Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock

The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the po...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 23; pp. 11528 - 11536
Main Authors Uehara, Takahiro N., Mizutani, Yoshiyuki, Kuwata, Keiko, Hirota, Tsuyoshi, Sato, Ayato, Mizoi, Junya, Takao, Saori, Matsuo, Hiromi, Suzuki, Takamasa, Ito, Shogo, Saito, Ami N., Nishiwaki-Ohkawa, Taeko, Yamaguchi-Shinozaki, Kazuko, Yoshimura, Takashi, Kay, Steve A., Itami, Kenichiro, Kinoshita, Toshinori, Yamaguchi, Junichiro, Nakamichi, Norihito
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.06.2019
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1903357116

Cover

Abstract The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.
AbstractList The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.
The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.
The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.
The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.
The mechanisms of eukaryotic circadian clocks rely on transcriptional-translational feedback loops (TTFLs), but components of TTFLs from different phylogenetic lineages are thought to be evolutionarily diverse. Posttranslational modification is also required for clock function, but those within the plant clock are less studied, likely due to genetic redundancy. Here, we identified a small synthetic molecule that lengthened the Arabidopsis circadian period. Using an affinity probe, we found that the molecule inhibited multiple members of the casein kinase I (CK1) family, which is also essential in animal, fungal, and algal clocks. The CK1 family modulated plant-specific clock-associated transcriptional repressors. With other studies, our results established the prominent role of CK1 family to control circadian clocks among vastly divergent phylogenetic lineages. The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.
Author Yamaguchi, Junichiro
Kay, Steve A.
Mizutani, Yoshiyuki
Mizoi, Junya
Hirota, Tsuyoshi
Uehara, Takahiro N.
Yamaguchi-Shinozaki, Kazuko
Saito, Ami N.
Nishiwaki-Ohkawa, Taeko
Ito, Shogo
Matsuo, Hiromi
Suzuki, Takamasa
Itami, Kenichiro
Kuwata, Keiko
Takao, Saori
Yoshimura, Takashi
Kinoshita, Toshinori
Nakamichi, Norihito
Sato, Ayato
Author_xml – sequence: 1
  givenname: Takahiro N.
  surname: Uehara
  fullname: Uehara, Takahiro N.
– sequence: 2
  givenname: Yoshiyuki
  surname: Mizutani
  fullname: Mizutani, Yoshiyuki
– sequence: 3
  givenname: Keiko
  surname: Kuwata
  fullname: Kuwata, Keiko
– sequence: 4
  givenname: Tsuyoshi
  surname: Hirota
  fullname: Hirota, Tsuyoshi
– sequence: 5
  givenname: Ayato
  surname: Sato
  fullname: Sato, Ayato
– sequence: 6
  givenname: Junya
  surname: Mizoi
  fullname: Mizoi, Junya
– sequence: 7
  givenname: Saori
  surname: Takao
  fullname: Takao, Saori
– sequence: 8
  givenname: Hiromi
  surname: Matsuo
  fullname: Matsuo, Hiromi
– sequence: 9
  givenname: Takamasa
  surname: Suzuki
  fullname: Suzuki, Takamasa
– sequence: 10
  givenname: Shogo
  surname: Ito
  fullname: Ito, Shogo
– sequence: 11
  givenname: Ami N.
  surname: Saito
  fullname: Saito, Ami N.
– sequence: 12
  givenname: Taeko
  surname: Nishiwaki-Ohkawa
  fullname: Nishiwaki-Ohkawa, Taeko
– sequence: 13
  givenname: Kazuko
  surname: Yamaguchi-Shinozaki
  fullname: Yamaguchi-Shinozaki, Kazuko
– sequence: 14
  givenname: Takashi
  surname: Yoshimura
  fullname: Yoshimura, Takashi
– sequence: 15
  givenname: Steve A.
  surname: Kay
  fullname: Kay, Steve A.
– sequence: 16
  givenname: Kenichiro
  surname: Itami
  fullname: Itami, Kenichiro
– sequence: 17
  givenname: Toshinori
  surname: Kinoshita
  fullname: Kinoshita, Toshinori
– sequence: 18
  givenname: Junichiro
  surname: Yamaguchi
  fullname: Yamaguchi, Junichiro
– sequence: 19
  givenname: Norihito
  surname: Nakamichi
  fullname: Nakamichi, Norihito
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31097584$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rFDEcxYNU7LZ69qQEevEy7Te_MxehLFaFQrXUc8hkMm22s8mazAj975tl66o9eAokn_fyvt93hA5iih6htwROCSh2tom2nJIWGBOKEPkCLQi0pJG8hQO0AKCq0ZzyQ3RUygoAWqHhFTpklVJC8wX6vrTFh4jvQ3XymODBrsP4gLO_nUc7-YK_XV8LbGOPb66WBFd0uvP4PNsu9GlTQsEuZGf7YCN2Y3L3r9HLwY7Fv3k6j9GPi083yy_N5dXnr8vzy8YJwaamU16Kmtq3WpLWag1iEERQ0g31zrYEqGS6a23FFVghhRC6544zTh3TAztGH3e-m7lb-975OGU7mk0Oa5sfTLLB_PsSw525Tb-MFJJQzqvBhyeDnH7OvkxmHYrz42ijT3MxlDIKgmmlKnryDF2lOcc6XqU4kApxXan3fyfaR_m97Qqc7QCXUynZD3uEgNn2abZ9mj99VoV4pnBhslNI25HC-B_du51uVaaU999QqUByRdgjysKrmA
CitedBy_id crossref_primary_10_1093_plcell_koab168
crossref_primary_10_1177_07487304211028440
crossref_primary_10_1093_plphys_kiac141
crossref_primary_10_1038_s44320_025_00086_5
crossref_primary_10_1111_tpj_16008
crossref_primary_10_1098_rstb_2023_0346
crossref_primary_10_3389_fpls_2022_1052659
crossref_primary_10_1016_j_molcel_2021_01_006
crossref_primary_10_1016_j_chempr_2020_08_011
crossref_primary_10_1080_09168451_2020_1719822
crossref_primary_10_1016_j_cub_2021_03_046
crossref_primary_10_1073_pnas_2000266117
crossref_primary_10_1016_j_envexpbot_2024_105683
crossref_primary_10_1093_pcp_pcac127
crossref_primary_10_1093_plphys_kiac269
crossref_primary_10_1002_1873_3468_14410
crossref_primary_10_1093_plphys_kiac107
crossref_primary_10_1271_kagakutoseibutsu_58_646
crossref_primary_10_1016_j_molp_2019_12_013
crossref_primary_10_1093_pcp_pcac011
crossref_primary_10_3389_fpls_2021_634068
crossref_primary_10_1093_plphys_kiab284
crossref_primary_10_1111_tpj_15122
crossref_primary_10_3390_ijms25052574
crossref_primary_10_1002_pld3_172
crossref_primary_10_3390_genes11030345
crossref_primary_10_1016_j_bbrc_2025_151516
crossref_primary_10_3390_genes12030325
crossref_primary_10_1093_pcp_pcad107
crossref_primary_10_1038_s41589_019_0389_0
crossref_primary_10_7554_eLife_52343
crossref_primary_10_1016_j_jmb_2020_04_004
crossref_primary_10_1186_s12870_024_05154_w
crossref_primary_10_1111_nph_18298
crossref_primary_10_1093_pcp_pcac026
crossref_primary_10_1186_s13007_023_00997_0
crossref_primary_10_3390_cells11071154
crossref_primary_10_1016_j_molp_2020_02_013
crossref_primary_10_15252_embj_2021108684
crossref_primary_10_3389_fgene_2019_01239
crossref_primary_10_1111_pce_14922
crossref_primary_10_1111_tpj_14958
crossref_primary_10_1111_jipb_13230
crossref_primary_10_1038_s42003_019_0739_1
crossref_primary_10_3389_fpls_2023_1153840
crossref_primary_10_1093_pcp_pcz183
crossref_primary_10_1111_brv_12748
crossref_primary_10_1080_14756366_2020_1772249
crossref_primary_10_3389_fpls_2023_1275503
crossref_primary_10_2525_shita_33_144
crossref_primary_10_1038_s41467_021_21167_7
crossref_primary_10_1186_s12870_021_02990_y
crossref_primary_10_1111_tpj_16037
crossref_primary_10_5059_yukigoseikyokaishi_81_718
crossref_primary_10_1111_pce_13969
crossref_primary_10_1016_j_isci_2020_101528
crossref_primary_10_1093_plphys_kiad280
crossref_primary_10_3390_ijms21051562
crossref_primary_10_1111_ppl_13104
crossref_primary_10_3389_fpls_2021_761008
crossref_primary_10_3389_fphys_2020_00429
crossref_primary_10_1126_sciadv_adq0187
crossref_primary_10_1371_journal_pgen_1008814
crossref_primary_10_1038_s41477_022_01303_x
crossref_primary_10_7717_peerj_9936
crossref_primary_10_1038_s41598_023_45722_y
crossref_primary_10_1038_s42003_025_07553_7
Cites_doi 10.1105/tpc.15.00737
10.1101/gad.1463506
10.1105/tpc.109.072892
10.1105/tpc.107.053033
10.1126/science.288.5465.483
10.1093/pcp/pcm178
10.1038/ncomms15234
10.1074/jbc.M803471200
10.1038/35048692
10.1016/S0092-8674(00)80841-7
10.1104/pp.110.162271
10.1124/jpet.107.122846
10.1093/pcp/pci086
10.1038/ng.3447
10.1126/science.1219075
10.1038/ncomms15236
10.1038/nature02163
10.1016/S0092-8674(00)81225-8
10.1038/nsmb.3327
10.1371/journal.pone.0070021
10.1104/pp.16.01805
10.1021/acschembio.6b00978
10.1038/emboj.2010.76
10.1146/annurev.genet.40.110405.090603
10.1111/j.1365-313X.2012.04991.x
10.1073/pnas.1205156109
10.1105/tpc.109.072843
10.1126/science.1173041
10.1371/journal.pbio.1000559
10.1126/science.1223710
10.1105/tpc.106.041749
10.1093/pcp/pcu181
10.1105/tpc.110.079657
10.1126/science.289.5480.768
10.1126/science.1108451
10.1105/tpc.107.051375
10.1093/emboj/20.24.7074
10.1126/science.1115581
10.1074/mcp.M115.054064
10.1038/nchembio.90
10.1016/j.chembiol.2009.04.008
10.1105/tpc.113.114322
10.1371/journal.pbio.1000062
10.1038/emboj.2009.297
ContentType Journal Article
Copyright Copyright © 2019 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Jun 4, 2019
Copyright © 2019 the Author(s). Published by PNAS. 2019
Copyright_xml – notice: Copyright © 2019 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Jun 4, 2019
– notice: Copyright © 2019 the Author(s). Published by PNAS. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1903357116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Virology and AIDS Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 11536
ExternalDocumentID PMC6561244
31097584
10_1073_pnas_1903357116
26706471
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MEXT | JST | Precursory Research for Embryonic Science and Technology (PRESTO)
  grantid: JPMJPR11B9
– fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  grantid: 16H01140
– fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  grantid: 15H05956
– fundername: Tottori University
  grantid: 28D2001
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 17K19229
– fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT)
  grantid: 15H05960
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 18H02136
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c553t-b7e65357e98619a8805f51521bf7e9a9102638b9ac5570a565558d4c4342c38f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:31:54 EDT 2025
Fri Sep 05 00:01:42 EDT 2025
Sat Sep 06 11:29:06 EDT 2025
Wed Feb 19 02:30:35 EST 2025
Tue Jul 01 03:40:04 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Thu May 29 13:25:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords small molecule
Arabidopsis
circadian clock
posttranslational regulation
Language English
License Copyright © 2019 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c553t-b7e65357e98619a8805f51521bf7e9a9102638b9ac5570a565558d4c4342c38f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: J.Y. and N.N. designed research; T.N.U., Y.M., K.K., T.H., J.M., S.T., H.M., T.S., T.N.-O., J.Y., and N.N. performed research; T.N.U., Y.M., A.S., S.T., H.M., S.I., A.N.S., J.Y., and N.N. contributed new reagents/analytic tools; T.N.U., Y.M., K.K., T.H., J.M., S.T., H.M., T.S., T.N.-O., K.Y.-S., T.Y., S.A.K., K.I., T.K., J.Y., and N.N. analyzed data; and J.Y. and N.N. wrote the paper.
1T.N.U. and Y.M. contributed equally to this work.
Edited by Susan S. Golden, University of California, San Diego, La Jolla, CA, and approved April 22, 2019 (received for review March 2, 2019)
ORCID 0000-0001-7018-9652
0000-0002-0402-2878
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6561244
PMID 31097584
PQID 2240138748
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561244
proquest_miscellaneous_2232053877
proquest_journals_2240138748
pubmed_primary_31097584
crossref_primary_10_1073_pnas_1903357116
crossref_citationtrail_10_1073_pnas_1903357116
jstor_primary_26706471
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-04
PublicationDateYYYYMMDD 2019-06-04
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Nakamichi N. (e_1_3_4_43_2) 2015; 56
Kiba T. (e_1_3_4_31_2) 2007; 19
Liu Q. (e_1_3_4_22_2) 2017; 8
Nakamichi N. (e_1_3_4_29_2) 2012; 109
Arabidopsis Genome Initiative (e_1_3_4_10_2) 2000; 408
de Montaigu A. (e_1_3_4_13_2) 2017; 12
Nohales M. A. (e_1_3_4_4_2) 2016; 23
Dejonghe W. (e_1_3_4_11_2) 2017; 174
Kim J. (e_1_3_4_26_2) 2010; 154
Somers D. E. (e_1_3_4_24_2) 2000; 101
Rosbash M. (e_1_3_4_3_2) 2009; 7
Hirota T. (e_1_3_4_15_2) 2010; 8
Strayer C. (e_1_3_4_25_2) 2000; 289
Fujiwara S. (e_1_3_4_9_2) 2008; 283
Más P. (e_1_3_4_32_2) 2003; 426
Legnaioli T. (e_1_3_4_34_2) 2009; 28
Ito S. (e_1_3_4_37_2) 2008; 49
Schmidt M. (e_1_3_4_7_2) 2006; 18
Kamioka M. (e_1_3_4_45_2) 2016; 28
Montagnoli A. (e_1_3_4_18_2) 2008; 4
Huang W. (e_1_3_4_35_2) 2012; 336
He Q. (e_1_3_4_5_2) 2006; 20
Kloss B. (e_1_3_4_19_2) 1998; 94
van Ooijen G. (e_1_3_4_8_2) 2013; 8
Tóth R. (e_1_3_4_12_2) 2012; 71
Cui X. (e_1_3_4_20_2) 2007; 19
Park S. Y. (e_1_3_4_14_2) 2009; 324
Lowrey P. L. (e_1_3_4_6_2) 2000; 288
De Rybel B. (e_1_3_4_28_2) 2009; 16
Baudry A. (e_1_3_4_33_2) 2010; 22
Pommerrenig B. (e_1_3_4_36_2) 2011; 23
Müller N. A. (e_1_3_4_42_2) 2016; 48
Nakajima M. (e_1_3_4_2_2) 2005; 308
Wijnen H. (e_1_3_4_1_2) 2006; 40
Huang H. (e_1_3_4_21_2) 2016; 15
Görl M. (e_1_3_4_39_2) 2001; 20
Hirota T. (e_1_3_4_16_2) 2012; 337
Badura L. (e_1_3_4_27_2) 2007; 322
Dodd A. N. (e_1_3_4_41_2) 2005; 309
Nakamichi N. (e_1_3_4_40_2) 2010; 22
Nakamichi N. (e_1_3_4_44_2) 2005; 46
Zhang C. (e_1_3_4_17_2) 2016; 113
Ni W. (e_1_3_4_23_2) 2017; 8
Wang L. (e_1_3_4_30_2) 2010; 29
Tan S. T. (e_1_3_4_38_2) 2013; 25
References_xml – volume: 28
  start-page: 696
  year: 2016
  ident: e_1_3_4_45_2
  article-title: Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00737
– volume: 20
  start-page: 2552
  year: 2006
  ident: e_1_3_4_5_2
  article-title: CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop
  publication-title: Genes Dev.
  doi: 10.1101/gad.1463506
– volume: 22
  start-page: 594
  year: 2010
  ident: e_1_3_4_40_2
  article-title: PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.072892
– volume: 19
  start-page: 2516
  year: 2007
  ident: e_1_3_4_31_2
  article-title: Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.053033
– volume: 288
  start-page: 483
  year: 2000
  ident: e_1_3_4_6_2
  article-title: Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau
  publication-title: Science
  doi: 10.1126/science.288.5465.483
– volume: 49
  start-page: 201
  year: 2008
  ident: e_1_3_4_37_2
  article-title: Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcm178
– volume: 8
  start-page: 15234
  year: 2017
  ident: e_1_3_4_22_2
  article-title: Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15234
– volume: 283
  start-page: 23073
  year: 2008
  ident: e_1_3_4_9_2
  article-title: Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M803471200
– volume: 408
  start-page: 796
  year: 2000
  ident: e_1_3_4_10_2
  article-title: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
  publication-title: Nature
  doi: 10.1038/35048692
– volume: 101
  start-page: 319
  year: 2000
  ident: e_1_3_4_24_2
  article-title: ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80841-7
– volume: 154
  start-page: 611
  year: 2010
  ident: e_1_3_4_26_2
  article-title: Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.162271
– volume: 322
  start-page: 730
  year: 2007
  ident: e_1_3_4_27_2
  article-title: An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free-running and entrained conditions
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.107.122846
– volume: 46
  start-page: 686
  year: 2005
  ident: e_1_3_4_44_2
  article-title: PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pci086
– volume: 48
  start-page: 89
  year: 2016
  ident: e_1_3_4_42_2
  article-title: Domestication selected for deceleration of the circadian clock in cultivated tomato
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3447
– volume: 336
  start-page: 75
  year: 2012
  ident: e_1_3_4_35_2
  article-title: Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator
  publication-title: Science
  doi: 10.1126/science.1219075
– volume: 113
  start-page: E41
  year: 2016
  ident: e_1_3_4_17_2
  article-title: Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 8
  start-page: 15236
  year: 2017
  ident: e_1_3_4_23_2
  article-title: PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15236
– volume: 426
  start-page: 567
  year: 2003
  ident: e_1_3_4_32_2
  article-title: Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana
  publication-title: Nature
  doi: 10.1038/nature02163
– volume: 94
  start-page: 97
  year: 1998
  ident: e_1_3_4_19_2
  article-title: The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81225-8
– volume: 23
  start-page: 1061
  year: 2016
  ident: e_1_3_4_4_2
  article-title: Molecular mechanisms at the core of the plant circadian oscillator
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3327
– volume: 8
  start-page: e70021
  year: 2013
  ident: e_1_3_4_8_2
  article-title: Functional analysis of Casein Kinase 1 in a minimal circadian system
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0070021
– volume: 174
  start-page: 5
  year: 2017
  ident: e_1_3_4_11_2
  article-title: Plant chemical genetics: From phenotype-based screens to synthetic biology
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.01805
– volume: 12
  start-page: 1466
  year: 2017
  ident: e_1_3_4_13_2
  article-title: The root growth-regulating brevicompanine natural products modulate the plant circadian clock
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.6b00978
– volume: 29
  start-page: 1903
  year: 2010
  ident: e_1_3_4_30_2
  article-title: PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.76
– volume: 40
  start-page: 409
  year: 2006
  ident: e_1_3_4_1_2
  article-title: Interplay of circadian clocks and metabolic rhythms
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.40.110405.090603
– volume: 71
  start-page: 338
  year: 2012
  ident: e_1_3_4_12_2
  article-title: Prieurianin/endosidin 1 is an actin-stabilizing small molecule identified from a chemical genetic screen for circadian clock effectors in Arabidopsis thaliana
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2012.04991.x
– volume: 109
  start-page: 17123
  year: 2012
  ident: e_1_3_4_29_2
  article-title: Transcriptional repressor PRR5 directly regulates clock-output pathways
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1205156109
– volume: 22
  start-page: 606
  year: 2010
  ident: e_1_3_4_33_2
  article-title: F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.072843
– volume: 324
  start-page: 1068
  year: 2009
  ident: e_1_3_4_14_2
  article-title: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins
  publication-title: Science
  doi: 10.1126/science.1173041
– volume: 8
  start-page: e1000559
  year: 2010
  ident: e_1_3_4_15_2
  article-title: High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000559
– volume: 337
  start-page: 1094
  year: 2012
  ident: e_1_3_4_16_2
  article-title: Identification of small molecule activators of cryptochrome
  publication-title: Science
  doi: 10.1126/science.1223710
– volume: 18
  start-page: 1908
  year: 2006
  ident: e_1_3_4_7_2
  article-title: Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041749
– volume: 56
  start-page: 594
  year: 2015
  ident: e_1_3_4_43_2
  article-title: Adaptation to the local environment by modifications of the photoperiod response in crops
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu181
– volume: 23
  start-page: 1904
  year: 2011
  ident: e_1_3_4_36_2
  article-title: Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.079657
– volume: 289
  start-page: 768
  year: 2000
  ident: e_1_3_4_25_2
  article-title: Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog
  publication-title: Science
  doi: 10.1126/science.289.5480.768
– volume: 308
  start-page: 414
  year: 2005
  ident: e_1_3_4_2_2
  article-title: Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
  publication-title: Science
  doi: 10.1126/science.1108451
– volume: 19
  start-page: 1388
  year: 2007
  ident: e_1_3_4_20_2
  article-title: Roles of Arabidopsis cyclin-dependent kinase C complexes in cauliflower mosaic virus infection, plant growth, and development
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.051375
– volume: 20
  start-page: 7074
  year: 2001
  ident: e_1_3_4_39_2
  article-title: A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.24.7074
– volume: 309
  start-page: 630
  year: 2005
  ident: e_1_3_4_41_2
  article-title: Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage
  publication-title: Science
  doi: 10.1126/science.1115581
– volume: 15
  start-page: 201
  year: 2016
  ident: e_1_3_4_21_2
  article-title: Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M115.054064
– volume: 4
  start-page: 357
  year: 2008
  ident: e_1_3_4_18_2
  article-title: A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.90
– volume: 16
  start-page: 594
  year: 2009
  ident: e_1_3_4_28_2
  article-title: Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2009.04.008
– volume: 25
  start-page: 2618
  year: 2013
  ident: e_1_3_4_38_2
  article-title: Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cryptochrome2 to regulate blue light signaling
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.114322
– volume: 7
  start-page: e62
  year: 2009
  ident: e_1_3_4_3_2
  article-title: The implications of multiple circadian clock origins
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000062
– volume: 28
  start-page: 3745
  year: 2009
  ident: e_1_3_4_34_2
  article-title: TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.297
SSID ssj0009580
Score 2.5387366
Snippet The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific...
The mechanisms of eukaryotic circadian clocks rely on transcriptional-translational feedback loops (TTFLs), but components of TTFLs from different phylogenetic...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11528
SubjectTerms Arabidopsis
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Biological clocks
Biological Sciences
Casein
Casein kinase I
Casein Kinase I - genetics
Circadian Clocks - genetics
Circadian rhythm
Circadian Rhythm - genetics
Circadian rhythms
Feedback loops
Fungi
Gene expression
Gene Expression Regulation, Plant - genetics
Genes
Homology
Kinases
Organic chemistry
Phosphorylation - genetics
PNAS Plus
Protein Processing, Post-Translational - genetics
Proteins
Proteomics
Repressors
Transcription factors
Transcription Factors - genetics
Transcription, Genetic - genetics
Title Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock
URI https://www.jstor.org/stable/26706471
https://www.ncbi.nlm.nih.gov/pubmed/31097584
https://www.proquest.com/docview/2240138748
https://www.proquest.com/docview/2232053877
https://pubmed.ncbi.nlm.nih.gov/PMC6561244
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxVKU1sx-ljVW2qYOsGSqXyFDmuo0adkilphTb-ec5xvjqKNHiJLMdxWt8vd-eP-x1CHwkhCrwK1x56S2ZTJmIbrGJsCzGkkvqRciK93nEx86Zz-mXBFr3er250ySYayLu9cSX_I1WoA7nqKNl_kGzTKVRAGeQLV5AwXB8k4wmYoCTtr5MUCn2nXq3ITX55VcD4fmfl9kBwOXHqI43jXETJMrvRVCQyyaVhJ5Bg1dZdV_WqMW1FfZBgVq8cjts4lEo5FH27fzVrsxrPlWaCLtEg1mKV5Fm76XOR3G03JpdU_0dWrJLb7Tpp95R-CuPRflXJOmuXxvPMVAfF9lY_1F2v0CFSnm0yDFcqFjwU26MmSehA7amr9bIJwqwA6JKOmgU31oSU_2EAQGPprMUw7ANwdQhhvO5mh2p7dhmezc_Pw-B0ETxCj13Oyz3-6bTL2OwbKovqp9W8UJx8vtf9jktjTrXum6_cP3bb8WOCZ-hpNQHBY4OmQ9RT6XN0WEsRn1Q85J9eoG8GXtjACzvYwAs38MIaXhjghTW8MDQFkOAOvHADL1zC6yWan50Gk6ldZeCwJWNkY0dceQz-pBr5MNEWoOtZzLTHF8VQJ8DVdEF_RyMhNZObgMkBY_4SPnJCXUn8mByhgzRL1WuE2TCiHswmYp8KKBAhR5SOPEd6jiDRiFhoUA9iKCt6ep0l5Tosj0lwEupRD9tRt9BJ88CNYWb5e9OjUipNO9fjOsjasdBxLaaw-q6LUDu5DvE59S30obkNWldvpYlUZVvdhrhgvnzOLfTKSLXpXHPtwiycWojvyLtpoBndd--kyapkdvd0rlpK3zzgvW_Rk_brOkYHm3yr3oF_vInelzj-DXVLt8Y
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Casein+kinase+1+family+regulates+PRR5+and+TOC1+in+the+Arabidopsis+circadian+clock&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Uehara%2C+Takahiro+N&rft.au=Mizutani%2C+Yoshiyuki&rft.au=Kuwata%2C+Keiko&rft.au=Hirota%2C+Tsuyoshi&rft.date=2019-06-04&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=116&rft.issue=23&rft.spage=11528&rft_id=info:doi/10.1073%2Fpnas.1903357116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon