Hypercrosslinked phenothiazine-based polymers as high redox potential organic cathode materials for lithium-ion batteries

Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Here...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 1; no. 28; pp. 16732 - 16736
Main Authors Zhang, Ying, Gao, Panpan, Guo, Xinya, Chen, Han, Zhang, Ruiqiang, Du, Ya, Wang, Baofeng, Yang, Haishen
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 29.04.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT , were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li + . HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g −1 ) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design. Hypercrosslinked conductive polymers with phenothiazine motifs were achieved and studied as organic cathode materials, exhibiting excellent electrochemical performance.
AbstractList Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li+. HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g−1) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design.
Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT , were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li + . HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g −1 ) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design.
Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT , were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li + . HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g −1 ) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design. Hypercrosslinked conductive polymers with phenothiazine motifs were achieved and studied as organic cathode materials, exhibiting excellent electrochemical performance.
Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li⁺. HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g⁻¹) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design.
Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li + . HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g −1 ) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design. Hypercrosslinked conductive polymers with phenothiazine motifs were achieved and studied as organic cathode materials, exhibiting excellent electrochemical performance.
Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li+. HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g-1) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design.Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li+. HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g-1) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design.
Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V Li/Li . HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g ) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design.
Author Yang, Haishen
Du, Ya
Zhang, Ruiqiang
Zhang, Ying
Chen, Han
Guo, Xinya
Gao, Panpan
Wang, Baofeng
AuthorAffiliation School of Chemistry and Molecular Engineering
Shanghai University of Electric Power
Nanjing Tech University
Institute of Advanced Synthesis
College of Environmental and Chemical Engineering
Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
AuthorAffiliation_xml – name: Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
– name: Nanjing Tech University
– name: College of Environmental and Chemical Engineering
– name: School of Chemistry and Molecular Engineering
– name: Shanghai University of Electric Power
– name: Institute of Advanced Synthesis
Author_xml – sequence: 1
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
– sequence: 2
  givenname: Panpan
  surname: Gao
  fullname: Gao, Panpan
– sequence: 3
  givenname: Xinya
  surname: Guo
  fullname: Guo, Xinya
– sequence: 4
  givenname: Han
  surname: Chen
  fullname: Chen, Han
– sequence: 5
  givenname: Ruiqiang
  surname: Zhang
  fullname: Zhang, Ruiqiang
– sequence: 6
  givenname: Ya
  surname: Du
  fullname: Du, Ya
– sequence: 7
  givenname: Baofeng
  surname: Wang
  fullname: Wang, Baofeng
– sequence: 8
  givenname: Haishen
  surname: Yang
  fullname: Yang, Haishen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35498833$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1UREvphTvIiAtCCvgjziYXpFX5aKVKSAjOluNMNi6JvdgOYvn1zHbL0lYIfLE988yr1555SA588EDIY85ecSab1x2LhnHJhblHjgQrq0Kwqjm4cT4kJyldMlyV4qLiD8ihVGVT11Iekc3ZZg3RxpDS6PxX6Oh6AB_y4MxP56FoTdrGwriZICZqEh3caqARuvADwxl8dmakIa6Md5Zak4fQAZ1MhoiJRPsQ6ehQb54KFzxtTd6mID0i93sE4OR6PyZf3r_7fHpWXHz8cH66vCisUjIXSrAWuBKtXXRWldLiXQpQDW-gttKWghmAtkRa9C30tu-VLFXHa1Nx3hh5TN7sdNdzO0Fn0XE0o15HN5m40cE4fTvj3aBX4btumJJMNCjw4loghm8zpKwnlyyMo_EQ5qRFpeqqVAzt_hdVi1KKhRQlos_voJdhjh5_QgvZqFqgXo3U05vm965_NxCBlzvgqoUR-j3Cmd4OiH7LPi2vBmSJMLsDW5dNxrbgw93495Jnu5KY7F76z8zpddcj8-RfjPwF5IrUsw
CitedBy_id crossref_primary_10_1021_acsaem_1c00917
crossref_primary_10_1039_D2MA00063F
crossref_primary_10_1002_cssc_202101008
crossref_primary_10_1016_j_electacta_2022_141340
crossref_primary_10_1039_D1NJ00089F
crossref_primary_10_1002_elan_202400278
crossref_primary_10_1002_slct_202200300
crossref_primary_10_1016_j_dyepig_2022_110402
crossref_primary_10_1002_adma_202311401
crossref_primary_10_1016_j_jpowsour_2022_231427
crossref_primary_10_1002_batt_202200178
crossref_primary_10_1021_acs_chemrev_3c00172
crossref_primary_10_1002_aesr_202200030
crossref_primary_10_1016_j_cclet_2023_109183
crossref_primary_10_1016_j_jechem_2023_04_018
crossref_primary_10_1039_D1TA01732B
crossref_primary_10_1021_acsapm_3c01845
crossref_primary_10_1039_D1QO00867F
crossref_primary_10_1002_bkcs_12202
crossref_primary_10_1002_aesr_202000044
crossref_primary_10_1002_macp_202200059
crossref_primary_10_1039_D4CE01280A
crossref_primary_10_3866_PKU_WHXB202303060
crossref_primary_10_1016_j_jpowsour_2024_235733
crossref_primary_10_1016_j_jechem_2024_10_042
crossref_primary_10_1002_eem2_12865
Cites_doi 10.1038/451652a
10.6023/cjoc201203007
10.1039/C7GC00849J
10.1002/adfm.201906436
10.1021/cm402090k
10.1039/C3CC47503D
10.1002/anie.201604925
10.1126/science.1212741
10.1016/j.catcom.2013.12.029
10.1002/aenm.201802151
10.1002/adma.201901052
10.6023/A17110477
10.1002/chem.201702919
10.1021/acs.chemrev.6b00070
10.1039/C5CP01495F
10.1039/c1ee01598b
10.1039/C4RA17107A
10.1039/a901801h
10.1002/ejic.200700453
10.1021/jacs.6b08068
10.1021/acs.chemmater.8b02329
10.1021/cr020731c
10.1021/jacs.7b09647
10.1039/C4TA06058J
10.1038/nmat1672
10.1021/cm2034646
10.1007/s10118-017-1872-2
10.1016/j.electacta.2017.02.143
10.1039/C5CS00289C
10.1039/C6TA10127E
10.1039/c3py21118e
10.1039/C7EE01473B
10.1038/s41598-017-19037-8
10.1039/C8TA03857K
10.1039/C6TA05231B
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1039/d0ra01312a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

AGRICOLA

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 16736
ExternalDocumentID PMC9053029
35498833
10_1039_D0RA01312A
d0ra01312a
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: BK20191363
– fundername: ;
  grantid: 19DZ2271100
– fundername: ;
  grantid: 21805134
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7E
R7G
RCNCU
ROYLF
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
M~E
PGMZT
RPM
-JG
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c553t-520be152bc7dc543c20b32e5919e8c3c420aeeb4c552fbefcff5345d18a6119a3
ISSN 2046-2069
IngestDate Thu Aug 21 14:13:01 EDT 2025
Thu Jul 10 20:01:14 EDT 2025
Thu Jul 10 23:45:07 EDT 2025
Mon Jun 30 04:11:21 EDT 2025
Thu Jan 02 22:54:12 EST 2025
Tue Jul 01 04:05:19 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
Wed Nov 11 00:27:41 EST 2020
Sat Jan 08 03:53:03 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c553t-520be152bc7dc543c20b32e5919e8c3c420aeeb4c552fbefcff5345d18a6119a3
Notes 10.1039/d0ra01312a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2485-9509
0000-0002-0437-7388
0000-0001-9378-0138
OpenAccessLink http://dx.doi.org/10.1039/d0ra01312a
PMID 35498833
PQID 2395820558
PQPubID 2047525
PageCount 5
ParticipantIDs proquest_journals_2395820558
pubmed_primary_35498833
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9053029
proquest_miscellaneous_2574327324
crossref_primary_10_1039_D0RA01312A
crossref_citationtrail_10_1039_D0RA01312A
rsc_primary_d0ra01312a
proquest_miscellaneous_2658645055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-29
PublicationDateYYYYMMDD 2020-04-29
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Krishna (D0RA01312A-(cit27)/*[position()=1]) 1999; 1
Zhong (D0RA01312A-(cit24)/*[position()=1]) 2017; 139
Dunn (D0RA01312A-(cit7)/*[position()=1]) 2011; 334
Otteny (D0RA01312A-(cit22)/*[position()=1]) 2018; 8
Zhang (D0RA01312A-(cit6)/*[position()=1]) 2015; 3
Zhang (D0RA01312A-(cit16)/*[position()=1]) 2019; 31
Acker (D0RA01312A-(cit35)/*[position()=1]) 2019; 29
Etacheri (D0RA01312A-(cit3)/*[position()=1]) 2011; 4
Xie (D0RA01312A-(cit26)/*[position()=1]) 2018; 6
Zhang (D0RA01312A-(cit23)/*[position()=1]) 2017; 23
Chen (D0RA01312A-(cit30)/*[position()=1]) 2012; 32
Taberna (D0RA01312A-(cit2)/*[position()=1]) 2006; 5
Pirnat (D0RA01312A-(cit12)/*[position()=1]) 2018; 30
Gracia (D0RA01312A-(cit10)/*[position()=1]) 2013; 4
Lee (D0RA01312A-(cit20)/*[position()=1]) 2017; 19
Liu (D0RA01312A-(cit13)/*[position()=1]) 2017; 8
He (D0RA01312A-(cit11)/*[position()=1]) 2018; 76
Golriz (D0RA01312A-(cit34)/*[position()=1]) 2015; 5
Whittingham (D0RA01312A-(cit5)/*[position()=1]) 2004; 104
Mandali (D0RA01312A-(cit31)/*[position()=1]) 2014; 47
Kolek (D0RA01312A-(cit15)/*[position()=1]) 2017; 10
Shimizu (D0RA01312A-(cit21)/*[position()=1]) 2018; 8
Zhao (D0RA01312A-(cit8)/*[position()=1]) 2015; 44
Ergun (D0RA01312A-(cit19)/*[position()=1]) 2014; 50
Muench (D0RA01312A-(cit4)/*[position()=1]) 2016; 116
Zhu (D0RA01312A-(cit32)/*[position()=1]) 2013; 25
Armand (D0RA01312A-(cit1)/*[position()=1]) 2008; 451
Zhang (D0RA01312A-(cit14)/*[position()=1]) 2016; 4
Godet-Bar (D0RA01312A-(cit17)/*[position()=1]) 2015; 17
Guilmin (D0RA01312A-(cit18)/*[position()=1]) 2017; 232
Pearson (D0RA01312A-(cit28)/*[position()=1]) 2016; 138
Weston (D0RA01312A-(cit33)/*[position()=1]) 2012; 24
Arnanz (D0RA01312A-(cit29)/*[position()=1]) 2007; 2007
Winsberg (D0RA01312A-(cit9)/*[position()=1]) 2017; 56
Su (D0RA01312A-(cit25)/*[position()=1]) 2017; 5
References_xml – volume: 451
  start-page: 652
  year: 2008
  ident: D0RA01312A-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 32
  start-page: 1526
  year: 2012
  ident: D0RA01312A-(cit30)/*[position()=1]
  publication-title: Chin. J. Org. Chem.
  doi: 10.6023/cjoc201203007
– volume: 19
  start-page: 2980
  year: 2017
  ident: D0RA01312A-(cit20)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC00849J
– volume: 29
  start-page: 1906436
  year: 2019
  ident: D0RA01312A-(cit35)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906436
– volume: 25
  start-page: 3718
  year: 2013
  ident: D0RA01312A-(cit32)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm402090k
– volume: 50
  start-page: 5339
  year: 2014
  ident: D0RA01312A-(cit19)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC47503D
– volume: 56
  start-page: 686
  year: 2017
  ident: D0RA01312A-(cit9)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201604925
– volume: 334
  start-page: 928
  year: 2011
  ident: D0RA01312A-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 47
  start-page: 40
  year: 2014
  ident: D0RA01312A-(cit31)/*[position()=1]
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2013.12.029
– volume: 8
  start-page: 1802151
  year: 2018
  ident: D0RA01312A-(cit22)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802151
– volume: 31
  start-page: 1901052
  year: 2019
  ident: D0RA01312A-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901052
– volume: 76
  start-page: 202
  year: 2018
  ident: D0RA01312A-(cit11)/*[position()=1]
  publication-title: Acta Chim. Sin.
  doi: 10.6023/A17110477
– volume: 23
  start-page: 16419
  year: 2017
  ident: D0RA01312A-(cit23)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201702919
– volume: 116
  start-page: 9438
  year: 2016
  ident: D0RA01312A-(cit4)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00070
– volume: 17
  start-page: 25283
  year: 2015
  ident: D0RA01312A-(cit17)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP01495F
– volume: 4
  start-page: 3243
  year: 2011
  ident: D0RA01312A-(cit3)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01598b
– volume: 5
  start-page: 22947
  year: 2015
  ident: D0RA01312A-(cit34)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA17107A
– volume: 1
  start-page: 2833
  year: 1999
  ident: D0RA01312A-(cit27)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a901801h
– volume: 2007
  start-page: 5215
  year: 2007
  ident: D0RA01312A-(cit29)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200700453
– volume: 138
  start-page: 11399
  year: 2016
  ident: D0RA01312A-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08068
– volume: 30
  start-page: 5726
  year: 2018
  ident: D0RA01312A-(cit12)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02329
– volume: 104
  start-page: 4271
  year: 2004
  ident: D0RA01312A-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr020731c
– volume: 139
  start-page: 15950
  year: 2017
  ident: D0RA01312A-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09647
– volume: 3
  start-page: 1896
  year: 2015
  ident: D0RA01312A-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06058J
– volume: 5
  start-page: 567
  year: 2006
  ident: D0RA01312A-(cit2)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1672
– volume: 24
  start-page: 1292
  year: 2012
  ident: D0RA01312A-(cit33)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm2034646
– volume: 8
  start-page: 78
  year: 2017
  ident: D0RA01312A-(cit13)/*[position()=1]
  publication-title: Chin. Polym. Bull.
  doi: 10.1007/s10118-017-1872-2
– volume: 232
  start-page: 182
  year: 2017
  ident: D0RA01312A-(cit18)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.02.143
– volume: 44
  start-page: 7968
  year: 2015
  ident: D0RA01312A-(cit8)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00289C
– volume: 5
  start-page: 2701
  year: 2017
  ident: D0RA01312A-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA10127E
– volume: 4
  start-page: 2206
  year: 2013
  ident: D0RA01312A-(cit10)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/c3py21118e
– volume: 10
  start-page: 2334
  year: 2017
  ident: D0RA01312A-(cit15)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01473B
– volume: 8
  start-page: 579
  year: 2018
  ident: D0RA01312A-(cit21)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-19037-8
– volume: 6
  start-page: 12985
  year: 2018
  ident: D0RA01312A-(cit26)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03857K
– volume: 4
  start-page: 14902
  year: 2016
  ident: D0RA01312A-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05231B
SSID ssj0000651261
Score 2.4084883
Snippet Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16732
SubjectTerms Cathodes
Chemistry
Conducting polymers
crosslinking
electrical conductivity
Electrical resistivity
Electrode materials
Lithium
Lithium-ion batteries
Nonaqueous electrolytes
phenothiazine
Rechargeable batteries
redox potential
Title Hypercrosslinked phenothiazine-based polymers as high redox potential organic cathode materials for lithium-ion batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/35498833
https://www.proquest.com/docview/2395820558
https://www.proquest.com/docview/2574327324
https://www.proquest.com/docview/2658645055
https://pubmed.ncbi.nlm.nih.gov/PMC9053029
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7R9gAXxKvUpVSL4IIqg70PO3uMwiNCgkNpUHqy7PVajQROlDoS4dczs16vExoQcLHi3XFkeT7vfjOeByEvTAV7UpSzsOSlCEVqqlCVeRIWsNcVaZwLJjDf-eOnZDwRH6Zy2uee2OySpnilf-zMK_kfrcIY6BWzZP9Bs_5PYQB-g37hCBqG41_peAxG5NLuc_gdFqgjBmzBo5_ZmtEh7lAltmFYo3MaO8pgceIzLBH6HYYbDBRCLmrTMfUZVnCd24DWpr15G4IINP1qtvoWIkwKW4yzCzvsynp_HnWRBJ6fezf0ZbczYohPPm85a73oIfl-ZQens3rdxwy5jJGxE3NOCYYRoqHzXBi7eDGwu0FXbRsWv9JuAMqlhLfLZpykzstp_Hmyc4GPONZHLaNljoWC2MY25oML-8k9csDAeoDl7-D8y2R66Z1vwLtiMB27crVcve4v2iYoN6yOm8Gze8uuV4zlJBf3yF1nTNBhi4z75JapH5Dbo66H30Oy_hUhdAdCaIcQml9TRAi1CKEeIdQhhDqEUI8QCgihGwihHiGPyOTd24vROHTNNkItJW9CyaLCAJkrdFpqKbiGc86MVLEyA821YFFuTCFAmlWFqXRVSS5kGQ_yJI5Vzg_Jfj2vzRGhBj81JFor4MZCsTLPEw1EmA1MXJWplAF52T3hTLtK9NgQ5WtmIyK4yt5E50OrjWFAnnvZRVt_ZafUSaeozL2f1xnjSgK_lXIQkGd-GhSAn8Ty2sxXICOBQQODZ-IPMkDSEwGWAtz441b3_la4FArbdQck3UKFF8Dq7dsz9ezKVnFXETbsUgE5BPx4-R6HATnePZEtyur4d1c9IXf69_GE7DfLlXkKtLkpTq276dS9Cj8Bu9rNlw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypercrosslinked+phenothiazine-based+polymers+as+high+redox+potential+organic+cathode+materials+for+lithium-ion+batteries&rft.jtitle=RSC+advances&rft.au=Zhang%2C+Ying&rft.au=Gao%2C+Panpan&rft.au=Guo%2C+Xinya&rft.au=Chen%2C+Han&rft.date=2020-04-29&rft.eissn=2046-2069&rft.volume=1&rft.issue=28&rft.spage=16732&rft.epage=16736&rft_id=info:doi/10.1039%2Fd0ra01312a&rft.externalDocID=d0ra01312a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon