Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness

Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciou...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 33; no. 4; pp. 778 - 796
Main Authors Soddu, Andrea, Vanhaudenhuyse, Audrey, Bahri, Mohamed Ali, Bruno, Marie-Aurelie, Boly, Mélanie, Demertzi, Athena, Tshibanda, Jean-Flory, Phillips, Christophe, Stanziano, Mario, Ovadia-Caro, Smadar, Nir, Yuval, Maquet, Pierre, Papa, Michele, Malach, Rafael, Laureys, Steven, Noirhomme, Quentin
Format Journal Article Web Resource
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2012
Wiley-Liss
John Wiley & Sons, Inc
Wiley Liss, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis‐based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation‐corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain‐damaged patients [locked‐in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default‐mode areas, when compared with controls, contrary to locked‐in patients who showed near‐normal connectivity. In the minimally conscious‐state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting‐state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non‐neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
AbstractList Abstract Objectives: Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis‐based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation‐corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain‐damaged patients [locked‐in syndrome ( n = 2), minimally conscious ( n = 1), and vegetative state ( n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default‐mode areas, when compared with controls, contrary to locked‐in patients who showed near‐normal connectivity. In the minimally conscious‐state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting‐state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non‐neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
Objectives: Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis‐based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation‐corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain‐damaged patients [locked‐in syndrome ( n = 2), minimally conscious ( n = 1), and vegetative state ( n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default‐mode areas, when compared with controls, contrary to locked‐in patients who showed near‐normal connectivity. In the minimally conscious‐state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting‐state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non‐neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. A spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. All vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. When assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients.
Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
OBJECTIVESRecent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. EXPERIMENTAL DESIGNA spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. PRINCIPAL OBSERVATIONSAll vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. CONCLUSIONSWhen assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients.
Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis‐based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation‐corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain‐damaged patients [locked‐in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default‐mode areas, when compared with controls, contrary to locked‐in patients who showed near‐normal connectivity. In the minimally conscious‐state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting‐state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non‐neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. Experimental design: A spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. Principal observations: All vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. Conclusions: When assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients. Hum Brain Mapp, 2011. (c) 2011 Wiley-Liss, Inc.
Author Ovadia-Caro, Smadar
Malach, Rafael
Maquet, Pierre
Phillips, Christophe
Boly, Mélanie
Bahri, Mohamed Ali
Noirhomme, Quentin
Stanziano, Mario
Bruno, Marie-Aurelie
Soddu, Andrea
Laureys, Steven
Demertzi, Athena
Tshibanda, Jean-Flory
Vanhaudenhuyse, Audrey
Nir, Yuval
Papa, Michele
AuthorAffiliation 1 Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium
7 Department of Psychiatry, University of Wisconsin, Madison, Wisconsin
6 Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
3 Neurology Department, CHU Sart Tilman Hospital, University of Liège, Liège, Belgium
4 Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
5 Medicina Pubblica Clinica e Preventiva, Second University of Naples, Naples, Italy
2 Cyclotron Research Centre, University of Liège, Liège, Belgium
AuthorAffiliation_xml – name: 1 Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium
– name: 2 Cyclotron Research Centre, University of Liège, Liège, Belgium
– name: 7 Department of Psychiatry, University of Wisconsin, Madison, Wisconsin
– name: 6 Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
– name: 4 Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
– name: 5 Medicina Pubblica Clinica e Preventiva, Second University of Naples, Naples, Italy
– name: 3 Neurology Department, CHU Sart Tilman Hospital, University of Liège, Liège, Belgium
Author_xml – sequence: 1
  givenname: Andrea
  surname: Soddu
  fullname: Soddu, Andrea
  email: andrea.soddu@ulg.ac.be
  organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium
– sequence: 2
  givenname: Audrey
  surname: Vanhaudenhuyse
  fullname: Vanhaudenhuyse, Audrey
  organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium
– sequence: 3
  givenname: Mohamed Ali
  surname: Bahri
  fullname: Bahri, Mohamed Ali
  organization: Cyclotron Research Centre, University of Liège, Liège, Belgium
– sequence: 4
  givenname: Marie-Aurelie
  surname: Bruno
  fullname: Bruno, Marie-Aurelie
  organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium
– sequence: 5
  givenname: Mélanie
  surname: Boly
  fullname: Boly, Mélanie
  organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium
– sequence: 6
  givenname: Athena
  surname: Demertzi
  fullname: Demertzi, Athena
  organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium
– sequence: 7
  givenname: Jean-Flory
  surname: Tshibanda
  fullname: Tshibanda, Jean-Flory
  organization: Neurology Department, CHU Sart Tilman Hospital, University of Liège, Liège, Belgium
– sequence: 8
  givenname: Christophe
  surname: Phillips
  fullname: Phillips, Christophe
  organization: Cyclotron Research Centre, University of Liège, Liège, Belgium
– sequence: 9
  givenname: Mario
  surname: Stanziano
  fullname: Stanziano, Mario
  organization: Medicina Pubblica Clinica e Preventiva, Second University of Naples, Naples, Italy
– sequence: 10
  givenname: Smadar
  surname: Ovadia-Caro
  fullname: Ovadia-Caro, Smadar
  organization: Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
– sequence: 11
  givenname: Yuval
  surname: Nir
  fullname: Nir, Yuval
  organization: Department of Psychiatry, University of Wisconsin, Madison, Wisconsin
– sequence: 12
  givenname: Pierre
  surname: Maquet
  fullname: Maquet, Pierre
  organization: Cyclotron Research Centre, University of Liège, Liège, Belgium
– sequence: 13
  givenname: Michele
  surname: Papa
  fullname: Papa, Michele
  organization: Medicina Pubblica Clinica e Preventiva, Second University of Naples, Naples, Italy
– sequence: 14
  givenname: Rafael
  surname: Malach
  fullname: Malach, Rafael
  organization: Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
– sequence: 15
  givenname: Steven
  surname: Laureys
  fullname: Laureys, Steven
  organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium
– sequence: 16
  givenname: Quentin
  surname: Noirhomme
  fullname: Noirhomme, Quentin
  organization: Coma Science Group, Cyclotron Research Centre, University of Liège, Liège, Belgium
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25638709$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21484953$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFDEUhoNUbLt64R-QgIh4MW0-NpPJTUEX3S5UBVEEb0ImyeymZpI1mWndf2_2o_UDvMpJznPec96cU3AUYrAAPMXoDCNEzldtf0YwmYoH4AQjwSuEBT3axjWrxJTjY3Ca8zVCGDOEH4FjgqfNVDB6AtzC2DC4buPCEg4rC43t1OiHqo_GQh37dWkVBugCzGs1OOXhYgZVUH6TbYaxg9vXQmR464YVNC7HZGzapXQMWbs45mBzfgwedspn--RwTsCXd28_zy6rq4_zxez1VaUZo6JqGKaWmJbo1ggkal6rljWNMJpo0ZhW8ZYXq5hZRZDitWGCasoYakWLdLlMwMVedz22vTW6zJaUl-vkepU2Mion_84Et5LLeCPrhiOGmyJA9gLe2aWVMbVO3pBd4S4e_VIqLVsrCakbKZqmDD4BLw9dU_wx2jzI3mVtvVfBlg-QgvACUkYK-fwf8jqOqXxolphhXqwIvqVe7SmdYs7JdvcGMJLbpcuydLlbemGf_en4nrzbcgFeHACVtfJdUkG7_JtjNS3et0Lne-7Webv5f0d5-eb9XetqX-HyYH_eV6j0Xdaccia_fpjLb7P5J0zrqazpL6P11Ps
CitedBy_id crossref_primary_10_1016_j_bica_2017_10_001
crossref_primary_10_1016_j_nicl_2018_07_025
crossref_primary_10_1089_brain_2014_0230
crossref_primary_10_1016_j_brainresbull_2024_111023
crossref_primary_10_1038_s41598_017_00392_5
crossref_primary_10_1007_s11910_013_0375_y
crossref_primary_10_1089_brain_2015_0369
crossref_primary_10_1016_j_heares_2013_07_010
crossref_primary_10_1016_j_clinph_2021_12_001
crossref_primary_10_1177_1550059412474929
crossref_primary_10_17340_jkna_2020_1_2
crossref_primary_10_1016_j_cub_2013_07_075
crossref_primary_10_1371_journal_pone_0298110
crossref_primary_10_1055_s_0043_1775792
crossref_primary_10_1016_j_nicl_2015_11_004
crossref_primary_10_3174_ng_2200001
crossref_primary_10_1038_nrneurol_2013_279
crossref_primary_10_1177_0300060517705477
crossref_primary_10_1109_JBHI_2022_3218652
crossref_primary_10_1016_j_clineuro_2024_108353
crossref_primary_10_1016_j_neuropsychologia_2016_01_022
crossref_primary_10_1002_hbm_24050
crossref_primary_10_1016_j_nicl_2021_102797
crossref_primary_10_1016_j_jns_2013_08_009
crossref_primary_10_1161_STROKEAHA_114_007645
crossref_primary_10_1213_ANE_0000000000001721
crossref_primary_10_1371_journal_pone_0037238
crossref_primary_10_1089_brain_2011_0049
crossref_primary_10_1002_brb3_626
crossref_primary_10_1093_brain_awv169
crossref_primary_10_3389_fnhum_2015_00105
crossref_primary_10_1016_j_acra_2015_10_013
crossref_primary_10_1007_s13546_017_1301_4
crossref_primary_10_1093_nc_nix010
crossref_primary_10_1007_s11910_016_0642_9
crossref_primary_10_1016_j_cvsm_2019_12_002
crossref_primary_10_1016_j_nicl_2016_06_003
crossref_primary_10_3389_fnins_2018_00994
crossref_primary_10_3390_jcm12041377
crossref_primary_10_3389_fnbeh_2022_1001519
crossref_primary_10_1093_brain_awaa159
crossref_primary_10_1002_hbm_23269
crossref_primary_10_1002_hbm_23429
crossref_primary_10_1016_j_bandc_2018_11_007
crossref_primary_10_3390_brainsci11060749
crossref_primary_10_1007_s00234_022_02911_2
crossref_primary_10_1007_s00415_019_09390_1
crossref_primary_10_1089_brain_2012_0117
crossref_primary_10_1002_ana_23635
crossref_primary_10_1016_S1474_4422_16_00111_3
crossref_primary_10_1212_WNL_0000000000001404
crossref_primary_10_1002_brb3_424
crossref_primary_10_1007_s12264_018_0250_6
crossref_primary_10_1038_s41598_017_02950_3
crossref_primary_10_36425_rehab624889
crossref_primary_10_1007_s00415_011_6114_x
crossref_primary_10_3109_02699052_2015_1118765
crossref_primary_10_1155_2018_8656975
crossref_primary_10_1007_s40719_015_0018_7
crossref_primary_10_3389_fnins_2016_00064
crossref_primary_10_1016_j_nicl_2013_12_005
crossref_primary_10_1097_WNR_0000000000000853
crossref_primary_10_3389_fnins_2021_646543
crossref_primary_10_1016_j_brainres_2012_05_006
crossref_primary_10_3389_fnins_2020_555093
crossref_primary_10_1111_ane_12299
crossref_primary_10_3389_fneur_2018_00861
crossref_primary_10_1016_j_nicl_2015_02_008
crossref_primary_10_1089_neu_2015_4003
crossref_primary_10_1038_s41582_020_00428_x
crossref_primary_10_1016_j_cortex_2013_11_005
crossref_primary_10_1016_j_neuroimage_2021_118407
crossref_primary_10_3389_fnagi_2023_1213904
crossref_primary_10_1016_S1474_4422_12_70154_0
crossref_primary_10_1371_journal_pone_0036222
crossref_primary_10_1016_j_neulet_2016_05_045
crossref_primary_10_1177_0333102417738251
crossref_primary_10_1016_j_cortex_2019_01_014
crossref_primary_10_1002_jnr_24115
crossref_primary_10_1097_WNP_0000000000000846
crossref_primary_10_1016_j_neulet_2017_04_036
crossref_primary_10_1136_jnnp_2015_310958
crossref_primary_10_1093_braincomms_fcad319
crossref_primary_10_1111_ene_14151
crossref_primary_10_1155_2014_237898
crossref_primary_10_1016_j_clinph_2013_06_016
crossref_primary_10_2217_fnl_12_77
crossref_primary_10_1093_bja_aex257
crossref_primary_10_1016_j_brs_2020_07_012
crossref_primary_10_1146_annurev_neuro_062012_170339
crossref_primary_10_1136_postgradmedj_2014_133211
crossref_primary_10_3171_2015_7_JNS15617
crossref_primary_10_1227_NEU_0000000000000307
crossref_primary_10_1016_j_euroneuro_2018_03_013
crossref_primary_10_1016_j_neuroimage_2017_01_020
crossref_primary_10_3109_02699052_2014_920522
crossref_primary_10_1007_s11682_015_9417_1
crossref_primary_10_1111_ejn_16394
crossref_primary_10_3390_brainsci12030355
Cites_doi 10.1016/S1474-4422(04)00852-X
10.1007/BF03160568
10.1155/2008/218519
10.1038/nrn2201
10.1002/hbm.20602
10.1227/00006123-198505000-00002
10.1162/0898929042568532
10.1002/ana.410420114
10.1371/journal.pbio.0060159
10.1016/S0079-6123(05)50017-7
10.1073/pnas.0601417103
10.1073/pnas.0905267106
10.1002/jmri.21590
10.1016/j.neuroimage.2004.10.042
10.1038/nn.2177
10.3389/neuro.09.017.2009
10.1016/j.neuroimage.2008.09.036
10.1016/j.concog.2007.04.004
10.1002/hbm.20505
10.1016/j.mri.2008.01.045
10.1016/j.mri.2006.09.042
10.1002/mrm.1910340409
10.1073/pnas.071043098
10.1002/hbm.20968
10.1016/j.neuroimage.2005.08.035
10.1073/pnas.0135058100
10.1002/hbm.20672
10.1148/radiol.2241011005
10.1016/j.apmr.2004.02.033
10.1016/j.neuropsychologia.2007.10.003
10.1152/jn.90777.2008
10.1016/j.mri.2004.10.020
10.1073/pnas.0800376105
10.1073/pnas.0600674103
10.1002/hbm.20577
10.1016/j.neuroimage.2009.12.008
10.1016/j.neuroimage.2007.08.027
10.1016/j.neuroimage.2005.11.018
10.1016/j.concog.2008.03.013
10.1002/0471221317
10.1016/j.neuroimage.2007.01.054
10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
10.1016/j.biopsych.2005.02.021
10.1002/(SICI)1097-0193(1999)8:2/3<151::AID-HBM13>3.0.CO;2-5
10.1016/j.neuroimage.2006.08.041
10.1016/S0003-9993(95)80031-X
10.1016/j.tins.2003.09.015
10.1073/pnas.0504136102
10.1002/hbm.20813
10.1056/NEJM199405263302107
10.1002/hbm.20860
10.1073/pnas.0308627101
10.1098/rstb.2005.1634
10.1097/ALN.0b013e3181f697f5
10.1093/brain/awp313
10.1006/nimg.1997.0315
10.1093/cercor/bhk030
10.1016/j.neuroimage.2007.11.001
10.1162/089892902760191117
10.1162/jocn.2010.21488
10.1016/j.neuroimage.2009.05.033
10.1016/S1053-8119(03)00097-1
10.1002/mrm.1910370407
10.1038/nature05758
ContentType Journal Article
Web Resource
Contributor GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
Contributor_xml – sequence: 1
  fullname: GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
Copyright Copyright © 2011 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
Q33
5PM
DOI 10.1002/hbm.21249
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Technology Research Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Physics
DocumentTitleAlternate Identifying the DMN in DOC patients
EISSN 1097-0193
EndPage 796
ExternalDocumentID oai_orbi_ulg_ac_be_2268_98855
3278351841
10_1002_hbm_21249
21484953
25638709
HBM21249
ark_67375_WNG_ZCGR1364_6
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
ABHUG
ACXME
ADAWD
AFVGU
AGJLS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
Q33
5PM
ID FETCH-LOGICAL-c5539-8513e2db2cbd909676ab5889dc2c98dba7b712415ea20a76d593c3550b9b0c593
IEDL.DBID RPM
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 17 21:26:55 EDT 2024
Fri Nov 08 14:42:06 EST 2024
Fri Aug 16 20:57:09 EDT 2024
Thu Oct 10 22:10:07 EDT 2024
Thu Sep 26 16:09:14 EDT 2024
Sat Sep 28 07:59:15 EDT 2024
Tue Jan 23 04:49:51 EST 2024
Sat Aug 24 00:59:22 EDT 2024
Wed Oct 30 09:53:17 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Coma
Human
default mode
Nervous system diseases
Radiodiagnosis
consciousness
Locked-in syndrome
Consciousness impairment
Spatial analysis
Vegetative state
Nuclear magnetic resonance imaging
fMRI
independent component analysis
resting state
Neurological disorder
Language English
License CC BY 4.0
Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5539-8513e2db2cbd909676ab5889dc2c98dba7b712415ea20a76d593c3550b9b0c593
Notes ArticleID:HBM21249
ark:/67375/WNG-ZCGR1364-6
istex:8CE9EFAD8F8DE8E370832962C4F288EC798ECD42
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Progetto FIRB Internazionalizzazione
scopus-id:2-s2.0-84858292861
OpenAccessLink https://europepmc.org/articles/pmc6870518?pdf=render
PMID 21484953
PQID 1517355972
PQPubID 996345
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870518
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_98855
proquest_miscellaneous_927988352
proquest_journals_1517355972
crossref_primary_10_1002_hbm_21249
pubmed_primary_21484953
pascalfrancis_primary_25638709
wiley_primary_10_1002_hbm_21249_HBM21249
istex_primary_ark_67375_WNG_ZCGR1364_6
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
John Wiley & Sons, Inc
Wiley Liss, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: John Wiley & Sons, Inc
– name: Wiley Liss, Inc
References Fox MD, Zhang D, Snyder AZ, Raichle ME ( 2009): The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101: 3270-3283.
Mitra PP, Ogawa S, Hu X, Ugurbil K ( 1997): The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging. Magn Reson Med 37: 511-518.
Soddu A, Vanhaudenhuyse A, Demertzi A, Bruno MA, Tshibanda L, Di H, Boly M, Papa M, Laureys S, Noirhomme Q: Resting state activity in patients with disorders of consciousness. Funct Neurol 2011 (in press).
Baars BJ, Ramsoy TZ, Laureys S ( 2003): Brain, conscious experience and the observing self. Trends Neurosci 26: 671-675.
Calhoun VD, Eichele T, Pearlson G ( 2009): Functional brain networks in schizophrenia: A review. Front Hum Neurosci 3: 17.
Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA ( 2009): The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 44: 893-905.
Vanhaudenhuyse A, Demertzi A, Schabus M, Noirhomme Q, Bredart S, Boly M, Phillips C, Soddu A, Luxen A, Moonen G, Laureys S ( 2011): Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 23(3):570-578.
Jafri MJ, Pearlson GD, Stevens M, Calhoun VD ( 2008): A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39: 1666-1681.
Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA 106: 13040-13045.
Rombouts SA, Damoiseaux JS, Goekoop R, Barkhof F, Scheltens P, Smith SM, Beckmann CF ( 2009): Model-free group analysis shows altered BOLD FMRI networks in dementia. Hum Brain Mapp 30: 256-266.
Greicius MD, Srivastava G, Reiss AL, Menon V ( 2004): Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci USA 101: 4637-4642.
Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, Mathews VP ( 2002): Multiple sclerosis: Low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 224: 184-192.
De Martino F, Gentile F, Esposito F, Balsi M, Di Salle F, Goebel R, Formisano E ( 2007): Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. Neuroimage 34: 177-194.
Hagmann P, Cammoun L, Gigandet X, Gerhard S, Ellen Grant P, Wedeen V, Meuli R, Thiran JP, Honey CJ, Sporns O ( 2008): Mapping the structural core of human cerebral cortex. PLoS Biol 6: e159.
Ylipaavalniemi J, Vigario R ( 2008): Analyzing consistency of independent components: An fMRI illustration. Neuroimage 39: 169-180.
Boly M, Phillips C, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, Peigneux P, Faymonville ME, Maquet P, Laureys S ( 2008): Consciousness and cerebral baseline activity fluctuations. Hum Brain Mapp 29: 868-874.
Formisano E, Esposito F, Di Salle F, Goebel R ( 2004): Cortex-based independent component analysis of fMRI time series. Magn Reson Imaging 22: 1493-1504.
Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE ( 1997): Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 42: 85-94.
Cole DM, Smith SM, Beckmann CF ( 2010): Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4: 8.
Esposito F, Aragri A, Pesaresi I, Cirillo S, Tedeschi G, Marciano E, Goebel R, Di Salle F ( 2008): Independent component model of the default-mode brain function: Combining individual-level and population-level analyses in resting-state fMRI. Magn Reson Imaging 26: 905-913.
Rainville P, Hofbauer RK, Bushnell MC, Duncan GH, Price DD ( 2002): Hypnosis modulates activity in brain structures involved in the regulation of consciousness. J Cogn Neurosci 14: 887-901.
Maquet P ( 1997): Positron emission tomography studies of sleep and sleep disorders. J Neurol 244: S23-S28.
Weissman-Fogel I, Moayedi M, Taylor KS, Pope G, Davis KD ( 2010): Cognitive and default-mode resting state networks: Do male and female brains "rest" differently? Hum Brain Mapp 31: 1713-1726.
American Congress of Rehabilitation Medicine ( 1995): Recommendations for use of uniform nomenclature pertinent to patients with severe alterations in consciousness. Arch Phys Med Rehabil 76: 205-209.
Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME ( 2007): Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447: 83-86.
Nir Y, Hasson U, Levy I, Yeshurun Y, Malach R ( 2006): Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage 30: 1313-1324.
Birn RM, Murphy K, Bandettini PA ( 2008): The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp 29: 740-750.
Boveroux P, Vanhaudenhuyse A, Bruno MA, Noirhomme Q, Lauwick S, Luxen A, Degueldre C, Plenevaux A, Schnakers C, Phillips C, Brichant JF, Bonhomme V, Maquet P, Greicius MD, Laureys S, Boly M ( 2010): Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113: 1038-1053.
Biswal B, Yetkin FZ, Haughton VM, Hyde JS ( 1995): Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34: 537-541.
Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, Boveroux P, Garweg C, Lambermont B, Phillips C, Luxen A, Moonen G, Bassetti C, Maquet P, Laureys S ( 2009): Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30: 2393-2400.
Koch W, Teipel S, Mueller S, Buerger K, Bokde ALW, Hampel H, Coates U, Reiser M ( 2010): Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter? Neuroimage 15: 280-287.
Xiong J, Parsons LM, Gao JH, Fox PT ( 1999): Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 8: 151-156.
Dai W, Carmichael OT, Lopez OL, Becker JT, Kuller LH, Gach HM ( 2008): Effects of image normalization on the statistical analysis of perfusion MRI in elderly brains. J Magn Reson Imaging 28: 1351-1360.
De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM ( 2006): fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29: 1359-1367.
Born JD, Albert A, Hans P, Bonnal J ( 1985): Relative prognostic value of best motor response and brain stem reflexes in patients with severe head injury. Neurosurgery 16: 595-601.
Alkire MT, Miller J ( 2005): General anesthesia and the neural correlates of consciousness. Prog Brain Res 150: 229-244.
Giacino JT, Kalmar K, Whyte J ( 2004): The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85: 2020-2029.
Perlbarg V, Bellec P, Anton JL, Pelegrini-Issac M, Doyon J, Benali H ( 2007): CORSICA: Correction of structured noise in fMRI by automatic identification of ICA components. Magn Reson Imaging 25: 35-46.
Fox MD, Raichle ME ( 2007): Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700-711.
Golland Y, Bentin S, Gelbard H, Benjamini Y, Heller R, Nir Y, Hasson U, Malach R ( 2007): Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb Cortex 17: 766-777.
Beckmann CF, DeLuca M, Devlin JT, Smith SM ( 2005): Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360: 1001-1013.
Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, Veijola J, Moilanen I, Isohanni M, Zang YF, Tervonen O ( 2009): Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30: 3865-3886.
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME ( 2005): The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673-9678.
Gusnard DA, Akbudak E, Shulman GL, Raichle ME ( 2001): Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proc Natl Acad Sci USA 98: 4259-4264.
Laureys S, Owen AM, Schiff ND ( 2004): Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3: 537-546.
Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant JF, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M ( 2010): Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133: 161-171.
Meindl T, Teipel S, Elmouden R, Mueller S, Koch W, Dietrich O, Coates U, Reiser M, Glaser C ( 2010): Test-retest reproducibility of the default-mode network in healthy individuals. Hum Brain Mapp 31: 237-246.
The Multi-Society Task Force on PVS ( 1994): Medical aspects of the persistent vegetative state (1). N Engl J Med 330: 1499-1508.
Esposito F, Scarabino T, Hyvarinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F ( 2005): Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25: 193-205.
Greicius MD, Menon V ( 2004): Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. J Cogn Neurosci 16: 1484-1492.
Kiviniemi V, Kantola JH, Jauhiainen J, Hyvärinen A, Tervonen O ( 2003): Independent component analysis of nondeterministic fMRI signal sources. Neuroim
2004; 22
2009; 44
2009; 47
2002; 14
1994; 330
2006; 30
2010; 15
1997; 42
1995; 34
1995; 76
2008; 39
2004; 3
2008; 105
2008; 6
2003; 19
2007; 34
2008; 2008
2007; 36
2005; 25
2001
2005; 102
2008; 29
2002; 224
2010; 113
2008; 28
2007; 8
2008; 26
2006; 29
2011; 23
2010; 4
1985; 16
2007; 25
2001; 98
2007; 17
2004; 101
2004; 85
2010; 31
2005; 150
2007; 447
2011
2000; 21
2008; 17
2008; 11
1999; 8
2007; 16
2009; 30
2005; 360
2004; 16
1997; 37
1997; 244
2010; 133
2003; 26
2009; 101
2008; 46
2009; 3
1998; 7
1998; 6
2003; 100
2005; 57
2006; 103
2009; 106
e_1_2_7_5_1
Cordes D (e_1_2_7_15_1) 2000; 21
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Soddu A (e_1_2_7_60_1) 2011
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
Cole DM (e_1_2_7_14_1) 2010; 4
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 21
  start-page: 1636
  year: 2000
  end-page: 1644
  article-title: Mapping functionally related regions of brain with functional connectivity MR imaging
  publication-title: AJNR Am J Neuroradiol
– volume: 39
  start-page: 169
  year: 2008
  end-page: 180
  article-title: Analyzing consistency of independent components: An fMRI illustration
  publication-title: Neuroimage
– volume: 17
  start-page: 457
  year: 2008
  end-page: 467
  article-title: Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain
  publication-title: Conscious Cogn
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  article-title: Consistent resting‐state networks across healthy subjects
  publication-title: Proc Natl Acad Sci USA
– volume: 76
  start-page: 205
  year: 1995
  end-page: 209
  article-title: Recommendations for use of uniform nomenclature pertinent to patients with severe alterations in consciousness
  publication-title: Arch Phys Med Rehabil
– volume: 16
  start-page: 595
  year: 1985
  end-page: 601
  article-title: Relative prognostic value of best motor response and brain stem reflexes in patients with severe head injury
  publication-title: Neurosurgery
– volume: 14
  start-page: 887
  year: 2002
  end-page: 901
  article-title: Hypnosis modulates activity in brain structures involved in the regulation of consciousness
  publication-title: J Cogn Neurosci
– volume: 25
  start-page: 35
  year: 2007
  end-page: 46
  article-title: CORSICA: Correction of structured noise in fMRI by automatic identification of ICA components
  publication-title: Magn Reson Imaging
– volume: 8
  start-page: 151
  year: 1999
  end-page: 156
  article-title: Interregional connectivity to primary motor cortex revealed using MRI resting state images
  publication-title: Hum Brain Mapp
– volume: 23
  start-page: 570
  issue: 3
  year: 2011
  end-page: 578
  article-title: Two distinct neuronal networks mediate the awareness of environment and of self
  publication-title: J Cogn Neurosci
– year: 2001
– volume: 15
  start-page: 280
  year: 2010
  end-page: 287
  article-title: Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?
  publication-title: Neuroimage
– volume: 3
  start-page: 17
  year: 2009
  article-title: Functional brain networks in schizophrenia: A review
  publication-title: Front Hum Neurosci
– volume: 26
  start-page: 671
  year: 2003
  end-page: 675
  article-title: Brain, conscious experience and the observing self
  publication-title: Trends Neurosci
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nat Rev Neurosci
– volume: 85
  start-page: 2020
  year: 2004
  end-page: 2029
  article-title: The JFK Coma Recovery Scale‐Revised: Measurement characteristics and diagnostic utility
  publication-title: Arch Phys Med Rehabil
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci USA
– volume: 29
  start-page: 1359
  year: 2006
  end-page: 1367
  article-title: fMRI resting state networks define distinct modes of long‐distance interactions in the human brain
  publication-title: Neuroimage
– volume: 2008
  start-page: 218519
  year: 2008
  article-title: Contribution of exploratory methods to the investigation of extended large‐scale brain networks in functional MRI: Methodologies, results, and challenges
  publication-title: Int J Biomed Imaging
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 1493
  year: 2004
  end-page: 1504
  article-title: Cortex‐based independent component analysis of fMRI time series
  publication-title: Magn Reson Imaging
– volume: 17
  start-page: 766
  year: 2007
  end-page: 777
  article-title: Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation
  publication-title: Cereb Cortex
– volume: 34
  start-page: 177
  year: 2007
  end-page: 194
  article-title: Classification of fMRI independent components using IC‐fingerprints and support vector machine classifiers
  publication-title: Neuroimage
– volume: 28
  start-page: 1351
  year: 2008
  end-page: 1360
  article-title: Effects of image normalization on the statistical analysis of perfusion MRI in elderly brains
  publication-title: J Magn Reson Imaging
– volume: 19
  start-page: 253
  year: 2003
  end-page: 260
  article-title: Independent component analysis of nondeterministic fMRI signal sources
  publication-title: Neuroimage
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI
  publication-title: Magn Reson Med
– volume: 30
  start-page: 2393
  year: 2009
  end-page: 2400
  article-title: Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient
  publication-title: Hum Brain Mapp
– volume: 150
  start-page: 229
  year: 2005
  end-page: 244
  article-title: General anesthesia and the neural correlates of consciousness
  publication-title: Prog Brain Res
– volume: 7
  start-page: 119
  year: 1998
  end-page: 132
  article-title: Functional connectivity in single and multislice echoplanar imaging using resting‐state fluctuations
  publication-title: Neuroimage
– volume: 44
  start-page: 893
  year: 2009
  end-page: 905
  article-title: The impact of global signal regression on resting state correlations: Are anti‐correlated networks introduced?
  publication-title: Neuroimage
– year: 2011
  article-title: Resting state activity in patients with disorders of consciousness
  publication-title: Funct Neurol
– volume: 11
  start-page: 1100
  year: 2008
  end-page: 1108
  article-title: Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex
  publication-title: Nat Neurosci
– volume: 101
  start-page: 4637
  year: 2004
  end-page: 4642
  article-title: Default‐mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI
  publication-title: Proc Natl Acad Sci USA
– volume: 39
  start-page: 1666
  year: 2008
  end-page: 1681
  article-title: A method for functional network connectivity among spatially independent resting‐state components in schizophrenia
  publication-title: Neuroimage
– volume: 30
  start-page: 1313
  year: 2006
  end-page: 1324
  article-title: Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation
  publication-title: Neuroimage
– volume: 30
  start-page: 3865
  year: 2009
  end-page: 3886
  article-title: Functional segmentation of the brain cortex using high model order group PICA
  publication-title: Hum Brain Mapp
– volume: 6
  start-page: 160
  year: 1998
  end-page: 188
  article-title: Analysis of fMRI data by blind separation into independent spatial components
  publication-title: Hum Brain Mapp
– volume: 37
  start-page: 511
  year: 1997
  end-page: 518
  article-title: The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 447
  start-page: 83
  year: 2007
  end-page: 86
  article-title: Intrinsic functional architecture in the anaesthetized monkey brain
  publication-title: Nature
– volume: 57
  start-page: 1079
  year: 2005
  end-page: 1088
  article-title: Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study
  publication-title: Biol Psychiatry
– volume: 98
  start-page: 4259
  year: 2001
  end-page: 4264
  article-title: Medial prefrontal cortex and self‐referential mental activity: Relation to a default mode of brain function
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 8
  year: 2010
  article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data
  publication-title: Front Syst Neurosci
– volume: 244
  start-page: S23
  year: 1997
  end-page: S28
  article-title: Positron emission tomography studies of sleep and sleep disorders
  publication-title: J Neurol
– volume: 133
  start-page: 161
  year: 2010
  end-page: 171
  article-title: Default network connectivity reflects the level of consciousness in non‐communicative brain‐damaged patients
  publication-title: Brain
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis
  publication-title: Proc Natl Acad Sci USA
– volume: 46
  start-page: 540
  year: 2008
  end-page: 553
  article-title: Data‐driven clustering reveals a fundamental subdivision of the human cortex into two global systems
  publication-title: Neuropsychologia
– volume: 113
  start-page: 1038
  year: 2010
  end-page: 1053
  article-title: Breakdown of within‐ and between‐network resting state functional magnetic resonance imaging connectivity during propofol‐induced loss of consciousness
  publication-title: Anesthesiology
– volume: 3
  start-page: 537
  year: 2004
  end-page: 546
  article-title: Brain function in coma, vegetative state, and related disorders
  publication-title: Lancet Neurol
– volume: 25
  start-page: 193
  year: 2005
  end-page: 205
  article-title: Independent component analysis of fMRI group studies by self‐organizing clustering
  publication-title: Neuroimage
– volume: 42
  start-page: 85
  year: 1997
  end-page: 94
  article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease
  publication-title: Ann Neurol
– volume: 105
  start-page: 4028
  year: 2008
  end-page: 4032
  article-title: The maturing architecture of the brain's default network
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 722
  year: 2007
  end-page: 741
  article-title: Self‐consciousness in non‐communicative patients
  publication-title: Conscious Cogn
– volume: 47
  start-page: 1105
  year: 2009
  end-page: 1115
  article-title: Physiological recordings: Basic concepts and implementation during functional magnetic resonance imaging
  publication-title: Neuroimage
– volume: 330
  start-page: 1499
  year: 1994
  end-page: 1508
  article-title: Medical aspects of the persistent vegetative state (1)
  publication-title: N Engl J Med
– volume: 224
  start-page: 184
  year: 2002
  end-page: 192
  article-title: Multiple sclerosis: Low‐frequency temporal blood oxygen level‐dependent fluctuations indicate reduced functional connectivity initial results
  publication-title: Radiology
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  article-title: Investigations into resting‐state connectivity using independent component analysis
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 36
  start-page: 144
  year: 2007
  end-page: 152
  article-title: Amplitude of low frequency fluctuation within visual areas revealed by resting‐state functional MRI
  publication-title: Neuroimage
– volume: 26
  start-page: 905
  year: 2008
  end-page: 913
  article-title: Independent component model of the default‐mode brain function: Combining individual‐level and population‐level analyses in resting‐state fMRI
  publication-title: Magn Reson Imaging
– volume: 29
  start-page: 740
  year: 2008
  end-page: 750
  article-title: The effect of respiration variations on independent component analysis results of resting state functional connectivity
  publication-title: Hum Brain Mapp
– volume: 31
  start-page: 237
  year: 2010
  end-page: 246
  article-title: Test‐retest reproducibility of the default‐mode network in healthy individuals
  publication-title: Hum Brain Mapp
– volume: 29
  start-page: 868
  year: 2008
  end-page: 874
  article-title: Consciousness and cerebral baseline activity fluctuations
  publication-title: Hum Brain Mapp
– volume: 16
  start-page: 1484
  year: 2004
  end-page: 1492
  article-title: Default‐mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation
  publication-title: J Cogn Neurosci
– volume: 30
  start-page: 256
  year: 2009
  end-page: 266
  article-title: Model‐free group analysis shows altered BOLD FMRI networks in dementia
  publication-title: Hum Brain Mapp
– volume: 103
  start-page: 8275
  year: 2006
  end-page: 8280
  article-title: Failing to deactivate: Resting functional abnormalities in autism
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 1713
  year: 2010
  end-page: 1726
  article-title: Cognitive and default‐mode resting state networks: Do male and female brains “rest” differently?
  publication-title: Hum Brain Mapp
– volume: 6
  start-page: e159
  year: 2008
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol
– volume: 101
  start-page: 3270
  year: 2009
  end-page: 3283
  article-title: The global signal and observed anticorrelated resting state brain networks
  publication-title: J Neurophysiol
– ident: e_1_2_7_42_1
  doi: 10.1016/S1474-4422(04)00852-X
– ident: e_1_2_7_46_1
  doi: 10.1007/BF03160568
– ident: e_1_2_7_54_1
  doi: 10.1155/2008/218519
– ident: e_1_2_7_24_1
  doi: 10.1038/nrn2201
– ident: e_1_2_7_9_1
  doi: 10.1002/hbm.20602
– ident: e_1_2_7_11_1
  doi: 10.1227/00006123-198505000-00002
– ident: e_1_2_7_31_1
  doi: 10.1162/0898929042568532
– ident: e_1_2_7_49_1
  doi: 10.1002/ana.410420114
– ident: e_1_2_7_35_1
  doi: 10.1371/journal.pbio.0060159
– ident: e_1_2_7_2_1
  doi: 10.1016/S0079-6123(05)50017-7
– ident: e_1_2_7_17_1
  doi: 10.1073/pnas.0601417103
– ident: e_1_2_7_59_1
  doi: 10.1073/pnas.0905267106
– ident: e_1_2_7_16_1
  doi: 10.1002/jmri.21590
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2004.10.042
– ident: e_1_2_7_53_1
  doi: 10.1038/nn.2177
– ident: e_1_2_7_13_1
  doi: 10.3389/neuro.09.017.2009
– ident: e_1_2_7_51_1
  doi: 10.1016/j.neuroimage.2008.09.036
– ident: e_1_2_7_43_1
  doi: 10.1016/j.concog.2007.04.004
– ident: e_1_2_7_57_1
  doi: 10.1002/hbm.20505
– ident: e_1_2_7_21_1
  doi: 10.1016/j.mri.2008.01.045
– ident: e_1_2_7_55_1
  doi: 10.1016/j.mri.2006.09.042
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.1910340409
– ident: e_1_2_7_34_1
  doi: 10.1073/pnas.071043098
– ident: e_1_2_7_65_1
  doi: 10.1002/hbm.20968
– ident: e_1_2_7_18_1
  doi: 10.1016/j.neuroimage.2005.08.035
– ident: e_1_2_7_32_1
  doi: 10.1073/pnas.0135058100
– ident: e_1_2_7_10_1
  doi: 10.1002/hbm.20672
– volume: 4
  start-page: 8
  year: 2010
  ident: e_1_2_7_14_1
  article-title: Advances and pitfalls in the analysis and interpretation of resting‐state FMRI data
  publication-title: Front Syst Neurosci
  contributor:
    fullname: Cole DM
– ident: e_1_2_7_45_1
  doi: 10.1148/radiol.2241011005
– ident: e_1_2_7_27_1
  doi: 10.1016/j.apmr.2004.02.033
– ident: e_1_2_7_29_1
  doi: 10.1016/j.neuropsychologia.2007.10.003
– ident: e_1_2_7_26_1
  doi: 10.1152/jn.90777.2008
– ident: e_1_2_7_23_1
  doi: 10.1016/j.mri.2004.10.020
– ident: e_1_2_7_22_1
  doi: 10.1073/pnas.0800376105
– ident: e_1_2_7_38_1
  doi: 10.1073/pnas.0600674103
– ident: e_1_2_7_7_1
  doi: 10.1002/hbm.20577
– ident: e_1_2_7_41_1
  doi: 10.1016/j.neuroimage.2009.12.008
– ident: e_1_2_7_68_1
  doi: 10.1016/j.neuroimage.2007.08.027
– ident: e_1_2_7_52_1
  doi: 10.1016/j.neuroimage.2005.11.018
– ident: e_1_2_7_58_1
  doi: 10.1016/j.concog.2008.03.013
– ident: e_1_2_7_36_1
  doi: 10.1002/0471221317
– ident: e_1_2_7_67_1
  doi: 10.1016/j.neuroimage.2007.01.054
– ident: e_1_2_7_47_1
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– ident: e_1_2_7_4_1
  doi: 10.1016/j.biopsych.2005.02.021
– volume: 21
  start-page: 1636
  year: 2000
  ident: e_1_2_7_15_1
  article-title: Mapping functionally related regions of brain with functional connectivity MR imaging
  publication-title: AJNR Am J Neuroradiol
  contributor:
    fullname: Cordes D
– ident: e_1_2_7_66_1
  doi: 10.1002/(SICI)1097-0193(1999)8:2/3<151::AID-HBM13>3.0.CO;2-5
– ident: e_1_2_7_19_1
  doi: 10.1016/j.neuroimage.2006.08.041
– ident: e_1_2_7_3_1
  doi: 10.1016/S0003-9993(95)80031-X
– ident: e_1_2_7_5_1
  doi: 10.1016/j.tins.2003.09.015
– ident: e_1_2_7_25_1
  doi: 10.1073/pnas.0504136102
– ident: e_1_2_7_40_1
  doi: 10.1002/hbm.20813
– ident: e_1_2_7_61_1
  doi: 10.1056/NEJM199405263302107
– ident: e_1_2_7_48_1
  doi: 10.1002/hbm.20860
– ident: e_1_2_7_33_1
  doi: 10.1073/pnas.0308627101
– ident: e_1_2_7_6_1
  doi: 10.1098/rstb.2005.1634
– ident: e_1_2_7_12_1
  doi: 10.1097/ALN.0b013e3181f697f5
– ident: e_1_2_7_62_1
  doi: 10.1093/brain/awp313
– ident: e_1_2_7_44_1
  doi: 10.1006/nimg.1997.0315
– ident: e_1_2_7_28_1
  doi: 10.1093/cercor/bhk030
– ident: e_1_2_7_37_1
  doi: 10.1016/j.neuroimage.2007.11.001
– ident: e_1_2_7_56_1
  doi: 10.1162/089892902760191117
– year: 2011
  ident: e_1_2_7_60_1
  article-title: Resting state activity in patients with disorders of consciousness
  publication-title: Funct Neurol
  contributor:
    fullname: Soddu A
– ident: e_1_2_7_63_1
  doi: 10.1162/jocn.2010.21488
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2009.05.033
– ident: e_1_2_7_39_1
  doi: 10.1016/S1053-8119(03)00097-1
– ident: e_1_2_7_50_1
  doi: 10.1002/mrm.1910370407
– ident: e_1_2_7_64_1
  doi: 10.1038/nature05758
RestrictionsOnAccess restricted access
SSID ssj0011501
Score 2.456887
Snippet Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state...
Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state...
Abstract Objectives: Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by...
Objectives:Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state...
OBJECTIVESRecent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state...
Objectives: Recent fMRI studies have shown that it is possible to reliably identify the default‐mode network (DMN) in the absence of any task, by resting‐state...
SourceID pubmedcentral
liege
proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 778
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Biological and medical sciences
Brain - physiopathology
Brain Mapping - methods
Child
consciousness
Consciousness Disorders - physiopathology
default mode
Female
fMRI
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Humans
Image Interpretation, Computer-Assisted - methods
independent component analysis
Infant
Investigative techniques, diagnostic techniques (general aspects)
locked-in syndrome
Magnetic Resonance Imaging - methods
Male
Medical sciences
Middle Aged
Nerve Net - physiopathology
Nervous system
Nervous system (semeiology, syndromes)
Neurology
Physical, chemical, mathematical & earth Sciences
Physics
Physique
Physique, chimie, mathématiques & sciences de la terre
Radiodiagnosis. Nmr imagery. Nmr spectrometry
resting state
vegetative state
Young Adult
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED5NQ0J84WUDFhiThdCEhNKlTp3E4tMobAWp-zAxMSEky3YSVrVLUdMg4BM_gd-4X7I752WUFwnxqansJs71fPecfX4O4An6iCBPBrkvhOb-QMjUT7S2GKoInmdRFGtNgeL4KBqdDN6citM1eN6ehan5IboFN5oZzl7TBNem3LsiDT0z5z1OpZPR_vbDmNK5Xh531FEEdFywhS7Wl2iBW1ahgO91v1zxRddIrF_wc0a71ZQjqUsUU17Xt_gTAP09j_JnfOsc1MEt-NC-Wp2XMu1VS9Oz335hffzPd78NNxvgyvZrTbsDa1mxAZv7BQbt51_ZLnOppG6NfgOuj5sd-02Y1ieB3WkqhmCTpVmuq9ny4vsPKsLDKKV9XmAXNilYSend-JDXQ6YdWUpWsnnOGu7XktGiMUsbvlDXhNE8-vB5VZLFvgsnB6_eDkd-U-DBt0KE0ke0F2Y8NdyaVGIsFUfaiCSRqeVWJqnRsYn7BDEyzQMdR6mQoUWAFBhpAotf7sF6gWPcApbQIWOTD0JDCC-NpU2p1JkNMrQCJk88eNz-1epTzeOhasZmrlCayknTg12nBF0PvZhS4lss1LujQ_V-eHjcD6OBijx45rREzRdmoj5zRSTd7rqafVTaKpMpxLWJkkkihAc7K7rU3R7hZoj2Ep-73SqXakxIqRCKxSHFe9wD1jXj5KcdHV1kKFolOdHNIYb24H6tilf3xjiXcoc9iFeUtOtAQ15tKSZnjl88wjGJPorsqdPBv8tLjV6M3cWDf-_6EG4g5uR18tM2rC8XVfYIcd3S7LgJfAmywUq1
  priority: 102
  providerName: Wiley-Blackwell
Title Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness
URI https://api.istex.fr/ark:/67375/WNG-ZCGR1364-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21249
https://www.ncbi.nlm.nih.gov/pubmed/21484953
https://www.proquest.com/docview/1517355972
https://search.proquest.com/docview/927988352
http://orbi.ulg.ac.be/handle/2268/98855
https://pubmed.ncbi.nlm.nih.gov/PMC6870518
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED9tQ0K8INj4ExiVhdCEhLKmTpzYj6NiK0id0MTExItlO8lWrU2npkXwxkfgM_JJuHOSQgW88JREtuLEd5f7XfzzHcAL9BFRKZMyFMLwMBEqD6UxDkMVwcsiTTNjKFAcn6aj8-TdhbjYAtHthfGkfWcnh9V0dlhNrjy38mbm-h1PrP9-PExRycRA9rdhGxW0C9HbpQNEOD7KQt8aKvz0dumEIt6_srNDTtWWfQrgRBK3csMf3aKp_YLHKa1YE0_S1DhVZVPj4m8g9E8u5e8Y1zup43twt0WX7Kh5i_uwVVS7sHdUYWQ9-8oOmOd7-h_pu3B73C6r78F1s13Xb3liiAhZXpRmNV3--PadKuUw4p3PK-zCJhWriYONg7wdMuMzmhQ1m5esTdBaM_qzy_I2qadvwpAbHe18VdNn9QGcH7_5MByFbRWG0AkRqxAhWVzw3HJnc4UBT5YaK6RUueNOydyazGYDwgGF4ZHJ0lyo2CGKiayykcOLh7BT4TM-BiZpJ7Atk9gSDMsz5XKqR-aiAk3VljKA550s9E2TbEM3aZW5RtlpL7sADryU1j3M4prYaZnQH09P9KfhydkgThOdBvDKi1HPF3aiP3NNmbT9-Wp6qY3TttAIPqVWUgoRQG9D2OvbIyaMUd9w3P1O-rq181ojXspiCsp4AGzdjBZKyy6mKnBqteKUEw6BbgCPGl35de9WCQPINrRo3YEeebMFbcInAW9tIICXXt_-PV969HrsT5789yBP4Q7iRN4QlvZhZ7lYFc8Qiy1tD6OQM97zFvgTUZY0pQ
link.rule.ids 230,315,730,783,787,888,1378,27936,27937,46306,46730,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwGP00Ngm44WcDFhjDQmhCQmlTJ07sy1GxdbBWCG0wcWPZTrJVbdOpaRFwxSPwjDwJn52kUH4u4KqpbMWJfWyfLz4-BniCc0SQ8yj3GVPUj5hIfa6UwVCF0TyL40QpGyj2B3HvNHp5xs7WgDV7YZxo3-hhqxhPWsXwwmkrLyem3ejE2q_73RhBxjq8fQU2sL8GUROk14sHyHFcnIWzqy9w8G0MhQLavtCTFrXnLTsT4IhbdeXKjLRhK_cj_o7tmrVVSqoSKyuvTrn4Ew39XU35M8t109TBTXjbvGClThm1FnPdMp9_8X785xq4BTdq4kr2q-TbsJYVm7C1X2DQPvlE9oiTkrpv9JtwtV-v2G_BqNoJ7HZTESSbJM1ytRjPv335ag_hIVbSPi0wCxkWpLTybizkqEuUM0vJSjLNSe39WhL70ZiktV-oS8JoHufw6aK0I_YdOD14cdLt-fUBD75hLBQ-sr0wo6mmRqcCY6kkVppxLlJDjeCpVolOOpZiZIoGKolTJkKDBCnQQgcG_9yF9QKfcRsIt5uMdR6F2jK8NBEmtUedmSDDUUDn3IPHTSPLy8rHQ1aOzVQiKKQDhQd7rvmXOdRsZIVvCZPvBofyfffwTSeMIxl78MzhQ05neig_UGlNut31YnwulZE6k8hruRScM-bB7gqKlrdHuhliQ2K5Ow2sZD2ElBKpWBLaeI96QJbJ2Pntio4qMqxaKai1m0MO7cG9CoQ_7l2j24NkBZ7LDPaRV1MQbM5fvAaXB08dkP9eX7L3vO8u7v93IY_gWu-kfyyPjwavHsB1pKO00kXtwPp8tsgeIuWb613Xwb8DJ-ZVtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGP0EmzTxwmXjEhjDQmhCQmlTJ06cx1HoOqDThJiY9mL5krCqbVo1LQKe-An8Rn4Jn52krFxe9tRUtuLEObHPFx-fD-AZzhFBzqPcZ0xSP2Kp8bmUGkMVRvMsjhMpbaA4OI77p9GbM3Z2KdWXE-1rNWwV40mrGF44beVsotuNTqx9MujGCDLW4e2ZydvXYRPf2SBuAvV6AQF5jou1cIb1UxyAG1OhgLYv1KRFbc5lZwQccauwXJuVNm0Hf8HfsV23tmpJWWKH5VWmi39R0b8VlZeZrpuqerfgvLnJSqEyai0XqqW__eH_eKVeuA03awJLDqoqd-BaVmzDzkGBwfvkK9knTlLqvtVvw9agXrnfgVG1I9jtqiJIOonJcrkcL35-_2GT8RArbZ8WWIUMC1JamTc2ctQl0pmmZCWZ5qT2gC2J_XhMTO0b6oowqse5fLos7ch9F057rz90-36d6MHXjIWpj6wvzKhRVCuTYkyVxFIxzlOjqU65UTJRScdSjUzSQCaxYWmokSgFKlWBxj_3YKPAa3wAhNvNxiqPQmWZnklSbWzKMx1kOBqonHvwtHnQYlb5eYjKuZkKBIZwwPBg30FgVUPOR1YAlzDx8fhQnHcP33fCOBKxBy8cRsR0robiMxXWrNsdL8efhNRCZQL5LRcp54x5sLeGpNXpkXaG-DCx3d0GWqIeSkqBlCwJbdxHPSCrYhwE7MqOLDLsWpFSazuHXNqD-xUQf5-7RrgHyRpEVxXsJa-XIOCcz3gNMA-eOzD_v79E_-XAHTy8ciNPYOvkVU-8Ozp--whuICullTxqFzYW82X2GJnfQu25d_wXuQ5YNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+the+default%E2%80%90mode+component+in+spatial+IC+analyses+of+patients+with+disorders+of+consciousness&rft.jtitle=Human+brain+mapping&rft.au=Soddu%2C+Andrea&rft.au=Vanhaudenhuyse%2C+Audrey&rft.au=Bahri%2C+Mohamed+Ali&rft.au=Bruno%2C+Marie%E2%80%90Aurelie&rft.date=2012-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=33&rft.issue=4&rft.spage=778&rft.epage=796&rft_id=info:doi/10.1002%2Fhbm.21249&rft_id=info%3Apmid%2F21484953&rft.externalDBID=PMC6870518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon