Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness
Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciou...
Saved in:
Published in | Human brain mapping Vol. 33; no. 4; pp. 778 - 796 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2012
Wiley-Liss John Wiley & Sons, Inc Wiley Liss, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis‐based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation‐corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain‐damaged patients [locked‐in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default‐mode areas, when compared with controls, contrary to locked‐in patients who showed near‐normal connectivity. In the minimally conscious‐state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting‐state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non‐neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. |
---|---|
AbstractList | Abstract
Objectives:
Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma.
Experimental design:
A spatial independent component analysis‐based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation‐corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain‐damaged patients [locked‐in syndrome (
n
= 2), minimally conscious (
n
= 1), and vegetative state (
n
= 8)].
Principal observations:
All vegetative patients showed fewer connections in the default‐mode areas, when compared with controls, contrary to locked‐in patients who showed near‐normal connectivity. In the minimally conscious‐state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin.
Conclusions:
When assessing resting‐state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non‐neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. Objectives: Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis‐based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation‐corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain‐damaged patients [locked‐in syndrome ( n = 2), minimally conscious ( n = 1), and vegetative state ( n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default‐mode areas, when compared with controls, contrary to locked‐in patients who showed near‐normal connectivity. In the minimally conscious‐state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting‐state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non‐neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. A spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. All vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. When assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] OBJECTIVESRecent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. EXPERIMENTAL DESIGNA spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. PRINCIPAL OBSERVATIONSAll vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. CONCLUSIONSWhen assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis‐based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation‐corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain‐damaged patients [locked‐in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default‐mode areas, when compared with controls, contrary to locked‐in patients who showed near‐normal connectivity. In the minimally conscious‐state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting‐state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non‐neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2011. (c) 2011 Wiley-Liss, Inc. |
Author | Ovadia-Caro, Smadar Malach, Rafael Maquet, Pierre Phillips, Christophe Boly, Mélanie Bahri, Mohamed Ali Noirhomme, Quentin Stanziano, Mario Bruno, Marie-Aurelie Soddu, Andrea Laureys, Steven Demertzi, Athena Tshibanda, Jean-Flory Vanhaudenhuyse, Audrey Nir, Yuval Papa, Michele |
AuthorAffiliation | 1 Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium 7 Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 6 Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel 3 Neurology Department, CHU Sart Tilman Hospital, University of Liège, Liège, Belgium 4 Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium 5 Medicina Pubblica Clinica e Preventiva, Second University of Naples, Naples, Italy 2 Cyclotron Research Centre, University of Liège, Liège, Belgium |
AuthorAffiliation_xml | – name: 1 Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium – name: 2 Cyclotron Research Centre, University of Liège, Liège, Belgium – name: 7 Department of Psychiatry, University of Wisconsin, Madison, Wisconsin – name: 6 Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel – name: 4 Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium – name: 5 Medicina Pubblica Clinica e Preventiva, Second University of Naples, Naples, Italy – name: 3 Neurology Department, CHU Sart Tilman Hospital, University of Liège, Liège, Belgium |
Author_xml | – sequence: 1 givenname: Andrea surname: Soddu fullname: Soddu, Andrea email: andrea.soddu@ulg.ac.be organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium – sequence: 2 givenname: Audrey surname: Vanhaudenhuyse fullname: Vanhaudenhuyse, Audrey organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium – sequence: 3 givenname: Mohamed Ali surname: Bahri fullname: Bahri, Mohamed Ali organization: Cyclotron Research Centre, University of Liège, Liège, Belgium – sequence: 4 givenname: Marie-Aurelie surname: Bruno fullname: Bruno, Marie-Aurelie organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium – sequence: 5 givenname: Mélanie surname: Boly fullname: Boly, Mélanie organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium – sequence: 6 givenname: Athena surname: Demertzi fullname: Demertzi, Athena organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium – sequence: 7 givenname: Jean-Flory surname: Tshibanda fullname: Tshibanda, Jean-Flory organization: Neurology Department, CHU Sart Tilman Hospital, University of Liège, Liège, Belgium – sequence: 8 givenname: Christophe surname: Phillips fullname: Phillips, Christophe organization: Cyclotron Research Centre, University of Liège, Liège, Belgium – sequence: 9 givenname: Mario surname: Stanziano fullname: Stanziano, Mario organization: Medicina Pubblica Clinica e Preventiva, Second University of Naples, Naples, Italy – sequence: 10 givenname: Smadar surname: Ovadia-Caro fullname: Ovadia-Caro, Smadar organization: Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel – sequence: 11 givenname: Yuval surname: Nir fullname: Nir, Yuval organization: Department of Psychiatry, University of Wisconsin, Madison, Wisconsin – sequence: 12 givenname: Pierre surname: Maquet fullname: Maquet, Pierre organization: Cyclotron Research Centre, University of Liège, Liège, Belgium – sequence: 13 givenname: Michele surname: Papa fullname: Papa, Michele organization: Medicina Pubblica Clinica e Preventiva, Second University of Naples, Naples, Italy – sequence: 14 givenname: Rafael surname: Malach fullname: Malach, Rafael organization: Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel – sequence: 15 givenname: Steven surname: Laureys fullname: Laureys, Steven organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium – sequence: 16 givenname: Quentin surname: Noirhomme fullname: Noirhomme, Quentin organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25638709$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21484953$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1rFDEUhoNUbLt64R-QgIh4MW0-NpPJTUEX3S5UBVEEb0ImyeymZpI1mWndf2_2o_UDvMpJznPec96cU3AUYrAAPMXoDCNEzldtf0YwmYoH4AQjwSuEBT3axjWrxJTjY3Ca8zVCGDOEH4FjgqfNVDB6AtzC2DC4buPCEg4rC43t1OiHqo_GQh37dWkVBugCzGs1OOXhYgZVUH6TbYaxg9vXQmR464YVNC7HZGzapXQMWbs45mBzfgwedspn--RwTsCXd28_zy6rq4_zxez1VaUZo6JqGKaWmJbo1ggkal6rljWNMJpo0ZhW8ZYXq5hZRZDitWGCasoYakWLdLlMwMVedz22vTW6zJaUl-vkepU2Mion_84Et5LLeCPrhiOGmyJA9gLe2aWVMbVO3pBd4S4e_VIqLVsrCakbKZqmDD4BLw9dU_wx2jzI3mVtvVfBlg-QgvACUkYK-fwf8jqOqXxolphhXqwIvqVe7SmdYs7JdvcGMJLbpcuydLlbemGf_en4nrzbcgFeHACVtfJdUkG7_JtjNS3et0Lne-7Webv5f0d5-eb9XetqX-HyYH_eV6j0Xdaccia_fpjLb7P5J0zrqazpL6P11Ps |
CitedBy_id | crossref_primary_10_1016_j_bica_2017_10_001 crossref_primary_10_1016_j_nicl_2018_07_025 crossref_primary_10_1089_brain_2014_0230 crossref_primary_10_1016_j_brainresbull_2024_111023 crossref_primary_10_1038_s41598_017_00392_5 crossref_primary_10_1007_s11910_013_0375_y crossref_primary_10_1089_brain_2015_0369 crossref_primary_10_1016_j_heares_2013_07_010 crossref_primary_10_1016_j_clinph_2021_12_001 crossref_primary_10_1177_1550059412474929 crossref_primary_10_17340_jkna_2020_1_2 crossref_primary_10_1016_j_cub_2013_07_075 crossref_primary_10_1371_journal_pone_0298110 crossref_primary_10_1055_s_0043_1775792 crossref_primary_10_1016_j_nicl_2015_11_004 crossref_primary_10_3174_ng_2200001 crossref_primary_10_1038_nrneurol_2013_279 crossref_primary_10_1177_0300060517705477 crossref_primary_10_1109_JBHI_2022_3218652 crossref_primary_10_1016_j_clineuro_2024_108353 crossref_primary_10_1016_j_neuropsychologia_2016_01_022 crossref_primary_10_1002_hbm_24050 crossref_primary_10_1016_j_nicl_2021_102797 crossref_primary_10_1016_j_jns_2013_08_009 crossref_primary_10_1161_STROKEAHA_114_007645 crossref_primary_10_1213_ANE_0000000000001721 crossref_primary_10_1371_journal_pone_0037238 crossref_primary_10_1089_brain_2011_0049 crossref_primary_10_1002_brb3_626 crossref_primary_10_1093_brain_awv169 crossref_primary_10_3389_fnhum_2015_00105 crossref_primary_10_1016_j_acra_2015_10_013 crossref_primary_10_1007_s13546_017_1301_4 crossref_primary_10_1093_nc_nix010 crossref_primary_10_1007_s11910_016_0642_9 crossref_primary_10_1016_j_cvsm_2019_12_002 crossref_primary_10_1016_j_nicl_2016_06_003 crossref_primary_10_3389_fnins_2018_00994 crossref_primary_10_3390_jcm12041377 crossref_primary_10_3389_fnbeh_2022_1001519 crossref_primary_10_1093_brain_awaa159 crossref_primary_10_1002_hbm_23269 crossref_primary_10_1002_hbm_23429 crossref_primary_10_1016_j_bandc_2018_11_007 crossref_primary_10_3390_brainsci11060749 crossref_primary_10_1007_s00234_022_02911_2 crossref_primary_10_1007_s00415_019_09390_1 crossref_primary_10_1089_brain_2012_0117 crossref_primary_10_1002_ana_23635 crossref_primary_10_1016_S1474_4422_16_00111_3 crossref_primary_10_1212_WNL_0000000000001404 crossref_primary_10_1002_brb3_424 crossref_primary_10_1007_s12264_018_0250_6 crossref_primary_10_1038_s41598_017_02950_3 crossref_primary_10_36425_rehab624889 crossref_primary_10_1007_s00415_011_6114_x crossref_primary_10_3109_02699052_2015_1118765 crossref_primary_10_1155_2018_8656975 crossref_primary_10_1007_s40719_015_0018_7 crossref_primary_10_3389_fnins_2016_00064 crossref_primary_10_1016_j_nicl_2013_12_005 crossref_primary_10_1097_WNR_0000000000000853 crossref_primary_10_3389_fnins_2021_646543 crossref_primary_10_1016_j_brainres_2012_05_006 crossref_primary_10_3389_fnins_2020_555093 crossref_primary_10_1111_ane_12299 crossref_primary_10_3389_fneur_2018_00861 crossref_primary_10_1016_j_nicl_2015_02_008 crossref_primary_10_1089_neu_2015_4003 crossref_primary_10_1038_s41582_020_00428_x crossref_primary_10_1016_j_cortex_2013_11_005 crossref_primary_10_1016_j_neuroimage_2021_118407 crossref_primary_10_3389_fnagi_2023_1213904 crossref_primary_10_1016_S1474_4422_12_70154_0 crossref_primary_10_1371_journal_pone_0036222 crossref_primary_10_1016_j_neulet_2016_05_045 crossref_primary_10_1177_0333102417738251 crossref_primary_10_1016_j_cortex_2019_01_014 crossref_primary_10_1002_jnr_24115 crossref_primary_10_1097_WNP_0000000000000846 crossref_primary_10_1016_j_neulet_2017_04_036 crossref_primary_10_1136_jnnp_2015_310958 crossref_primary_10_1093_braincomms_fcad319 crossref_primary_10_1111_ene_14151 crossref_primary_10_1155_2014_237898 crossref_primary_10_1016_j_clinph_2013_06_016 crossref_primary_10_2217_fnl_12_77 crossref_primary_10_1093_bja_aex257 crossref_primary_10_1016_j_brs_2020_07_012 crossref_primary_10_1146_annurev_neuro_062012_170339 crossref_primary_10_1136_postgradmedj_2014_133211 crossref_primary_10_3171_2015_7_JNS15617 crossref_primary_10_1227_NEU_0000000000000307 crossref_primary_10_1016_j_euroneuro_2018_03_013 crossref_primary_10_1016_j_neuroimage_2017_01_020 crossref_primary_10_3109_02699052_2014_920522 crossref_primary_10_1007_s11682_015_9417_1 crossref_primary_10_1111_ejn_16394 crossref_primary_10_3390_brainsci12030355 |
Cites_doi | 10.1016/S1474-4422(04)00852-X 10.1007/BF03160568 10.1155/2008/218519 10.1038/nrn2201 10.1002/hbm.20602 10.1227/00006123-198505000-00002 10.1162/0898929042568532 10.1002/ana.410420114 10.1371/journal.pbio.0060159 10.1016/S0079-6123(05)50017-7 10.1073/pnas.0601417103 10.1073/pnas.0905267106 10.1002/jmri.21590 10.1016/j.neuroimage.2004.10.042 10.1038/nn.2177 10.3389/neuro.09.017.2009 10.1016/j.neuroimage.2008.09.036 10.1016/j.concog.2007.04.004 10.1002/hbm.20505 10.1016/j.mri.2008.01.045 10.1016/j.mri.2006.09.042 10.1002/mrm.1910340409 10.1073/pnas.071043098 10.1002/hbm.20968 10.1016/j.neuroimage.2005.08.035 10.1073/pnas.0135058100 10.1002/hbm.20672 10.1148/radiol.2241011005 10.1016/j.apmr.2004.02.033 10.1016/j.neuropsychologia.2007.10.003 10.1152/jn.90777.2008 10.1016/j.mri.2004.10.020 10.1073/pnas.0800376105 10.1073/pnas.0600674103 10.1002/hbm.20577 10.1016/j.neuroimage.2009.12.008 10.1016/j.neuroimage.2007.08.027 10.1016/j.neuroimage.2005.11.018 10.1016/j.concog.2008.03.013 10.1002/0471221317 10.1016/j.neuroimage.2007.01.054 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 10.1016/j.biopsych.2005.02.021 10.1002/(SICI)1097-0193(1999)8:2/3<151::AID-HBM13>3.0.CO;2-5 10.1016/j.neuroimage.2006.08.041 10.1016/S0003-9993(95)80031-X 10.1016/j.tins.2003.09.015 10.1073/pnas.0504136102 10.1002/hbm.20813 10.1056/NEJM199405263302107 10.1002/hbm.20860 10.1073/pnas.0308627101 10.1098/rstb.2005.1634 10.1097/ALN.0b013e3181f697f5 10.1093/brain/awp313 10.1006/nimg.1997.0315 10.1093/cercor/bhk030 10.1016/j.neuroimage.2007.11.001 10.1162/089892902760191117 10.1162/jocn.2010.21488 10.1016/j.neuroimage.2009.05.033 10.1016/S1053-8119(03)00097-1 10.1002/mrm.1910370407 10.1038/nature05758 |
ContentType | Journal Article Web Resource |
Contributor | GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège |
Contributor_xml | – sequence: 1 fullname: GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 Q33 5PM |
DOI | 10.1002/hbm.21249 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Physics |
DocumentTitleAlternate | Identifying the DMN in DOC patients |
EISSN | 1097-0193 |
EndPage | 796 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_98855 3278351841 10_1002_hbm_21249 21484953 25638709 HBM21249 ark_67375_WNG_ZCGR1364_6 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT ABHUG ACXME ADAWD AFVGU AGJLS IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 Q33 5PM |
ID | FETCH-LOGICAL-c5539-8513e2db2cbd909676ab5889dc2c98dba7b712415ea20a76d593c3550b9b0c593 |
IEDL.DBID | RPM |
ISSN | 1065-9471 1097-0193 |
IngestDate | Tue Sep 17 21:26:55 EDT 2024 Fri Nov 08 14:42:06 EST 2024 Fri Aug 16 20:57:09 EDT 2024 Thu Oct 10 22:10:07 EDT 2024 Thu Sep 26 16:09:14 EDT 2024 Sat Sep 28 07:59:15 EDT 2024 Tue Jan 23 04:49:51 EST 2024 Sat Aug 24 00:59:22 EDT 2024 Wed Oct 30 09:53:17 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Coma Human default mode Nervous system diseases Radiodiagnosis consciousness Locked-in syndrome Consciousness impairment Spatial analysis Vegetative state Nuclear magnetic resonance imaging fMRI independent component analysis resting state Neurological disorder |
Language | English |
License | CC BY 4.0 Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5539-8513e2db2cbd909676ab5889dc2c98dba7b712415ea20a76d593c3550b9b0c593 |
Notes | ArticleID:HBM21249 ark:/67375/WNG-ZCGR1364-6 istex:8CE9EFAD8F8DE8E370832962C4F288EC798ECD42 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Progetto FIRB Internazionalizzazione scopus-id:2-s2.0-84858292861 |
OpenAccessLink | https://europepmc.org/articles/pmc6870518?pdf=render |
PMID | 21484953 |
PQID | 1517355972 |
PQPubID | 996345 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870518 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_98855 proquest_miscellaneous_927988352 proquest_journals_1517355972 crossref_primary_10_1002_hbm_21249 pubmed_primary_21484953 pascalfrancis_primary_25638709 wiley_primary_10_1002_hbm_21249_HBM21249 istex_primary_ark_67375_WNG_ZCGR1364_6 |
PublicationCentury | 2000 |
PublicationDate | April 2012 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: April 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss John Wiley & Sons, Inc Wiley Liss, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss – name: John Wiley & Sons, Inc – name: Wiley Liss, Inc |
References | Fox MD, Zhang D, Snyder AZ, Raichle ME ( 2009): The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101: 3270-3283. Mitra PP, Ogawa S, Hu X, Ugurbil K ( 1997): The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging. Magn Reson Med 37: 511-518. Soddu A, Vanhaudenhuyse A, Demertzi A, Bruno MA, Tshibanda L, Di H, Boly M, Papa M, Laureys S, Noirhomme Q: Resting state activity in patients with disorders of consciousness. Funct Neurol 2011 (in press). Baars BJ, Ramsoy TZ, Laureys S ( 2003): Brain, conscious experience and the observing self. Trends Neurosci 26: 671-675. Calhoun VD, Eichele T, Pearlson G ( 2009): Functional brain networks in schizophrenia: A review. Front Hum Neurosci 3: 17. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA ( 2009): The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 44: 893-905. Vanhaudenhuyse A, Demertzi A, Schabus M, Noirhomme Q, Bredart S, Boly M, Phillips C, Soddu A, Luxen A, Moonen G, Laureys S ( 2011): Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 23(3):570-578. Jafri MJ, Pearlson GD, Stevens M, Calhoun VD ( 2008): A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39: 1666-1681. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA 106: 13040-13045. Rombouts SA, Damoiseaux JS, Goekoop R, Barkhof F, Scheltens P, Smith SM, Beckmann CF ( 2009): Model-free group analysis shows altered BOLD FMRI networks in dementia. Hum Brain Mapp 30: 256-266. Greicius MD, Srivastava G, Reiss AL, Menon V ( 2004): Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci USA 101: 4637-4642. Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, Mathews VP ( 2002): Multiple sclerosis: Low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 224: 184-192. De Martino F, Gentile F, Esposito F, Balsi M, Di Salle F, Goebel R, Formisano E ( 2007): Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. Neuroimage 34: 177-194. Hagmann P, Cammoun L, Gigandet X, Gerhard S, Ellen Grant P, Wedeen V, Meuli R, Thiran JP, Honey CJ, Sporns O ( 2008): Mapping the structural core of human cerebral cortex. PLoS Biol 6: e159. Ylipaavalniemi J, Vigario R ( 2008): Analyzing consistency of independent components: An fMRI illustration. Neuroimage 39: 169-180. Boly M, Phillips C, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, Peigneux P, Faymonville ME, Maquet P, Laureys S ( 2008): Consciousness and cerebral baseline activity fluctuations. Hum Brain Mapp 29: 868-874. Formisano E, Esposito F, Di Salle F, Goebel R ( 2004): Cortex-based independent component analysis of fMRI time series. Magn Reson Imaging 22: 1493-1504. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE ( 1997): Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 42: 85-94. Cole DM, Smith SM, Beckmann CF ( 2010): Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4: 8. Esposito F, Aragri A, Pesaresi I, Cirillo S, Tedeschi G, Marciano E, Goebel R, Di Salle F ( 2008): Independent component model of the default-mode brain function: Combining individual-level and population-level analyses in resting-state fMRI. Magn Reson Imaging 26: 905-913. Rainville P, Hofbauer RK, Bushnell MC, Duncan GH, Price DD ( 2002): Hypnosis modulates activity in brain structures involved in the regulation of consciousness. J Cogn Neurosci 14: 887-901. Maquet P ( 1997): Positron emission tomography studies of sleep and sleep disorders. J Neurol 244: S23-S28. Weissman-Fogel I, Moayedi M, Taylor KS, Pope G, Davis KD ( 2010): Cognitive and default-mode resting state networks: Do male and female brains "rest" differently? Hum Brain Mapp 31: 1713-1726. American Congress of Rehabilitation Medicine ( 1995): Recommendations for use of uniform nomenclature pertinent to patients with severe alterations in consciousness. Arch Phys Med Rehabil 76: 205-209. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME ( 2007): Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447: 83-86. Nir Y, Hasson U, Levy I, Yeshurun Y, Malach R ( 2006): Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage 30: 1313-1324. Birn RM, Murphy K, Bandettini PA ( 2008): The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp 29: 740-750. Boveroux P, Vanhaudenhuyse A, Bruno MA, Noirhomme Q, Lauwick S, Luxen A, Degueldre C, Plenevaux A, Schnakers C, Phillips C, Brichant JF, Bonhomme V, Maquet P, Greicius MD, Laureys S, Boly M ( 2010): Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113: 1038-1053. Biswal B, Yetkin FZ, Haughton VM, Hyde JS ( 1995): Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34: 537-541. Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, Boveroux P, Garweg C, Lambermont B, Phillips C, Luxen A, Moonen G, Bassetti C, Maquet P, Laureys S ( 2009): Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30: 2393-2400. Koch W, Teipel S, Mueller S, Buerger K, Bokde ALW, Hampel H, Coates U, Reiser M ( 2010): Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter? Neuroimage 15: 280-287. Xiong J, Parsons LM, Gao JH, Fox PT ( 1999): Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 8: 151-156. Dai W, Carmichael OT, Lopez OL, Becker JT, Kuller LH, Gach HM ( 2008): Effects of image normalization on the statistical analysis of perfusion MRI in elderly brains. J Magn Reson Imaging 28: 1351-1360. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM ( 2006): fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29: 1359-1367. Born JD, Albert A, Hans P, Bonnal J ( 1985): Relative prognostic value of best motor response and brain stem reflexes in patients with severe head injury. Neurosurgery 16: 595-601. Alkire MT, Miller J ( 2005): General anesthesia and the neural correlates of consciousness. Prog Brain Res 150: 229-244. Giacino JT, Kalmar K, Whyte J ( 2004): The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85: 2020-2029. Perlbarg V, Bellec P, Anton JL, Pelegrini-Issac M, Doyon J, Benali H ( 2007): CORSICA: Correction of structured noise in fMRI by automatic identification of ICA components. Magn Reson Imaging 25: 35-46. Fox MD, Raichle ME ( 2007): Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700-711. Golland Y, Bentin S, Gelbard H, Benjamini Y, Heller R, Nir Y, Hasson U, Malach R ( 2007): Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb Cortex 17: 766-777. Beckmann CF, DeLuca M, Devlin JT, Smith SM ( 2005): Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360: 1001-1013. Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, Veijola J, Moilanen I, Isohanni M, Zang YF, Tervonen O ( 2009): Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30: 3865-3886. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673-9678. Gusnard DA, Akbudak E, Shulman GL, Raichle ME ( 2001): Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc Natl Acad Sci USA 98: 4259-4264. Laureys S, Owen AM, Schiff ND ( 2004): Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3: 537-546. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant JF, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M ( 2010): Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133: 161-171. Meindl T, Teipel S, Elmouden R, Mueller S, Koch W, Dietrich O, Coates U, Reiser M, Glaser C ( 2010): Test-retest reproducibility of the default-mode network in healthy individuals. Hum Brain Mapp 31: 237-246. The Multi-Society Task Force on PVS ( 1994): Medical aspects of the persistent vegetative state (1). N Engl J Med 330: 1499-1508. Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F ( 2005): Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25: 193-205. Greicius MD, Menon V ( 2004): Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. J Cogn Neurosci 16: 1484-1492. Kiviniemi V, Kantola JH, Jauhiainen J, Hyvärinen A, Tervonen O ( 2003): Independent component analysis of nondeterministic fMRI signal sources. Neuroim 2004; 22 2009; 44 2009; 47 2002; 14 1994; 330 2006; 30 2010; 15 1997; 42 1995; 34 1995; 76 2008; 39 2004; 3 2008; 105 2008; 6 2003; 19 2007; 34 2008; 2008 2007; 36 2005; 25 2001 2005; 102 2008; 29 2002; 224 2010; 113 2008; 28 2007; 8 2008; 26 2006; 29 2011; 23 2010; 4 1985; 16 2007; 25 2001; 98 2007; 17 2004; 101 2004; 85 2010; 31 2005; 150 2007; 447 2011 2000; 21 2008; 17 2008; 11 1999; 8 2007; 16 2009; 30 2005; 360 2004; 16 1997; 37 1997; 244 2010; 133 2003; 26 2009; 101 2008; 46 2009; 3 1998; 7 1998; 6 2003; 100 2005; 57 2006; 103 2009; 106 e_1_2_7_5_1 Cordes D (e_1_2_7_15_1) 2000; 21 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Soddu A (e_1_2_7_60_1) 2011 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 Cole DM (e_1_2_7_14_1) 2010; 4 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 21 start-page: 1636 year: 2000 end-page: 1644 article-title: Mapping functionally related regions of brain with functional connectivity MR imaging publication-title: AJNR Am J Neuroradiol – volume: 39 start-page: 169 year: 2008 end-page: 180 article-title: Analyzing consistency of independent components: An fMRI illustration publication-title: Neuroimage – volume: 17 start-page: 457 year: 2008 end-page: 467 article-title: Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain publication-title: Conscious Cogn – volume: 103 start-page: 13848 year: 2006 end-page: 13853 article-title: Consistent resting‐state networks across healthy subjects publication-title: Proc Natl Acad Sci USA – volume: 76 start-page: 205 year: 1995 end-page: 209 article-title: Recommendations for use of uniform nomenclature pertinent to patients with severe alterations in consciousness publication-title: Arch Phys Med Rehabil – volume: 16 start-page: 595 year: 1985 end-page: 601 article-title: Relative prognostic value of best motor response and brain stem reflexes in patients with severe head injury publication-title: Neurosurgery – volume: 14 start-page: 887 year: 2002 end-page: 901 article-title: Hypnosis modulates activity in brain structures involved in the regulation of consciousness publication-title: J Cogn Neurosci – volume: 25 start-page: 35 year: 2007 end-page: 46 article-title: CORSICA: Correction of structured noise in fMRI by automatic identification of ICA components publication-title: Magn Reson Imaging – volume: 8 start-page: 151 year: 1999 end-page: 156 article-title: Interregional connectivity to primary motor cortex revealed using MRI resting state images publication-title: Hum Brain Mapp – volume: 23 start-page: 570 issue: 3 year: 2011 end-page: 578 article-title: Two distinct neuronal networks mediate the awareness of environment and of self publication-title: J Cogn Neurosci – year: 2001 – volume: 15 start-page: 280 year: 2010 end-page: 287 article-title: Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter? publication-title: Neuroimage – volume: 3 start-page: 17 year: 2009 article-title: Functional brain networks in schizophrenia: A review publication-title: Front Hum Neurosci – volume: 26 start-page: 671 year: 2003 end-page: 675 article-title: Brain, conscious experience and the observing self publication-title: Trends Neurosci – volume: 8 start-page: 700 year: 2007 end-page: 711 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat Rev Neurosci – volume: 85 start-page: 2020 year: 2004 end-page: 2029 article-title: The JFK Coma Recovery Scale‐Revised: Measurement characteristics and diagnostic utility publication-title: Arch Phys Med Rehabil – volume: 102 start-page: 9673 year: 2005 end-page: 9678 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci USA – volume: 29 start-page: 1359 year: 2006 end-page: 1367 article-title: fMRI resting state networks define distinct modes of long‐distance interactions in the human brain publication-title: Neuroimage – volume: 2008 start-page: 218519 year: 2008 article-title: Contribution of exploratory methods to the investigation of extended large‐scale brain networks in functional MRI: Methodologies, results, and challenges publication-title: Int J Biomed Imaging – volume: 106 start-page: 13040 year: 2009 end-page: 13045 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 1493 year: 2004 end-page: 1504 article-title: Cortex‐based independent component analysis of fMRI time series publication-title: Magn Reson Imaging – volume: 17 start-page: 766 year: 2007 end-page: 777 article-title: Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation publication-title: Cereb Cortex – volume: 34 start-page: 177 year: 2007 end-page: 194 article-title: Classification of fMRI independent components using IC‐fingerprints and support vector machine classifiers publication-title: Neuroimage – volume: 28 start-page: 1351 year: 2008 end-page: 1360 article-title: Effects of image normalization on the statistical analysis of perfusion MRI in elderly brains publication-title: J Magn Reson Imaging – volume: 19 start-page: 253 year: 2003 end-page: 260 article-title: Independent component analysis of nondeterministic fMRI signal sources publication-title: Neuroimage – volume: 34 start-page: 537 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI publication-title: Magn Reson Med – volume: 30 start-page: 2393 year: 2009 end-page: 2400 article-title: Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient publication-title: Hum Brain Mapp – volume: 150 start-page: 229 year: 2005 end-page: 244 article-title: General anesthesia and the neural correlates of consciousness publication-title: Prog Brain Res – volume: 7 start-page: 119 year: 1998 end-page: 132 article-title: Functional connectivity in single and multislice echoplanar imaging using resting‐state fluctuations publication-title: Neuroimage – volume: 44 start-page: 893 year: 2009 end-page: 905 article-title: The impact of global signal regression on resting state correlations: Are anti‐correlated networks introduced? publication-title: Neuroimage – year: 2011 article-title: Resting state activity in patients with disorders of consciousness publication-title: Funct Neurol – volume: 11 start-page: 1100 year: 2008 end-page: 1108 article-title: Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex publication-title: Nat Neurosci – volume: 101 start-page: 4637 year: 2004 end-page: 4642 article-title: Default‐mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI publication-title: Proc Natl Acad Sci USA – volume: 39 start-page: 1666 year: 2008 end-page: 1681 article-title: A method for functional network connectivity among spatially independent resting‐state components in schizophrenia publication-title: Neuroimage – volume: 30 start-page: 1313 year: 2006 end-page: 1324 article-title: Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation publication-title: Neuroimage – volume: 30 start-page: 3865 year: 2009 end-page: 3886 article-title: Functional segmentation of the brain cortex using high model order group PICA publication-title: Hum Brain Mapp – volume: 6 start-page: 160 year: 1998 end-page: 188 article-title: Analysis of fMRI data by blind separation into independent spatial components publication-title: Hum Brain Mapp – volume: 37 start-page: 511 year: 1997 end-page: 518 article-title: The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging publication-title: Magn Reson Med – volume: 447 start-page: 83 year: 2007 end-page: 86 article-title: Intrinsic functional architecture in the anaesthetized monkey brain publication-title: Nature – volume: 57 start-page: 1079 year: 2005 end-page: 1088 article-title: Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study publication-title: Biol Psychiatry – volume: 98 start-page: 4259 year: 2001 end-page: 4264 article-title: Medial prefrontal cortex and self‐referential mental activity: Relation to a default mode of brain function publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: 8 year: 2010 article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data publication-title: Front Syst Neurosci – volume: 244 start-page: S23 year: 1997 end-page: S28 article-title: Positron emission tomography studies of sleep and sleep disorders publication-title: J Neurol – volume: 133 start-page: 161 year: 2010 end-page: 171 article-title: Default network connectivity reflects the level of consciousness in non‐communicative brain‐damaged patients publication-title: Brain – volume: 100 start-page: 253 year: 2003 end-page: 258 article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis publication-title: Proc Natl Acad Sci USA – volume: 46 start-page: 540 year: 2008 end-page: 553 article-title: Data‐driven clustering reveals a fundamental subdivision of the human cortex into two global systems publication-title: Neuropsychologia – volume: 113 start-page: 1038 year: 2010 end-page: 1053 article-title: Breakdown of within‐ and between‐network resting state functional magnetic resonance imaging connectivity during propofol‐induced loss of consciousness publication-title: Anesthesiology – volume: 3 start-page: 537 year: 2004 end-page: 546 article-title: Brain function in coma, vegetative state, and related disorders publication-title: Lancet Neurol – volume: 25 start-page: 193 year: 2005 end-page: 205 article-title: Independent component analysis of fMRI group studies by self‐organizing clustering publication-title: Neuroimage – volume: 42 start-page: 85 year: 1997 end-page: 94 article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease publication-title: Ann Neurol – volume: 105 start-page: 4028 year: 2008 end-page: 4032 article-title: The maturing architecture of the brain's default network publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 722 year: 2007 end-page: 741 article-title: Self‐consciousness in non‐communicative patients publication-title: Conscious Cogn – volume: 47 start-page: 1105 year: 2009 end-page: 1115 article-title: Physiological recordings: Basic concepts and implementation during functional magnetic resonance imaging publication-title: Neuroimage – volume: 330 start-page: 1499 year: 1994 end-page: 1508 article-title: Medical aspects of the persistent vegetative state (1) publication-title: N Engl J Med – volume: 224 start-page: 184 year: 2002 end-page: 192 article-title: Multiple sclerosis: Low‐frequency temporal blood oxygen level‐dependent fluctuations indicate reduced functional connectivity initial results publication-title: Radiology – volume: 360 start-page: 1001 year: 2005 end-page: 1013 article-title: Investigations into resting‐state connectivity using independent component analysis publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 36 start-page: 144 year: 2007 end-page: 152 article-title: Amplitude of low frequency fluctuation within visual areas revealed by resting‐state functional MRI publication-title: Neuroimage – volume: 26 start-page: 905 year: 2008 end-page: 913 article-title: Independent component model of the default‐mode brain function: Combining individual‐level and population‐level analyses in resting‐state fMRI publication-title: Magn Reson Imaging – volume: 29 start-page: 740 year: 2008 end-page: 750 article-title: The effect of respiration variations on independent component analysis results of resting state functional connectivity publication-title: Hum Brain Mapp – volume: 31 start-page: 237 year: 2010 end-page: 246 article-title: Test‐retest reproducibility of the default‐mode network in healthy individuals publication-title: Hum Brain Mapp – volume: 29 start-page: 868 year: 2008 end-page: 874 article-title: Consciousness and cerebral baseline activity fluctuations publication-title: Hum Brain Mapp – volume: 16 start-page: 1484 year: 2004 end-page: 1492 article-title: Default‐mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation publication-title: J Cogn Neurosci – volume: 30 start-page: 256 year: 2009 end-page: 266 article-title: Model‐free group analysis shows altered BOLD FMRI networks in dementia publication-title: Hum Brain Mapp – volume: 103 start-page: 8275 year: 2006 end-page: 8280 article-title: Failing to deactivate: Resting functional abnormalities in autism publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 1713 year: 2010 end-page: 1726 article-title: Cognitive and default‐mode resting state networks: Do male and female brains “rest” differently? publication-title: Hum Brain Mapp – volume: 6 start-page: e159 year: 2008 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol – volume: 101 start-page: 3270 year: 2009 end-page: 3283 article-title: The global signal and observed anticorrelated resting state brain networks publication-title: J Neurophysiol – ident: e_1_2_7_42_1 doi: 10.1016/S1474-4422(04)00852-X – ident: e_1_2_7_46_1 doi: 10.1007/BF03160568 – ident: e_1_2_7_54_1 doi: 10.1155/2008/218519 – ident: e_1_2_7_24_1 doi: 10.1038/nrn2201 – ident: e_1_2_7_9_1 doi: 10.1002/hbm.20602 – ident: e_1_2_7_11_1 doi: 10.1227/00006123-198505000-00002 – ident: e_1_2_7_31_1 doi: 10.1162/0898929042568532 – ident: e_1_2_7_49_1 doi: 10.1002/ana.410420114 – ident: e_1_2_7_35_1 doi: 10.1371/journal.pbio.0060159 – ident: e_1_2_7_2_1 doi: 10.1016/S0079-6123(05)50017-7 – ident: e_1_2_7_17_1 doi: 10.1073/pnas.0601417103 – ident: e_1_2_7_59_1 doi: 10.1073/pnas.0905267106 – ident: e_1_2_7_16_1 doi: 10.1002/jmri.21590 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2004.10.042 – ident: e_1_2_7_53_1 doi: 10.1038/nn.2177 – ident: e_1_2_7_13_1 doi: 10.3389/neuro.09.017.2009 – ident: e_1_2_7_51_1 doi: 10.1016/j.neuroimage.2008.09.036 – ident: e_1_2_7_43_1 doi: 10.1016/j.concog.2007.04.004 – ident: e_1_2_7_57_1 doi: 10.1002/hbm.20505 – ident: e_1_2_7_21_1 doi: 10.1016/j.mri.2008.01.045 – ident: e_1_2_7_55_1 doi: 10.1016/j.mri.2006.09.042 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.1910340409 – ident: e_1_2_7_34_1 doi: 10.1073/pnas.071043098 – ident: e_1_2_7_65_1 doi: 10.1002/hbm.20968 – ident: e_1_2_7_18_1 doi: 10.1016/j.neuroimage.2005.08.035 – ident: e_1_2_7_32_1 doi: 10.1073/pnas.0135058100 – ident: e_1_2_7_10_1 doi: 10.1002/hbm.20672 – volume: 4 start-page: 8 year: 2010 ident: e_1_2_7_14_1 article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data publication-title: Front Syst Neurosci contributor: fullname: Cole DM – ident: e_1_2_7_45_1 doi: 10.1148/radiol.2241011005 – ident: e_1_2_7_27_1 doi: 10.1016/j.apmr.2004.02.033 – ident: e_1_2_7_29_1 doi: 10.1016/j.neuropsychologia.2007.10.003 – ident: e_1_2_7_26_1 doi: 10.1152/jn.90777.2008 – ident: e_1_2_7_23_1 doi: 10.1016/j.mri.2004.10.020 – ident: e_1_2_7_22_1 doi: 10.1073/pnas.0800376105 – ident: e_1_2_7_38_1 doi: 10.1073/pnas.0600674103 – ident: e_1_2_7_7_1 doi: 10.1002/hbm.20577 – ident: e_1_2_7_41_1 doi: 10.1016/j.neuroimage.2009.12.008 – ident: e_1_2_7_68_1 doi: 10.1016/j.neuroimage.2007.08.027 – ident: e_1_2_7_52_1 doi: 10.1016/j.neuroimage.2005.11.018 – ident: e_1_2_7_58_1 doi: 10.1016/j.concog.2008.03.013 – ident: e_1_2_7_36_1 doi: 10.1002/0471221317 – ident: e_1_2_7_67_1 doi: 10.1016/j.neuroimage.2007.01.054 – ident: e_1_2_7_47_1 doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 – ident: e_1_2_7_4_1 doi: 10.1016/j.biopsych.2005.02.021 – volume: 21 start-page: 1636 year: 2000 ident: e_1_2_7_15_1 article-title: Mapping functionally related regions of brain with functional connectivity MR imaging publication-title: AJNR Am J Neuroradiol contributor: fullname: Cordes D – ident: e_1_2_7_66_1 doi: 10.1002/(SICI)1097-0193(1999)8:2/3<151::AID-HBM13>3.0.CO;2-5 – ident: e_1_2_7_19_1 doi: 10.1016/j.neuroimage.2006.08.041 – ident: e_1_2_7_3_1 doi: 10.1016/S0003-9993(95)80031-X – ident: e_1_2_7_5_1 doi: 10.1016/j.tins.2003.09.015 – ident: e_1_2_7_25_1 doi: 10.1073/pnas.0504136102 – ident: e_1_2_7_40_1 doi: 10.1002/hbm.20813 – ident: e_1_2_7_61_1 doi: 10.1056/NEJM199405263302107 – ident: e_1_2_7_48_1 doi: 10.1002/hbm.20860 – ident: e_1_2_7_33_1 doi: 10.1073/pnas.0308627101 – ident: e_1_2_7_6_1 doi: 10.1098/rstb.2005.1634 – ident: e_1_2_7_12_1 doi: 10.1097/ALN.0b013e3181f697f5 – ident: e_1_2_7_62_1 doi: 10.1093/brain/awp313 – ident: e_1_2_7_44_1 doi: 10.1006/nimg.1997.0315 – ident: e_1_2_7_28_1 doi: 10.1093/cercor/bhk030 – ident: e_1_2_7_37_1 doi: 10.1016/j.neuroimage.2007.11.001 – ident: e_1_2_7_56_1 doi: 10.1162/089892902760191117 – year: 2011 ident: e_1_2_7_60_1 article-title: Resting state activity in patients with disorders of consciousness publication-title: Funct Neurol contributor: fullname: Soddu A – ident: e_1_2_7_63_1 doi: 10.1162/jocn.2010.21488 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroimage.2009.05.033 – ident: e_1_2_7_39_1 doi: 10.1016/S1053-8119(03)00097-1 – ident: e_1_2_7_50_1 doi: 10.1002/mrm.1910370407 – ident: e_1_2_7_64_1 doi: 10.1038/nature05758 |
RestrictionsOnAccess | restricted access |
SSID | ssj0011501 |
Score | 2.456887 |
Snippet | Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state... Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state... Abstract Objectives: Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by... Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state... OBJECTIVESRecent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state... Objectives: Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state... |
SourceID | pubmedcentral liege proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 778 |
SubjectTerms | Adolescent Adult Aged Aged, 80 and over Biological and medical sciences Brain - physiopathology Brain Mapping - methods Child consciousness Consciousness Disorders - physiopathology default mode Female fMRI Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Humans Image Interpretation, Computer-Assisted - methods independent component analysis Infant Investigative techniques, diagnostic techniques (general aspects) locked-in syndrome Magnetic Resonance Imaging - methods Male Medical sciences Middle Aged Nerve Net - physiopathology Nervous system Nervous system (semeiology, syndromes) Neurology Physical, chemical, mathematical & earth Sciences Physics Physique Physique, chimie, mathématiques & sciences de la terre Radiodiagnosis. Nmr imagery. Nmr spectrometry resting state vegetative state Young Adult |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED5NQ0J84WUDFhiThdCEhNKlTp3E4tMobAWp-zAxMSEky3YSVrVLUdMg4BM_gd-4X7I752WUFwnxqansJs71fPecfX4O4An6iCBPBrkvhOb-QMjUT7S2GKoInmdRFGtNgeL4KBqdDN6citM1eN6ehan5IboFN5oZzl7TBNem3LsiDT0z5z1OpZPR_vbDmNK5Xh531FEEdFywhS7Wl2iBW1ahgO91v1zxRddIrF_wc0a71ZQjqUsUU17Xt_gTAP09j_JnfOsc1MEt-NC-Wp2XMu1VS9Oz335hffzPd78NNxvgyvZrTbsDa1mxAZv7BQbt51_ZLnOppG6NfgOuj5sd-02Y1ieB3WkqhmCTpVmuq9ny4vsPKsLDKKV9XmAXNilYSend-JDXQ6YdWUpWsnnOGu7XktGiMUsbvlDXhNE8-vB5VZLFvgsnB6_eDkd-U-DBt0KE0ke0F2Y8NdyaVGIsFUfaiCSRqeVWJqnRsYn7BDEyzQMdR6mQoUWAFBhpAotf7sF6gWPcApbQIWOTD0JDCC-NpU2p1JkNMrQCJk88eNz-1epTzeOhasZmrlCayknTg12nBF0PvZhS4lss1LujQ_V-eHjcD6OBijx45rREzRdmoj5zRSTd7rqafVTaKpMpxLWJkkkihAc7K7rU3R7hZoj2Ep-73SqXakxIqRCKxSHFe9wD1jXj5KcdHV1kKFolOdHNIYb24H6tilf3xjiXcoc9iFeUtOtAQ15tKSZnjl88wjGJPorsqdPBv8tLjV6M3cWDf-_6EG4g5uR18tM2rC8XVfYIcd3S7LgJfAmywUq1 priority: 102 providerName: Wiley-Blackwell |
Title | Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness |
URI | https://api.istex.fr/ark:/67375/WNG-ZCGR1364-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21249 https://www.ncbi.nlm.nih.gov/pubmed/21484953 https://www.proquest.com/docview/1517355972 https://search.proquest.com/docview/927988352 http://orbi.ulg.ac.be/handle/2268/98855 https://pubmed.ncbi.nlm.nih.gov/PMC6870518 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED9tQ0K8INj4ExiVhdCEhLKmTpzYj6NiK0id0MTExItlO8lWrU2npkXwxkfgM_JJuHOSQgW88JREtuLEd5f7XfzzHcAL9BFRKZMyFMLwMBEqD6UxDkMVwcsiTTNjKFAcn6aj8-TdhbjYAtHthfGkfWcnh9V0dlhNrjy38mbm-h1PrP9-PExRycRA9rdhGxW0C9HbpQNEOD7KQt8aKvz0dumEIt6_srNDTtWWfQrgRBK3csMf3aKp_YLHKa1YE0_S1DhVZVPj4m8g9E8u5e8Y1zup43twt0WX7Kh5i_uwVVS7sHdUYWQ9-8oOmOd7-h_pu3B73C6r78F1s13Xb3liiAhZXpRmNV3--PadKuUw4p3PK-zCJhWriYONg7wdMuMzmhQ1m5esTdBaM_qzy_I2qadvwpAbHe18VdNn9QGcH7_5MByFbRWG0AkRqxAhWVzw3HJnc4UBT5YaK6RUueNOydyazGYDwgGF4ZHJ0lyo2CGKiayykcOLh7BT4TM-BiZpJ7Atk9gSDMsz5XKqR-aiAk3VljKA550s9E2TbEM3aZW5RtlpL7sADryU1j3M4prYaZnQH09P9KfhydkgThOdBvDKi1HPF3aiP3NNmbT9-Wp6qY3TttAIPqVWUgoRQG9D2OvbIyaMUd9w3P1O-rq181ojXspiCsp4AGzdjBZKyy6mKnBqteKUEw6BbgCPGl35de9WCQPINrRo3YEeebMFbcInAW9tIICXXt_-PV969HrsT5789yBP4Q7iRN4QlvZhZ7lYFc8Qiy1tD6OQM97zFvgTUZY0pQ |
link.rule.ids | 230,315,730,783,787,888,1378,27936,27937,46306,46730,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwGP00Ngm44WcDFhjDQmhCQmlTJ07sy1GxdbBWCG0wcWPZTrJVbdOpaRFwxSPwjDwJn52kUH4u4KqpbMWJfWyfLz4-BniCc0SQ8yj3GVPUj5hIfa6UwVCF0TyL40QpGyj2B3HvNHp5xs7WgDV7YZxo3-hhqxhPWsXwwmkrLyem3ejE2q_73RhBxjq8fQU2sL8GUROk14sHyHFcnIWzqy9w8G0MhQLavtCTFrXnLTsT4IhbdeXKjLRhK_cj_o7tmrVVSqoSKyuvTrn4Ew39XU35M8t109TBTXjbvGClThm1FnPdMp9_8X785xq4BTdq4kr2q-TbsJYVm7C1X2DQPvlE9oiTkrpv9JtwtV-v2G_BqNoJ7HZTESSbJM1ytRjPv335ag_hIVbSPi0wCxkWpLTybizkqEuUM0vJSjLNSe39WhL70ZiktV-oS8JoHufw6aK0I_YdOD14cdLt-fUBD75hLBQ-sr0wo6mmRqcCY6kkVppxLlJDjeCpVolOOpZiZIoGKolTJkKDBCnQQgcG_9yF9QKfcRsIt5uMdR6F2jK8NBEmtUedmSDDUUDn3IPHTSPLy8rHQ1aOzVQiKKQDhQd7rvmXOdRsZIVvCZPvBofyfffwTSeMIxl78MzhQ05neig_UGlNut31YnwulZE6k8hruRScM-bB7gqKlrdHuhliQ2K5Ow2sZD2ElBKpWBLaeI96QJbJ2Pntio4qMqxaKai1m0MO7cG9CoQ_7l2j24NkBZ7LDPaRV1MQbM5fvAaXB08dkP9eX7L3vO8u7v93IY_gWu-kfyyPjwavHsB1pKO00kXtwPp8tsgeIuWb613Xwb8DJ-ZVtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGP0EmzTxwmXjEhjDQmhCQmlTJ06cx1HoOqDThJiY9mL5krCqbVo1LQKe-An8Rn4Jn52krFxe9tRUtuLEObHPFx-fD-AZzhFBzqPcZ0xSP2Kp8bmUGkMVRvMsjhMpbaA4OI77p9GbM3Z2KdWXE-1rNWwV40mrGF44beVsotuNTqx9MujGCDLW4e2ZydvXYRPf2SBuAvV6AQF5jou1cIb1UxyAG1OhgLYv1KRFbc5lZwQccauwXJuVNm0Hf8HfsV23tmpJWWKH5VWmi39R0b8VlZeZrpuqerfgvLnJSqEyai0XqqW__eH_eKVeuA03awJLDqoqd-BaVmzDzkGBwfvkK9knTlLqvtVvw9agXrnfgVG1I9jtqiJIOonJcrkcL35-_2GT8RArbZ8WWIUMC1JamTc2ctQl0pmmZCWZ5qT2gC2J_XhMTO0b6oowqse5fLos7ch9F057rz90-36d6MHXjIWpj6wvzKhRVCuTYkyVxFIxzlOjqU65UTJRScdSjUzSQCaxYWmokSgFKlWBxj_3YKPAa3wAhNvNxiqPQmWZnklSbWzKMx1kOBqonHvwtHnQYlb5eYjKuZkKBIZwwPBg30FgVUPOR1YAlzDx8fhQnHcP33fCOBKxBy8cRsR0robiMxXWrNsdL8efhNRCZQL5LRcp54x5sLeGpNXpkXaG-DCx3d0GWqIeSkqBlCwJbdxHPSCrYhwE7MqOLDLsWpFSazuHXNqD-xUQf5-7RrgHyRpEVxXsJa-XIOCcz3gNMA-eOzD_v79E_-XAHTy8ciNPYOvkVU-8Ozp--whuICullTxqFzYW82X2GJnfQu25d_wXuQ5YNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+the+default%E2%80%90mode+component+in+spatial+IC+analyses+of+patients+with+disorders+of+consciousness&rft.jtitle=Human+brain+mapping&rft.au=Soddu%2C+Andrea&rft.au=Vanhaudenhuyse%2C+Audrey&rft.au=Bahri%2C+Mohamed+Ali&rft.au=Bruno%2C+Marie%E2%80%90Aurelie&rft.date=2012-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=33&rft.issue=4&rft.spage=778&rft.epage=796&rft_id=info:doi/10.1002%2Fhbm.21249&rft_id=info%3Apmid%2F21484953&rft.externalDBID=PMC6870518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |