E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor–mediated antifungal innate immunity
Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections trigg...
Saved in:
Published in | The Journal of experimental medicine Vol. 213; no. 8; pp. 1555 - 1570 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Rockefeller University Press
25.07.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1007 1540-9538 1540-9538 |
DOI | 10.1084/jem.20151932 |
Cover
Loading…
Abstract | Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections triggers them for ubiquitination and degradation in a Syk-dependent manner. Furthermore, we found that E3 ubiquitin ligase Casitas B–lineage lymphoma protein b (Cbl-b) mediates the ubiquitination of these activated CLRs through associating with each other via adapter protein FcR-γ and tyrosine kinase Syk, and then the ubiquitinated CLRs are sorted into lysosomes for degradation by an endosomal sorting complex required for transport (ESCRT) system. Therefore, the deficiency of either Cbl-b or ESCRT subunits significantly decreases the degradation of activated CLRs, thereby resulting in the higher expression of proinflammatory cytokines and inflammation. Consistently, Cbl-b–deficient mice are more resistant to fungi infections compared with wild-type controls. Together, our study indicates that Cbl-b negatively regulates CLR-mediated antifungal innate immunity, which provides molecular insight for designing antifungal therapeutic agents. |
---|---|
AbstractList | Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections triggers them for ubiquitination and degradation in a Syk-dependent manner. Furthermore, we found that E3 ubiquitin ligase Casitas B-lineage lymphoma protein b (Cbl-b) mediates the ubiquitination of these activated CLRs through associating with each other via adapter protein FcR-γ and tyrosine kinase Syk, and then the ubiquitinated CLRs are sorted into lysosomes for degradation by an endosomal sorting complex required for transport (ESCRT) system. Therefore, the deficiency of either Cbl-b or ESCRT subunits significantly decreases the degradation of activated CLRs, thereby resulting in the higher expression of proinflammatory cytokines and inflammation. Consistently, Cbl-b-deficient mice are more resistant to fungi infections compared with wild-type controls. Together, our study indicates that Cbl-b negatively regulates CLR-mediated antifungal innate immunity, which provides molecular insight for designing antifungal therapeutic agents. Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections triggers them for ubiquitination and degradation in a Syk-dependent manner. Furthermore, we found that E3 ubiquitin ligase Casitas B-lineage lymphoma protein b (Cbl-b) mediates the ubiquitination of these activated CLRs through associating with each other via adapter protein FcR-γ and tyrosine kinase Syk, and then the ubiquitinated CLRs are sorted into lysosomes for degradation by an endosomal sorting complex required for transport (ESCRT) system. Therefore, the deficiency of either Cbl-b or ESCRT subunits significantly decreases the degradation of activated CLRs, thereby resulting in the higher expression of proinflammatory cytokines and inflammation. Consistently, Cbl-b-deficient mice are more resistant to fungi infections compared with wild-type controls. Together, our study indicates that Cbl-b negatively regulates CLR-mediated antifungal innate immunity, which provides molecular insight for designing antifungal therapeutic agents.Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections triggers them for ubiquitination and degradation in a Syk-dependent manner. Furthermore, we found that E3 ubiquitin ligase Casitas B-lineage lymphoma protein b (Cbl-b) mediates the ubiquitination of these activated CLRs through associating with each other via adapter protein FcR-γ and tyrosine kinase Syk, and then the ubiquitinated CLRs are sorted into lysosomes for degradation by an endosomal sorting complex required for transport (ESCRT) system. Therefore, the deficiency of either Cbl-b or ESCRT subunits significantly decreases the degradation of activated CLRs, thereby resulting in the higher expression of proinflammatory cytokines and inflammation. Consistently, Cbl-b-deficient mice are more resistant to fungi infections compared with wild-type controls. Together, our study indicates that Cbl-b negatively regulates CLR-mediated antifungal innate immunity, which provides molecular insight for designing antifungal therapeutic agents. Innate immune responses mediated by C-type lectin receptors Dectin-2 and Dectin-3 against fungal infections are negatively regulated by Cbl-b ubiquitination. Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections triggers them for ubiquitination and degradation in a Syk-dependent manner. Furthermore, we found that E3 ubiquitin ligase Casitas B–lineage lymphoma protein b (Cbl-b) mediates the ubiquitination of these activated CLRs through associating with each other via adapter protein FcR-γ and tyrosine kinase Syk, and then the ubiquitinated CLRs are sorted into lysosomes for degradation by an endosomal sorting complex required for transport (ESCRT) system. Therefore, the deficiency of either Cbl-b or ESCRT subunits significantly decreases the degradation of activated CLRs, thereby resulting in the higher expression of proinflammatory cytokines and inflammation. Consistently, Cbl-b–deficient mice are more resistant to fungi infections compared with wild-type controls. Together, our study indicates that Cbl-b negatively regulates CLR-mediated antifungal innate immunity, which provides molecular insight for designing antifungal therapeutic agents. Innate immune responses mediated by C-type lectin receptors Dectin-2 and Dectin-3 against fungal infections are negatively regulated by Cbl-b ubiquitination. Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated CLRs are negatively regulated remains unknown. In this study, we report that activation of CLRs Dectin-2 and Dectin-3 by fungi infections triggers them for ubiquitination and degradation in a Syk-dependent manner. Furthermore, we found that E3 ubiquitin ligase Casitas B-lineage lymphoma protein b (Cbl-b) mediates the ubiquitination of these activated CLRs through associating with each other via adapter protein FcR- gamma and tyrosine kinase Syk, and then the ubiquitinated CLRs are sorted into lysosomes for degradation by an endosomal sorting complex required for transport (ESCRT) system. Therefore, the deficiency of either Cbl-b or ESCRT subunits significantly decreases the degradation of activated CLRs, thereby resulting in the higher expression of proinflammatory cytokines and inflammation. Consistently, Cbl-b-deficient mice are more resistant to fungi infections compared with wild-type controls. Together, our study indicates that Cbl-b negatively regulates CLR-mediated antifungal innate immunity, which provides molecular insight for designing antifungal therapeutic agents. |
Author | Lin, Xin Jia, Xin-Ming Zhu, Le-Le Zhao, Xue-Qiang Jiang, Yuan-Ying Wang, Ting-Ting Xu, Xia Tang, Bing Luo, Tian-Ming Guo, Ya-Hui Xu, Jin-Fu |
AuthorAffiliation | 2 Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China 3 Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China 6 School of Pharmacy, Second Military Medical University, Shanghai 200433, China 5 Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China 4 Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 1 Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China |
AuthorAffiliation_xml | – name: 2 Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China – name: 5 Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China – name: 6 School of Pharmacy, Second Military Medical University, Shanghai 200433, China – name: 4 Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030 – name: 3 Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China – name: 1 Institute for Immunology, Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing 100084, China |
Author_xml | – sequence: 1 givenname: Le-Le surname: Zhu fullname: Zhu, Le-Le – sequence: 2 givenname: Tian-Ming orcidid: 0000-0002-6263-7854 surname: Luo fullname: Luo, Tian-Ming – sequence: 3 givenname: Xia surname: Xu fullname: Xu, Xia – sequence: 4 givenname: Ya-Hui orcidid: 0000-0003-1587-4619 surname: Guo fullname: Guo, Ya-Hui – sequence: 5 givenname: Xue-Qiang surname: Zhao fullname: Zhao, Xue-Qiang – sequence: 6 givenname: Ting-Ting surname: Wang fullname: Wang, Ting-Ting – sequence: 7 givenname: Bing surname: Tang fullname: Tang, Bing – sequence: 8 givenname: Yuan-Ying surname: Jiang fullname: Jiang, Yuan-Ying – sequence: 9 givenname: Jin-Fu orcidid: 0000-0002-8039-8973 surname: Xu fullname: Xu, Jin-Fu – sequence: 10 givenname: Xin orcidid: 0000-0003-0956-3654 surname: Lin fullname: Lin, Xin – sequence: 11 givenname: Xin-Ming surname: Jia fullname: Jia, Xin-Ming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27432944$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu1DAUhi1URKcDO9bISxakHDt24myQ0KhcpEpsurcc5yS4OM7UdirNjnfgDXkSPOpFgFiwsmR__vWf852Rk7AEJOQlg3MGSry9xvmcA5Osq_kTsmFSQNXJWp2QDQDnFQNoT8lZStcATAjZPCOnvBU174TYkG8XNV17d7O67AL1bjIJ6a73VU8DTia7W_QHGnFavcmY6K7Khz1Sj_bIR7S4z0v8-f3HjIMrxEBNyG5cw2Q8dSGUK-rmeQ0uH56Tp6PxCV_cn1ty9eHiavepuvzy8fPu_WVlpaxz1bOmQdmNgzRSjgPjqpUceNdK2fMyJCgAtEINpq25lKYWvLHyyA1DD129Je_uYvdrX1pZDDkar_fRzSYe9GKc_vMluK96Wm616FQja1ECXt8HxOVmxZT17JJF703AZU2aKcZUq2Sn_gOFtiwbipAtefV7rcc-Dy4K8OYOsHFJKeL4iDDQR9W6qNYPqgvO_8Kty0XYchzK-X9_-gUv7K44 |
CitedBy_id | crossref_primary_10_3390_insects11060353 crossref_primary_10_4049_jimmunol_1701241 crossref_primary_10_1007_s11427_024_2835_y crossref_primary_10_7554_eLife_46043 crossref_primary_10_4049_jimmunol_2100083 crossref_primary_10_1038_s44319_024_00296_2 crossref_primary_10_1111_jcmm_16028 crossref_primary_10_1159_000488539 crossref_primary_10_1016_j_cellimm_2018_11_002 crossref_primary_10_1038_nm_4260 crossref_primary_10_1172_JCI126341 crossref_primary_10_4049_jimmunol_1701686 crossref_primary_10_4155_ppa_2017_0042 crossref_primary_10_1016_j_cellin_2024_100154 crossref_primary_10_1126_sciadv_abe5171 crossref_primary_10_1016_j_chom_2024_08_005 crossref_primary_10_1016_j_tim_2023_09_003 crossref_primary_10_1111_febs_15603 crossref_primary_10_1021_acs_nanolett_2c04484 crossref_primary_10_1128_mBio_00782_18 crossref_primary_10_1128_spectrum_00074_23 crossref_primary_10_1038_s41577_018_0004_8 crossref_primary_10_1073_pnas_2100230118 crossref_primary_10_1093_jleuko_qiae019 crossref_primary_10_4239_wjd_v8_i3_97 crossref_primary_10_1007_s11684_024_1090_6 crossref_primary_10_3389_fimmu_2020_00978 crossref_primary_10_1016_j_celrep_2023_113506 crossref_primary_10_1111_pim_12951 crossref_primary_10_4049_immunohorizons_2000093 crossref_primary_10_61189_550782gbbqxs crossref_primary_10_3389_fcvm_2020_594441 crossref_primary_10_1128_IAI_00048_20 crossref_primary_10_1016_j_semcdb_2018_03_003 crossref_primary_10_1002_eji_201848054 crossref_primary_10_1038_s41467_022_29474_3 crossref_primary_10_1111_febs_16941 crossref_primary_10_1172_jci_insight_93156 crossref_primary_10_3389_fimmu_2018_00123 crossref_primary_10_1016_j_bmc_2024_117677 crossref_primary_10_4049_jimmunol_1601665 crossref_primary_10_1038_s41392_021_00711_3 crossref_primary_10_1111_cei_13560 crossref_primary_10_1111_imr_13260 crossref_primary_10_1016_j_mib_2020_10_003 crossref_primary_10_3389_fcimb_2017_00481 |
Cites_doi | 10.4161/cc.29213 10.1126/science.1247005 10.1074/jbc.M008901200 10.1073/pnas.0904078106 10.1182/blood-2003-07-2260 10.1038/nature12998 10.1074/jbc.M114.588574 10.1016/j.immuni.2013.05.017 10.1038/ni.1788 10.1084/jem.20091750 10.1002/eji.200324230 10.1084/jem.20092533 10.1016/j.immuni.2010.05.001 10.1084/jem.20082818 10.1038/nrm1552 10.1016/j.immuni.2014.08.005 10.1038/nature04926 10.1074/jbc.M112.384164 10.1371/journal.pone.0065178 10.1084/jem.20021686 10.1038/nature07959 10.1016/j.immuni.2011.11.015 10.3389/fonc.2015.00058 10.1038/emboj.2012.354 10.1126/scisignal.2000046 10.1038/ni0901-870 10.1074/jbc.M112.414276 10.4049/jimmunol.173.3.1811 10.1038/sj.onc.1202411 10.1074/jbc.M111.307389 10.1146/annurev-immunol-031210-101352 10.1074/jbc.M110.131300 10.1111/j.1600-0854.2011.01210.x 10.4049/jimmunol.179.7.4473 10.1073/pnas.1016451108 10.1016/j.celrep.2012.09.026 10.1038/sj.onc.1202499 10.1038/ni.1908 10.4049/jimmunol.179.11.7233 10.1038/nri2765 10.1038/318667a0 10.1016/S0960-9822(99)80090-6 10.1016/j.celrep.2012.10.026 10.1182/blood-2007-07-103077 10.1038/35003235 10.1002/eji.201343752 10.1016/j.it.2009.03.002 10.1038/ni855 10.1038/ni.3155 10.1016/j.celrep.2015.04.048 10.1371/journal.ppat.1004643 10.1074/jbc.M606542200 10.2337/db06-1768 |
ContentType | Journal Article |
Copyright | 2016 Zhu et al. 2016 Zhu et al. 2016 |
Copyright_xml | – notice: 2016 Zhu et al. – notice: 2016 Zhu et al. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 M7N 5PM |
DOI | 10.1084/jem.20151932 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Cbl-b negatively regulates CLR-mediated innate immunity |
EISSN | 1540-9538 |
EndPage | 1570 |
ExternalDocumentID | PMC4986534 27432944 10_1084_jem_20151932 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI116722 – fundername: National Natural Science Foundation of China grantid: 81571611; 91542107 – fundername: Ministry of Education of the People's Republic of China – fundername: National Institutes of Health grantid: AI116722 |
GroupedDBID | --- -~X 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HYE IH2 K-O KQ8 L7B N9A O5R O5S OK1 P2P P6G R.V RHI SJN TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 M7N 5PM |
ID | FETCH-LOGICAL-c553t-b166e59fd5a55fd128752029755b29320800ec48da73255a3426c5d128ddb093 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 18:10:32 EDT 2025 Thu Jul 10 22:59:02 EDT 2025 Fri Jul 11 00:18:15 EDT 2025 Mon Jul 21 06:02:47 EDT 2025 Thu Apr 24 23:05:05 EDT 2025 Tue Jul 01 00:41:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2016 Zhu et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c553t-b166e59fd5a55fd128752029755b29320800ec48da73255a3426c5d128ddb093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 L.-L. Zhu and T.-M. Luo contributed equally to this paper. |
ORCID | 0000-0002-8039-8973 0000-0002-6263-7854 0000-0003-0956-3654 0000-0003-1587-4619 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4986534 |
PMID | 27432944 |
PQID | 1807274095 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4986534 proquest_miscellaneous_1811878598 proquest_miscellaneous_1807274095 pubmed_primary_27432944 crossref_primary_10_1084_jem_20151932 crossref_citationtrail_10_1084_jem_20151932 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-25 |
PublicationDateYYYYMMDD | 2016-07-25 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2016 |
Publisher | The Rockefeller University Press |
Publisher_xml | – name: The Rockefeller University Press |
References | Naramura (2023072603301790600_bib32) 2002; 3 Qu (2023072603301790600_bib37) 2004; 103 Gorjestani (2023072603301790600_bib15) 2012; 287 Jhingran (2023072603301790600_bib24) 2012; 2 Sohn (2023072603301790600_bib44) 2003; 197 Strasser (2023072603301790600_bib45) 2012; 36 Hara (2023072603301790600_bib20) 2009; 30 Wallner (2023072603301790600_bib46) 2013; 8 Chiang (2023072603301790600_bib5) 2000; 403 Hirasaka (2023072603301790600_bib21) 2007; 56 Zhang (2023072603301790600_bib51) 1999; 9 Sancho (2023072603301790600_bib40) 2012; 30 Graham (2023072603301790600_bib16) 2012; 287 Shamim (2023072603301790600_bib43) 2007; 179 Bi (2023072603301790600_bib3) 2010; 285 Gorjestani (2023072603301790600_bib14) 2011; 286 Kim (2023072603301790600_bib25) 2015; 11 Gross (2023072603301790600_bib17) 2006; 442 Yonekawa (2023072603301790600_bib49) 2014; 41 Zhao (2023072603301790600_bib52) 2014; 289 Kojo (2023072603301790600_bib26) 2009; 106 Han (2023072603301790600_bib19) 2010; 11 Robinson (2023072603301790600_bib38) 2009; 206 Ciechanover (2023072603301790600_bib7) 2005; 6 Lobato-Pascual (2023072603301790600_bib27) 2013; 43 Saijo (2023072603301790600_bib39) 2010; 32 Lutz-Nicoladoni (2023072603301790600_bib29) 2015; 5 Shalem (2023072603301790600_bib42) 2014; 343 Fang (2023072603301790600_bib12) 2001; 2 Bhoj (2023072603301790600_bib2) 2009; 458 Jang (2023072603301790600_bib23) 2011; 108 Choi (2023072603301790600_bib6) 2008; 111 Deng (2023072603301790600_bib8) 2015; 16 Qiao (2023072603301790600_bib35) 2007; 179 Ishikawa (2023072603301790600_bib22) 2009; 206 Gruber (2023072603301790600_bib18) 2009; 2 Arce (2023072603301790600_bib1) 2004; 34 Dobrowolski (2023072603301790600_bib9) 2012; 2 Zhu (2023072603301790600_bib53) 2013; 39 Mócsai (2023072603301790600_bib31) 2010; 10 Sato (2023072603301790600_bib41) 2006; 281 Qingjun (2023072603301790600_bib36) 2014; 13 Ettenberg (2023072603301790600_bib11) 1999; 18 Elly (2023072603301790600_bib10) 1999; 18 Paolino (2023072603301790600_bib34) 2014; 507 Blasi (2023072603301790600_bib4) 1985; 318 Matsunaga (2023072603301790600_bib30) 2009; 206 Nathan (2023072603301790600_bib33) 2013; 32 Loures (2023072603301790600_bib28) 2015; 11 Fang (2023072603301790600_bib13) 2001; 276 Wu (2023072603301790600_bib48) 2009; 10 Zhang (2023072603301790600_bib50) 2004; 173 Wegner (2023072603301790600_bib47) 2011; 12 |
References_xml | – volume: 13 start-page: 1875 year: 2014 ident: 2023072603301790600_bib36 article-title: E3 ubiquitin ligase Cbl-b in innate and adaptive immunity publication-title: Cell Cycle. doi: 10.4161/cc.29213 – volume: 343 start-page: 84 year: 2014 ident: 2023072603301790600_bib42 article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells publication-title: Science. doi: 10.1126/science.1247005 – volume: 276 start-page: 4872 year: 2001 ident: 2023072603301790600_bib13 article-title: Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M008901200 – volume: 106 start-page: 17847 year: 2009 ident: 2023072603301790600_bib26 article-title: Mechanisms of NKT cell anergy induction involve Cbl-b-promoted monoubiquitination of CARMA1 publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0904078106 – volume: 103 start-page: 1779 year: 2004 ident: 2023072603301790600_bib37 article-title: Negative regulation of FcεRI-mediated mast cell activation by a ubiquitin-protein ligase Cbl-b publication-title: Blood. doi: 10.1182/blood-2003-07-2260 – volume: 507 start-page: 508 year: 2014 ident: 2023072603301790600_bib34 article-title: The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells publication-title: Nature. doi: 10.1038/nature12998 – volume: 289 start-page: 30052 year: 2014 ident: 2023072603301790600_bib52 article-title: C-type lectin receptor dectin-3 mediates trehalose 6,6′-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.588574 – volume: 39 start-page: 324 year: 2013 ident: 2023072603301790600_bib53 article-title: C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection publication-title: Immunity. doi: 10.1016/j.immuni.2013.05.017 – volume: 10 start-page: 1208 year: 2009 ident: 2023072603301790600_bib48 article-title: CARD9 facilitates microbe-elicited production of reactive oxygen species by regulating the LyGDI-Rac1 complex publication-title: Nat. Immunol. doi: 10.1038/ni.1788 – volume: 206 start-page: 2879 year: 2009 ident: 2023072603301790600_bib22 article-title: Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle publication-title: J. Exp. Med. doi: 10.1084/jem.20091750 – volume: 34 start-page: 210 year: 2004 ident: 2023072603301790600_bib1 article-title: The human C-type lectin CLECSF8 is a novel monocyte/macrophage endocytic receptor publication-title: Eur. J. Immunol. doi: 10.1002/eji.200324230 – volume: 206 start-page: 2865 year: 2009 ident: 2023072603301790600_bib30 article-title: Mincle is a long sought receptor for mycobacterial cord factor publication-title: J. Exp. Med. doi: 10.1084/jem.20092533 – volume: 32 start-page: 681 year: 2010 ident: 2023072603301790600_bib39 article-title: Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans publication-title: Immunity. doi: 10.1016/j.immuni.2010.05.001 – volume: 206 start-page: 2037 year: 2009 ident: 2023072603301790600_bib38 article-title: Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection publication-title: J. Exp. Med. doi: 10.1084/jem.20082818 – volume: 6 start-page: 79 year: 2005 ident: 2023072603301790600_bib7 article-title: Proteolysis: from the lysosome to ubiquitin and the proteasome publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1552 – volume: 41 start-page: 402 year: 2014 ident: 2023072603301790600_bib49 article-title: Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria publication-title: Immunity. doi: 10.1016/j.immuni.2014.08.005 – volume: 442 start-page: 651 year: 2006 ident: 2023072603301790600_bib17 article-title: Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity publication-title: Nature. doi: 10.1038/nature04926 – volume: 287 start-page: 25964 year: 2012 ident: 2023072603301790600_bib16 article-title: The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through Syk kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.384164 – volume: 8 start-page: e65178 year: 2013 ident: 2023072603301790600_bib46 article-title: The role of the e3 ligase cbl-B in murine dendritic cells publication-title: PLoS One. doi: 10.1371/journal.pone.0065178 – volume: 197 start-page: 1511 year: 2003 ident: 2023072603301790600_bib44 article-title: Cbl-b negatively regulates B cell antigen receptor signaling in mature B cells through ubiquitination of the tyrosine kinase Syk publication-title: J. Exp. Med. doi: 10.1084/jem.20021686 – volume: 458 start-page: 430 year: 2009 ident: 2023072603301790600_bib2 article-title: Ubiquitylation in innate and adaptive immunity publication-title: Nature. doi: 10.1038/nature07959 – volume: 36 start-page: 32 year: 2012 ident: 2023072603301790600_bib45 article-title: Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity publication-title: Immunity. doi: 10.1016/j.immuni.2011.11.015 – volume: 5 start-page: 58 year: 2015 ident: 2023072603301790600_bib29 article-title: Modulation of immune cell functions by the E3 ligase Cbl-b publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00058 – volume: 32 start-page: 552 year: 2013 ident: 2023072603301790600_bib33 article-title: Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? publication-title: EMBO J. doi: 10.1038/emboj.2012.354 – volume: 2 start-page: ra30 year: 2009 ident: 2023072603301790600_bib18 article-title: PKC-θ modulates the strength of T cell responses by targeting Cbl-b for ubiquitination and degradation publication-title: Sci. Signal. doi: 10.1126/scisignal.2000046 – volume: 2 start-page: 870 year: 2001 ident: 2023072603301790600_bib12 article-title: Proteolysis-independent regulation of PI3K by Cbl-b–mediated ubiquitination in T cells publication-title: Nat. Immunol. doi: 10.1038/ni0901-870 – volume: 287 start-page: 44143 year: 2012 ident: 2023072603301790600_bib15 article-title: Tumor necrosis factor receptor-associated factor 6 (TRAF6) and TGFβ-activated kinase 1 (TAK1) play essential roles in the C-type lectin receptor signaling in response to Candida albicans infection publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.414276 – volume: 173 start-page: 1811 year: 2004 ident: 2023072603301790600_bib50 article-title: Inactivation of c-Cbl or Cbl-b differentially affects signaling from the high affinity IgE receptor publication-title: J. Immunol. doi: 10.4049/jimmunol.173.3.1811 – volume: 18 start-page: 1147 year: 1999 ident: 2023072603301790600_bib10 article-title: Tyrosine phosphorylation and complex formation of Cbl-b upon T cell receptor stimulation publication-title: Oncogene. doi: 10.1038/sj.onc.1202411 – volume: 286 start-page: 43651 year: 2011 ident: 2023072603301790600_bib14 article-title: Phospholipase Cγ2 (PLCγ2) is key component in Dectin-2 signaling pathway, mediating anti-fungal innate immune responses publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.307389 – volume: 30 start-page: 491 year: 2012 ident: 2023072603301790600_bib40 article-title: Signaling by myeloid C-type lectin receptors in immunity and homeostasis publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-031210-101352 – volume: 285 start-page: 25969 year: 2010 ident: 2023072603301790600_bib3 article-title: CARD9 mediates dectin-2-induced IκBα kinase ubiquitination leading to activation of NF-κB in response to stimulation by the hyphal form of Candida albicans publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.131300 – volume: 12 start-page: 1291 year: 2011 ident: 2023072603301790600_bib47 article-title: ESCRT proteins and cell signalling publication-title: Traffic. doi: 10.1111/j.1600-0854.2011.01210.x – volume: 179 start-page: 4473 year: 2007 ident: 2023072603301790600_bib35 article-title: Negative regulation of CD40-mediated B cell responses by E3 ubiquitin ligase Casitas-B-lineage lymphoma protein-B publication-title: J. Immunol. doi: 10.4049/jimmunol.179.7.4473 – volume: 108 start-page: 7926 year: 2011 ident: 2023072603301790600_bib23 article-title: Growth-factor receptor-bound protein-2 (Grb2) signaling in B cells controls lymphoid follicle organization and germinal center reaction publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1016451108 – volume: 2 start-page: 1316 year: 2012 ident: 2023072603301790600_bib9 article-title: Presenilin deficiency or lysosomal inhibition enhances Wnt signaling through relocalization of GSK3 to the late-endosomal compartment publication-title: Cell Reports. doi: 10.1016/j.celrep.2012.09.026 – volume: 18 start-page: 1855 year: 1999 ident: 2023072603301790600_bib11 article-title: cbl-b inhibits epidermal growth factor receptor signaling publication-title: Oncogene. doi: 10.1038/sj.onc.1202499 – volume: 11 start-page: 734 year: 2010 ident: 2023072603301790600_bib19 article-title: Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b publication-title: Nat. Immunol. doi: 10.1038/ni.1908 – volume: 179 start-page: 7233 year: 2007 ident: 2023072603301790600_bib43 article-title: Cbl-b regulates antigen-induced TCR down-regulation and IFN-γ production by effector CD8 T cells without affecting functional avidity publication-title: J. Immunol. doi: 10.4049/jimmunol.179.11.7233 – volume: 10 start-page: 387 year: 2010 ident: 2023072603301790600_bib31 article-title: The SYK tyrosine kinase: a crucial player in diverse biological functions publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2765 – volume: 318 start-page: 667 year: 1985 ident: 2023072603301790600_bib4 article-title: Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus publication-title: Nature. doi: 10.1038/318667a0 – volume: 9 start-page: 203 year: 1999 ident: 2023072603301790600_bib51 article-title: A direct interaction between the adaptor protein Cbl-b and the kinase Zap-70 induces a positive signal in T cells publication-title: Curr. Biol. doi: 10.1016/S0960-9822(99)80090-6 – volume: 2 start-page: 1762 year: 2012 ident: 2023072603301790600_bib24 article-title: Tracing conidial fate and measuring host cell antifungal activity using a reporter of microbial viability in the lung publication-title: Cell Reports. doi: 10.1016/j.celrep.2012.10.026 – volume: 111 start-page: 3607 year: 2008 ident: 2023072603301790600_bib6 article-title: Regulation of LFA-1-dependent inflammatory cell recruitment by Cbl-b and 14-3-3 proteins publication-title: Blood. doi: 10.1182/blood-2007-07-103077 – volume: 403 start-page: 216 year: 2000 ident: 2023072603301790600_bib5 article-title: Cbl-b regulates the CD28 dependence of T-cell activation publication-title: Nature. doi: 10.1038/35003235 – volume: 43 start-page: 3167 year: 2013 ident: 2023072603301790600_bib27 article-title: Mincle, the receptor for mycobacterial cord factor, forms a functional receptor complex with MCL and FcεRI-γ publication-title: Eur. J. Immunol. doi: 10.1002/eji.201343752 – volume: 30 start-page: 234 year: 2009 ident: 2023072603301790600_bib20 article-title: CARD9 versus CARMA1 in innate and adaptive immunity publication-title: Trends Immunol. doi: 10.1016/j.it.2009.03.002 – volume: 3 start-page: 1192 year: 2002 ident: 2023072603301790600_bib32 article-title: c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation publication-title: Nat. Immunol. doi: 10.1038/ni855 – volume: 16 start-page: 642 year: 2015 ident: 2023072603301790600_bib8 article-title: Tyrosine phosphatase SHP-2 mediates C-type lectin receptor-induced activation of the kinase Syk and anti-fungal TH17 responses publication-title: Nat. Immunol. doi: 10.1038/ni.3155 – volume: 11 start-page: 1151 year: 2015 ident: 2023072603301790600_bib25 article-title: Wnt signaling translocates Lys48-linked polyubiquitinated proteins to the lysosomal pathway publication-title: Cell Reports. doi: 10.1016/j.celrep.2015.04.048 – volume: 11 start-page: e1004643 year: 2015 ident: 2023072603301790600_bib28 article-title: Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004643 – volume: 281 start-page: 38854 year: 2006 ident: 2023072603301790600_bib41 article-title: Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor γ chain to induce innate immune responses publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606542200 – volume: 56 start-page: 2511 year: 2007 ident: 2023072603301790600_bib21 article-title: Deficiency of Cbl-b gene enhances infiltration and activation of macrophages in adipose tissue and causes peripheral insulin resistance in mice publication-title: Diabetes. doi: 10.2337/db06-1768 |
SSID | ssj0014456 |
Score | 2.4036193 |
Snippet | Activation of various C-type lectin receptors (CLRs) initiates potent proinflammatory responses against various microbial infections. However, how activated... Innate immune responses mediated by C-type lectin receptors Dectin-2 and Dectin-3 against fungal infections are negatively regulated by Cbl-b ubiquitination.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1555 |
SubjectTerms | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - immunology Animals Candida albicans - immunology Candidiasis - genetics Candidiasis - immunology Humans Immunity, Innate Lectins, C-Type - genetics Lectins, C-Type - immunology Mice Mice, Knockout Proteolysis Proto-Oncogene Proteins c-cbl - genetics Proto-Oncogene Proteins c-cbl - immunology Receptors, Immunologic - genetics Receptors, Immunologic - immunology Syk Kinase - genetics Syk Kinase - immunology Ubiquitination - genetics Ubiquitination - immunology |
Title | E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor–mediated antifungal innate immunity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27432944 https://www.proquest.com/docview/1807274095 https://www.proquest.com/docview/1811878598 https://pubmed.ncbi.nlm.nih.gov/PMC4986534 |
Volume | 213 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLXKICE2iDflJSPBKvKQxHbqLFEpFJgihAapsInsxJmJKOnQSRaw4h_4In6FL-HaTtK0BQSziSr3tlFzTu_Dvg-EHgoZ0JRLRnwhQ8Ii5hOpMkWyyA8lZ1EeZWYfcvY6mr5jL-d8Phj86GUt1ZXaT7_-tq7kLKjCGuBqqmT_A9nuS2EBXgO-cAWE4fpPGE-oV6vic11URektiiOwSN5YLYjySn1kO3ovvngrN21en3pjYjdczUa9rWIxGS0QrTfpDtQWkRgHVJoEIlACth9HCUteYatIqo0j4HVRmXVnN0YFbJ_Yfziu7QaAJgfd2kG9dGSRJZm1BhTW51Z0XnT24rkTfC_JtC76uxRBZLY_XUXzflvn9hYUvM7NccRqpwyyr6IhOjapG85ANVoZKBRz1wamVduhq2Ft-Cl6ShhcJN4z6AF3o0l2jIUvmDEW2jQkCKwn2xcDqE8-WeJA4E7D2LWp3GrO_WY2ZrGIOGXn0PkQIhUzPeTpi1fdQRZjdoBw96ua2gu49eP-jU1P6uYumw7STtSznbzb84YOL6NLDe74iePkFTTQ5VV0YdbAfg19nFDcURM7amJLTbymJu6oiR01saMmbqn589v3lpR4TUrsSIlbUl5Hh88mh-MpaeZ6kJRzWhEVRJHmcZ5xyXmegYc04qEZosa5Au8zNEGMTpnI5IhCxCspeJEpN3JZpvyY3kB75bLUtxDOQq7MEwwFDxlP8zjOYpnncU6lYFqrIfLaZ5mkTc97M3plkdjcC8ESACFpQRiiR530iev18ge5By0sCShjc8ImS72sT5NA-BAPMAhb_iYDMf1I8FgM0U0HZXe3lgNDNNoAuRMwzeA33ymLY9sUvqHh7TN_8g66uP7j3kV71arW98DhrtR9S-lf1nzakA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E3+ubiquitin+ligase+Cbl-b+negatively+regulates+C-type+lectin+receptor%E2%80%93mediated+antifungal+innate+immunity&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Zhu%2C+Le-Le&rft.au=Luo%2C+Tian-Ming&rft.au=Xu%2C+Xia&rft.au=Guo%2C+Ya-Hui&rft.date=2016-07-25&rft.pub=The+Rockefeller+University+Press&rft.issn=0022-1007&rft.eissn=1540-9538&rft.volume=213&rft.issue=8&rft.spage=1555&rft.epage=1570&rft_id=info:doi/10.1084%2Fjem.20151932&rft_id=info%3Apmid%2F27432944&rft.externalDocID=PMC4986534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |