Normal Cellular Prion Protein Protects against Manganese-Induced Oxidative Stress and Apoptotic Cell Death

The normal prion protein is abundantly expressed in the central nervous system, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxi...

Full description

Saved in:
Bibliographic Details
Published inToxicological sciences Vol. 98; no. 2; pp. 495 - 509
Main Authors Choi, Christopher J., Anantharam, Vellareddy, Saetveit, Nathan J., Houk, Robert S., Kanthasamy, Arthi, Kanthasamy, Anumantha G.
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.08.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The normal prion protein is abundantly expressed in the central nervous system, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxic metals. In the present study, we systematically examined whether prion protein modifies the neurotoxicity of manganese (Mn) by comparing the effect of Mn on mouse neural cells expressing prion protein (PrPC-cells) and prion-knockout (PrPKO-cells). Exposure to Mn (10μM–10mM) for 24 h produced a dose-dependent cytotoxic response in both PrPC-cells and PrPKO-cells. Interestingly, PrPC-cells (EC50 117.6μM) were more resistant to Mn-induced cytotoxicity, as compared to PrPKO-cells (EC50 59.9μM), suggesting a protective role for PrPC against Mn neurotoxicity. Analysis of intracellular Mn levels showed less Mn accumulation in PrPC-cells as compared to PrPKO-cells, but no significant changes in the expression of the metal transporter proteins transferrin and DMT-1. Furthermore, Mn-induced mitochondrial depolarization and reactive oxygen species (ROS) generation were significantly attenuated in PrPC-cells as compared to PrPKO-cells. Measurement of antioxidant status revealed similar basal levels of glutathione (GSH) in PrPC-cells and PrPKO-cells; however, Mn treatment caused greater depletion of GSH in PrPKO-cells. Mn-induced mitochondrial depolarization and ROS production were followed by time- and dose-dependent activation of the apoptotic cell death cascade involving caspase-9 and -3. Notably, DNA fragmentation induced by both Mn treatment and the oxidative stress inducer hydrogen peroxide (100μM) was significantly suppressed in PrPC-cells as compared to PrPKO-cells. Together, these results demonstrate that prion protein interferes with divalent metal Mn uptake and protects against Mn-induced oxidative stress and apoptotic cell death.
AbstractList The normal prion protein is abundantly expressed in the central nervous system, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxic metals. In the present study, we systematically examined whether prion protein modifies the neurotoxicity of manganese (Mn) by comparing the effect of Mn on mouse neural cells expressing prion protein (PrPC-cells) and prion-knockout (PrPKO-cells). Exposure to Mn (10μM-10mM) for 24 h produced a dose-dependent cytotoxic response in both PrPC-cells and PrPKO-cells. Interestingly, PrPC-cells (EC50 117.6μM) were more resistant to Mn-induced cytotoxicity, as compared to PrPKO-cells (EC50 59.9μM), suggesting a protective role for PrPC against Mn neurotoxicity. Analysis of intracellular Mn levels showed less Mn accumulation in PrPC-cells as compared to PrPKO-cells, but no significant changes in the expression of the metal transporter proteins transferrin and DMT-1. Furthermore, Mn-induced mitochondrial depolarization and reactive oxygen species (ROS) generation were significantly attenuated in PrPC-cells as compared to PrPKO-cells. Measurement of antioxidant status revealed similar basal levels of glutathione (GSH) in PrPC-cells and PrPKO-cells; however, Mn treatment caused greater depletion of GSH in PrPKO-cells. Mn-induced mitochondrial depolarization and ROS production were followed by time- and dose-dependent activation of the apoptotic cell death cascade involving caspase-9 and -3. Notably, DNA fragmentation induced by both Mn treatment and the oxidative stress inducer hydrogen peroxide (100μM) was significantly suppressed in PrPC-cells as compared to PrPKO-cells. Together, these results demonstrate that prion protein interferes with divalent metal Mn uptake and protects against Mn-induced oxidative stress and apoptotic cell death.
The normal prion protein is abundantly expressed in the CNS, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxic metals. In the present study, we systematically examined whether prion protein modifies the neurotoxicity of manganese (Mn) by comparing the effect of Mn on mouse neural cells expressing prion protein (PrP C -cells) and prion-knockout (PrP KO -cells). Exposure to Mn (10 μM-1 mM) for 24 hr produced a dose-dependent cytotoxic response in both PrP C -cells and PrP KO -cells. Interestingly, PrP C -cells (EC 50 117.6μM) were more resistant to Mn-induced cytotoxicity, as compared to PrP KO -cells (EC 50 59.9μM), suggesting a protective role for PrP C against Mn neurotoxicity. Analysis of intracellular Mn levels showed less Mn accumulation in PrP C -cells as compared to PrP KO -cells. Furthermore, Mn-induced mitochondrial depolarization and ROS generation were significantly attenuated in PrP C -cells as compared to PrP KO -cells. Measurement of antioxidant status revealed similar basal levels of glutathione (GSH) in PrP C -cells and PrP KO -cells; however, Mn treatment caused greater depletion of GSH in PrP KO -cells. Mn-induced mitochondrial depolarization and ROS production were followed by time- and dose-dependent activation of the apoptotic cell death cascade involving caspase-9 and -3. Notably, DNA fragmentation induced by both Mn treatment and oxidative stress-inducer hydrogen peroxide (100μM) was significantly suppressed in PrP C -cells as compared to PrP KO -cells. Together, these results demonstrate that prion protein interferes with divalent metal Mn uptake and protects against Mn-induced oxidative stress and apoptotic cell death.
The normal prion protein is abundantly expressed in the central nervous system, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxic metals. In the present study, we systematically examined whether prion protein modifies the neurotoxicity of manganese (Mn) by comparing the effect of Mn on mouse neural cells expressing prion protein (PrP super(C)-cells) and prion-knockout (PrP super(KO)-cells). Exposure to Mn (10 mu M-10mM) for 24 h produced a dose-dependent cytotoxic response in both PrP super(C)-cells and PrP super(KO)-cells. Interestingly, PrP super(C)-cells (EC sub(50) 117.6 mu M) were more resistant to Mn-induced cytotoxicity, as compared to PrP super(KO)-cells (EC sub(50) 59.9 mu M), suggesting a protective role for PrP super(C) against Mn neurotoxicity. Analysis of intracellular Mn levels showed less Mn accumulation in PrP super(C)-cells as compared to PrP super(KO)-cells, but no significant changes in the expression of the metal transporter proteins transferrin and DMT-1. Furthermore, Mn-induced mitochondrial depolarization and reactive oxygen species (ROS) generation were significantly attenuated in PrP super(C)-cells as compared to PrP super(KO)-cells. Measurement of antioxidant status revealed similar basal levels of glutathione (GSH) in PrP super(C)-cells and PrP super(KO)-cells; however, Mn treatment caused greater depletion of GSH in PrP super(KO)-cells. Mn-induced mitochondrial depolarization and ROS production were followed by time- and dose-dependent activation of the apoptotic cell death cascade involving caspase-9 and -3. Notably, DNA fragmentation induced by both Mn treatment and the oxidative stress inducer hydrogen peroxide (100 mu M) was significantly suppressed in PrP super(C)-cells as compared to PrP super(KO)-cells. Together, these results demonstrate that prion protein interferes with divalent metal Mn uptake and protects against Mn-induced oxidative stress and apoptotic cell death.
The normal prion protein is abundantly expressed in the central nervous system, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxic metals. In the present study, we systematically examined whether prion protein modifies the neurotoxicity of manganese (Mn) by comparing the effect of Mn on mouse neural cells expressing prion protein (PrP(C)-cells) and prion-knockout (PrP(KO)-cells). Exposure to Mn (10microM-10mM) for 24 h produced a dose-dependent cytotoxic response in both PrP(C)-cells and PrP(KO)-cells. Interestingly, PrP(C)-cells (EC(50) 117.6microM) were more resistant to Mn-induced cytotoxicity, as compared to PrP(KO)-cells (EC(50) 59.9microM), suggesting a protective role for PrP(C) against Mn neurotoxicity. Analysis of intracellular Mn levels showed less Mn accumulation in PrP(C)-cells as compared to PrP(KO)-cells, but no significant changes in the expression of the metal transporter proteins transferrin and DMT-1. Furthermore, Mn-induced mitochondrial depolarization and reactive oxygen species (ROS) generation were significantly attenuated in PrP(C)-cells as compared to PrP(KO)-cells. Measurement of antioxidant status revealed similar basal levels of glutathione (GSH) in PrP(C)-cells and PrP(KO)-cells; however, Mn treatment caused greater depletion of GSH in PrP(KO)-cells. Mn-induced mitochondrial depolarization and ROS production were followed by time- and dose-dependent activation of the apoptotic cell death cascade involving caspase-9 and -3. Notably, DNA fragmentation induced by both Mn treatment and the oxidative stress inducer hydrogen peroxide (100microM) was significantly suppressed in PrP(C)-cells as compared to PrP(KO)-cells. Together, these results demonstrate that prion protein interferes with divalent metal Mn uptake and protects against Mn-induced oxidative stress and apoptotic cell death.
Author Kanthasamy, Arthi
Saetveit, Nathan J.
Kanthasamy, Anumantha G.
Anantharam, Vellareddy
Houk, Robert S.
Choi, Christopher J.
AuthorAffiliation Ames Laboratory, U. S. Department of Energy, Department of Chemistry, Iowa State University
Neuroscience and Toxicology Graduate Programs, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University
AuthorAffiliation_xml – name: Neuroscience and Toxicology Graduate Programs, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University
– name: Ames Laboratory, U. S. Department of Energy, Department of Chemistry, Iowa State University
Author_xml – sequence: 1
  givenname: Christopher J.
  surname: Choi
  fullname: Choi, Christopher J.
  organization: Neuroscience and Toxicology Graduate Programs, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine
– sequence: 2
  givenname: Vellareddy
  surname: Anantharam
  fullname: Anantharam, Vellareddy
  organization: Neuroscience and Toxicology Graduate Programs, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine
– sequence: 3
  givenname: Nathan J.
  surname: Saetveit
  fullname: Saetveit, Nathan J.
  organization: Ames Laboratory, U.S. Department of Energy, Department of Chemistry, Iowa State University, Ames, Iowa 50011
– sequence: 4
  givenname: Robert S.
  surname: Houk
  fullname: Houk, Robert S.
  organization: Ames Laboratory, U.S. Department of Energy, Department of Chemistry, Iowa State University, Ames, Iowa 50011
– sequence: 5
  givenname: Arthi
  surname: Kanthasamy
  fullname: Kanthasamy, Arthi
  organization: Neuroscience and Toxicology Graduate Programs, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine
– sequence: 6
  givenname: Anumantha G.
  surname: Kanthasamy
  fullname: Kanthasamy, Anumantha G.
  email: akanthas@iastate.edu, To whom correspondence should be addressed at Neuroscience and Toxicology Graduate Programs, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Bldg., Iowa State University, Ames, IA 50011. Fax: (515) 294-2315. akanthas@iastate.edu.
  organization: Neuroscience and Toxicology Graduate Programs, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17483122$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URL84ckU5oV5C7TiJ4wtStVtopZYiFRDiYjn2ZOs2sVPbqbb_fQ2JCpy4zIzsn97M09tHO9ZZQOgNwe8J5vQ4um1Q5viuGzDnL9BeeqxzzAu-s8w1bvAu2g_hFmNCasxfoV3CyoaSothDt5-dH2SfraDvp1767Is3zqbqIpilqxgyuZHGhphdSruRFgLk51ZPCnR2tTVaRvMA2XX0EBJqdXYyujG6aNRv4WwNMt4coped7AO8XvoB-vbx9OvqLL-4-nS-OrnIVVXRmNd127VVqzHmuiOEKw1KQkcqJqEArXFFGU9eGwUdI1XT8bYsJdekIWUBsqIH6MOsO07tAFqBjV72YvRmkP5ROGnEvz_W3IiNexC0xAxTlgTeLQLe3U8QohhMUMlHMu6mIIqElU3RJDCfQeVdCB665yUEi1_piDkdMaeT-Ld_X_aHXuJIwNEMuGn8r9ay24QI22dY-jtRM8oqcfbjp1h_Z7wuL7FY0yfrYK9m
CitedBy_id crossref_primary_10_3390_ijms141223471
crossref_primary_10_1007_s12035_014_8646_4
crossref_primary_10_1016_j_ccr_2012_03_038
crossref_primary_10_1093_nar_gku1342
crossref_primary_10_1039_C8TB00135A
crossref_primary_10_3389_fmolb_2018_00001
crossref_primary_10_1016_j_jtemb_2011_08_144
crossref_primary_10_2131_fts_1_87
crossref_primary_10_1016_j_permed_2011_08_001
crossref_primary_10_1016_j_brainres_2008_08_097
crossref_primary_10_1093_toxsci_kfq049
crossref_primary_10_1016_j_tiv_2008_11_005
crossref_primary_10_3389_fnins_2017_00003
crossref_primary_10_1016_j_pharep_2016_11_011
crossref_primary_10_1111_j_1751_2980_2011_00563_x
crossref_primary_10_1371_journal_pone_0004468
crossref_primary_10_1016_j_taap_2009_07_025
crossref_primary_10_1016_j_nbd_2011_12_012
crossref_primary_10_1016_j_jmb_2018_05_027
crossref_primary_10_1177_0960327112456316
crossref_primary_10_2217_bmm_10_14
crossref_primary_10_1089_ars_2009_2628
crossref_primary_10_1111_boc_201900045
crossref_primary_10_1089_ars_2011_3945
crossref_primary_10_1074_jbc_M808410200
crossref_primary_10_12688_f1000research_7431_1
crossref_primary_10_1016_j_freeradbiomed_2008_04_006
crossref_primary_10_1089_ars_2012_4931
crossref_primary_10_1016_j_bbrc_2010_09_078
crossref_primary_10_1016_j_biocel_2013_10_013
crossref_primary_10_2174_0929867326666190927121744
crossref_primary_10_1016_j_neuro_2011_07_008
crossref_primary_10_1080_19336896_2015_1019194
crossref_primary_10_1093_jb_mvad032
crossref_primary_10_1016_j_neuropharm_2015_01_029
crossref_primary_10_3390_ijms25105285
crossref_primary_10_1016_j_toxlet_2012_09_008
crossref_primary_10_1016_j_neuro_2017_05_009
crossref_primary_10_1111_j_1365_2990_2010_01065_x
crossref_primary_10_4161_19336896_2014_983753
crossref_primary_10_1080_19336896_2017_1368936
crossref_primary_10_1111_jnc_16007
crossref_primary_10_1016_j_cbi_2009_07_021
crossref_primary_10_3389_fcell_2014_00035
crossref_primary_10_1091_mbc_e11_04_0348
crossref_primary_10_3390_cells9102285
crossref_primary_10_4161_pri_3_4_10135
crossref_primary_10_1371_journal_pone_0139219
crossref_primary_10_1111_j_1471_4159_2012_07835_x
crossref_primary_10_3109_08982104_2016_1160924
crossref_primary_10_1093_toxsci_kfq174
crossref_primary_10_1155_2013_353695
crossref_primary_10_1111_cns_14553
crossref_primary_10_1016_j_chemosphere_2012_10_072
crossref_primary_10_1134_S0006297924140104
crossref_primary_10_3389_fphar_2022_903099
crossref_primary_10_3389_fnins_2019_00654
crossref_primary_10_1016_j_bbadis_2013_02_020
crossref_primary_10_3390_antiox3020288
crossref_primary_10_1007_s10534_011_9451_4
crossref_primary_10_1016_j_etp_2012_02_006
crossref_primary_10_1016_j_canlet_2009_07_009
crossref_primary_10_1586_ern_11_170
crossref_primary_10_1063_1_4896663
crossref_primary_10_1007_s11064_008_9741_6
ContentType Journal Article
Copyright The Author 2007. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007
Copyright_xml – notice: The Author 2007. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7U7
7U9
C1K
H94
5PM
DOI 10.1093/toxsci/kfm099
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

AIDS and Cancer Research Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1096-0929
EndPage 509
ExternalDocumentID 10_1093_toxsci_kfm099
17483122
10.1093/toxsci/kfm099
ark_67375_HXZ_DV7964M0_D
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES010586
– fundername: NIEHS NIH HHS
  grantid: ES38664
– fundername: NINDS NIH HHS
  grantid: R01 NS038644
– fundername: PHS HHS
  grantid: W81XWH-05-1-0239
– fundername: National Institute of Neurological Disorders and Stroke : NINDS
  grantid: R01 NS038644 || NS
GroupedDBID ---
-E4
.2P
.I3
.ZR
0R~
123
18M
1TH
1~5
2WC
4.4
48X
4G.
53G
5RE
5VS
5WA
5WD
7-5
70D
A8Z
AABJS
AABMN
AABZA
AACTN
AACZT
AAESY
AAIMJ
AAIYJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
AAVLN
ABEUO
ABIXL
ABJNI
ABKDP
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACIMA
ACUFI
ACUTO
ADBBV
ADEIU
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIJHB
AIKOY
AIMBJ
AJEEA
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ASMCH
AWCFO
AXUDD
AYOIW
AZFZN
AZQFJ
BAWUL
BAYMD
BCRHZ
BEYMZ
BGYMP
BHONS
BQDIO
BSCLL
BSWAC
BTRTY
BVRKM
BYORX
CAG
CASEJ
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DPORF
DPPUQ
DU5
D~K
E3Z
EBS
EDH
EE~
EJD
EMOBN
ESTFP
F5P
F9B
FDB
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H5~
HAR
HH5
HW0
HZ~
I-F
IOX
J21
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
N9A
NGC
NLBLG
NOMLY
NOYVH
NQ-
NTWIH
NU-
NVLIB
O-L
O0~
O9-
OAWHX
OBOKY
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OWPYF
P2P
PAFKI
PB-
PEELM
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
RUSNO
RW1
RXO
SV3
TJX
TLC
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~02
~91
--K
1B1
29Q
AAEDT
AAHBH
AALRI
AAQXK
AAUAY
AAWDT
AAXUO
ABMAC
ACFRR
ACMRT
ACUTJ
ADMUD
ADQBN
ANFBD
AQDSO
ASPBG
ATGXG
ATTQO
AVWKF
DM4
EBD
ELUNK
FEDTE
FGOYB
FIRID
H13
HVGLF
IHE
KC5
LG5
OHT
O~Y
R2-
RNI
RPZ
RZO
SSZ
UHS
XPP
YCJ
ZGI
ZMT
ZXP
AEHUL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7U7
7U9
C1K
H94
5PM
ID FETCH-LOGICAL-c553t-66bfb5bd009df119cdecaef157ae2edd053790998cef7158f9b44a9d18142ea53
ISSN 1096-6080
IngestDate Tue Sep 17 21:14:14 EDT 2024
Fri Aug 16 23:25:03 EDT 2024
Fri Aug 23 00:38:30 EDT 2024
Sat Sep 28 07:44:45 EDT 2024
Wed Aug 28 03:24:54 EDT 2024
Sun Mar 31 11:39:02 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords metals
neurotoxicity
prion disease
manganese
caspases
ROS
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c553t-66bfb5bd009df119cdecaef157ae2edd053790998cef7158f9b44a9d18142ea53
Notes istex:3D1D6267BD2289408E292FCDF05353E32C067E58
ark:/67375/HXZ-DV7964M0-D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/toxsci/article-pdf/98/2/495/4775092/kfm099.pdf
PMID 17483122
PQID 20704828
PQPubID 23462
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3407037
proquest_miscellaneous_20704828
crossref_primary_10_1093_toxsci_kfm099
pubmed_primary_17483122
oup_primary_10_1093_toxsci_kfm099
istex_primary_ark_67375_HXZ_DV7964M0_D
PublicationCentury 2000
PublicationDate 2007-08-01
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: 2007-08-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Toxicological sciences
PublicationTitleAlternate Toxicol Sci
PublicationYear 2007
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 11701772 - J Neurochem. 2001 Nov;79(3):689-98
8920926 - Biochem Biophys Res Commun. 1996 Nov 12;228(2):397-405
9628898 - J Cell Biol. 1998 Jun 15;141(6):1423-32
9759504 - Annu Rev Biochem. 1998;67:793-819
15183009 - Neurotoxicology. 2004 Jun;25(4):543-53
10548526 - Biochem J. 1999 Nov 15;344 Pt 1:1-5
8748691 - Eur J Pharmacol. 1995 Dec 7;293(4):377-83
14706620 - Biochem Biophys Res Commun. 2004 Jan 23;313(4):850-5
2568118 - Alzheimer Dis Assoc Disord. 1989 Spring-Summer;3(1-2):52-78
15541389 - Biochem Biophys Res Commun. 2004 Dec 17;325(3):1005-12
14580317 - Antioxid Redox Signal. 2003 Oct;5(5):609-20
9819138 - J Neurosci Res. 1998 Nov 1;54(3):331-40
10995549 - Mol Cell Neurosci. 2000 Sep;16(3):221-32
9215699 - Eur J Neurosci. 1997 Jun;9(6):1162-9
10964653 - Biochem Biophys Res Commun. 2000 Aug 28;275(2):249-52
12065696 - J Pharmacol Exp Ther. 2002 Jul;302(1):26-35
12454014 - J Biol Chem. 2003 Feb 28;278(9):6795-802
7849618 - Biochem Mol Biol Int. 1994 Aug;34(1):169-81
16765446 - Neurotoxicology. 2006 Sep;27(5):765-76
10646835 - Histochem J. 1999 Nov;31(11):711-6
11880503 - J Neurosci. 2002 Mar 1;22(5):1738-51
11733010 - Eur J Biochem. 2001 Dec;268(23):6155-64
14690515 - J Neurochem. 2004 Jan;88(2):266-80
1580404 - Analyst. 1992 Mar;117(3):577-82
12200195 - Neurotoxicol Teratol. 2002 Sep-Oct;24(5):639-53
15105260 - Ann N Y Acad Sci. 2004 Mar;1012:129-41
11781132 - Cell Signal. 2002 Feb;14(2):93-8
12917444 - J Biol Chem. 2003 Oct 17;278(42):40877-81
10385903 - Neurotoxicology. 1999 Apr-Jun;20(2-3):445-53
10654101 - Eur Arch Psychiatry Clin Neurosci. 1999;249 Suppl 3:56-63
15098932 - Neurochem Res. 2004 Apr;29(4):709-17
15249223 - Biochem Biophys Res Commun. 2004 Aug 6;320(4):1240-6
10817932 - Int J Dev Neurosci. 2000 Jul-Aug;18(4-5):481-92
1631887 - Toxicol Appl Pharmacol. 1992 Jul;115(1):1-5
3915974 - CRC Crit Rev Clin Neurobiol. 1985;1(3):181-200
11592845 - Neurobiol Dis. 2001 Oct;8(5):743-63
10098841 - J Neurochem. 1999 Apr;72(4):1394-401
11716303 - Biochem Cell Biol. 2001;79(5):613-28
10385894 - Neurotoxicology. 1999 Apr-Jun;20(2-3):327-42
11728820 - Free Radic Biol Med. 2001 Dec 1;31(11):1473-85
12093732 - EMBO J. 2002 Jul 1;21(13):3307-16
2579394 - Proc Natl Acad Sci U S A. 1985 Feb;82(4):997-1001
12224758 - Neurotoxicology. 2002 Jul;23(2):169-75
11187965 - Exp Physiol. 2000 Nov;85(6):705-12
11300755 - Biochemistry. 2001 Apr 3;40(13):3759-66
11829763 - Biochem J. 2002 Feb 15;362(Pt 1):253-8
14570892 - J Biol Chem. 2004 Jan 2;279(1):612-8
3940147 - Microbiol Sci. 1985;2(2):33-9
10550328 - Am J Pathol. 1999 Nov;155(5):1723-30
11456341 - Neurotoxicology. 2001 Jun;22(3):401-10
12224755 - Neurotoxicology. 2002 Jul;23(2):147-57
7864852 - Biochem Biophys Res Commun. 1995 Feb 15;207(2):621-9
9414160 - Nature. 1997 Dec 18-25;390(6661):684-7
7865744 - Neuroreport. 1994 Oct 27;5(16):2057-60
11283320 - Annu Rev Neurosci. 2001;24:519-50
1683708 - Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10926-30
15608081 - J Pharmacol Exp Ther. 2005 Apr;313(1):46-55
12093733 - EMBO J. 2002 Jul 1;21(13):3317-26
9225743 - Exp Neurol. 1997 Jul;146(1):104-12
15451062 - Free Radic Biol Med. 2004 Oct 15;37(8):1224-30
9989245 - Biochim Biophys Acta. 1999 Jan 6;1453(1):49-62
11145979 - J Neurochem. 2001 Jan;76(1):69-76
8401789 - Dementia. 1993 May-Aug;4(3-4):178-85
6385236 - Sci Am. 1984 Oct;251(4):50-9
9523587 - J Neurochem. 1998 Apr;70(4):1686-93
2907134 - Protein Eng. 1987 Feb-Mar;1(2):125-35
15588722 - Biochem Pharmacol. 2005 Jan 1;69(1):133-46
11369504 - Free Radic Biol Med. 2001 May 15;30(10):1137-44
15038597 - Neurochem Res. 2004 Mar;29(3):493-504
10953401 - Br Dent J. 2000 Apr 22;188(8):432-6
2900720 - Ciba Found Symp. 1988;135:239-60
16860868 - Neurotoxicology. 2006 Sep;27(5):777-87
14511319 - Eur J Neurosci. 2003 Sep;18(6):1387-401
12818360 - Biochem Pharmacol. 2003 Jul 1;66(1):1-13
7575574 - Biochem Biophys Res Commun. 1995 Sep 25;214(3):993-9
10698707 - Biochem J. 2000 Mar 15;346 Pt 3:785-91
3569656 - Dev Biol. 1987 May;121(1):105-10
10051591 - Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2042-7
1504620 - Curr Opin Genet Dev. 1992 Jun;2(3):448-54
12176078 - Neurochem Int. 2002 Nov;41(5):353-5
12500977 - J Biol Chem. 2003 Mar 14;278(11):9064-72
10092401 - Environ Res. 1999 Feb;80(2 Pt 1):105-9
9811807 - Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13363-83
9716501 - Biochem J. 1998 Sep 1;334 ( Pt 2):423-9
12831855 - Neuroscience. 2003;119(4):945-64
9343242 - J Virol. 1997 Nov;71(11):8821-31
12609901 - Biophys J. 2003 Mar;84(3):1985-97
9754961 - Acta Neuropathol. 1998 Sep;96(3):279-86
12039003 - Curr Opin Chem Biol. 2002 Apr;6(2):187-92
10700589 - Brain Res. 2000 Mar 6;858(1):1-8
12224756 - Neurotoxicology. 2002 Jul;23(2):159-64
References_xml
SSID ssj0011609
Score 2.204736
Snippet The normal prion protein is abundantly expressed in the central nervous system, but its biological function remains unclear. The prion protein has octapeptide...
The normal prion protein is abundantly expressed in the CNS, but its biological function remains unclear. The prion protein has octapeptide repeat regions that...
SourceID pubmedcentral
proquest
crossref
pubmed
oup
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 495
SubjectTerms Animals
Apoptosis
Caspase 3 - metabolism
Caspase 9 - metabolism
caspases
Cell Line
DNA Fragmentation
Glutathione - metabolism
manganese
Manganese - toxicity
metals
Mice
Mice, Knockout
Neurons
neurotoxicity
Oxidative Stress
prion disease
PrPC Proteins - deficiency
PrPC Proteins - genetics
PrPC Proteins - metabolism
Reactive Oxygen Species - metabolism
ROS
Superoxide Dismutase - metabolism
Title Normal Cellular Prion Protein Protects against Manganese-Induced Oxidative Stress and Apoptotic Cell Death
URI https://api.istex.fr/ark:/67375/HXZ-DV7964M0-D/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17483122
https://search.proquest.com/docview/20704828
https://pubmed.ncbi.nlm.nih.gov/PMC3407037
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BKyEkhCBACc9FQjnVNF6vX8eoaRWgSSPVqSIu1tpeNyYljhIHpfx6Zrx-JClSgYtjOc7a8XyenZmd-YaQj2bcBrsXk8K4wdFB4VrAHKGhrd02TMex8mYT_YHVG_EvY3NcB3Py6pIs-BT--mNdyf9IFY6BXLFK9h8kWw0KB2Af5AtbkDBs_0rGAzQ4wfmX19d5NulwgcIcIvVCUnxiroa4Avd_mWGqy5XAjpMaNuzAhf_zdRIp5u8LVTOCYfTOPJ1nKRK54sCgkUQ22bRhvXSdhJXOLKbQyjQ_nqTJDmtBvfTUwbQbpIjOUXiJmVcLGUVVWP9CyOynTDKl9zGqX_-2l66mdS54EbIt4xV2lS1XqlhwmjSrrfo3lTrYdTawxjYUKlctOIu52cypFG6rfUWJlaVr-M-wM41_tFXbpW2C7cG5fzo6O_O9k7F3n-wz2zXRX-9-_lotPOlWnhVU3WRBywoXOFLDH6nBt8yYfXwj1zslkhueym7C7YYF4z0hjwvXg3YUjp6Se3LWIA_6RXJFg7SGisb85pB6dVXe8pC26LAmOL9pkEcq1ktVCdsz8l3hkJY4pDkOaYFDWuKQFjikt3BIKxxShUMKOKQVDvOBaY7D52R0euId97Sih4cWmqaRaZYVxIEZRGDKR7Guu2EkQyFj3bSFZAAwpBNy4Xk6oYxt3XRiN-BcuBEYnpxJYRovyN4sncmXhIrIipjthK5jhVwIR1hM59JyGXOFHblxk7RKkfhzRdXiqxQLw1ey85Xs4MRcYNVZYjHF_Ebb9Hvjb373Esuz-22_2yQfQKJ3Dfa-lLcPmhmX2-AJpqulz2A25Q5zmuRASb8eyOaOoTPWJPYWLqoTkPN9-5tZMsm53w2Oc7T96s6rviYP67fvDdnLFiv5FuznLHiXI_43Ic7Ozg
link.rule.ids 230,315,786,790,891,27957,27958
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normal+Cellular+Prion+Protein+Protects+against+Manganese-Induced+Oxidative+Stress+and+Apoptotic+Cell+Death&rft.jtitle=Toxicological+sciences&rft.au=Choi%2C+Christopher+J&rft.au=Anantharam%2C+Vellareddy&rft.au=Saetveit%2C+Nathan+J&rft.au=Houk%2C+Robert+S&rft.date=2007-08-01&rft.issn=1096-6080&rft.volume=98&rft.issue=2&rft.spage=495&rft.epage=509&rft_id=info:doi/10.1093%2Ftoxsci%2Fkfm099&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-6080&client=summon