Genome-wide association identifies candidate genes that influence the human electroencephalogram

Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnost...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 19; pp. 8695 - 8700
Main Authors Hodgkinson, Colin A, Enoch, Mary-Anne, Srivastava, Vibhuti, Cummins-Oman, Justine S, Ferrier, Cherisse, Iarikova, Polina, Sankararaman, Sriram, Yamini, Goli, Yuan, Qiaoping, Zhou, Zhifeng, Albaugh, Bernard, White, Kenneth V, Shen, Pei-Hong, Goldman, David
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 11.05.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnostic for any of them. EEG traits for an individual are stable, variable between individuals, and moderately to highly heritable. Such intermediate phenotypes appear to be closer to underlying molecular processes than are clinical symptoms, and represent an alternative approach for the identification of genetic variation that underlies complex psychiatric disorders. We performed a whole-genome association study on alpha (α), beta (β), and theta ({theta}) EEG power in a Native American cohort of 322 individuals to take advantage of the genetic and environmental homogeneity of this population isolate. We identified three genes (SGIP1, ST6GALNAC3, and UGDH) with nominal association to variability of {theta} or α power. SGIP1 was estimated to account for 8.8% of variance in {theta} power, and this association was replicated in US Caucasians, where it accounted for 3.5% of the variance. Bayesian analysis of prior probability of association based upon earlier linkage to chromosome 1 and enrichment for vesicle-related transport proteins indicates that the association of SGIP1 with {theta} power is genuine. We also found association of SGIP1 with alcoholism, an effect that may be mediated via the same brain mechanisms accessed by {theta} EEG, and which also provides validation of the use of EEG as an endophenotype for alcoholism.
AbstractList Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnostic for any of them. EEG traits for an individual are stable, variable between individuals, and moderately to highly heritable. Such intermediate phenotypes appear to be closer to underlying molecular processes than are clinical symptoms, and represent an alternative approach for the identification of genetic variation that underlies complex psychiatric disorders. We performed a whole-genome association study on alpha (α), beta (β), and theta (θ) EEG power in a Native American cohort of 322 individuals to take advantage of the genetic and environmental homogeneity of this population isolate. We identified three genes (SGIP1, ST6GALNAC3, and UGDH) with nominal association to variability of θ or α power. SGIP1 was estimated to account for 8.8% of variance in θ power, and this association was replicated in US Caucasians, where it accounted for 3.5% of the variance. Bayesian analysis of prior probability of association based upon earlier linkage to chromosome 1 and enrichment for vesicle-related transport proteins indicates that the association of SGIP1 with θ power is genuine. We also found association of SGIP1 with alcoholism, an effect that may be mediated via the same brain mechanisms accessed by θ EEG, and which also provides validation of the use of EEG as an endophenotype for alcoholism.
Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnostic for any of them. EEG traits for an individual are stable, variable between individuals, and moderately to highly heritable. Such intermediate phenotypes appear to be closer to underlying molecular processes than are clinical symptoms, and represent an alternative approach for the identification of genetic variation that underlies complex psychiatric disorders. We performed a whole-genome association study on alpha (α), beta (β), and theta (θ) EEG power in a Native American cohort of 322 individuals to take advantage of the genetic and environmental homogeneity of this population isolate. We identified three genes ( SGIP1 , ST6GALNAC3 , and UGDH ) with nominal association to variability of θ or α power. SGIP1 was estimated to account for 8.8% of variance in θ power, and this association was replicated in US Caucasians, where it accounted for 3.5% of the variance. Bayesian analysis of prior probability of association based upon earlier linkage to chromosome 1 and enrichment for vesicle-related transport proteins indicates that the association of SGIP1 with θ power is genuine. We also found association of SGIP1 with alcoholism, an effect that may be mediated via the same brain mechanisms accessed by θ EEG, and which also provides validation of the use of EEG as an endophenotype for alcoholism.
Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnostic for any of them. EEG traits for an individual are stable, variable between individuals, and moderately to highly heritable. Such intermediate phenotypes appear to be closer to underlying molecular processes than are clinical symptoms, and represent an alternative approach for the identification of genetic variation that underlies complex psychiatric disorders. We performed a whole-genome association study on alpha (alpha), beta (beta), and theta (theta) EEG power in a Native American cohort of 322 individuals to take advantage of the genetic and environmental homogeneity of this population isolate. We identified three genes (SGIP1, ST6GALNAC3, and UGDH) with nominal association to variability of theta or alpha power. SGIP1 was estimated to account for 8.8% of variance in power, and this association was replicated in US Caucasians, where it accounted for 3.5% of the variance. Bayesian analysis of prior probability of association based upon earlier linkage to chromosome 1 and enrichment for vesicle-related transport proteins indicates that the association of SGIP1 with theta power is genuine. We also found association of SGIP1 with alcoholism, an effect that may be mediated via the same brain mechanisms accessed by theta EEG, and which also provides validation of the use of EEG as an endophenotype for alcoholism.
Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnostic for any of them. EEG traits for an individual are stable, variable between individuals, and moderately to highly heritable. Such intermediate phenotypes appear to be closer to underlying molecular processes than are clinical symptoms, and represent an alternative approach for the identification of genetic variation that underlies complex psychiatric disorders. We performed a whole-genome association study on alpha (alpha), beta (beta), and theta (theta) EEG power in a Native American cohort of 322 individuals to take advantage of the genetic and environmental homogeneity of this population isolate. We identified three genes (SGIP1, ST6GALNAC3, and UGDH) with nominal association to variability of theta or alpha power. SGIP1 was estimated to account for 8.8% of variance in power, and this association was replicated in US Caucasians, where it accounted for 3.5% of the variance. Bayesian analysis of prior probability of association based upon earlier linkage to chromosome 1 and enrichment for vesicle-related transport proteins indicates that the association of SGIP1 with theta power is genuine. We also found association of SGIP1 with alcoholism, an effect that may be mediated via the same brain mechanisms accessed by theta EEG, and which also provides validation of the use of EEG as an endophenotype for alcoholism.Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnostic for any of them. EEG traits for an individual are stable, variable between individuals, and moderately to highly heritable. Such intermediate phenotypes appear to be closer to underlying molecular processes than are clinical symptoms, and represent an alternative approach for the identification of genetic variation that underlies complex psychiatric disorders. We performed a whole-genome association study on alpha (alpha), beta (beta), and theta (theta) EEG power in a Native American cohort of 322 individuals to take advantage of the genetic and environmental homogeneity of this population isolate. We identified three genes (SGIP1, ST6GALNAC3, and UGDH) with nominal association to variability of theta or alpha power. SGIP1 was estimated to account for 8.8% of variance in power, and this association was replicated in US Caucasians, where it accounted for 3.5% of the variance. Bayesian analysis of prior probability of association based upon earlier linkage to chromosome 1 and enrichment for vesicle-related transport proteins indicates that the association of SGIP1 with theta power is genuine. We also found association of SGIP1 with alcoholism, an effect that may be mediated via the same brain mechanisms accessed by theta EEG, and which also provides validation of the use of EEG as an endophenotype for alcoholism.
Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnostic for any of them. EEG traits for an individual are stable, variable between individuals, and moderately to highly heritable. Such intermediate phenotypes appear to be closer to underlying molecular processes than are clinical symptoms, and represent an alternative approach for the identification of genetic variation that underlies complex psychiatric disorders. We performed a whole-genome association study on alpha (α), beta (β), and theta ({theta}) EEG power in a Native American cohort of 322 individuals to take advantage of the genetic and environmental homogeneity of this population isolate. We identified three genes (SGIP1, ST6GALNAC3, and UGDH) with nominal association to variability of {theta} or α power. SGIP1 was estimated to account for 8.8% of variance in {theta} power, and this association was replicated in US Caucasians, where it accounted for 3.5% of the variance. Bayesian analysis of prior probability of association based upon earlier linkage to chromosome 1 and enrichment for vesicle-related transport proteins indicates that the association of SGIP1 with {theta} power is genuine. We also found association of SGIP1 with alcoholism, an effect that may be mediated via the same brain mechanisms accessed by {theta} EEG, and which also provides validation of the use of EEG as an endophenotype for alcoholism.
Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnostic for any of them. EEG traits for an individual are stable, variable between individuals, and moderately to highly heritable. Such intermediate phenotypes appear to be closer to underlying molecular processes than are clinical symptoms, and represent an alternative approach for the identification of genetic variation that underlies complex psychiatric disorders. We performed a whole-genome association study on alpha (a), beta (b), and theta (I) EEG power in a Native American cohort of 322 individuals to take advantage of the genetic and environmental homogeneity of this population isolate. We identified three genes (SGIP1, ST6GALNAC3, and UGDH) with nominal association to variability of I or a power. SGIP1 was estimated to account for 8.8% of variance in I power, and this association was replicated in US Caucasians, where it accounted for 3.5% of the variance. Bayesian analysis of prior probability of association based upon earlier linkage to chromosome 1 and enrichment for vesicle-related transport proteins indicates that the association of SGIP1 with I power is genuine. We also found association of SGIP1 with alcoholism, an effect that may be mediated via the same brain mechanisms accessed by I EEG, and which also provides validation of the use of EEG as an endophenotype for alcoholism.
Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram (EEG) is associated with common, complex psychiatric diseases including alcoholism, schizophrenia, and anxiety disorders, although not diagnostic for any of them. EEG traits for an individual are stable, variable between individuals, and moderately to highly heritable. Such intermediate phenotypes appear to be closer to underlying molecular processes than are clinical symptoms, and represent an alternative approach for the identification of genetic variation that underlies complex psychiatric disorders. We performed a whole-genome association study on alpha (α), beta (β), and theta (...) EEG power in a Native American cohort of 322 individuals to take advantage of the genetic and environmental homogeneity of this population isolate. We identified three genes (SGIP1, ST6GALNAC3, and UGDH) with nominal association to variability of ... or a power. SGIP1 was estimated to account for 8.8% of variance in ... power, and this association was replicated in US Caucasians, where it accounted for 3.5% of the variance. Bayesian analysis of prior probability of association based upon earlier linkage to chromosome 1 and enrichment for vesicle-related transport proteins indicates that the association of SGIP1 with ... power is genuine. We also found association of SGIP1 with alcoholism, an effect that may be mediated via the same brain mechanisms accessed by ... EEG, and which also provides validation of the use of EEG as an endophenotype for alcoholism. (ProQuest: ... denotes formulae/symbols omitted.)
Author Enoch, Mary-Anne
Ferrier, Cherisse
Shen, Pei-Hong
Hodgkinson, Colin A
Goldman, David
Yamini, Goli
White, Kenneth V
Zhou, Zhifeng
Srivastava, Vibhuti
Yuan, Qiaoping
Cummins-Oman, Justine S
Albaugh, Bernard
Iarikova, Polina
Sankararaman, Sriram
Author_xml – sequence: 1
  fullname: Hodgkinson, Colin A
– sequence: 2
  fullname: Enoch, Mary-Anne
– sequence: 3
  fullname: Srivastava, Vibhuti
– sequence: 4
  fullname: Cummins-Oman, Justine S
– sequence: 5
  fullname: Ferrier, Cherisse
– sequence: 6
  fullname: Iarikova, Polina
– sequence: 7
  fullname: Sankararaman, Sriram
– sequence: 8
  fullname: Yamini, Goli
– sequence: 9
  fullname: Yuan, Qiaoping
– sequence: 10
  fullname: Zhou, Zhifeng
– sequence: 11
  fullname: Albaugh, Bernard
– sequence: 12
  fullname: White, Kenneth V
– sequence: 13
  fullname: Shen, Pei-Hong
– sequence: 14
  fullname: Goldman, David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20421487$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFMycg4sIp7fgjsX2phCooSJU4QM_GdSa7XmXtxU5A_HscdulCD8DJnvEzr-frhByFGJCQpxTOKEh-vg02n4EGRbkojgdkQUHTuhUajsgCgMlaCSaOyUnOawDQjYJH5JiBYFQouSCfrzDEDdbffIeVzTk6b0cfQ1XsMPreY66cDZ3v7IjVEkOxx5UdKx_6YcLgsJhYraaNDRUO6MYUZ-92ZYe4THbzmDzs7ZDxyf48JTdv33y6fFdff7h6f_n6unZNw8eaacutEkqAdLJcnBRWI5REuW010oa2rBEKmL6lstwLwHSHrO977BT2_JRc7HS30-0GO1eyT3Yw2-Q3Nn030Xrz50vwK7OMXw1TSnMqisCrvUCKXybMo9n47HAYbMA4ZSNF03ItgP8HySQwLuW_Sc4p41rPmi_vkes4pVA6ZhhQzkWj2gI9_73Gu-J-jbMA5zvApZhzwv4OoWDmhTHzwpjDwpSI5l6E8-PPDShN8sNf4l7sU5kfDr9IQ7VRrW4K8WxHrPMY0yHXplVUSH1Q6G00dpl8Njcf51qBKkHLsPkPihviJA
CitedBy_id crossref_primary_10_1016_j_neuroimage_2012_01_097
crossref_primary_10_1177_0269881118805498
crossref_primary_10_1111_psyp_12344
crossref_primary_10_1038_mp_2012_35
crossref_primary_10_1111_psyp_12340
crossref_primary_10_1007_s12031_013_0201_7
crossref_primary_10_1016_j_psc_2012_03_010
crossref_primary_10_1016_j_ijpsycho_2016_07_516
crossref_primary_10_1016_j_neubiorev_2013_05_007
crossref_primary_10_3389_fnhum_2015_00136
crossref_primary_10_1002_hbm_24454
crossref_primary_10_1016_j_nlm_2011_02_005
crossref_primary_10_1371_journal_pgen_1002138
crossref_primary_10_3390_cells8111345
crossref_primary_10_1002_cne_24921
crossref_primary_10_1002_ajmg_b_32533
crossref_primary_10_1515_crpm_2014_0046
crossref_primary_10_1007_s10519_024_10187_w
crossref_primary_10_1176_appi_ajp_2012_12010113
crossref_primary_10_5808_GI_2013_11_3_149
crossref_primary_10_1007_s11033_011_0865_4
crossref_primary_10_1371_journal_pone_0016356
crossref_primary_10_1007_s00500_024_10306_z
crossref_primary_10_1016_j_mehy_2012_02_016
crossref_primary_10_1038_tp_2015_76
crossref_primary_10_1038_s41467_021_25895_8
crossref_primary_10_1016_j_gene_2023_147851
crossref_primary_10_1016_j_ijpsycho_2016_12_008
crossref_primary_10_1038_mp_2016_239
crossref_primary_10_1111_j_1750_8606_2011_00205_x
crossref_primary_10_1111_ajad_12420
crossref_primary_10_1016_j_nbd_2012_05_003
crossref_primary_10_1038_npp_2012_245
crossref_primary_10_1016_j_ijpsycho_2014_04_003
crossref_primary_10_1098_rstb_2012_0380
crossref_primary_10_1111_psyp_12362
crossref_primary_10_37394_23208_2021_18_8
crossref_primary_10_1016_j_nbd_2012_05_007
crossref_primary_10_3389_fped_2020_00071
crossref_primary_10_1007_s00213_015_3914_1
crossref_primary_10_1007_s11920_013_0412_1
crossref_primary_10_1371_journal_pone_0137671
crossref_primary_10_1038_mp_2011_32
crossref_primary_10_1186_s40246_018_0181_3
crossref_primary_10_17116_jnevro201511551103_109
crossref_primary_10_1016_j_drugalcdep_2012_07_005
crossref_primary_10_1038_s41380_018_0052_2
crossref_primary_10_1515_nf_2020_0023
crossref_primary_10_1093_ijnp_pyw033
crossref_primary_10_1038_tp_2016_66
crossref_primary_10_1111_j_1530_0277_2012_01843_x
crossref_primary_10_1016_j_ajo_2012_04_023
Cites_doi 10.1016/S1388-2457(02)00362-0
10.1001/archpsyc.65.12.1438
10.1073/pnas.052716399
10.1016/0888-7543(92)90408-K
10.1186/1471-2105-5-16
10.1002/ajmg.b.10057
10.1016/0165-0327(86)90021-2
10.1111/j.1530-0277.1995.tb01470.x
10.1111/j.1530-0277.1999.tb04108.x
10.1007/BF03033294
10.1093/alcalc/agn032
10.1016/j.clinph.2004.12.016
10.1159/000110430
10.1016/j.aanat.2005.07.004
10.1001/archgenpsychiatry.2009.83
10.1016/j.mcn.2003.09.009
10.1086/519795
10.1186/1749-8104-3-17
10.1016/S0925-4927(00)00080-9
10.1111/j.1469-8986.2005.00352.x
10.1111/j.1530-0277.1999.tb04352.x
10.1074/jbc.M703815200
10.1176/appi.ajp.160.4.636
10.1093/emboj/17.3.648
10.1016/j.addbeh.2007.11.006
10.1093/schbul/sbn155
10.1016/S0301-0511(02)00060-1
10.1126/science.1072290
10.1371/journal.pone.0003620
10.1038/ng1104-1129
10.1016/S0006-3223(02)01362-8
10.1016/j.ajhg.2007.09.022
10.1038/nrg2615
10.1016/j.pbb.2008.03.007
10.1371/journal.pgen.0030114
10.1016/j.ijpsycho.2006.02.002
10.1002/1096-8628(20001009)96:5<632::AID-AJMG8>3.0.CO;2-#
10.1186/1471-2156-8-10
10.1111/j.1530-0277.2003.tb04397.x
10.1016/j.clinph.2005.12.021
10.1002/(SICI)1096-8628(19980508)81:3<216::AID-AJMG2>3.0.CO;2-U
10.1523/JNEUROSCI.2282-07.2007
10.1034/j.1600-0447.2003.00060.x
10.1016/0013-4694(91)90203-G
10.1038/ncb891
ContentType Journal Article
Copyright Copyright National Academy of Sciences May 11, 2010
Copyright_xml – notice: Copyright National Academy of Sciences May 11, 2010
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.0908134107
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

CrossRef
MEDLINE
MEDLINE - Academic

Neurosciences Abstracts

Virology and AIDS Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 8700
ExternalDocumentID PMC2889314
2033930591
20421487
10_1073_pnas_0908134107
107_19_8695
25681479
US201301841254
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c553t-29a3a848407c7a84c74a9e02043a69e15162548029b171624c729de2fffed8ef3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:04:46 EDT 2025
Fri Jul 11 16:42:26 EDT 2025
Fri Jul 11 07:16:27 EDT 2025
Fri Jul 11 10:17:56 EDT 2025
Mon Jun 30 10:37:52 EDT 2025
Mon Jul 21 06:03:00 EDT 2025
Thu Apr 24 22:56:45 EDT 2025
Tue Jul 01 00:46:53 EDT 2025
Wed Nov 11 00:30:46 EST 2020
Thu May 29 08:40:44 EDT 2025
Wed Dec 27 19:21:37 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c553t-29a3a848407c7a84c74a9e02043a69e15162548029b171624c729de2fffed8ef3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited* by Raymond L. White, University of California, Emeryville, CA, and approved March 31, 2010 (received for review July 23, 2009)
Author contributions: C.A.H., M.-A.E., and D.G. designed research; C.A.H., M.-A.E., J.S.C.-O., C.F., P.I., Z.Z., B.A., and K.V.W. performed research; S.S. contributed new reagents/analytic tools; C.A.H., M.-A.E., V.S., J.S.C.-O., C.F., P.I., G.Y., Q.Y., Z.Z., P.-H.S., and D.G. analyzed data; and C.A.H., M.-A.E., V.S., and D.G. wrote the paper.
OpenAccessLink http://doi.org/10.1073/pnas.0908134107
PMID 20421487
PQID 201334586
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2889314
crossref_primary_10_1073_pnas_0908134107
fao_agris_US201301841254
proquest_miscellaneous_745639403
proquest_journals_201334586
pubmed_primary_20421487
jstor_primary_25681479
crossref_citationtrail_10_1073_pnas_0908134107
proquest_miscellaneous_742702377
pnas_primary_107_19_8695
proquest_miscellaneous_733123993
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-11
PublicationDateYYYYMMDD 2010-05-11
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
van Beijsterveldt CE (e_1_3_3_20_2) 1996; 58
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
Niedermeyer E (e_1_3_3_5_2) 1993
e_1_3_3_8_2
e_1_3_3_28_2
Stephens JC (e_1_3_3_26_2) 1994; 55
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_45_2
Nunez PL (e_1_3_3_6_2) 2005
e_1_3_3_2_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
12668349 - Am J Psychiatry. 2003 Apr;160(4):636-45
1718711 - Electroencephalogr Clin Neurophysiol. 1991 Nov;79(5):382-92
16495144 - Clin Neurophysiol. 2006 Apr;117(4):740-51
7771661 - Alcohol Clin Exp Res. 1995 Feb;19(1):37-43
14975175 - BMC Bioinformatics. 2004 Feb 18;5:16
12372655 - Biol Psychiatry. 2002 Oct 15;52(8):831-42
11054770 - Am J Med Genet. 2000 Oct 9;96(5):632-7
18077100 - Addict Behav. 2008 Apr;33(4):616-21
19023125 - Schizophr Bull. 2009 Jan;35(1):96-108
17982252 - Cell Physiol Biochem. 2007;20(6):687-702
9603607 - Am J Med Genet. 1998 May 8;81(3):216-21
17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75
18625063 - Neural Dev. 2008;3:17
12385677 - Biol Psychol. 2002 Oct;61(1-2):229-48
15826840 - Clin Neurophysiol. 2005 May;116(5):993-1018
12807377 - Acta Psychiatr Scand. 2003 Jul;108(1):51-60
11306251 - Psychiatry Res. 2001 Apr 10;106(2):123-40
19047531 - Arch Gen Psychiatry. 2008 Dec;65(12):1438-46
2948988 - J Affect Disord. 1986 Sep-Oct;11(2):147-9
19763151 - Nat Rev Genet. 2009 Oct;10(10):681-90
12559224 - Clin Neurophysiol. 2003 Feb;114(2):171-83
17676998 - PLoS Genet. 2007 Jul;3(7):e114
12627469 - Am J Med Genet B Neuropsychiatr Genet. 2003 Apr 1;118B(1):66-71
10470973 - Alcohol Clin Exp Res. 1999 Aug;23(8):1312-9
18440057 - Pharmacol Biochem Behav. 2008 Jul;90(1):95-104
16320833 - Ann Anat. 2005 Nov;187(5-6):539-53
18252211 - Am J Hum Genet. 2008 Feb;82(2):290-303
16364064 - Psychophysiology. 2005 Nov;42(6):691-7
17978045 - J Neurosci. 2007 Oct 31;27(44):12033-44
11891318 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3729-33
17407593 - BMC Genet. 2007;8:10
18974851 - PLoS One. 2008;3(10):e3620
19581569 - Arch Gen Psychiatry. 2009 Jul;66(7):773-84
12161658 - Science. 2002 Aug 2;297(5582):851-4
12447383 - Nat Cell Biol. 2002 Dec;4(12):986-92
14962739 - Mol Cell Neurosci. 2004 Jan;25(1):42-55
7942858 - Am J Hum Genet. 1994 Oct;55(4):809-24
18477577 - Alcohol Alcohol. 2008 Sep-Oct;43(5):505-15
17626015 - J Biol Chem. 2007 Sep 7;282(36):26481-9
8644716 - Am J Hum Genet. 1996 Mar;58(3):562-73
12711923 - Alcohol Clin Exp Res. 2003 Apr;27(4):607-15
9450990 - EMBO J. 1998 Feb 2;17(3):648-57
10069554 - Alcohol Clin Exp Res. 1999 Feb;23(2):256-62
16554100 - Int J Psychophysiol. 2006 Oct;62(1):87-92
15514657 - Nat Genet. 2004 Nov;36(11):1129-30; author reply 1131
1346390 - Genomics. 1992 Jan;12(1):69-73
15184103 - Neurotox Res. 2004;6(1):35-41
References_xml – ident: e_1_3_3_9_2
  doi: 10.1016/S1388-2457(02)00362-0
– ident: e_1_3_3_1_2
  doi: 10.1001/archpsyc.65.12.1438
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.052716399
– start-page: 9
  volume-title: Electric Fields of the Brain
  year: 2005
  ident: e_1_3_3_6_2
– start-page: 97
  volume-title: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields
  year: 1993
  ident: e_1_3_3_5_2
– ident: e_1_3_3_31_2
  doi: 10.1016/0888-7543(92)90408-K
– ident: e_1_3_3_48_2
  doi: 10.1186/1471-2105-5-16
– ident: e_1_3_3_27_2
  doi: 10.1002/ajmg.b.10057
– ident: e_1_3_3_8_2
  doi: 10.1016/0165-0327(86)90021-2
– ident: e_1_3_3_12_2
  doi: 10.1111/j.1530-0277.1995.tb01470.x
– ident: e_1_3_3_16_2
  doi: 10.1111/j.1530-0277.1999.tb04108.x
– ident: e_1_3_3_39_2
  doi: 10.1007/BF03033294
– ident: e_1_3_3_50_2
  doi: 10.1093/alcalc/agn032
– volume: 58
  start-page: 562
  year: 1996
  ident: e_1_3_3_20_2
  article-title: Heritability of human brain functioning as assessed by electroencephalography
  publication-title: Am J Hum Genet
– ident: e_1_3_3_45_2
  doi: 10.1016/j.clinph.2004.12.016
– ident: e_1_3_3_25_2
  doi: 10.1159/000110430
– ident: e_1_3_3_37_2
  doi: 10.1016/j.aanat.2005.07.004
– ident: e_1_3_3_41_2
  doi: 10.1001/archgenpsychiatry.2009.83
– ident: e_1_3_3_38_2
  doi: 10.1016/j.mcn.2003.09.009
– ident: e_1_3_3_46_2
  doi: 10.1086/519795
– ident: e_1_3_3_32_2
  doi: 10.1186/1749-8104-3-17
– ident: e_1_3_3_7_2
  doi: 10.1016/S0925-4927(00)00080-9
– ident: e_1_3_3_19_2
  doi: 10.1111/j.1469-8986.2005.00352.x
– ident: e_1_3_3_43_2
  doi: 10.1111/j.1530-0277.1999.tb04352.x
– ident: e_1_3_3_17_2
  doi: 10.1111/j.1530-0277.1999.tb04352.x
– ident: e_1_3_3_34_2
  doi: 10.1074/jbc.M703815200
– volume: 55
  start-page: 809
  year: 1994
  ident: e_1_3_3_26_2
  article-title: Mapping by admixture linkage disequilibrium in human populations: Limits and guidelines
  publication-title: Am J Hum Genet
– ident: e_1_3_3_3_2
  doi: 10.1176/appi.ajp.160.4.636
– ident: e_1_3_3_21_2
  doi: 10.1093/emboj/17.3.648
– ident: e_1_3_3_42_2
  doi: 10.1016/j.addbeh.2007.11.006
– ident: e_1_3_3_4_2
  doi: 10.1093/schbul/sbn155
– ident: e_1_3_3_30_2
  doi: 10.1016/S0301-0511(02)00060-1
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1072290
– ident: e_1_3_3_15_2
  doi: 10.1371/journal.pone.0003620
– ident: e_1_3_3_47_2
  doi: 10.1038/ng1104-1129
– ident: e_1_3_3_11_2
  doi: 10.1016/S0006-3223(02)01362-8
– ident: e_1_3_3_49_2
  doi: 10.1016/j.ajhg.2007.09.022
– ident: e_1_3_3_22_2
  doi: 10.1038/nrg2615
– ident: e_1_3_3_24_2
  doi: 10.1016/j.pbb.2008.03.007
– ident: e_1_3_3_23_2
  doi: 10.1371/journal.pgen.0030114
– ident: e_1_3_3_10_2
  doi: 10.1016/j.ijpsycho.2006.02.002
– ident: e_1_3_3_35_2
  doi: 10.1002/1096-8628(20001009)96:5<632::AID-AJMG8>3.0.CO;2-#
– ident: e_1_3_3_40_2
  doi: 10.1186/1471-2156-8-10
– ident: e_1_3_3_13_2
  doi: 10.1111/j.1530-0277.2003.tb04397.x
– ident: e_1_3_3_14_2
  doi: 10.1016/j.clinph.2005.12.021
– ident: e_1_3_3_29_2
  doi: 10.1002/(SICI)1096-8628(19980508)81:3<216::AID-AJMG2>3.0.CO;2-U
– ident: e_1_3_3_33_2
  doi: 10.1523/JNEUROSCI.2282-07.2007
– ident: e_1_3_3_44_2
  doi: 10.1034/j.1600-0447.2003.00060.x
– ident: e_1_3_3_18_2
  doi: 10.1016/0013-4694(91)90203-G
– ident: e_1_3_3_36_2
  doi: 10.1038/ncb891
– reference: 18974851 - PLoS One. 2008;3(10):e3620
– reference: 19763151 - Nat Rev Genet. 2009 Oct;10(10):681-90
– reference: 15184103 - Neurotox Res. 2004;6(1):35-41
– reference: 16364064 - Psychophysiology. 2005 Nov;42(6):691-7
– reference: 14975175 - BMC Bioinformatics. 2004 Feb 18;5:16
– reference: 18077100 - Addict Behav. 2008 Apr;33(4):616-21
– reference: 17407593 - BMC Genet. 2007;8:10
– reference: 18252211 - Am J Hum Genet. 2008 Feb;82(2):290-303
– reference: 16495144 - Clin Neurophysiol. 2006 Apr;117(4):740-51
– reference: 17978045 - J Neurosci. 2007 Oct 31;27(44):12033-44
– reference: 8644716 - Am J Hum Genet. 1996 Mar;58(3):562-73
– reference: 18440057 - Pharmacol Biochem Behav. 2008 Jul;90(1):95-104
– reference: 18625063 - Neural Dev. 2008;3:17
– reference: 12627469 - Am J Med Genet B Neuropsychiatr Genet. 2003 Apr 1;118B(1):66-71
– reference: 12385677 - Biol Psychol. 2002 Oct;61(1-2):229-48
– reference: 12711923 - Alcohol Clin Exp Res. 2003 Apr;27(4):607-15
– reference: 9450990 - EMBO J. 1998 Feb 2;17(3):648-57
– reference: 15826840 - Clin Neurophysiol. 2005 May;116(5):993-1018
– reference: 16320833 - Ann Anat. 2005 Nov;187(5-6):539-53
– reference: 19023125 - Schizophr Bull. 2009 Jan;35(1):96-108
– reference: 12807377 - Acta Psychiatr Scand. 2003 Jul;108(1):51-60
– reference: 12161658 - Science. 2002 Aug 2;297(5582):851-4
– reference: 11306251 - Psychiatry Res. 2001 Apr 10;106(2):123-40
– reference: 19047531 - Arch Gen Psychiatry. 2008 Dec;65(12):1438-46
– reference: 10069554 - Alcohol Clin Exp Res. 1999 Feb;23(2):256-62
– reference: 19581569 - Arch Gen Psychiatry. 2009 Jul;66(7):773-84
– reference: 7942858 - Am J Hum Genet. 1994 Oct;55(4):809-24
– reference: 7771661 - Alcohol Clin Exp Res. 1995 Feb;19(1):37-43
– reference: 1718711 - Electroencephalogr Clin Neurophysiol. 1991 Nov;79(5):382-92
– reference: 12668349 - Am J Psychiatry. 2003 Apr;160(4):636-45
– reference: 11891318 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3729-33
– reference: 10470973 - Alcohol Clin Exp Res. 1999 Aug;23(8):1312-9
– reference: 16554100 - Int J Psychophysiol. 2006 Oct;62(1):87-92
– reference: 17676998 - PLoS Genet. 2007 Jul;3(7):e114
– reference: 12447383 - Nat Cell Biol. 2002 Dec;4(12):986-92
– reference: 1346390 - Genomics. 1992 Jan;12(1):69-73
– reference: 18477577 - Alcohol Alcohol. 2008 Sep-Oct;43(5):505-15
– reference: 12559224 - Clin Neurophysiol. 2003 Feb;114(2):171-83
– reference: 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75
– reference: 17982252 - Cell Physiol Biochem. 2007;20(6):687-702
– reference: 14962739 - Mol Cell Neurosci. 2004 Jan;25(1):42-55
– reference: 2948988 - J Affect Disord. 1986 Sep-Oct;11(2):147-9
– reference: 12372655 - Biol Psychiatry. 2002 Oct 15;52(8):831-42
– reference: 15514657 - Nat Genet. 2004 Nov;36(11):1129-30; author reply 1131
– reference: 17626015 - J Biol Chem. 2007 Sep 7;282(36):26481-9
– reference: 11054770 - Am J Med Genet. 2000 Oct 9;96(5):632-7
– reference: 9603607 - Am J Med Genet. 1998 May 8;81(3):216-21
SSID ssj0009580
Score 2.258538
Snippet Complex psychiatric disorders are resistant to whole-genome analysis due to genetic and etiological heterogeneity. Variation in resting electroencephalogram...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8695
SubjectTerms Admixtures
alcohol abuse
Alcohol related disorders
Alcoholism
Alcoholism - genetics
Alleles
anxiety
Bayesian analysis
Bayesian theory
Biological Sciences
Biological Transport
Biological variation
brain
Carrier Proteins - genetics
chromosomes
Chromosomes, Human, Pair 1 - genetics
Datasets
Electroencephalography
etiology
European Continental Ancestry Group - genetics
Gene Frequency - genetics
genes
Genes - genetics
Genetic diversity
Genetic loci
Genetic Loci - genetics
Genetic Markers
genetic variation
Genome-Wide Association Study
Genomics
Genotype & phenotype
Golgi Apparatus - metabolism
Heterogeneity
Humans
Medical genetics
Mental disorders
Phenotype
Phenotypes
Polymorphism, Single Nucleotide - genetics
Population genetics
probability
Reproducibility of Results
schizophrenia
transport proteins
United States
variance
Whites
Title Genome-wide association identifies candidate genes that influence the human electroencephalogram
URI https://www.jstor.org/stable/25681479
http://www.pnas.org/content/107/19/8695.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20421487
https://www.proquest.com/docview/201334586
https://www.proquest.com/docview/733123993
https://www.proquest.com/docview/742702377
https://www.proquest.com/docview/745639403
https://pubmed.ncbi.nlm.nih.gov/PMC2889314
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6ceGCGDBWBigHDkNRSus4iXOsqkGFRJnUFe0W3MRZq9G06scQ_LH8LbxnO05augm4VGnivDp-v74P530Q8iZlYSh4lntpHmYeSwPpjdMUHNcoCKQIKM8iTE7-NAj7I_bxKrhqNH7VopY263Er_bk3r-R_uArngK-YJfsPnLVE4QQcA3_hEzgMn3_F4w-ymM-k932aSVdU6-xOMx0DJLHydJFN0avHXslYzmEisCmA6UyizE7dps_0w8Gzi4lQlaxndcv1wmq6VRlXMCg3ErtVWoqRFSvXcy8GVZPjHvYGcrsttz_Prm9Uxlm1F7784XVB3LvnxTy1u9NfpuMJLJ07XE5vBZiwt1Z_qAZkMHzYcnuw2EDM-zwzIDf7F_rVe6fav9iaqp1kXWRTUKNMJ1q3pJbSYOR4IdN9Rq0Y191zS7zGNanMQ93I8w91AfINexwXYtVqx2AcgUrXVGrgWcwUeihIN3Ado0pvlrECO-rUBjkCqaQTJ_jjB-QBBTeGlrtJtig01ylS5hHL0lOR_25nTliz2kxgy4A6yMW8jKTF8rxw1z5XaTfit2ZCXT4mj4zv43Q1kI9IQxZPyFHJDOfMlEB_-5R8rSHbqSHbqZDtWGQ7CtkOItuxyIav0lHIdvYh-xkZvT-_7PU90wvES4PAX3s0Fr7gjLN2lEZwkEZMxFJldoswlmC3giPPeJvGYywARWEAjTNJ8zyXGZe5f0wOi3khT4gTwHiWZnAHDxlYqzEDHZcFYz8Qcc79TpO0ygVOUlMoH_u1fEtUwEbkJ7jMScWcJjmzNyx0jZi7h54AxxJxDRo8GQ0pxg10OAMvgzXJsWKjJUGxNiCLYrhHUalIW1w1yWnJ68TIpVWCRH0W8LBJHHsVlAa-CRSFnG9WCTZqxaR2_54hDDNV_Si6b0gQ4uoBlecaXtXcDVibJNoCnh2AVe23rxTTiapuTzm4UB324u6nPiUPK0Hykhyulxv5ClyD9fi1-n_9BqDFDng
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+association+identifies+candidate+genes+that+influence+the+human+electroencephalogram&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Colin+A.+Hodgkinson&rft.au=Mary-Anne+Enoch&rft.au=Vibhuti+Srivastava&rft.au=Justine+S.+Cummins-Oman&rft.date=2010-05-11&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=19&rft.spage=8695&rft_id=info:doi/10.1073%2Fpnas.0908134107&rft_id=info%3Apmid%2F20421487&rft.externalDBID=n%2Fa&rft.externalDocID=107_19_8695
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F19.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F19.cover.gif