Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock
The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the po...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 23; pp. 11528 - 11536 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
04.06.2019
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1903357116 |
Cover
Abstract | The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks. |
---|---|
AbstractList | The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the
Arabidopsis
CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the
Arabidopsis
circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of
Arabidopsis
CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A
prr5 toc1
double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks. The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks. The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks. The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks. The mechanisms of eukaryotic circadian clocks rely on transcriptional-translational feedback loops (TTFLs), but components of TTFLs from different phylogenetic lineages are thought to be evolutionarily diverse. Posttranslational modification is also required for clock function, but those within the plant clock are less studied, likely due to genetic redundancy. Here, we identified a small synthetic molecule that lengthened the Arabidopsis circadian period. Using an affinity probe, we found that the molecule inhibited multiple members of the casein kinase I (CK1) family, which is also essential in animal, fungal, and algal clocks. The CK1 family modulated plant-specific clock-associated transcriptional repressors. With other studies, our results established the prominent role of CK1 family to control circadian clocks among vastly divergent phylogenetic lineages. The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks. |
Author | Yamaguchi, Junichiro Kay, Steve A. Mizutani, Yoshiyuki Mizoi, Junya Hirota, Tsuyoshi Uehara, Takahiro N. Yamaguchi-Shinozaki, Kazuko Saito, Ami N. Nishiwaki-Ohkawa, Taeko Ito, Shogo Matsuo, Hiromi Suzuki, Takamasa Itami, Kenichiro Kuwata, Keiko Takao, Saori Yoshimura, Takashi Kinoshita, Toshinori Nakamichi, Norihito Sato, Ayato |
Author_xml | – sequence: 1 givenname: Takahiro N. surname: Uehara fullname: Uehara, Takahiro N. – sequence: 2 givenname: Yoshiyuki surname: Mizutani fullname: Mizutani, Yoshiyuki – sequence: 3 givenname: Keiko surname: Kuwata fullname: Kuwata, Keiko – sequence: 4 givenname: Tsuyoshi surname: Hirota fullname: Hirota, Tsuyoshi – sequence: 5 givenname: Ayato surname: Sato fullname: Sato, Ayato – sequence: 6 givenname: Junya surname: Mizoi fullname: Mizoi, Junya – sequence: 7 givenname: Saori surname: Takao fullname: Takao, Saori – sequence: 8 givenname: Hiromi surname: Matsuo fullname: Matsuo, Hiromi – sequence: 9 givenname: Takamasa surname: Suzuki fullname: Suzuki, Takamasa – sequence: 10 givenname: Shogo surname: Ito fullname: Ito, Shogo – sequence: 11 givenname: Ami N. surname: Saito fullname: Saito, Ami N. – sequence: 12 givenname: Taeko surname: Nishiwaki-Ohkawa fullname: Nishiwaki-Ohkawa, Taeko – sequence: 13 givenname: Kazuko surname: Yamaguchi-Shinozaki fullname: Yamaguchi-Shinozaki, Kazuko – sequence: 14 givenname: Takashi surname: Yoshimura fullname: Yoshimura, Takashi – sequence: 15 givenname: Steve A. surname: Kay fullname: Kay, Steve A. – sequence: 16 givenname: Kenichiro surname: Itami fullname: Itami, Kenichiro – sequence: 17 givenname: Toshinori surname: Kinoshita fullname: Kinoshita, Toshinori – sequence: 18 givenname: Junichiro surname: Yamaguchi fullname: Yamaguchi, Junichiro – sequence: 19 givenname: Norihito surname: Nakamichi fullname: Nakamichi, Norihito |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31097584$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9rFDEcxYNU7LZ69qQEevEy7Te_MxehLFaFQrXUc8hkMm22s8mazAj975tl66o9eAokn_fyvt93hA5iih6htwROCSh2tom2nJIWGBOKEPkCLQi0pJG8hQO0AKCq0ZzyQ3RUygoAWqHhFTpklVJC8wX6vrTFh4jvQ3XymODBrsP4gLO_nUc7-YK_XV8LbGOPb66WBFd0uvP4PNsu9GlTQsEuZGf7YCN2Y3L3r9HLwY7Fv3k6j9GPi083yy_N5dXnr8vzy8YJwaamU16Kmtq3WpLWag1iEERQ0g31zrYEqGS6a23FFVghhRC6544zTh3TAztGH3e-m7lb-975OGU7mk0Oa5sfTLLB_PsSw525Tb-MFJJQzqvBhyeDnH7OvkxmHYrz42ijT3MxlDIKgmmlKnryDF2lOcc6XqU4kApxXan3fyfaR_m97Qqc7QCXUynZD3uEgNn2abZ9mj99VoV4pnBhslNI25HC-B_du51uVaaU999QqUByRdgjysKrmA |
CitedBy_id | crossref_primary_10_1093_plcell_koab168 crossref_primary_10_1177_07487304211028440 crossref_primary_10_1093_plphys_kiac141 crossref_primary_10_1038_s44320_025_00086_5 crossref_primary_10_1111_tpj_16008 crossref_primary_10_1098_rstb_2023_0346 crossref_primary_10_3389_fpls_2022_1052659 crossref_primary_10_1016_j_molcel_2021_01_006 crossref_primary_10_1016_j_chempr_2020_08_011 crossref_primary_10_1080_09168451_2020_1719822 crossref_primary_10_1016_j_cub_2021_03_046 crossref_primary_10_1073_pnas_2000266117 crossref_primary_10_1016_j_envexpbot_2024_105683 crossref_primary_10_1093_pcp_pcac127 crossref_primary_10_1093_plphys_kiac269 crossref_primary_10_1002_1873_3468_14410 crossref_primary_10_1093_plphys_kiac107 crossref_primary_10_1271_kagakutoseibutsu_58_646 crossref_primary_10_1016_j_molp_2019_12_013 crossref_primary_10_1093_pcp_pcac011 crossref_primary_10_3389_fpls_2021_634068 crossref_primary_10_1093_plphys_kiab284 crossref_primary_10_1111_tpj_15122 crossref_primary_10_3390_ijms25052574 crossref_primary_10_1002_pld3_172 crossref_primary_10_3390_genes11030345 crossref_primary_10_1016_j_bbrc_2025_151516 crossref_primary_10_3390_genes12030325 crossref_primary_10_1093_pcp_pcad107 crossref_primary_10_1038_s41589_019_0389_0 crossref_primary_10_7554_eLife_52343 crossref_primary_10_1016_j_jmb_2020_04_004 crossref_primary_10_1186_s12870_024_05154_w crossref_primary_10_1111_nph_18298 crossref_primary_10_1093_pcp_pcac026 crossref_primary_10_1186_s13007_023_00997_0 crossref_primary_10_3390_cells11071154 crossref_primary_10_1016_j_molp_2020_02_013 crossref_primary_10_15252_embj_2021108684 crossref_primary_10_3389_fgene_2019_01239 crossref_primary_10_1111_pce_14922 crossref_primary_10_1111_tpj_14958 crossref_primary_10_1111_jipb_13230 crossref_primary_10_1038_s42003_019_0739_1 crossref_primary_10_3389_fpls_2023_1153840 crossref_primary_10_1093_pcp_pcz183 crossref_primary_10_1111_brv_12748 crossref_primary_10_1080_14756366_2020_1772249 crossref_primary_10_3389_fpls_2023_1275503 crossref_primary_10_2525_shita_33_144 crossref_primary_10_1038_s41467_021_21167_7 crossref_primary_10_1186_s12870_021_02990_y crossref_primary_10_1111_tpj_16037 crossref_primary_10_5059_yukigoseikyokaishi_81_718 crossref_primary_10_1111_pce_13969 crossref_primary_10_1016_j_isci_2020_101528 crossref_primary_10_1093_plphys_kiad280 crossref_primary_10_3390_ijms21051562 crossref_primary_10_1111_ppl_13104 crossref_primary_10_3389_fpls_2021_761008 crossref_primary_10_3389_fphys_2020_00429 crossref_primary_10_1126_sciadv_adq0187 crossref_primary_10_1371_journal_pgen_1008814 crossref_primary_10_1038_s41477_022_01303_x crossref_primary_10_7717_peerj_9936 crossref_primary_10_1038_s41598_023_45722_y crossref_primary_10_1038_s42003_025_07553_7 |
Cites_doi | 10.1105/tpc.15.00737 10.1101/gad.1463506 10.1105/tpc.109.072892 10.1105/tpc.107.053033 10.1126/science.288.5465.483 10.1093/pcp/pcm178 10.1038/ncomms15234 10.1074/jbc.M803471200 10.1038/35048692 10.1016/S0092-8674(00)80841-7 10.1104/pp.110.162271 10.1124/jpet.107.122846 10.1093/pcp/pci086 10.1038/ng.3447 10.1126/science.1219075 10.1038/ncomms15236 10.1038/nature02163 10.1016/S0092-8674(00)81225-8 10.1038/nsmb.3327 10.1371/journal.pone.0070021 10.1104/pp.16.01805 10.1021/acschembio.6b00978 10.1038/emboj.2010.76 10.1146/annurev.genet.40.110405.090603 10.1111/j.1365-313X.2012.04991.x 10.1073/pnas.1205156109 10.1105/tpc.109.072843 10.1126/science.1173041 10.1371/journal.pbio.1000559 10.1126/science.1223710 10.1105/tpc.106.041749 10.1093/pcp/pcu181 10.1105/tpc.110.079657 10.1126/science.289.5480.768 10.1126/science.1108451 10.1105/tpc.107.051375 10.1093/emboj/20.24.7074 10.1126/science.1115581 10.1074/mcp.M115.054064 10.1038/nchembio.90 10.1016/j.chembiol.2009.04.008 10.1105/tpc.113.114322 10.1371/journal.pbio.1000062 10.1038/emboj.2009.297 |
ContentType | Journal Article |
Copyright | Copyright © 2019 the Author(s). Published by PNAS. Copyright National Academy of Sciences Jun 4, 2019 Copyright © 2019 the Author(s). Published by PNAS. 2019 |
Copyright_xml | – notice: Copyright © 2019 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Jun 4, 2019 – notice: Copyright © 2019 the Author(s). Published by PNAS. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1903357116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11536 |
ExternalDocumentID | PMC6561244 31097584 10_1073_pnas_1903357116 26706471 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MEXT | JST | Precursory Research for Embryonic Science and Technology (PRESTO) grantid: JPMJPR11B9 – fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT) grantid: 16H01140 – fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT) grantid: 15H05956 – fundername: Tottori University grantid: 28D2001 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 17K19229 – fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT) grantid: 15H05960 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 18H02136 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF DOOOF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c553t-b7e65357e98619a8805f51521bf7e9a9102638b9ac5570a565558d4c4342c38f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:31:54 EDT 2025 Fri Sep 05 00:01:42 EDT 2025 Sat Sep 06 11:29:06 EDT 2025 Wed Feb 19 02:30:35 EST 2025 Tue Jul 01 03:40:04 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Thu May 29 13:25:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | small molecule Arabidopsis circadian clock posttranslational regulation |
Language | English |
License | Copyright © 2019 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c553t-b7e65357e98619a8805f51521bf7e9a9102638b9ac5570a565558d4c4342c38f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: J.Y. and N.N. designed research; T.N.U., Y.M., K.K., T.H., J.M., S.T., H.M., T.S., T.N.-O., J.Y., and N.N. performed research; T.N.U., Y.M., A.S., S.T., H.M., S.I., A.N.S., J.Y., and N.N. contributed new reagents/analytic tools; T.N.U., Y.M., K.K., T.H., J.M., S.T., H.M., T.S., T.N.-O., K.Y.-S., T.Y., S.A.K., K.I., T.K., J.Y., and N.N. analyzed data; and J.Y. and N.N. wrote the paper. 1T.N.U. and Y.M. contributed equally to this work. Edited by Susan S. Golden, University of California, San Diego, La Jolla, CA, and approved April 22, 2019 (received for review March 2, 2019) |
ORCID | 0000-0001-7018-9652 0000-0002-0402-2878 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6561244 |
PMID | 31097584 |
PQID | 2240138748 |
PQPubID | 42026 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6561244 proquest_miscellaneous_2232053877 proquest_journals_2240138748 pubmed_primary_31097584 crossref_primary_10_1073_pnas_1903357116 crossref_citationtrail_10_1073_pnas_1903357116 jstor_primary_26706471 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-04 |
PublicationDateYYYYMMDD | 2019-06-04 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Nakamichi N. (e_1_3_4_43_2) 2015; 56 Kiba T. (e_1_3_4_31_2) 2007; 19 Liu Q. (e_1_3_4_22_2) 2017; 8 Nakamichi N. (e_1_3_4_29_2) 2012; 109 Arabidopsis Genome Initiative (e_1_3_4_10_2) 2000; 408 de Montaigu A. (e_1_3_4_13_2) 2017; 12 Nohales M. A. (e_1_3_4_4_2) 2016; 23 Dejonghe W. (e_1_3_4_11_2) 2017; 174 Kim J. (e_1_3_4_26_2) 2010; 154 Somers D. E. (e_1_3_4_24_2) 2000; 101 Rosbash M. (e_1_3_4_3_2) 2009; 7 Hirota T. (e_1_3_4_15_2) 2010; 8 Strayer C. (e_1_3_4_25_2) 2000; 289 Fujiwara S. (e_1_3_4_9_2) 2008; 283 Más P. (e_1_3_4_32_2) 2003; 426 Legnaioli T. (e_1_3_4_34_2) 2009; 28 Ito S. (e_1_3_4_37_2) 2008; 49 Schmidt M. (e_1_3_4_7_2) 2006; 18 Kamioka M. (e_1_3_4_45_2) 2016; 28 Montagnoli A. (e_1_3_4_18_2) 2008; 4 Huang W. (e_1_3_4_35_2) 2012; 336 He Q. (e_1_3_4_5_2) 2006; 20 Kloss B. (e_1_3_4_19_2) 1998; 94 van Ooijen G. (e_1_3_4_8_2) 2013; 8 Tóth R. (e_1_3_4_12_2) 2012; 71 Cui X. (e_1_3_4_20_2) 2007; 19 Park S. Y. (e_1_3_4_14_2) 2009; 324 Lowrey P. L. (e_1_3_4_6_2) 2000; 288 De Rybel B. (e_1_3_4_28_2) 2009; 16 Baudry A. (e_1_3_4_33_2) 2010; 22 Pommerrenig B. (e_1_3_4_36_2) 2011; 23 Müller N. A. (e_1_3_4_42_2) 2016; 48 Nakajima M. (e_1_3_4_2_2) 2005; 308 Wijnen H. (e_1_3_4_1_2) 2006; 40 Huang H. (e_1_3_4_21_2) 2016; 15 Görl M. (e_1_3_4_39_2) 2001; 20 Hirota T. (e_1_3_4_16_2) 2012; 337 Badura L. (e_1_3_4_27_2) 2007; 322 Dodd A. N. (e_1_3_4_41_2) 2005; 309 Nakamichi N. (e_1_3_4_40_2) 2010; 22 Nakamichi N. (e_1_3_4_44_2) 2005; 46 Zhang C. (e_1_3_4_17_2) 2016; 113 Ni W. (e_1_3_4_23_2) 2017; 8 Wang L. (e_1_3_4_30_2) 2010; 29 Tan S. T. (e_1_3_4_38_2) 2013; 25 |
References_xml | – volume: 28 start-page: 696 year: 2016 ident: e_1_3_4_45_2 article-title: Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock publication-title: Plant Cell doi: 10.1105/tpc.15.00737 – volume: 20 start-page: 2552 year: 2006 ident: e_1_3_4_5_2 article-title: CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop publication-title: Genes Dev. doi: 10.1101/gad.1463506 – volume: 22 start-page: 594 year: 2010 ident: e_1_3_4_40_2 article-title: PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock publication-title: Plant Cell doi: 10.1105/tpc.109.072892 – volume: 19 start-page: 2516 year: 2007 ident: e_1_3_4_31_2 article-title: Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.107.053033 – volume: 288 start-page: 483 year: 2000 ident: e_1_3_4_6_2 article-title: Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau publication-title: Science doi: 10.1126/science.288.5465.483 – volume: 49 start-page: 201 year: 2008 ident: e_1_3_4_37_2 article-title: Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcm178 – volume: 8 start-page: 15234 year: 2017 ident: e_1_3_4_22_2 article-title: Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2 publication-title: Nat. Commun. doi: 10.1038/ncomms15234 – volume: 283 start-page: 23073 year: 2008 ident: e_1_3_4_9_2 article-title: Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M803471200 – volume: 408 start-page: 796 year: 2000 ident: e_1_3_4_10_2 article-title: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana publication-title: Nature doi: 10.1038/35048692 – volume: 101 start-page: 319 year: 2000 ident: e_1_3_4_24_2 article-title: ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis publication-title: Cell doi: 10.1016/S0092-8674(00)80841-7 – volume: 154 start-page: 611 year: 2010 ident: e_1_3_4_26_2 article-title: Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts publication-title: Plant Physiol. doi: 10.1104/pp.110.162271 – volume: 322 start-page: 730 year: 2007 ident: e_1_3_4_27_2 article-title: An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free-running and entrained conditions publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.107.122846 – volume: 46 start-page: 686 year: 2005 ident: e_1_3_4_44_2 article-title: PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pci086 – volume: 48 start-page: 89 year: 2016 ident: e_1_3_4_42_2 article-title: Domestication selected for deceleration of the circadian clock in cultivated tomato publication-title: Nat. Genet. doi: 10.1038/ng.3447 – volume: 336 start-page: 75 year: 2012 ident: e_1_3_4_35_2 article-title: Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator publication-title: Science doi: 10.1126/science.1219075 – volume: 113 start-page: E41 year: 2016 ident: e_1_3_4_17_2 article-title: Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 8 start-page: 15236 year: 2017 ident: e_1_3_4_23_2 article-title: PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3 publication-title: Nat. Commun. doi: 10.1038/ncomms15236 – volume: 426 start-page: 567 year: 2003 ident: e_1_3_4_32_2 article-title: Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana publication-title: Nature doi: 10.1038/nature02163 – volume: 94 start-page: 97 year: 1998 ident: e_1_3_4_19_2 article-title: The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon publication-title: Cell doi: 10.1016/S0092-8674(00)81225-8 – volume: 23 start-page: 1061 year: 2016 ident: e_1_3_4_4_2 article-title: Molecular mechanisms at the core of the plant circadian oscillator publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3327 – volume: 8 start-page: e70021 year: 2013 ident: e_1_3_4_8_2 article-title: Functional analysis of Casein Kinase 1 in a minimal circadian system publication-title: PLoS One doi: 10.1371/journal.pone.0070021 – volume: 174 start-page: 5 year: 2017 ident: e_1_3_4_11_2 article-title: Plant chemical genetics: From phenotype-based screens to synthetic biology publication-title: Plant Physiol. doi: 10.1104/pp.16.01805 – volume: 12 start-page: 1466 year: 2017 ident: e_1_3_4_13_2 article-title: The root growth-regulating brevicompanine natural products modulate the plant circadian clock publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b00978 – volume: 29 start-page: 1903 year: 2010 ident: e_1_3_4_30_2 article-title: PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock publication-title: EMBO J. doi: 10.1038/emboj.2010.76 – volume: 40 start-page: 409 year: 2006 ident: e_1_3_4_1_2 article-title: Interplay of circadian clocks and metabolic rhythms publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.40.110405.090603 – volume: 71 start-page: 338 year: 2012 ident: e_1_3_4_12_2 article-title: Prieurianin/endosidin 1 is an actin-stabilizing small molecule identified from a chemical genetic screen for circadian clock effectors in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.2012.04991.x – volume: 109 start-page: 17123 year: 2012 ident: e_1_3_4_29_2 article-title: Transcriptional repressor PRR5 directly regulates clock-output pathways publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1205156109 – volume: 22 start-page: 606 year: 2010 ident: e_1_3_4_33_2 article-title: F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression publication-title: Plant Cell doi: 10.1105/tpc.109.072843 – volume: 324 start-page: 1068 year: 2009 ident: e_1_3_4_14_2 article-title: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins publication-title: Science doi: 10.1126/science.1173041 – volume: 8 start-page: e1000559 year: 2010 ident: e_1_3_4_15_2 article-title: High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000559 – volume: 337 start-page: 1094 year: 2012 ident: e_1_3_4_16_2 article-title: Identification of small molecule activators of cryptochrome publication-title: Science doi: 10.1126/science.1223710 – volume: 18 start-page: 1908 year: 2006 ident: e_1_3_4_7_2 article-title: Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements publication-title: Plant Cell doi: 10.1105/tpc.106.041749 – volume: 56 start-page: 594 year: 2015 ident: e_1_3_4_43_2 article-title: Adaptation to the local environment by modifications of the photoperiod response in crops publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu181 – volume: 23 start-page: 1904 year: 2011 ident: e_1_3_4_36_2 article-title: Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.110.079657 – volume: 289 start-page: 768 year: 2000 ident: e_1_3_4_25_2 article-title: Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog publication-title: Science doi: 10.1126/science.289.5480.768 – volume: 308 start-page: 414 year: 2005 ident: e_1_3_4_2_2 article-title: Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro publication-title: Science doi: 10.1126/science.1108451 – volume: 19 start-page: 1388 year: 2007 ident: e_1_3_4_20_2 article-title: Roles of Arabidopsis cyclin-dependent kinase C complexes in cauliflower mosaic virus infection, plant growth, and development publication-title: Plant Cell doi: 10.1105/tpc.107.051375 – volume: 20 start-page: 7074 year: 2001 ident: e_1_3_4_39_2 article-title: A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa publication-title: EMBO J. doi: 10.1093/emboj/20.24.7074 – volume: 309 start-page: 630 year: 2005 ident: e_1_3_4_41_2 article-title: Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage publication-title: Science doi: 10.1126/science.1115581 – volume: 15 start-page: 201 year: 2016 ident: e_1_3_4_21_2 article-title: Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M115.054064 – volume: 4 start-page: 357 year: 2008 ident: e_1_3_4_18_2 article-title: A Cdc7 kinase inhibitor restricts initiation of DNA replication and has antitumor activity publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.90 – volume: 16 start-page: 594 year: 2009 ident: e_1_3_4_28_2 article-title: Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2009.04.008 – volume: 25 start-page: 2618 year: 2013 ident: e_1_3_4_38_2 article-title: Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cryptochrome2 to regulate blue light signaling publication-title: Plant Cell doi: 10.1105/tpc.113.114322 – volume: 7 start-page: e62 year: 2009 ident: e_1_3_4_3_2 article-title: The implications of multiple circadian clock origins publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000062 – volume: 28 start-page: 3745 year: 2009 ident: e_1_3_4_34_2 article-title: TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought publication-title: EMBO J. doi: 10.1038/emboj.2009.297 |
SSID | ssj0009580 |
Score | 2.5387366 |
Snippet | The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific... The mechanisms of eukaryotic circadian clocks rely on transcriptional-translational feedback loops (TTFLs), but components of TTFLs from different phylogenetic... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11528 |
SubjectTerms | Arabidopsis Arabidopsis - genetics Arabidopsis Proteins - genetics Biological clocks Biological Sciences Casein Casein kinase I Casein Kinase I - genetics Circadian Clocks - genetics Circadian rhythm Circadian Rhythm - genetics Circadian rhythms Feedback loops Fungi Gene expression Gene Expression Regulation, Plant - genetics Genes Homology Kinases Organic chemistry Phosphorylation - genetics PNAS Plus Protein Processing, Post-Translational - genetics Proteins Proteomics Repressors Transcription factors Transcription Factors - genetics Transcription, Genetic - genetics |
Title | Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock |
URI | https://www.jstor.org/stable/26706471 https://www.ncbi.nlm.nih.gov/pubmed/31097584 https://www.proquest.com/docview/2240138748 https://www.proquest.com/docview/2232053877 https://pubmed.ncbi.nlm.nih.gov/PMC6561244 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxVKU1sx-ljVW2qYOsGSqXyFDmuo0adkilphTb-ec5xvjqKNHiJLMdxWt8vd-eP-x1CHwkhCrwK1x56S2ZTJmIbrGJsCzGkkvqRciK93nEx86Zz-mXBFr3er250ySYayLu9cSX_I1WoA7nqKNl_kGzTKVRAGeQLV5AwXB8k4wmYoCTtr5MUCn2nXq3ITX55VcD4fmfl9kBwOXHqI43jXETJMrvRVCQyyaVhJ5Bg1dZdV_WqMW1FfZBgVq8cjts4lEo5FH27fzVrsxrPlWaCLtEg1mKV5Fm76XOR3G03JpdU_0dWrJLb7Tpp95R-CuPRflXJOmuXxvPMVAfF9lY_1F2v0CFSnm0yDFcqFjwU26MmSehA7amr9bIJwqwA6JKOmgU31oSU_2EAQGPprMUw7ANwdQhhvO5mh2p7dhmezc_Pw-B0ETxCj13Oyz3-6bTL2OwbKovqp9W8UJx8vtf9jktjTrXum6_cP3bb8WOCZ-hpNQHBY4OmQ9RT6XN0WEsRn1Q85J9eoG8GXtjACzvYwAs38MIaXhjghTW8MDQFkOAOvHADL1zC6yWan50Gk6ldZeCwJWNkY0dceQz-pBr5MNEWoOtZzLTHF8VQJ8DVdEF_RyMhNZObgMkBY_4SPnJCXUn8mByhgzRL1WuE2TCiHswmYp8KKBAhR5SOPEd6jiDRiFhoUA9iKCt6ep0l5Tosj0lwEupRD9tRt9BJ88CNYWb5e9OjUipNO9fjOsjasdBxLaaw-q6LUDu5DvE59S30obkNWldvpYlUZVvdhrhgvnzOLfTKSLXpXHPtwiycWojvyLtpoBndd--kyapkdvd0rlpK3zzgvW_Rk_brOkYHm3yr3oF_vInelzj-DXVLt8Y |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Casein+kinase+1+family+regulates+PRR5+and+TOC1+in+the+Arabidopsis+circadian+clock&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Uehara%2C+Takahiro+N&rft.au=Mizutani%2C+Yoshiyuki&rft.au=Kuwata%2C+Keiko&rft.au=Hirota%2C+Tsuyoshi&rft.date=2019-06-04&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=116&rft.issue=23&rft.spage=11528&rft_id=info:doi/10.1073%2Fpnas.1903357116&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |