Hypercrosslinked phenothiazine-based polymers as high redox potential organic cathode materials for lithium-ion batteries
Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Here...
Saved in:
Published in | RSC advances Vol. 1; no. 28; pp. 16732 - 16736 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
29.04.2020
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs,
HPEPT
and
HPPT
, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V
versus
Li/Li
+
.
HPEPT
and
HPPT
with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g
−1
) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design.
Hypercrosslinked conductive polymers with phenothiazine motifs were achieved and studied as organic cathode materials, exhibiting excellent electrochemical performance. |
---|---|
AbstractList | Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li+. HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g−1) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design. Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT , were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li + . HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g −1 ) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design. Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT , were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li + . HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g −1 ) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design. Hypercrosslinked conductive polymers with phenothiazine motifs were achieved and studied as organic cathode materials, exhibiting excellent electrochemical performance. Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li⁺. HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g⁻¹) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design. Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li + . HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g −1 ) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design. Hypercrosslinked conductive polymers with phenothiazine motifs were achieved and studied as organic cathode materials, exhibiting excellent electrochemical performance. Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li+. HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g-1) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design.Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V versus Li/Li+. HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g-1) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design. Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low redox potentials, low electrical conductivity, and the undesirable dissolution in organic electrolytes greatly limit their applications. Herein, two insoluble hypercrosslinked porous conductive polymers with phenothiazine motifs, HPEPT and HPPT, were successfully accomplished with high and stable discharge potentials at 3.65 and 3.48 V Li/Li . HPEPT and HPPT with good electrical conductivity exhibited outstanding rate capabilities (up to 800 mA g ) even at a high mass loading up to 70 wt%. This study shows that excellent organic cathode materials could be achieved readily through this prudent design. |
Author | Yang, Haishen Du, Ya Zhang, Ruiqiang Zhang, Ying Chen, Han Guo, Xinya Gao, Panpan Wang, Baofeng |
AuthorAffiliation | School of Chemistry and Molecular Engineering Shanghai University of Electric Power Nanjing Tech University Institute of Advanced Synthesis College of Environmental and Chemical Engineering Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power |
AuthorAffiliation_xml | – name: Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power – name: Nanjing Tech University – name: College of Environmental and Chemical Engineering – name: School of Chemistry and Molecular Engineering – name: Shanghai University of Electric Power – name: Institute of Advanced Synthesis |
Author_xml | – sequence: 1 givenname: Ying surname: Zhang fullname: Zhang, Ying – sequence: 2 givenname: Panpan surname: Gao fullname: Gao, Panpan – sequence: 3 givenname: Xinya surname: Guo fullname: Guo, Xinya – sequence: 4 givenname: Han surname: Chen fullname: Chen, Han – sequence: 5 givenname: Ruiqiang surname: Zhang fullname: Zhang, Ruiqiang – sequence: 6 givenname: Ya surname: Du fullname: Du, Ya – sequence: 7 givenname: Baofeng surname: Wang fullname: Wang, Baofeng – sequence: 8 givenname: Haishen surname: Yang fullname: Yang, Haishen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35498833$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1UREvphTvIiAtCCvgjziYXpFX5aKVKSAjOluNMNi6JvdgOYvn1zHbL0lYIfLE988yr1555SA588EDIY85ecSab1x2LhnHJhblHjgQrq0Kwqjm4cT4kJyldMlyV4qLiD8ihVGVT11Iekc3ZZg3RxpDS6PxX6Oh6AB_y4MxP56FoTdrGwriZICZqEh3caqARuvADwxl8dmakIa6Md5Zak4fQAZ1MhoiJRPsQ6ehQb54KFzxtTd6mID0i93sE4OR6PyZf3r_7fHpWXHz8cH66vCisUjIXSrAWuBKtXXRWldLiXQpQDW-gttKWghmAtkRa9C30tu-VLFXHa1Nx3hh5TN7sdNdzO0Fn0XE0o15HN5m40cE4fTvj3aBX4btumJJMNCjw4loghm8zpKwnlyyMo_EQ5qRFpeqqVAzt_hdVi1KKhRQlos_voJdhjh5_QgvZqFqgXo3U05vm965_NxCBlzvgqoUR-j3Cmd4OiH7LPi2vBmSJMLsDW5dNxrbgw93495Jnu5KY7F76z8zpddcj8-RfjPwF5IrUsw |
CitedBy_id | crossref_primary_10_1021_acsaem_1c00917 crossref_primary_10_1039_D2MA00063F crossref_primary_10_1002_cssc_202101008 crossref_primary_10_1016_j_electacta_2022_141340 crossref_primary_10_1039_D1NJ00089F crossref_primary_10_1002_elan_202400278 crossref_primary_10_1002_slct_202200300 crossref_primary_10_1016_j_dyepig_2022_110402 crossref_primary_10_1002_adma_202311401 crossref_primary_10_1016_j_jpowsour_2022_231427 crossref_primary_10_1002_batt_202200178 crossref_primary_10_1021_acs_chemrev_3c00172 crossref_primary_10_1002_aesr_202200030 crossref_primary_10_1016_j_cclet_2023_109183 crossref_primary_10_1016_j_jechem_2023_04_018 crossref_primary_10_1039_D1TA01732B crossref_primary_10_1021_acsapm_3c01845 crossref_primary_10_1039_D1QO00867F crossref_primary_10_1002_bkcs_12202 crossref_primary_10_1002_aesr_202000044 crossref_primary_10_1002_macp_202200059 crossref_primary_10_1039_D4CE01280A crossref_primary_10_3866_PKU_WHXB202303060 crossref_primary_10_1016_j_jpowsour_2024_235733 crossref_primary_10_1016_j_jechem_2024_10_042 crossref_primary_10_1002_eem2_12865 |
Cites_doi | 10.1038/451652a 10.6023/cjoc201203007 10.1039/C7GC00849J 10.1002/adfm.201906436 10.1021/cm402090k 10.1039/C3CC47503D 10.1002/anie.201604925 10.1126/science.1212741 10.1016/j.catcom.2013.12.029 10.1002/aenm.201802151 10.1002/adma.201901052 10.6023/A17110477 10.1002/chem.201702919 10.1021/acs.chemrev.6b00070 10.1039/C5CP01495F 10.1039/c1ee01598b 10.1039/C4RA17107A 10.1039/a901801h 10.1002/ejic.200700453 10.1021/jacs.6b08068 10.1021/acs.chemmater.8b02329 10.1021/cr020731c 10.1021/jacs.7b09647 10.1039/C4TA06058J 10.1038/nmat1672 10.1021/cm2034646 10.1007/s10118-017-1872-2 10.1016/j.electacta.2017.02.143 10.1039/C5CS00289C 10.1039/C6TA10127E 10.1039/c3py21118e 10.1039/C7EE01473B 10.1038/s41598-017-19037-8 10.1039/C8TA03857K 10.1039/C6TA05231B |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2020 – notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1039/d0ra01312a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 16736 |
ExternalDocumentID | PMC9053029 35498833 10_1039_D0RA01312A d0ra01312a |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: BK20191363 – fundername: ; grantid: 19DZ2271100 – fundername: ; grantid: 21805134 |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7E R7G RCNCU ROYLF RPMJG RRC RSCEA RVUXY SLH SMJ ZCN 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ M~E PGMZT RPM -JG NPM 7SR 8BQ 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c553t-520be152bc7dc543c20b32e5919e8c3c420aeeb4c552fbefcff5345d18a6119a3 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 14:13:01 EDT 2025 Thu Jul 10 20:01:14 EDT 2025 Thu Jul 10 23:45:07 EDT 2025 Mon Jun 30 04:11:21 EDT 2025 Thu Jan 02 22:54:12 EST 2025 Tue Jul 01 04:05:19 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Wed Nov 11 00:27:41 EST 2020 Sat Jan 08 03:53:03 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c553t-520be152bc7dc543c20b32e5919e8c3c420aeeb4c552fbefcff5345d18a6119a3 |
Notes | 10.1039/d0ra01312a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2485-9509 0000-0002-0437-7388 0000-0001-9378-0138 |
OpenAccessLink | http://dx.doi.org/10.1039/d0ra01312a |
PMID | 35498833 |
PQID | 2395820558 |
PQPubID | 2047525 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2395820558 pubmed_primary_35498833 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9053029 proquest_miscellaneous_2574327324 crossref_primary_10_1039_D0RA01312A crossref_citationtrail_10_1039_D0RA01312A rsc_primary_d0ra01312a proquest_miscellaneous_2658645055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-29 |
PublicationDateYYYYMMDD | 2020-04-29 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Krishna (D0RA01312A-(cit27)/*[position()=1]) 1999; 1 Zhong (D0RA01312A-(cit24)/*[position()=1]) 2017; 139 Dunn (D0RA01312A-(cit7)/*[position()=1]) 2011; 334 Otteny (D0RA01312A-(cit22)/*[position()=1]) 2018; 8 Zhang (D0RA01312A-(cit6)/*[position()=1]) 2015; 3 Zhang (D0RA01312A-(cit16)/*[position()=1]) 2019; 31 Acker (D0RA01312A-(cit35)/*[position()=1]) 2019; 29 Etacheri (D0RA01312A-(cit3)/*[position()=1]) 2011; 4 Xie (D0RA01312A-(cit26)/*[position()=1]) 2018; 6 Zhang (D0RA01312A-(cit23)/*[position()=1]) 2017; 23 Chen (D0RA01312A-(cit30)/*[position()=1]) 2012; 32 Taberna (D0RA01312A-(cit2)/*[position()=1]) 2006; 5 Pirnat (D0RA01312A-(cit12)/*[position()=1]) 2018; 30 Gracia (D0RA01312A-(cit10)/*[position()=1]) 2013; 4 Lee (D0RA01312A-(cit20)/*[position()=1]) 2017; 19 Liu (D0RA01312A-(cit13)/*[position()=1]) 2017; 8 He (D0RA01312A-(cit11)/*[position()=1]) 2018; 76 Golriz (D0RA01312A-(cit34)/*[position()=1]) 2015; 5 Whittingham (D0RA01312A-(cit5)/*[position()=1]) 2004; 104 Mandali (D0RA01312A-(cit31)/*[position()=1]) 2014; 47 Kolek (D0RA01312A-(cit15)/*[position()=1]) 2017; 10 Shimizu (D0RA01312A-(cit21)/*[position()=1]) 2018; 8 Zhao (D0RA01312A-(cit8)/*[position()=1]) 2015; 44 Ergun (D0RA01312A-(cit19)/*[position()=1]) 2014; 50 Muench (D0RA01312A-(cit4)/*[position()=1]) 2016; 116 Zhu (D0RA01312A-(cit32)/*[position()=1]) 2013; 25 Armand (D0RA01312A-(cit1)/*[position()=1]) 2008; 451 Zhang (D0RA01312A-(cit14)/*[position()=1]) 2016; 4 Godet-Bar (D0RA01312A-(cit17)/*[position()=1]) 2015; 17 Guilmin (D0RA01312A-(cit18)/*[position()=1]) 2017; 232 Pearson (D0RA01312A-(cit28)/*[position()=1]) 2016; 138 Weston (D0RA01312A-(cit33)/*[position()=1]) 2012; 24 Arnanz (D0RA01312A-(cit29)/*[position()=1]) 2007; 2007 Winsberg (D0RA01312A-(cit9)/*[position()=1]) 2017; 56 Su (D0RA01312A-(cit25)/*[position()=1]) 2017; 5 |
References_xml | – volume: 451 start-page: 652 year: 2008 ident: D0RA01312A-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/451652a – volume: 32 start-page: 1526 year: 2012 ident: D0RA01312A-(cit30)/*[position()=1] publication-title: Chin. J. Org. Chem. doi: 10.6023/cjoc201203007 – volume: 19 start-page: 2980 year: 2017 ident: D0RA01312A-(cit20)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC00849J – volume: 29 start-page: 1906436 year: 2019 ident: D0RA01312A-(cit35)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906436 – volume: 25 start-page: 3718 year: 2013 ident: D0RA01312A-(cit32)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm402090k – volume: 50 start-page: 5339 year: 2014 ident: D0RA01312A-(cit19)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C3CC47503D – volume: 56 start-page: 686 year: 2017 ident: D0RA01312A-(cit9)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201604925 – volume: 334 start-page: 928 year: 2011 ident: D0RA01312A-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.1212741 – volume: 47 start-page: 40 year: 2014 ident: D0RA01312A-(cit31)/*[position()=1] publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.12.029 – volume: 8 start-page: 1802151 year: 2018 ident: D0RA01312A-(cit22)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802151 – volume: 31 start-page: 1901052 year: 2019 ident: D0RA01312A-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201901052 – volume: 76 start-page: 202 year: 2018 ident: D0RA01312A-(cit11)/*[position()=1] publication-title: Acta Chim. Sin. doi: 10.6023/A17110477 – volume: 23 start-page: 16419 year: 2017 ident: D0RA01312A-(cit23)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201702919 – volume: 116 start-page: 9438 year: 2016 ident: D0RA01312A-(cit4)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00070 – volume: 17 start-page: 25283 year: 2015 ident: D0RA01312A-(cit17)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP01495F – volume: 4 start-page: 3243 year: 2011 ident: D0RA01312A-(cit3)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01598b – volume: 5 start-page: 22947 year: 2015 ident: D0RA01312A-(cit34)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C4RA17107A – volume: 1 start-page: 2833 year: 1999 ident: D0RA01312A-(cit27)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a901801h – volume: 2007 start-page: 5215 year: 2007 ident: D0RA01312A-(cit29)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200700453 – volume: 138 start-page: 11399 year: 2016 ident: D0RA01312A-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08068 – volume: 30 start-page: 5726 year: 2018 ident: D0RA01312A-(cit12)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02329 – volume: 104 start-page: 4271 year: 2004 ident: D0RA01312A-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr020731c – volume: 139 start-page: 15950 year: 2017 ident: D0RA01312A-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09647 – volume: 3 start-page: 1896 year: 2015 ident: D0RA01312A-(cit6)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06058J – volume: 5 start-page: 567 year: 2006 ident: D0RA01312A-(cit2)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1672 – volume: 24 start-page: 1292 year: 2012 ident: D0RA01312A-(cit33)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm2034646 – volume: 8 start-page: 78 year: 2017 ident: D0RA01312A-(cit13)/*[position()=1] publication-title: Chin. Polym. Bull. doi: 10.1007/s10118-017-1872-2 – volume: 232 start-page: 182 year: 2017 ident: D0RA01312A-(cit18)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.02.143 – volume: 44 start-page: 7968 year: 2015 ident: D0RA01312A-(cit8)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00289C – volume: 5 start-page: 2701 year: 2017 ident: D0RA01312A-(cit25)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10127E – volume: 4 start-page: 2206 year: 2013 ident: D0RA01312A-(cit10)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/c3py21118e – volume: 10 start-page: 2334 year: 2017 ident: D0RA01312A-(cit15)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01473B – volume: 8 start-page: 579 year: 2018 ident: D0RA01312A-(cit21)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-19037-8 – volume: 6 start-page: 12985 year: 2018 ident: D0RA01312A-(cit26)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03857K – volume: 4 start-page: 14902 year: 2016 ident: D0RA01312A-(cit14)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05231B |
SSID | ssj0000651261 |
Score | 2.4084883 |
Snippet | Organic cathode materials have been demonstrated to be highly promising sustainable cathode materials for rechargeable lithium-ion batteries. However, the low... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16732 |
SubjectTerms | Cathodes Chemistry Conducting polymers crosslinking electrical conductivity Electrical resistivity Electrode materials Lithium Lithium-ion batteries Nonaqueous electrolytes phenothiazine Rechargeable batteries redox potential |
Title | Hypercrosslinked phenothiazine-based polymers as high redox potential organic cathode materials for lithium-ion batteries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35498833 https://www.proquest.com/docview/2395820558 https://www.proquest.com/docview/2574327324 https://www.proquest.com/docview/2658645055 https://pubmed.ncbi.nlm.nih.gov/PMC9053029 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7R9gAXxKvUpVSL4IIqg70PO3uMwiNCgkNpUHqy7PVajQROlDoS4dczs16vExoQcLHi3XFkeT7vfjOeByEvTAV7UpSzsOSlCEVqqlCVeRIWsNcVaZwLJjDf-eOnZDwRH6Zy2uee2OySpnilf-zMK_kfrcIY6BWzZP9Bs_5PYQB-g37hCBqG41_peAxG5NLuc_gdFqgjBmzBo5_ZmtEh7lAltmFYo3MaO8pgceIzLBH6HYYbDBRCLmrTMfUZVnCd24DWpr15G4IINP1qtvoWIkwKW4yzCzvsynp_HnWRBJ6fezf0ZbczYohPPm85a73oIfl-ZQens3rdxwy5jJGxE3NOCYYRoqHzXBi7eDGwu0FXbRsWv9JuAMqlhLfLZpykzstp_Hmyc4GPONZHLaNljoWC2MY25oML-8k9csDAeoDl7-D8y2R66Z1vwLtiMB27crVcve4v2iYoN6yOm8Gze8uuV4zlJBf3yF1nTNBhi4z75JapH5Dbo66H30Oy_hUhdAdCaIcQml9TRAi1CKEeIdQhhDqEUI8QCgihGwihHiGPyOTd24vROHTNNkItJW9CyaLCAJkrdFpqKbiGc86MVLEyA821YFFuTCFAmlWFqXRVSS5kGQ_yJI5Vzg_Jfj2vzRGhBj81JFor4MZCsTLPEw1EmA1MXJWplAF52T3hTLtK9NgQ5WtmIyK4yt5E50OrjWFAnnvZRVt_ZafUSaeozL2f1xnjSgK_lXIQkGd-GhSAn8Ty2sxXICOBQQODZ-IPMkDSEwGWAtz441b3_la4FArbdQck3UKFF8Dq7dsz9ezKVnFXETbsUgE5BPx4-R6HATnePZEtyur4d1c9IXf69_GE7DfLlXkKtLkpTq276dS9Cj8Bu9rNlw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypercrosslinked+phenothiazine-based+polymers+as+high+redox+potential+organic+cathode+materials+for+lithium-ion+batteries&rft.jtitle=RSC+advances&rft.au=Zhang%2C+Ying&rft.au=Gao%2C+Panpan&rft.au=Guo%2C+Xinya&rft.au=Chen%2C+Han&rft.date=2020-04-29&rft.eissn=2046-2069&rft.volume=1&rft.issue=28&rft.spage=16732&rft.epage=16736&rft_id=info:doi/10.1039%2Fd0ra01312a&rft.externalDocID=d0ra01312a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |