscles (86 subjects) were acquired with a 1.5-T MR device. From the two different slopes obtained in SI vs. b-value logarithmic plots, ADCb0-50 (b values=0 and 50 s/mm2) reflected diffusion and perfusion, while ADCb50-750 (b values in the range of 50-750 s/mm2 at increments of 50 s/mm2) approximated the true diffusion coefficient. Moreover, to evaluate whether this b-value combination is appropriate for assessing the flow component within muscles, diffusion-weighted images of the ankle dorsiflexors (10 subjects) were obtained before and during temporal arterial occlusion.ADCb0-50 and ADCb50-750 were found to be 2.64x10(-3) and 1.44x10(-3) mm2/s in the ankle dorsiflexors, and 3.02x10(-3) and 1.49x10(-3) mm2/s in the erector spinae muscles, respectively. ADCb0-50 was significantly higher than ADCb50-750 in each muscle (P<.01). The erector spinae muscles showed significantly higher ADC values than the ankle dorsiflexors (P<.01). However, for each muscle, there were few significant gender- and age-related ADC differences. Following temporal occlusion, ADCb0-50 of the ankle dorsiflexors decreased significantly from 2.49 to 1.6x10(-3) mm2/s (P<.01); however, ADCb50-750 showed no significant change.RESULTSADCb0-50 and ADCb50-750 were found to be 2.64x10(-3) and 1.44x10(-3) mm2/s in the ankle dorsiflexors, and 3.02x10(-3) and 1.49x10(-3) mm2/s in the erector spinae muscles, respectively. ADCb0-50 was significantly higher than ADCb50-750 in each muscle (P<.01). The erector spinae muscles showed significantly higher ADC values than the ankle dorsiflexors (P<.01). However, for each muscle, there were few significant gender- and age-related ADC differences. Following temporal occlusion, ADCb0-50 of the ankle dorsiflexors decreased significantly from 2.49 to 1.6x10(-3) mm2/s (P<.01); however, ADCb50-750 showed no significant change.Based on the SI attenuation pattern, muscle ADC could be divided into ADC that reflects both diffusion and perfusion, and ADC that approximates a true diffusion coefficient. There were significant differences in ADC of functionally distinct muscles. However, we barely found any gender- or age-related ADC differences for each muscle.CONCLUSIONBased on the SI attenuation pattern, muscle ADC could be divided into ADC that reflects both diffusion and perfusion, and ADC that approximates a true diffusion coefficient. There were significant differences in ADC of functionally distinct muscles. However, we barely found any gender- or age-related ADC differences for each muscle.
Author Niitsu, Mamoru
Irie, Takeo
Yanagisawa, Osamu
Maruyama, Katsuya
Nielsen, Matthew
Shimao, Daisuke
Author_xml – sequence: 1
  givenname: Osamu
  surname: Yanagisawa
  fullname: Yanagisawa, Osamu
  email: o.yanagisawa@aoni.waseda.jp
  organization: Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
– sequence: 2
  givenname: Daisuke
  surname: Shimao
  fullname: Shimao, Daisuke
  organization: Department of Radiological Sciences, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Inashiki, Ibaraki 300-0394, Japan
– sequence: 3
  givenname: Katsuya
  surname: Maruyama
  fullname: Maruyama, Katsuya
  organization: MR Group, Marketing Division, Siemens-Asahi Medical Technologies Ltd., Shinagawa-ku, Tokyo 141-8644, Japan
– sequence: 4
  givenname: Matthew
  surname: Nielsen
  fullname: Nielsen, Matthew
  organization: MR Group, Marketing Division, Siemens-Asahi Medical Technologies Ltd., Shinagawa-ku, Tokyo 141-8644, Japan
– sequence: 5
  givenname: Takeo
  surname: Irie
  fullname: Irie, Takeo
  organization: Department of Radiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-0003, Japan
– sequence: 6
  givenname: Mamoru
  surname: Niitsu
  fullname: Niitsu, Mamoru
  organization: Department of Radiological Science, Faculty of Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo 116-8551, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18650046$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuFDEQtFAQ2QQ-gAvyiRMztGfG8wAJCYWnFIkDIHGzvHZ7482MvbE9oHwJv4snu3CIRHJquV1VbVf1CTly3iEhTxmUDFj7cltOwZYVQF8CL4GxB2TF-q4ueD80R2QFXQ1FV_Efx-Qkxi0A8Krmj8gx61sO0LQr8vudNWaO1rviF9rNRUJNJ7lxmKyiAaN30imkNves21Bv6MU8SUfjJY6Y5EinOaoR4yu6QacxFC-o3GBBpdOHqyLgKBdZnSdhwCwXqXVU7nYyn9JN_-YFVHk0xiqbu4_JQyPHiE8O9ZR8__D-29mn4vzLx89nb88LxXmdCgWVwfVgtIS-xfzBygwGmFQGldG6gbpq-ZBr38gBmFrXvRrazkjUsjaNrE_J873uLvirGWMSk40Kx1E69HMUbdvVTdXze4EV8LpqOGTgswNwXk-oxS5k88K1-Ot5BnR7gAo-xoBGKJtkygakIO0oGIglXbEVOV2xpCuAi5xuZrJbzH_id3Be7zmYXfxpMYi4GKxQ24AqCe3tnew3t9hqtM4qOV7iNcatn4PL8QgmYiVAfF02blk46AFY1zRZYPi_wD3D_wAWZuhz
CitedBy_id crossref_primary_10_3233_JND_160145
crossref_primary_10_1002_jmri_23611
crossref_primary_10_1002_jmri_25016
crossref_primary_10_2519_jospt_2011_3744
crossref_primary_10_5466_ijoms_18_51
crossref_primary_10_1002_jmri_22100
crossref_primary_10_1002_jmri_25650
crossref_primary_10_5466_ijoms_18_10
crossref_primary_10_1002_mrm_30344
crossref_primary_10_2214_AJR_19_21143
crossref_primary_10_1002_mrm_29153
crossref_primary_10_2214_AJR_09_2436
crossref_primary_10_1002_nbm_3141
crossref_primary_10_1002_nbm_3780
crossref_primary_10_1007_s00330_019_06403_5
crossref_primary_10_1007_s00415_016_8139_7
crossref_primary_10_1148_radiol_2017171316
crossref_primary_10_1016_j_crad_2010_06_005
crossref_primary_10_1002_nbm_3449
crossref_primary_10_1259_bjr_20190143
crossref_primary_10_1002_mus_26438
crossref_primary_10_1007_s00256_015_2313_3
crossref_primary_10_1016_j_ejrad_2016_02_007
crossref_primary_10_1080_02640414_2010_504782
crossref_primary_10_14814_phy2_12219
crossref_primary_10_1007_s00256_011_1108_4
crossref_primary_10_1016_j_ejrad_2011_11_024
crossref_primary_10_1016_j_exger_2015_02_016
crossref_primary_10_1111_acel_13851
crossref_primary_10_1038_sc_2011_17
crossref_primary_10_2519_jospt_2010_3423
crossref_primary_10_1007_s00421_021_04711_7
crossref_primary_10_1007_s00421_008_0954_9
crossref_primary_10_1002_osi2_1213
crossref_primary_10_1186_s12891_018_2361_7
crossref_primary_10_1002_nbm_4000
crossref_primary_10_2214_AJR_17_19318
crossref_primary_10_1002_mrm_22477
crossref_primary_10_1016_j_joms_2019_04_031
crossref_primary_10_1016_j_injury_2020_09_019
crossref_primary_10_1051_myolog_201613009
crossref_primary_10_1258_AR_2011_110153
crossref_primary_10_1155_2013_563494
Cites_doi 10.1007/BF00588472
10.1148/radiology.161.2.3763909
10.1152/japplphysiol.00517.2002
10.1002/mrm.1910290313
10.1007/s00421-004-1186-2
10.1139/h00-024
10.1093/gerona/62.4.453
10.1148/radiology.177.2.2217777
10.1002/mus.10373
10.1002/jmri.20593
10.1016/0730-725X(95)02006-F
10.1152/jappl.1997.82.1.63
10.1148/radiology.210.3.r99fe17617
10.1002/jmri.20651
10.1002/nbm.975
10.1007/BF00294604
10.1152/japplphysiol.00744.2001
10.1007/s00421-007-0470-3
10.1097/00007632-199318110-00007
10.1148/radiology.190.2.8284402
10.1148/radiology.168.2.3393671
10.1016/0730-725X(94)00096-L
10.1002/jmri.20196
10.1002/jmri.10061
ContentType Journal Article
Copyright 2009 Elsevier Inc.
Elsevier Inc.
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1016/j.mri.2008.05.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE


Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 78
ExternalDocumentID 18650046
10_1016_j_mri_2008_05_011
S0730725X08001744
1_s2_0_S0730725X08001744
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
DOVZS
EFLBG
G8K
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c553t-c02feb9fda086e0002f9f01acfecfdd4032659d4084a901cb38c967faeda3f4a3
IEDL.DBID .~1
ISSN 0730-725X
IngestDate Fri Sep 05 08:44:18 EDT 2025
Thu Sep 04 19:55:55 EDT 2025
Mon Jul 21 06:01:36 EDT 2025
Tue Jul 01 02:41:08 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
Fri Feb 23 02:27:52 EST 2024
Sun Feb 23 10:19:08 EST 2025
Tue Aug 26 16:37:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Diffusion-weighted imaging
Gender
Skeletal muscle
Age
Apparent diffusion coefficient
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c553t-c02feb9fda086e0002f9f01acfecfdd4032659d4084a901cb38c967faeda3f4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18650046
PQID 20532450
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_66734285
proquest_miscellaneous_20532450
pubmed_primary_18650046
crossref_citationtrail_10_1016_j_mri_2008_05_011
crossref_primary_10_1016_j_mri_2008_05_011
elsevier_sciencedirect_doi_10_1016_j_mri_2008_05_011
elsevier_clinicalkeyesjournals_1_s2_0_S0730725X08001744
elsevier_clinicalkey_doi_10_1016_j_mri_2008_05_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009
2009-01-00
2009-Jan
20090101
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2009
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Thoeny, De Keyzer, Boesch, Hermans (bib5) 2004; 20
Morvan, Leroy-willig (bib8) 1995; 13
Le Bihan, Breton, Lallemand, Grenier, Cabanis, Laval-Jeantet (bib1) 1986; 161
Müller, Prasad, Siewert, Nissenbaum, Raptopoulos, Edelman (bib7) 1994; 190
Holmbäck, Porter, Downham, Andersen, Lexell (bib23) 2003; 95
Jørgensen, Nicholaisen, Kato (bib25) 1993; 18
Galbán, Maderwald, Uffmann, Ladd (bib12) 2005; 18
Jakobsson, Borg, Edström (bib14) 1990; 80
Porter, Stuart, Boij, Lexell (bib21) 2002; 92
Bummer, Herneth, Maier, Butts, Prokesch, Do (bib19) 2003; 24
Chilibeck, Paterson, Cunningham, Taylor, Noble (bib15) 1997; 82
Tarnopolsky (bib16) 2000; 25
Morvan (bib9) 1995; 13
van Rijswijk, Kunz, Hogendoorn, Taminiau, Doornbos, Bloem (bib11) 2002; 15
Morvan, Leroy-Willig, Malgouyres, Cuenod, Jehenson, Syrota (bib20) 1993; 29
Zaraiskaya, Kumbhare, Noseworthy (bib10) 2006; 24
Le Bihan, Breton, Lallemand, Aubin, Vignaud, Laval-Jeantet (bib2) 1988; 168
Galbán, Maderwald, Uffmann, de Greiff, Ladd (bib17) 2004; 93
Galbán, Maderwald, Stock, Ladd (bib24) 2007; 62
Toft, Lindal, Bønaa, Jenssen (bib22) 2003; 28
Doran, Bydder (bib3) 1990; 32
Sinha, Sinha, Edgerton (bib13) 2006; 24
Yamada, Aung, Himeno, Nakagawa, Shibuya (bib6) 1999; 210
Turner, Le Bihan, Maier, Vavrek, Hedges, Pekar (bib4) 1990; 177
Yanagisawa, Homma, Okuwaki, Shimao, Takahashi (bib18) 2007; 100
Yamada (10.1016/j.mri.2008.05.011_bib6) 1999; 210
Yanagisawa (10.1016/j.mri.2008.05.011_bib18) 2007; 100
Le Bihan (10.1016/j.mri.2008.05.011_bib1) 1986; 161
Jakobsson (10.1016/j.mri.2008.05.011_bib14) 1990; 80
Turner (10.1016/j.mri.2008.05.011_bib4) 1990; 177
van Rijswijk (10.1016/j.mri.2008.05.011_bib11) 2002; 15
Sinha (10.1016/j.mri.2008.05.011_bib13) 2006; 24
Morvan (10.1016/j.mri.2008.05.011_bib20) 1993; 29
Holmbäck (10.1016/j.mri.2008.05.011_bib23) 2003; 95
Tarnopolsky (10.1016/j.mri.2008.05.011_bib16) 2000; 25
Bummer (10.1016/j.mri.2008.05.011_bib19) 2003; 24
Doran (10.1016/j.mri.2008.05.011_bib3) 1990; 32
Müller (10.1016/j.mri.2008.05.011_bib7) 1994; 190
Morvan (10.1016/j.mri.2008.05.011_bib8) 1995; 13
Thoeny (10.1016/j.mri.2008.05.011_bib5) 2004; 20
Galbán (10.1016/j.mri.2008.05.011_bib17) 2004; 93
Porter (10.1016/j.mri.2008.05.011_bib21) 2002; 92
Morvan (10.1016/j.mri.2008.05.011_bib9) 1995; 13
Zaraiskaya (10.1016/j.mri.2008.05.011_bib10) 2006; 24
Galbán (10.1016/j.mri.2008.05.011_bib24) 2007; 62
Jørgensen (10.1016/j.mri.2008.05.011_bib25) 1993; 18
Le Bihan (10.1016/j.mri.2008.05.011_bib2) 1988; 168
Galbán (10.1016/j.mri.2008.05.011_bib12) 2005; 18
Toft (10.1016/j.mri.2008.05.011_bib22) 2003; 28
Chilibeck (10.1016/j.mri.2008.05.011_bib15) 1997; 82
References_xml – volume: 28
  start-page: 101
  year: 2003
  end-page: 108
  ident: bib22
  article-title: Quantitative measurement of muscle fiber composition in a normal population
  publication-title: Muscle Nerve
– volume: 18
  start-page: 1439
  year: 1993
  end-page: 1450
  ident: bib25
  article-title: Muscle fiber distribution, capillary density, and enzymatic activities in the lumbar paravertebral muscles of young men. Significance for isometric endurance
  publication-title: Spine
– volume: 161
  start-page: 401
  year: 1986
  end-page: 407
  ident: bib1
  article-title: MR Imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders
  publication-title: Radiology
– volume: 25
  start-page: 312
  year: 2000
  end-page: 327
  ident: bib16
  article-title: Gender differences in substrate metabolism during endurance exercise
  publication-title: Can J Appl Physiol
– volume: 24
  start-page: 5
  year: 2003
  end-page: 12
  ident: bib19
  article-title: Line scan diffusion imaging of the spine
  publication-title: Am J Neuroradiol
– volume: 29
  start-page: 371
  year: 1993
  end-page: 377
  ident: bib20
  article-title: Simultaneous temperature and regional blood volume measurements in human muscle using an MRI fast diffusion technique
  publication-title: Magn Reson Med
– volume: 93
  start-page: 253
  year: 2004
  end-page: 262
  ident: bib17
  article-title: Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf
  publication-title: Eur J Appl Physiol
– volume: 82
  start-page: 63
  year: 1997
  end-page: 69
  ident: bib15
  article-title: Muscle capillarization O
  publication-title: J Appl Physiol
– volume: 15
  start-page: 302
  year: 2002
  end-page: 307
  ident: bib11
  article-title: Diffusion-weighted MRI in the characterization of soft-tissue tumors
  publication-title: J Magn Reson Imaging
– volume: 80
  start-page: 459
  year: 1990
  end-page: 468
  ident: bib14
  article-title: Fibre-type composition, structure and cytoskeletal protein location of fibres in anterior tibial muscle. Comparison between young adults and physically active aged humans
  publication-title: Acta Neuropathol (Berl)
– volume: 95
  start-page: 2416
  year: 2003
  end-page: 2424
  ident: bib23
  article-title: Structure and function of the ankle dorsiflexor muscles in young and moderately active men and women
  publication-title: J Appl Physiol
– volume: 32
  start-page: 392
  year: 1990
  end-page: 398
  ident: bib3
  article-title: Magnetic resonance: perfusion and diffusion imaging
  publication-title: Neuroradiology
– volume: 168
  start-page: 497
  year: 1988
  end-page: 505
  ident: bib2
  article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging
  publication-title: Radiology
– volume: 62
  start-page: 453
  year: 2007
  end-page: 458
  ident: bib24
  article-title: Age-related changes in skeletal muscle as detected by diffusion tensor magnetic resonance imaging
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 13
  start-page: 943
  year: 1995
  end-page: 948
  ident: bib8
  article-title: Simultaneous measurements of diffusion and transverse relaxation in exercising skeletal muscle
  publication-title: Magn Reson Imaging
– volume: 92
  start-page: 1451
  year: 2002
  end-page: 1457
  ident: bib21
  article-title: Capillary supply of the tibialis anterior muscle in young, healthy, and moderately active men and women
  publication-title: J Appl Physiol
– volume: 24
  start-page: 182
  year: 2006
  end-page: 190
  ident: bib13
  article-title: In vivo diffusion tensor imaging of the human calf muscle
  publication-title: J Magn Reson Imaging
– volume: 177
  start-page: 407
  year: 1990
  end-page: 414
  ident: bib4
  article-title: Echo-planar imaging of intravoxel incoherent motion
  publication-title: Radiology
– volume: 13
  start-page: 193
  year: 1995
  end-page: 199
  ident: bib9
  article-title: In vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise
  publication-title: Magn Reson Imaging
– volume: 210
  start-page: 617
  year: 1999
  end-page: 623
  ident: bib6
  article-title: Diffusion coefficients in abdominal organs and hepatic lesions: Evaluation with intravoxel incoherent motion echo-planar MR imaging
  publication-title: Radiology
– volume: 18
  start-page: 489
  year: 2005
  end-page: 498
  ident: bib12
  article-title: A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle
  publication-title: NMR Biomed
– volume: 190
  start-page: 475
  year: 1994
  end-page: 478
  ident: bib7
  article-title: Abdominal diffusion mapping with use of a whole-body echo-planar system
  publication-title: Radiology
– volume: 20
  start-page: 786
  year: 2004
  end-page: 790
  ident: bib5
  article-title: Diffusion-weighted imaging of the parotid gland: influence of the choice of
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 402
  year: 2006
  end-page: 408
  ident: bib10
  article-title: Diffusion tensor imaging in evaluation of human skeletal muscle injury
  publication-title: J Magn Reson Imaging
– volume: 100
  start-page: 737
  year: 2007
  end-page: 745
  ident: bib18
  article-title: Effects of cooling on human skin and skeletal muscle
  publication-title: Eur J Appl Physiol
– volume: 32
  start-page: 392
  year: 1990
  ident: 10.1016/j.mri.2008.05.011_bib3
  article-title: Magnetic resonance: perfusion and diffusion imaging
  publication-title: Neuroradiology
  doi: 10.1007/BF00588472
– volume: 161
  start-page: 401
  year: 1986
  ident: 10.1016/j.mri.2008.05.011_bib1
  article-title: MR Imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders
  publication-title: Radiology
  doi: 10.1148/radiology.161.2.3763909
– volume: 95
  start-page: 2416
  year: 2003
  ident: 10.1016/j.mri.2008.05.011_bib23
  article-title: Structure and function of the ankle dorsiflexor muscles in young and moderately active men and women
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00517.2002
– volume: 29
  start-page: 371
  year: 1993
  ident: 10.1016/j.mri.2008.05.011_bib20
  article-title: Simultaneous temperature and regional blood volume measurements in human muscle using an MRI fast diffusion technique
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910290313
– volume: 93
  start-page: 253
  year: 2004
  ident: 10.1016/j.mri.2008.05.011_bib17
  article-title: Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-004-1186-2
– volume: 25
  start-page: 312
  year: 2000
  ident: 10.1016/j.mri.2008.05.011_bib16
  article-title: Gender differences in substrate metabolism during endurance exercise
  publication-title: Can J Appl Physiol
  doi: 10.1139/h00-024
– volume: 62
  start-page: 453
  year: 2007
  ident: 10.1016/j.mri.2008.05.011_bib24
  article-title: Age-related changes in skeletal muscle as detected by diffusion tensor magnetic resonance imaging
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/62.4.453
– volume: 177
  start-page: 407
  year: 1990
  ident: 10.1016/j.mri.2008.05.011_bib4
  article-title: Echo-planar imaging of intravoxel incoherent motion
  publication-title: Radiology
  doi: 10.1148/radiology.177.2.2217777
– volume: 24
  start-page: 5
  year: 2003
  ident: 10.1016/j.mri.2008.05.011_bib19
  article-title: Line scan diffusion imaging of the spine
  publication-title: Am J Neuroradiol
– volume: 28
  start-page: 101
  year: 2003
  ident: 10.1016/j.mri.2008.05.011_bib22
  article-title: Quantitative measurement of muscle fiber composition in a normal population
  publication-title: Muscle Nerve
  doi: 10.1002/mus.10373
– volume: 24
  start-page: 182
  year: 2006
  ident: 10.1016/j.mri.2008.05.011_bib13
  article-title: In vivo diffusion tensor imaging of the human calf muscle
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20593
– volume: 13
  start-page: 943
  year: 1995
  ident: 10.1016/j.mri.2008.05.011_bib8
  article-title: Simultaneous measurements of diffusion and transverse relaxation in exercising skeletal muscle
  publication-title: Magn Reson Imaging
  doi: 10.1016/0730-725X(95)02006-F
– volume: 82
  start-page: 63
  year: 1997
  ident: 10.1016/j.mri.2008.05.011_bib15
  article-title: Muscle capillarization O2 diffusion distance, and VO2 kinetics in old and young individuals
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1997.82.1.63
– volume: 210
  start-page: 617
  year: 1999
  ident: 10.1016/j.mri.2008.05.011_bib6
  article-title: Diffusion coefficients in abdominal organs and hepatic lesions: Evaluation with intravoxel incoherent motion echo-planar MR imaging
  publication-title: Radiology
  doi: 10.1148/radiology.210.3.r99fe17617
– volume: 24
  start-page: 402
  year: 2006
  ident: 10.1016/j.mri.2008.05.011_bib10
  article-title: Diffusion tensor imaging in evaluation of human skeletal muscle injury
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20651
– volume: 18
  start-page: 489
  year: 2005
  ident: 10.1016/j.mri.2008.05.011_bib12
  article-title: A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle
  publication-title: NMR Biomed
  doi: 10.1002/nbm.975
– volume: 80
  start-page: 459
  year: 1990
  ident: 10.1016/j.mri.2008.05.011_bib14
  article-title: Fibre-type composition, structure and cytoskeletal protein location of fibres in anterior tibial muscle. Comparison between young adults and physically active aged humans
  publication-title: Acta Neuropathol (Berl)
  doi: 10.1007/BF00294604
– volume: 92
  start-page: 1451
  year: 2002
  ident: 10.1016/j.mri.2008.05.011_bib21
  article-title: Capillary supply of the tibialis anterior muscle in young, healthy, and moderately active men and women
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00744.2001
– volume: 100
  start-page: 737
  year: 2007
  ident: 10.1016/j.mri.2008.05.011_bib18
  article-title: Effects of cooling on human skin and skeletal muscle
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-007-0470-3
– volume: 18
  start-page: 1439
  year: 1993
  ident: 10.1016/j.mri.2008.05.011_bib25
  article-title: Muscle fiber distribution, capillary density, and enzymatic activities in the lumbar paravertebral muscles of young men. Significance for isometric endurance
  publication-title: Spine
  doi: 10.1097/00007632-199318110-00007
– volume: 190
  start-page: 475
  year: 1994
  ident: 10.1016/j.mri.2008.05.011_bib7
  article-title: Abdominal diffusion mapping with use of a whole-body echo-planar system
  publication-title: Radiology
  doi: 10.1148/radiology.190.2.8284402
– volume: 168
  start-page: 497
  year: 1988
  ident: 10.1016/j.mri.2008.05.011_bib2
  article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging
  publication-title: Radiology
  doi: 10.1148/radiology.168.2.3393671
– volume: 13
  start-page: 193
  year: 1995
  ident: 10.1016/j.mri.2008.05.011_bib9
  article-title: In vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise
  publication-title: Magn Reson Imaging
  doi: 10.1016/0730-725X(94)00096-L
– volume: 20
  start-page: 786
  year: 2004
  ident: 10.1016/j.mri.2008.05.011_bib5
  article-title: Diffusion-weighted imaging of the parotid gland: influence of the choice of b-values on the apparent diffusion coefficient value
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20196
– volume: 15
  start-page: 302
  year: 2002
  ident: 10.1016/j.mri.2008.05.011_bib11
  article-title: Diffusion-weighted MRI in the characterization of soft-tissue tumors
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.10061
SSID ssj0005235
Score 2.0991359
Snippet To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to determine ADC...
Abstract Purpose To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and...
To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to determine ADC...
Purpose To evaluate the apparent diffusion coefficient (ADC) of skeletal muscle based on signal intensity (SI) attenuation vs. increasing b values and to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 69
SubjectTerms Adolescent
Adult
Age
Age Factors
Aged
Ankle
Apparent diffusion coefficient
Chi-Square Distribution
Child
Diffusion Magnetic Resonance Imaging - methods
Diffusion-weighted imaging
Female
Gender
Humans
Male
Middle Aged
Muscle, Skeletal - anatomy & histology
Muscle, Skeletal - blood supply
Radiology
Sex Factors
Skeletal muscle
Spine
Statistics, Nonparametric
Title Diffusion-weighted magnetic resonance imaging of human skeletal muscles: gender-, age- and muscle-related differences in apparent diffusion coefficient
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X08001744
https://www.clinicalkey.es/playcontent/1-s2.0-S0730725X08001744
https://dx.doi.org/10.1016/j.mri.2008.05.011
https://www.ncbi.nlm.nih.gov/pubmed/18650046
https://www.proquest.com/docview/20532450
https://www.proquest.com/docview/66734285
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxEB1VrYS4IMpnaCk-cEKYbLL27ppbVagCqL1Apdwsr9eutpDdqJuoN_4Gf7czXm8BQYrEKZIzTix7PPNsz8wDeJkJI5SXOc9Rf7gocS3KMp3wQhWW6o04ZSkb-eQ0m52Jj3M534KjIReGwiqj7e9terDWsWUcZ3O8rOvxZ1LOfCrnhHkQV1NNUCFy0vU3338N8-hJNlGYk_TwshlivBaXdQynpOKdk02-aRP2DD7o-D7ci-CRHfbj24Ut1zyAOyfxefwh_HhXe7-m-y9-Fa48XcUW5ryhREWG5-qWqms4Vi8CNRFrPQsUfaz7is4HUThbrDuKknvLzgPDHH_N0NxwZpoqfsVD7gv-7ECsgmaG1Q0zS4pkb1ahPYyA2daF8hTY-gjOjt9_OZrxyLzArZTpittk6l2pfGXwxOPIanrlk4mx3llfVSJB0CcVfhbCIKCwZVpYleXeuMqkXpj0MWw3beOeAjPKFIVNTSENlVHCA2WWWfSJpqykTZQdQTLMubaxLDmxY3zTQ_zZhcZlinSZUuMyjeDVTZdlX5PjNuHpsJB6SDZF86jRY9zWKf9bJ9fFDd7pie6mOtF_KOEIxE3P3_T4X3_4YtAxjfubHm1M49p1h0ISMa9MNksQcSseIuUInvTK-XNSCsTficie_d-g9uBu_3ZGF077sL26XLvnCMFW5UHYYwewc_jh0-z0GoF-MgI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQS9IN4sr_rACWFtdmPnwa0qVFva3QuttDfLcewqhU1Wza76U_i7zDhOAcEWiVMkx5NY9njmG3seAG8ToUXuZMpT5B8uClyLoojHPMszQ_lGbG4oGnk2T6bn4vNCLnbgsI-FIbfKIPs7me6ldWgZhdkcrapq9IWYM53IBWEexNXiDuwKidbeAHYPjk-m8188Pbo6m9ifE0F_uendvJZXVfCopPyd423qaRv89Gro6AHcD_iRHXRDfAg7tn4Ed2fhhvwxfP9YObehIzB-7U89bcmW-qKmWEWGpnVDCTYsq5a-OhFrHPNV-lj7FfUPAnG23LTkKPeBXfgic_w9Q4nDma7L8Ir78Bf8bF9bBSUNq2qmV-TMXq99ux8BM431GSqw9QmcH306O5zyUHyBGynjNTfRxNkid6VGo8eS4HS5i8baOGtcWYoIcZ_M8ZkJjZjCFHFm8iR12pY6dkLHT2FQN7V9DkznOstMrDOpKZMS2pRJYlAt6qKUJsrNEKJ-zpUJmcmpQMY31bugXSpcplAxUypcpiG8uyFZdWk5bus86RdS9fGmKCEVKo3biNK_Edk27PFWjVU7UZH6gw-HIG4of2Plf_1wv-cxhVuc7m10bZtNi50kwl4Zbe9BtVvRjpRDeNYx589JyRCCRyJ58X-D2od707PZqTo9np-8hL3uKo3On17BYH21sa8Rka2LN2HH_QDxizS5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion-weighted+magnetic+resonance+imaging+of+human+skeletal+muscles%3A+gender-%2C+age-+and+muscle-related+differences+in+apparent+diffusion+coefficient&rft.jtitle=Magnetic+resonance+imaging&rft.au=Yanagisawa%2C+Osamu&rft.au=Shimao%2C+Daisuke&rft.au=Maruyama%2C+Katsuya&rft.au=Nielsen%2C+Matthew&rft.date=2009&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=27&rft.issue=1&rft.spage=69&rft.epage=78&rft_id=info:doi/10.1016%2Fj.mri.2008.05.011&rft.externalDocID=S0730725X08001744
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F0730725X%2FS0730725X08X00116%2Fcov150h.gif