Cholinergic modulation of striatal microcircuits

The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, com...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 49; no. 5; pp. 604 - 622
Main Authors Abudukeyoumu, Nilupaer, Hernandez‐Flores, Teresa, Garcia‐Munoz, Marianela, Arbuthnott, Gordon W.
Format Journal Article
LanguageEnglish
Published France Wiley Subscription Services, Inc 01.03.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0953-816X
1460-9568
1460-9568
DOI10.1111/ejn.13949

Cover

Loading…
Abstract The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included. We review literature on striatal cholinergic interneurons: their synaptic and non‐synaptic release, afferents, and connectivity with the activation of pre‐ and postsynaptic cholinergic receptors and their role in the modulation of normal and pathological microcircuits. Drawings illustrate glutamatergic and dopaminergic afferents and magnified microcircuit with cholinergic interneuron (red) surrounded by GABAergic interneurons (different colors) and medium spiny neurons (green).
AbstractList The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre- and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine-mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre- and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine-mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included. We review literature on striatal cholinergic interneurons: their synaptic and non‐synaptic release, afferents, and connectivity with the activation of pre‐ and postsynaptic cholinergic receptors and their role in the modulation of normal and pathological microcircuits. Drawings illustrate glutamatergic and dopaminergic afferents and magnified microcircuit with cholinergic interneuron (red) surrounded by GABAergic interneurons (different colors) and medium spiny neurons (green).
Author Abudukeyoumu, Nilupaer
Arbuthnott, Gordon W.
Hernandez‐Flores, Teresa
Garcia‐Munoz, Marianela
AuthorAffiliation 1 Okinawa Institute of Science and Technology Graduate University Okinawa Japan
AuthorAffiliation_xml – name: 1 Okinawa Institute of Science and Technology Graduate University Okinawa Japan
Author_xml – sequence: 1
  givenname: Nilupaer
  surname: Abudukeyoumu
  fullname: Abudukeyoumu, Nilupaer
  organization: Okinawa Institute of Science and Technology Graduate University
– sequence: 2
  givenname: Teresa
  surname: Hernandez‐Flores
  fullname: Hernandez‐Flores, Teresa
  organization: Okinawa Institute of Science and Technology Graduate University
– sequence: 3
  givenname: Marianela
  surname: Garcia‐Munoz
  fullname: Garcia‐Munoz, Marianela
  organization: Okinawa Institute of Science and Technology Graduate University
– sequence: 4
  givenname: Gordon W.
  surname: Arbuthnott
  fullname: Arbuthnott, Gordon W.
  email: gordon@oist.jp
  organization: Okinawa Institute of Science and Technology Graduate University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29797362$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKBDEQRYMoOj4W_oAMuNFFa97pbAQZfCK6UXAX0pm0ZkgnmnQr_r3RUVFBs6lFTt2quncVLIYYLACbCO6h8vbtLOwhIqlcACNEOawk4_UiGEHJSFUjfrsCVnOeQQhrTtkyWMFSSEE4HgE4uY_eBZvunBl3cTp43bsYxrEd5z453Ws_7pxJ0bhkBtfndbDUap_txkddAzfHR9eT0-ri6uRscnhRGcaIrBitbdsw1hojpgJNBW9qahuEtUHUcswloRSJWlhMaEMbQzQxpmYQQ04Y5mQNHMx1H4ams1NjQ5-0Vw_JdTq9qKid-vkT3L26i0-Ks1oICovAzodAio-Dzb3qXDbWex1sHLLCkJY5klJZ0O1f6CwOKZTzFEaSSCyLu4Xa-r7R1yqfZhZgdw4Uu3JOtv1CEFRvQakSlHoPqrD7v1jj-nfryzHO_9fx7Lx9-VtaHZ1fzjteAQkFo2g
CitedBy_id crossref_primary_10_3389_fnsyn_2021_734975
crossref_primary_10_1016_j_pnpbp_2024_111167
crossref_primary_10_2217_pgs_2019_0100
crossref_primary_10_7554_eLife_56920
crossref_primary_10_1002_ana_26805
crossref_primary_10_1007_s12021_022_09588_1
crossref_primary_10_1242_dmm_050338
crossref_primary_10_1111_ejn_14742
crossref_primary_10_1523_ENEURO_0196_21_2021
crossref_primary_10_1016_j_neuroscience_2019_07_033
crossref_primary_10_1073_pnas_2409325122
crossref_primary_10_7554_eLife_60580
crossref_primary_10_1007_s12640_020_00198_w
crossref_primary_10_3390_cimb46090607
crossref_primary_10_1016_j_neures_2022_12_008
crossref_primary_10_1038_s42003_023_05068_7
crossref_primary_10_1002_mds_28750
crossref_primary_10_1016_j_pestbp_2023_105433
crossref_primary_10_1038_s41537_020_0105_9
crossref_primary_10_3389_fncir_2021_748989
crossref_primary_10_1523_ENEURO_0019_23_2023
crossref_primary_10_3389_fncel_2024_1386715
crossref_primary_10_3390_ijms23115954
crossref_primary_10_3389_fphar_2019_01488
crossref_primary_10_3390_cells10040907
crossref_primary_10_3389_fneur_2022_912818
crossref_primary_10_3389_fnins_2021_665820
crossref_primary_10_1007_s10571_022_01232_5
crossref_primary_10_1093_braincomms_fcac291
crossref_primary_10_3389_fncel_2024_1412897
crossref_primary_10_1016_j_nbd_2024_106774
crossref_primary_10_1007_s00424_023_02845_5
crossref_primary_10_3389_fnbeh_2024_1420028
crossref_primary_10_1017_neu_2021_33
crossref_primary_10_1111_ejn_14873
crossref_primary_10_3389_fncel_2021_674399
crossref_primary_10_3390_brainsci13081193
crossref_primary_10_1016_j_preteyeres_2019_06_003
crossref_primary_10_1016_j_celrep_2023_113384
crossref_primary_10_1007_s00429_019_01967_w
crossref_primary_10_1038_s41583_023_00677_x
crossref_primary_10_3389_dyst_2024_12413
crossref_primary_10_1016_j_celrep_2022_111034
crossref_primary_10_1016_j_celrep_2023_112204
crossref_primary_10_1096_fj_202101425R
crossref_primary_10_7554_eLife_76039
crossref_primary_10_1093_brain_awad150
crossref_primary_10_1002_jnr_25046
crossref_primary_10_1007_s11055_021_01170_7
crossref_primary_10_1111_gbb_12847
crossref_primary_10_1523_JNEUROSCI_1211_21_2021
crossref_primary_10_1111_ejn_14367
crossref_primary_10_1111_ejn_15135
crossref_primary_10_3389_fnhum_2021_745689
crossref_primary_10_7554_eLife_75829
crossref_primary_10_1136_jnnp_2024_334545
crossref_primary_10_1007_s00429_022_02604_9
crossref_primary_10_1002_syn_22287
crossref_primary_10_1038_s41398_022_01865_6
crossref_primary_10_4103_1673_5374_382987
crossref_primary_10_1016_j_neuroscience_2021_05_026
crossref_primary_10_1111_jnc_15677
crossref_primary_10_1111_ejn_14939
crossref_primary_10_1002_jnr_24560
crossref_primary_10_1371_journal_pbio_3000613
crossref_primary_10_3389_fncir_2021_803501
crossref_primary_10_3389_fncel_2022_1010121
crossref_primary_10_1111_ejn_14854
crossref_primary_10_1002_jnr_24522
crossref_primary_10_3389_fnsyn_2022_945816
crossref_primary_10_1002_jnr_24843
crossref_primary_10_1016_j_phrs_2024_107190
crossref_primary_10_3389_fgene_2021_683959
crossref_primary_10_1111_ejn_14891
crossref_primary_10_1111_jnc_15243
crossref_primary_10_3389_fnmol_2019_00204
crossref_primary_10_1080_17513758_2023_2269986
crossref_primary_10_1016_j_prdoa_2020_100071
crossref_primary_10_1007_s00213_022_06138_0
crossref_primary_10_3390_brainsci14050484
crossref_primary_10_1007_s11910_021_01140_z
crossref_primary_10_1126_sciadv_abh4315
crossref_primary_10_1523_ENEURO_0326_24_2024
crossref_primary_10_1016_j_phrs_2023_106764
crossref_primary_10_1073_pnas_2410828121
crossref_primary_10_1093_cercor_bhaa387
Cites_doi 10.1038/344240a0
10.1016/j.celrep.2012.05.011
10.1016/j.neuroscience.2017.07.060
10.1073/pnas.81.15.4998
10.1523/JNEUROSCI.4627-13.2014
10.1002/mds.26304
10.1016/S0165-0173(99)00018-1
10.1016/S0361-9230(99)00061-1
10.1016/j.neuropharm.2013.07.006
10.1016/j.neuron.2012.04.038
10.1523/JNEUROSCI.16-16-05141.1996
10.1016/j.brainresrev.2008.02.004
10.1016/j.phrs.2016.11.013
10.1523/JNEUROSCI.0658-17.2017
10.1523/JNEUROSCI.5071-13.2014
10.1016/0166-2236(95)98374-8
10.1146/annurev.neuro.28.061604.135722
10.1523/JNEUROSCI.2411-08.2008
10.1016/j.neuroscience.2009.03.015
10.1016/0024-3205(95)00030-A
10.3389/fncel.2015.00116
10.1523/JNEUROSCI.0589-14.2014
10.1016/0306-4522(95)00421-1
10.1038/ncomms15860
10.1152/jn.00283.2012
10.1093/brain/121.12.2335
10.1016/S0300-9084(00)01176-7
10.3389/fnsyn.2014.00022
10.1046/j.1460-9568.2000.00175.x
10.1016/j.expneurol.2017.06.005
10.3389/fnana.2017.00020
10.1016/j.neuroscience.2011.08.067
10.1046/j.0953-816x.2001.01783.x
10.1016/j.neuron.2013.12.027
10.1002/cne.24013
10.1016/j.jphysparis.2016.08.001
10.1002/cne.902690207
10.1523/JNEUROSCI.18-23-10207.1998
10.1016/j.neuint.2010.03.010
10.1016/j.tins.2012.09.006
10.1111/jnc.14105
10.1523/JNEUROSCI.3225-04.2004
10.1038/nrn3469
10.1002/cne.10660
10.1523/JNEUROSCI.18-20-08539.1998
10.1523/JNEUROSCI.23-15-06245.2003
10.1073/pnas.97.12.6245
10.1007/s00018-016-2359-y
10.1111/j.1474-8673.2006.00368.x
10.1111/nyas.12762
10.1016/j.neuroscience.2017.12.002
10.1523/JNEUROSCI.3833-10.2011
10.1007/978-1-4757-3538-3_44
10.1038/nrn3962
10.1016/j.neuropharm.2017.01.038
10.1523/JNEUROSCI.4644-06.2007
10.1002/mds.26300
10.1073/pnas.88.6.2608
10.1016/S0079-6123(08)61338-2
10.1038/sj.bjp.0703366
10.1523/JNEUROSCI.19-09-03629.1999
10.1111/ejn.13638
10.1073/pnas.95.11.6480
10.1016/0306-4522(84)90164-7
10.1016/j.tins.2015.11.001
10.3389/fncir.2014.00021
10.1111/j.1460-9568.2005.04154.x
10.1016/0306-4522(84)90165-9
10.1021/cn200110q
10.1073/pnas.1006511108
10.1016/j.bcp.2009.05.024
10.1002/cne.23295
10.3389/fphar.2016.00295
10.1126/science.aam9080
10.1016/j.neuron.2010.06.017
10.1016/j.neuint.2016.08.009
10.1002/cne.901940308
10.1371/journal.pone.0123381
10.1212/WNL.0000000000002599
10.1016/0006-8993(72)90494-5
10.1371/journal.pone.0024261
10.1016/0006-8993(81)90211-0
10.1152/jn.1996.76.6.3771
10.1126/science.1160575
10.1212/WNL.32.12.1391
10.1007/s12013-009-9052-9
10.1016/S0896-6273(00)80402-X
10.1016/S0306-4522(98)00187-0
10.1371/journal.pone.0019155
10.1016/j.neuron.2016.03.016
10.1523/JNEUROSCI.1381-05.2005
10.1016/j.nbd.2009.12.003
10.1523/JNEUROSCI.19-14-06102.1999
10.1016/0014-2999(86)90629-1
10.1016/S0306-4522(03)00220-3
10.1111/j.1476-5381.1989.tb16873.x
10.1016/j.neuroscience.2010.03.062
10.1016/j.tins.2007.07.008
10.1021/acschemneuro.6b00333
10.1002/cne.902670402
10.1523/JNEUROSCI.4029-08.2009
10.1073/pnas.85.15.5733
10.1016/j.tins.2013.06.003
10.1523/JNEUROSCI.4646-13.2014
10.1016/0006-8993(71)90625-1
10.1016/0306-4522(95)00507-2
10.1155/2015/472676
10.1093/brain/awp142
10.1523/JNEUROSCI.18-22-09438.1998
10.1113/jphysiol.2005.098269
10.1523/JNEUROSCI.3206-11.2011
10.1523/JNEUROSCI.4870-09.2010
10.1111/j.1469-7793.1998.441bk.x
10.1523/JNEUROSCI.0466-16.2016
10.1523/JNEUROSCI.2734-05.2005
10.1186/s12877-015-0029-9
10.1038/nature12983
10.1073/pnas.1605658113
10.1039/c002938f
10.1021/cn500003z
10.1073/pnas.1517629112
10.1038/nrn1763
10.1016/S0079-6123(00)25005-X
10.1016/j.expneurol.2008.01.023
10.1016/j.neuron.2016.09.007
10.1016/j.neuroimage.2013.05.084
10.1007/s11655-013-1455-1
10.1016/j.brainresbull.2011.09.016
10.1016/j.neuropharm.2009.09.011
10.1152/jn.1993.70.5.1937
10.1016/j.nbd.2012.04.015
10.1152/jn.00630.2005
10.1101/lm.82104
10.1007/s11302-013-9386-z
10.3389/fnsys.2017.00053
10.1046/j.1471-4159.2002.00815.x
10.1016/j.coph.2006.08.010
10.1038/nn.2984
10.1002/cne.22206
10.3389/fnsys.2017.00080
10.1016/0306-4522(79)90084-8
10.1016/j.neuropharm.2015.08.013
10.1016/S0028-3908(98)00199-3
10.1016/j.jchemneu.2004.02.005
10.1523/JNEUROSCI.3572-12.2013
10.1523/JNEUROSCI.1623-10.2010
10.1073/pnas.87.18.7050
10.1016/j.nbd.2017.10.010
10.1152/jn.1995.73.3.1234
10.1016/j.neuron.2004.12.053
10.1038/nn1700
10.1016/0014-2999(95)00263-K
10.1152/jn.2000.83.1.322
10.1523/JNEUROSCI.5196-09.2010
10.1016/S0301-0082(97)00050-6
10.1038/nrn.2017.30
10.1002/ana.410300607
10.1523/JNEUROSCI.12-11-04224.1992
10.1113/jphysiol.2007.144501
10.1523/JNEUROSCI.22-05-01709.2002
10.1016/j.neuropharm.2016.01.029
10.1016/S0006-8993(03)03165-2
10.1523/JNEUROSCI.2628-11.2011
10.1016/j.toxicon.2011.08.004
10.1016/j.neuron.2015.10.039
10.1371/journal.pbio.1001194
10.1523/JNEUROSCI.0280-07.2007
10.3390/molecules22081300
10.1523/JNEUROSCI.5027-04.2005
10.1016/j.neuropharm.2017.09.024
10.1016/j.pneurobio.2015.02.002
10.1016/j.neuron.2017.09.019
10.1523/JNEUROSCI.20-13-05102.2000
10.1016/0163-7258(93)90027-B
10.1371/journal.pone.0157682
10.1016/j.neuroscience.2018.01.027
10.1152/jn.00827.2014
10.1523/JNEUROSCI.14-05-03005.1994
10.1002/cne.21214
10.1152/jn.1992.67.6.1669
10.3389/fphys.2012.00136
10.1523/JNEUROSCI.16-08-02592.1996
10.1002/cne.903320409
10.1016/j.neubiorev.2015.01.014
10.1097/00004583-198907000-00015
10.1016/0006-8993(92)91132-X
10.1177/1073858415588264
10.1016/j.conb.2011.04.004
10.1002/cne.903150203
10.1016/0306-4522(94)90471-5
10.1016/0006-8993(92)90830-3
10.1146/annurev-biophys-070816-033647
10.1523/JNEUROSCI.22-13-05442.2002
10.1523/JNEUROSCI.4662-14.2015
10.1111/ejn.13287
10.1152/jn.00853.2004
10.1016/j.neulet.2014.02.018
10.1016/S0306-4522(01)00039-2
10.1016/0306-4522(92)90293-B
10.1046/j.0953-816x.2001.01485.x
10.3389/fnsyn.2011.00004
10.3389/fnana.2011.00059
10.1523/JNEUROSCI.5996-09.2010
10.1111/jnc.14003
10.1016/j.neuropharm.2011.01.023
10.1212/WNL.36.2.160
10.1002/cne.902000202
10.1523/JNEUROSCI.10-02-00508.1990
10.1523/JNEUROSCI.4199-08.2008
10.1111/j.1748-1716.1986.tb07967.x
10.1016/0306-4522(84)90294-X
10.1111/adb.12598
10.1523/JNEUROSCI.14-05-03351.1994
10.1016/0306-4522(94)90464-2
10.1523/JNEUROSCI.19-13-05586.1999
10.1038/308278a0
10.1002/cne.23031
10.1038/sj.bjp.0707510
10.1016/0306-4522(95)00436-M
10.1523/JNEUROSCI.20-22-08493.2000
10.1016/j.celrep.2016.08.016
10.1172/JCI90132
10.1152/jn.01131.2007
10.1111/ejn.12915
10.1523/JNEUROSCI.3226-11.2011
10.1007/s00429-013-0601-z
10.1111/j.1471-4159.2007.04944.x
10.1523/JNEUROSCI.6345-10.2011
10.1523/JNEUROSCI.4896-13.2014
10.1038/ncomms2144
10.1146/annurev-physiol-020911-153315
10.1523/JNEUROSCI.0901-14.2014
10.1002/cne.1186
10.1016/j.tins.2014.07.010
10.1111/j.1460-9568.1998.00294.x
10.1002/mds.26340
10.3389/fnsys.2013.00078
10.1016/j.neuropharm.2017.03.017
10.1073/pnas.75.11.5723
10.1002/neu.10150
10.1523/JNEUROSCI.15-07-05297.1995
10.1007/BF00228811
10.1093/cercor/bhu179
10.1038/sj.npp.1301294
10.1016/0959-4388(95)80100-6
10.1523/JNEUROSCI.2192-08.2008
10.1016/0166-2236(94)90005-1
10.1002/mds.25273
10.1073/pnas.0407416101
10.3389/fnbeh.2014.00188
10.1113/jphysiol.2012.241786
10.1002/mds.25546
10.1002/cne.901950403
10.1038/nn.2368
10.1016/j.neuron.2012.04.027
10.3389/fncel.2016.00111
10.1038/8138
10.1046/j.1460-9568.2002.02262.x
10.1093/cercor/bhw252
10.1113/jphysiol.2014.271825
10.1523/JNEUROSCI.12-09-03591.1992
10.1523/JNEUROSCI.4402-07.2008
10.1523/JNEUROSCI.22-14-06176.2002
10.1523/JNEUROSCI.21-17-06492.2001
10.1152/jn.00134.2009
10.1002/(SICI)1096-9861(19991101)413:4<603::AID-CNE9>3.0.CO;2-K
10.1073/pnas.95.11.6486
10.1016/j.neuropharm.2015.03.036
10.1523/JNEUROSCI.5493-07.2008
10.1016/0306-4522(84)90163-5
10.1016/j.neuron.2014.04.021
10.1016/0006-8993(86)90629-3
10.1007/s00429-015-1000-4
10.1016/j.bcp.2009.06.004
10.1016/j.brainres.2010.05.003
10.3389/fnsys.2011.00011
10.1016/S0301-0082(99)00030-1
10.1016/j.neurol.2012.06.015
10.1038/sj.bjp.0703692
10.1016/j.clinthera.2008.01.010
10.1016/0006-8993(87)90694-9
10.1111/j.1460-9568.1998.00348.x
10.1016/S0041-0101(99)00196-8
10.1146/annurev.neuro.051508.135422
10.1073/pnas.1419533112
10.1016/j.neuron.2013.04.039
10.1002/cne.902380305
10.1523/JNEUROSCI.22-20-08785.2002
10.1371/journal.pone.0001174
10.1016/j.celrep.2014.12.005
10.1038/nn1972
10.1523/JNEUROSCI.3709-06.2007
10.1124/mol.65.6.1526
10.1002/mds.26102
10.1038/nn769
10.1523/JNEUROSCI.4082-10.2011
10.1016/0306-4522(92)90057-9
10.1523/JNEUROSCI.23-24-08506.2003
10.1113/JP270045
10.1523/JNEUROSCI.18-14-05180.1998
10.1523/JNEUROSCI.1754-10.2010
10.1523/ENEURO.0178-17.2017
10.1152/jn.1997.77.2.1003
10.3389/fnsys.2013.00050
10.1152/jn.00519.2001
10.1002/syn.10114
10.1093/hmg/ddl252
10.1002/cne.1345
10.1016/j.neuroscience.2011.08.066
10.1016/j.nbd.2013.08.009
10.1523/JNEUROSCI.2155-04.2004
10.1523/JNEUROSCI.15-12-07821.1995
10.1523/JNEUROSCI.0873-16.2016
10.1016/j.neuron.2012.09.023
10.1146/annurev.neuro.24.1.31
10.1523/JNEUROSCI.13-11-04908.1993
10.1016/S0006-8993(00)03170-X
10.1038/nm.3246
10.1016/0306-4522(89)90168-1
10.2183/pjab.89.226
10.1002/1096-9861(20000731)423:3<500::AID-CNE12>3.0.CO;2-9
10.1016/j.expneurol.2008.11.001
10.1016/j.neuropharm.2014.09.028
10.1016/j.tins.2006.12.003
10.1111/j.1469-7793.1998.421bk.x
10.1016/S0028-3908(98)00131-2
10.1523/JNEUROSCI.5535-06.2007
10.1523/JNEUROSCI.21-18-07247.2001
10.1016/j.neuron.2006.04.010
10.1523/JNEUROSCI.22-02-00529.2002
10.1016/j.neuron.2008.11.005
10.1523/JNEUROSCI.22-15-06347.2002
10.1093/brain/awq285
ContentType Journal Article
Copyright 2018 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Copyright © 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
Copyright_xml – notice: 2018 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: Copyright © 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
DBID 24P
AAYXX
CITATION
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
5PM
DOI 10.1111/ejn.13949
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Chemoreception Abstracts
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate N. Abudukeyoumu et al
EISSN 1460-9568
EndPage 622
ExternalDocumentID PMC6587740
29797362
10_1111_ejn_13949
EJN13949
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Government of Japan
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QP
7QR
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5539-548efb55fcc7d71d76b84eb12ac14e62693441787e234b4bc3a3cc85020635263
IEDL.DBID DR2
ISSN 0953-816X
1460-9568
IngestDate Thu Aug 21 13:22:15 EDT 2025
Fri Jul 11 04:28:20 EDT 2025
Mon Jul 14 07:29:27 EDT 2025
Wed Feb 19 02:30:33 EST 2025
Thu Apr 24 23:06:22 EDT 2025
Tue Jul 01 03:02:18 EDT 2025
Wed Jan 22 16:49:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords neuromodulation
cholinergic interneurons
acetylcholine
striatum
Language English
License Attribution
2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5539-548efb55fcc7d71d76b84eb12ac14e62693441787e234b4bc3a3cc85020635263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Edited by Paul Bolam. Reviewed by Paul Apiella, Jose Bargas and Margaret E. Rice.
N.A. and T.H.‐F. contributed equally to this work.
All peer review communications can be found with the online version of the article.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13949
PMID 29797362
PQID 2193929139
PQPubID 34057
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6587740
proquest_miscellaneous_2045269449
proquest_journals_2193929139
pubmed_primary_29797362
crossref_primary_10_1111_ejn_13949
crossref_citationtrail_10_1111_ejn_13949
wiley_primary_10_1111_ejn_13949_EJN13949
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace France
PublicationPlace_xml – name: France
– name: Chichester
– name: Hoboken
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2007; 500
2012; 520
2004; 27
1999; 49
2004; 24
1998b; 10
1996; 71
2008; 30
1996; 70
2012; 15
2008; 586
1990; 344
2016; 39
1972; 45
2016; 36
1996; 76
1992; 51
1998; 18
2017; 74
2010; 518
1992; 594
2000; 12
2002; 87
2008; 28
1984b; 12
2013; 60
1979; 4
1992; 46
2013; 591
1999a; 38
1988; 85
1998c; 510
2010; 6
2015; 127–128
1981; 200
2013; 89
1995; 56
2010; 168
2016; 10
2008; 58
2002; 81
2017; 371
2018; 109
2011; 3
2007; 10
2001; 24
2011; 6
2016; 16
2017; 136
2011; 5
2011; 134
2011; 9
2016; 11
2001; 21
2009; 78
2016; 7
2003; 986
2015; 113
2013; 79
1971; 35
2015; 112
2013; 75
2015; 593
2015; 2015
2005; 4
1994; 14
2005; 6
1999; 31
2017; 142
2005; 93
1994; 17
2012; 47
2016; 26
2016; 22
2010; 56
2004; 65
1990; 10
2010; 58
2013; 28
2002; 53
1993; 60
1986; 36
2017; 46
2017; 45
2016; 100
2016; 221
2016; 106
2016; 105
1998; 510
2007; 30
2007; 32
2017; 357
2017; 115
2001; 103
2017; 117
2017; 118
2010; 67
2013; 19
1981; 195
2014; 5
2013; 14
2017; 37
1999; 19
1993; 70
2002; 46
1984; 12
1984; 13
2016; 113
2016; 110
2017; 360
2014; 8
2001; 13
2001; 14
2008; 60
2014; 6
2017; 127
2007; 27
2012
1995; 15
2015; 95
2017; 27
2017; 22
1991; 30
2003b; 23
2006; 15
2008; 99
1995; 18
2002
2014; 85
2008; 321
2015; 9
2014; 82
1989; 28
2002a; 22
2014; 81
2013; 36
2011; 108
2014; 505
2013; 33
1997; 77
1987; 411
2017; 11
1993; 99
2002; 22
2018
2017
1985; 238
2017; 18
2008; 211
1992; 67
2010; 1344
2002; 16
2007; 103
1999b; 19
1978; 75
2011; 60
2013; 521
2000; 130
2000; 131
2011; 58
2013; 7
1998; 87
1994; 62
2011; 198
2018; 47
2009; 12
2015; 89
1989; 30
2001; 894
2000; 125
1997; 53
1991; 88
2015; 88
2006; 26
2000; 97
2007; 7
2007; 2
2015; 1349
1998; 95
2010; 30
2003a; 23
2014; 10
2010; 37
2006; 50
1982; 32
2015; 54
2016; 92
1980; 194
1996; 16
2012; 108
1995; 5
2009; 215
1986; 128
1993; 58
2000; 83
2011; 86
2014; 37
2009; 102
2000; 82
2002b; 22
2014; 30
2001; 439
2001; 434
2014; 34
2003; 460
2015; 35
1995; 73
2017; 8
2003; 119
2014; 219
2017; 4
2012; 168
1986; 132
2009; 160
2015; 30
1981; 220
1988; 267
2005; 21
1992; 12
1998a; 10
2005; 25
1988; 269
1990; 87
1984a; 12
2009; 54
2016; 90
2015; 42
2018; 376
2000; 61
1997; 19
2016; 86
1992; 315
2011; 21
1962; 87
1998; 121
2008; 153
1999; 413
2014; 566
1995; 281
1993; 332
2004; 101
2015; 15
2015; 16
1984; 81
2006; 95
1986; 397
2006; 9
2000; 20
2015; 10
2011; 31
2009; 132
1984; 308
2016; 524
2017; 295
1999; 2
2014; 592
2012; 76
2012; 75
2005; 45
2012; 74
1990; 82
2009; 29
2004; 11
1998; 37
1993; 13
2017; 96
2012; 2
2012; 3
2000; 38
2009; 32
1989; 98
2000; 423
2001; 4
1992; 574
2005; 569
e_1_2_23_18_1
e_1_2_23_101_1
e_1_2_23_147_1
e_1_2_23_124_1
e_1_2_23_185_1
e_1_2_23_207_1
e_1_2_23_162_1
e_1_2_23_331_1
e_1_2_23_210_1
e_1_2_23_233_1
e_1_2_23_82_1
e_1_2_23_328_1
e_1_2_23_256_1
e_1_2_23_279_1
e_1_2_23_305_1
e_1_2_23_21_1
e_1_2_23_67_1
e_1_2_23_294_1
e_1_2_23_3_1
e_1_2_23_271_1
e_1_2_23_44_1
e_1_2_23_159_1
e_1_2_23_342_1
Ribeiro J.A. (e_1_2_23_264_1) 2005; 4
e_1_2_23_113_1
e_1_2_23_136_1
e_1_2_23_197_1
Tepper J.M. (e_1_2_23_302_1) 2017
e_1_2_23_151_1
e_1_2_23_174_1
e_1_2_23_218_1
e_1_2_23_71_1
e_1_2_23_94_1
e_1_2_23_244_1
e_1_2_23_221_1
e_1_2_23_339_1
e_1_2_23_267_1
e_1_2_23_316_1
e_1_2_23_10_1
e_1_2_23_33_1
e_1_2_23_56_1
e_1_2_23_79_1
e_1_2_23_282_1
e_1_2_23_19_1
e_1_2_23_148_1
e_1_2_23_186_1
e_1_2_23_102_1
e_1_2_23_125_1
e_1_2_23_206_1
e_1_2_23_140_1
e_1_2_23_163_1
e_1_2_23_229_1
Unzai T. (e_1_2_23_309_1) 2017; 27
e_1_2_23_330_1
e_1_2_23_60_1
e_1_2_23_83_1
e_1_2_23_255_1
e_1_2_23_232_1
e_1_2_23_304_1
e_1_2_23_327_1
e_1_2_23_278_1
e_1_2_23_22_1
e_1_2_23_45_1
e_1_2_23_68_1
e_1_2_23_293_1
e_1_2_23_2_1
e_1_2_23_270_1
e_1_2_23_341_1
e_1_2_23_137_1
e_1_2_23_175_1
e_1_2_23_114_1
e_1_2_23_198_1
e_1_2_23_217_1
e_1_2_23_303_1
e_1_2_23_152_1
e_1_2_23_190_1
e_1_2_23_220_1
e_1_2_23_243_1
e_1_2_23_266_1
e_1_2_23_289_1
e_1_2_23_95_1
e_1_2_23_72_1
e_1_2_23_315_1
e_1_2_23_338_1
e_1_2_23_11_1
e_1_2_23_57_1
e_1_2_23_34_1
e_1_2_23_281_1
e_1_2_23_122_1
e_1_2_23_168_1
e_1_2_23_145_1
e_1_2_23_160_1
e_1_2_23_183_1
e_1_2_23_333_1
e_1_2_23_209_1
e_1_2_23_310_1
Goldberg J.A. (e_1_2_23_142_1) 2017
e_1_2_23_84_1
e_1_2_23_61_1
e_1_2_23_212_1
e_1_2_23_235_1
e_1_2_23_258_1
e_1_2_23_296_1
e_1_2_23_307_1
e_1_2_23_119_1
e_1_2_23_46_1
e_1_2_23_69_1
e_1_2_23_250_1
e_1_2_23_273_1
e_1_2_23_23_1
e_1_2_23_111_1
e_1_2_23_134_1
e_1_2_23_157_1
e_1_2_23_172_1
e_1_2_23_195_1
e_1_2_23_321_1
e_1_2_23_50_1
e_1_2_23_73_1
e_1_2_23_200_1
e_1_2_23_318_1
e_1_2_23_223_1
e_1_2_23_246_1
e_1_2_23_108_1
e_1_2_23_58_1
e_1_2_23_284_1
e_1_2_23_261_1
e_1_2_23_12_1
e_1_2_23_35_1
e_1_2_23_96_1
e_1_2_23_100_1
e_1_2_23_123_1
e_1_2_23_146_1
e_1_2_23_169_1
e_1_2_23_161_1
e_1_2_23_208_1
e_1_2_23_332_1
e_1_2_23_62_1
e_1_2_23_211_1
e_1_2_23_306_1
e_1_2_23_329_1
e_1_2_23_234_1
e_1_2_23_257_1
e_1_2_23_47_1
e_1_2_23_295_1
e_1_2_23_272_1
e_1_2_23_24_1
e_1_2_23_85_1
e_1_2_23_112_1
e_1_2_23_158_1
e_1_2_23_9_1
e_1_2_23_343_1
e_1_2_23_135_1
e_1_2_23_150_1
e_1_2_23_196_1
e_1_2_23_173_1
e_1_2_23_219_1
e_1_2_23_320_1
e_1_2_23_222_1
e_1_2_23_51_1
e_1_2_23_317_1
e_1_2_23_245_1
e_1_2_23_268_1
e_1_2_23_109_1
e_1_2_23_283_1
e_1_2_23_59_1
e_1_2_23_36_1
e_1_2_23_74_1
e_1_2_23_260_1
e_1_2_23_13_1
e_1_2_23_97_1
e_1_2_23_120_1
e_1_2_23_105_1
e_1_2_23_189_1
e_1_2_23_166_1
e_1_2_23_335_1
e_1_2_23_249_1
e_1_2_23_312_1
e_1_2_23_181_1
e_1_2_23_252_1
e_1_2_23_275_1
e_1_2_23_40_1
e_1_2_23_214_1
e_1_2_23_237_1
e_1_2_23_298_1
e_1_2_23_117_1
e_1_2_23_48_1
e_1_2_23_25_1
e_1_2_23_63_1
e_1_2_23_290_1
e_1_2_23_86_1
e_1_2_23_8_1
e_1_2_23_132_1
e_1_2_23_49_1
e_1_2_23_155_1
e_1_2_23_178_1
e_1_2_23_193_1
e_1_2_23_300_1
e_1_2_23_323_1
e_1_2_23_170_1
e_1_2_23_263_1
e_1_2_23_90_1
e_1_2_23_202_1
e_1_2_23_248_1
e_1_2_23_286_1
e_1_2_23_225_1
e_1_2_23_106_1
e_1_2_23_129_1
e_1_2_23_14_1
e_1_2_23_37_1
e_1_2_23_52_1
e_1_2_23_75_1
e_1_2_23_98_1
e_1_2_23_240_1
e_1_2_23_121_1
e_1_2_23_38_1
e_1_2_23_144_1
e_1_2_23_167_1
e_1_2_23_182_1
e_1_2_23_311_1
e_1_2_23_334_1
Kitai S.T. (e_1_2_23_191_1) 1993; 60
e_1_2_23_308_1
e_1_2_23_274_1
e_1_2_23_213_1
e_1_2_23_259_1
e_1_2_23_297_1
e_1_2_23_236_1
e_1_2_23_118_1
e_1_2_23_26_1
e_1_2_23_41_1
e_1_2_23_64_1
e_1_2_23_87_1
e_1_2_23_251_1
e_1_2_23_6_1
e_1_2_23_7_1
e_1_2_23_133_1
e_1_2_23_179_1
e_1_2_23_27_1
e_1_2_23_110_1
e_1_2_23_156_1
e_1_2_23_171_1
e_1_2_23_194_1
e_1_2_23_322_1
e_1_2_23_319_1
e_1_2_23_201_1
e_1_2_23_224_1
e_1_2_23_247_1
e_1_2_23_285_1
e_1_2_23_91_1
e_1_2_23_30_1
e_1_2_23_107_1
e_1_2_23_15_1
e_1_2_23_262_1
e_1_2_23_53_1
e_1_2_23_99_1
e_1_2_23_76_1
e_1_2_23_39_1
e_1_2_23_16_1
e_1_2_23_149_1
e_1_2_23_187_1
e_1_2_23_126_1
e_1_2_23_164_1
Rowan E.G. (e_1_2_23_269_1) 2011; 58
e_1_2_23_103_1
e_1_2_23_205_1
e_1_2_23_228_1
e_1_2_23_314_1
e_1_2_23_141_1
e_1_2_23_231_1
e_1_2_23_254_1
e_1_2_23_277_1
e_1_2_23_80_1
e_1_2_23_326_1
e_1_2_23_292_1
e_1_2_23_42_1
e_1_2_23_88_1
e_1_2_23_5_1
e_1_2_23_65_1
e_1_2_23_340_1
e_1_2_23_115_1
e_1_2_23_138_1
e_1_2_23_153_1
e_1_2_23_176_1
e_1_2_23_199_1
e_1_2_23_216_1
e_1_2_23_239_1
e_1_2_23_325_1
Barbeau A. (e_1_2_23_28_1) 1962; 87
e_1_2_23_130_1
e_1_2_23_265_1
e_1_2_23_92_1
e_1_2_23_242_1
e_1_2_23_204_1
e_1_2_23_288_1
e_1_2_23_337_1
e_1_2_23_280_1
e_1_2_23_31_1
e_1_2_23_54_1
e_1_2_23_77_1
e_1_2_23_17_1
e_1_2_23_104_1
e_1_2_23_127_1
e_1_2_23_165_1
e_1_2_23_188_1
e_1_2_23_313_1
e_1_2_23_336_1
e_1_2_23_227_1
e_1_2_23_180_1
e_1_2_23_230_1
e_1_2_23_276_1
e_1_2_23_81_1
e_1_2_23_253_1
e_1_2_23_215_1
e_1_2_23_299_1
Goldberg J.A. (e_1_2_23_143_1) 2012
e_1_2_23_20_1
e_1_2_23_89_1
e_1_2_23_139_1
e_1_2_23_4_1
e_1_2_23_43_1
e_1_2_23_66_1
Kendall D.A. (e_1_2_23_184_1) 2016; 10
e_1_2_23_291_1
e_1_2_23_29_1
e_1_2_23_131_1
e_1_2_23_116_1
e_1_2_23_154_1
e_1_2_23_177_1
e_1_2_23_238_1
e_1_2_23_324_1
e_1_2_23_301_1
e_1_2_23_192_1
e_1_2_23_70_1
e_1_2_23_241_1
e_1_2_23_93_1
e_1_2_23_203_1
e_1_2_23_226_1
e_1_2_23_287_1
e_1_2_23_32_1
e_1_2_23_78_1
e_1_2_23_128_1
e_1_2_23_55_1
References_xml – volume: 18
  start-page: 527
  year: 1995
  end-page: 535
  article-title: Striatal interneurones: chemical, physiological and morphological characterization
  publication-title: Trends Neurosci.
– volume: 106
  start-page: 74
  year: 2016
  end-page: 84
  article-title: Histamine and the striatum
  publication-title: Neuropharmacology
– volume: 60
  start-page: 89
  year: 2013
  end-page: 107
  article-title: Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice
  publication-title: Neurobiol. Dis.
– volume: 6
  start-page: e24261
  year: 2011
  article-title: Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia
  publication-title: PLoS One
– volume: 31
  start-page: 1183
  year: 2011
  end-page: 1192
  article-title: Functional connectome of the striatal medium spiny neuron
  publication-title: J. Neurosci.
– volume: 2
  start-page: 467
  year: 1999
  end-page: 472
  article-title: Inhibitory control of neostriatal projection neurons by GABAergic interneurons
  publication-title: Nat. Neurosci.
– volume: 56
  start-page: 850
  year: 2010
  end-page: 855
  article-title: In vivo modulation of alpha7 nicotinic receptors on striatal glutamate release induced by anatoxin‐A
  publication-title: Neurochem. Int.
– volume: 220
  start-page: 67
  year: 1981
  end-page: 80
  article-title: Spontaneous firing patterns of identified spiny neurons in the rat neostriatum
  publication-title: Brain Res.
– volume: 81
  start-page: 901
  year: 2014
  end-page: 912
  article-title: Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling
  publication-title: Neuron
– volume: 11
  start-page: 20
  year: 2017
  article-title: Striatal cholinergic interneurons modulate spike‐timing in striosomes and matrix by an amphetamine‐sensitive mechanism
  publication-title: Front. Neuroanat.
– volume: 83
  start-page: 322
  year: 2000
  end-page: 332
  article-title: Adenosine receptor expression and modulation of Ca(2 + ) channels in rat striatal cholinergic interneurons
  publication-title: J. Neurophysiol.
– volume: 17
  start-page: 228
  year: 1994
  end-page: 233
  article-title: Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions
  publication-title: Trends Neurosci.
– volume: 95
  start-page: 196
  year: 2006
  end-page: 204
  article-title: Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons
  publication-title: J. Neurophysiol.
– volume: 30
  start-page: 1171
  year: 2015
  end-page: 1178
  article-title: Pathophysiology of tic disorders
  publication-title: Mov. Disord.
– volume: 439
  start-page: 235
  year: 2001
  end-page: 247
  article-title: Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones
  publication-title: J. Comp. Neurol.
– volume: 82
  start-page: 1145
  year: 2014
  end-page: 1156
  article-title: Neurons in the ventral striatum exhibit cell‐type‐specific representations of outcome during learning
  publication-title: Neuron
– volume: 10
  start-page: 2887
  year: 1998b
  end-page: 2895
  article-title: Endogenous ACh enhances striatal NMDA‐responses via M1‐like muscarinic receptors and PKC activation
  publication-title: Eur. J. Neurosci.
– volume: 13
  start-page: 4908
  year: 1993
  end-page: 4923
  article-title: Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum
  publication-title: J. Neurosci.
– volume: 89
  start-page: 232
  year: 2015
  end-page: 244
  article-title: Modulation of direct pathway striatal projection neurons by muscarinic M(4)‐type receptors
  publication-title: Neuropharmacology
– volume: 46
  start-page: 215
  year: 2002
  end-page: 223
  article-title: Muscarinic receptors involved in the subthreshold cholinergic actions of neostriatal spiny neurons
  publication-title: Synapse
– volume: 26
  start-page: 96
  year: 2016
  end-page: 105
  article-title: Novel striatal GABAergic interneuron populations labeled in the 5HT3a(EGFP) mouse
  publication-title: Cereb. Cortex
– volume: 28
  start-page: 5504
  year: 2008
  end-page: 5512
  article-title: Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease
  publication-title: J. Neurosci.
– volume: 524
  start-page: 3518
  year: 2016
  end-page: 3529
  article-title: Cholinergic interneurons in the Q140 knockin mouse model of Huntington's disease: Reductions in dendritic branching and thalamostriatal input
  publication-title: J. Comp. Neurol.
– volume: 30
  start-page: 767
  year: 1989
  end-page: 777
  article-title: Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system
  publication-title: Neuroscience
– volume: 113
  start-page: 688
  year: 2015
  end-page: 700
  article-title: Cell‐type‐specific resonances shape the responses of striatal neurons to synaptic input
  publication-title: J. Neurophysiol.
– volume: 131
  start-page: 1135
  year: 2000
  end-page: 1142
  article-title: Histamine depolarizes cholinergic interneurones in the rat striatum via a H(1)‐receptor mediated action
  publication-title: Br. J. Pharmacol.
– volume: 42
  start-page: 1764
  year: 2015
  end-page: 1774
  article-title: Novel fast adapting interneurons mediate cholinergic‐induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons
  publication-title: Eur. J. Neurosci.
– volume: 37
  start-page: 1493
  year: 1998
  end-page: 1502
  article-title: 3‐Alpha‐chloro‐imperialine, a potent blocker of cholinergic presynaptic modulation of glutamatergic afferents in the rat neostriatum
  publication-title: Neuropharmacology
– volume: 27
  start-page: 496
  year: 2007
  end-page: 506
  article-title: Tonic enhancement of endocannabinoid‐mediated retrograde suppression of inhibition by cholinergic interneuron activity in the striatum
  publication-title: J. Neurosci.
– volume: 45
  start-page: 575
  year: 2005
  end-page: 585
  article-title: The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons
  publication-title: Neuron
– volume: 27
  start-page: 391
  year: 2007
  end-page: 400
  article-title: Cholinergic interneurons control the excitatory input to the striatum
  publication-title: J. Neurosci.
– volume: 30
  start-page: 2198
  year: 2010
  end-page: 2210
  article-title: VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety
  publication-title: J. Neurosci.
– volume: 18
  start-page: 5180
  year: 1998
  end-page: 5190
  article-title: Dopamine D1‐like receptor activation excites rat striatal large aspiny neurons in vitro
  publication-title: J. Neurosci.
– volume: 35
  start-page: 308
  year: 1971
  end-page: 314
  article-title: Neostriatal choline acetylase and cholinesterase following selective brain lesions
  publication-title: Brain Res.
– volume: 95
  start-page: 468
  year: 2015
  end-page: 476
  article-title: Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons
  publication-title: Neuropharmacology
– volume: 2
  start-page: 33
  year: 2012
  end-page: 41
  article-title: Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing
  publication-title: Cell Rep.
– volume: 87
  start-page: 7050
  year: 1990
  end-page: 7054
  article-title: Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 90
  start-page: 507
  year: 2016
  end-page: 520
  article-title: PIAS1 regulates mutant Huntingtin accumulation and Huntington's disease‐associated phenotypes in vivo
  publication-title: Neuron
– volume: 23
  start-page: 8506
  year: 2003a
  end-page: 8512
  article-title: Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity
  publication-title: J. Neurosci.
– volume: 27
  start-page: 3148
  year: 2007
  end-page: 3156
  article-title: Involvement of I(h) in dopamine modulation of tonic firing in striatal cholinergic interneurons
  publication-title: J. Neurosci.
– volume: 127–128
  start-page: 91
  year: 2015
  end-page: 107
  article-title: Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia
  publication-title: Prog. Neurogibol.
– volume: 31
  start-page: 16757
  year: 2011
  end-page: 16769
  article-title: A novel functionally distinct subtype of striatal neuropeptide Y interneuron
  publication-title: J. Neurosci.
– volume: 50
  start-page: 443
  year: 2006
  end-page: 452
  article-title: Dopaminergic control of corticostriatal long‐term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons
  publication-title: Neuron
– volume: 15
  start-page: 7821
  year: 1995
  end-page: 7836
  article-title: Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain
  publication-title: J. Neurosci.
– volume: 5
  start-page: 59
  year: 2011
  article-title: Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments
  publication-title: Front. Neuroanat.
– volume: 22
  start-page: 529
  year: 2002
  end-page: 535
  article-title: Dual cholinergic control of fast‐spiking interneurons in the neostriatum
  publication-title: J. Neurosci.
– volume: 119
  start-page: 965
  year: 2003
  end-page: 977
  article-title: Co‐expression of alpha7 and beta2 nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons
  publication-title: Neuroscience
– volume: 87
  start-page: 802
  year: 1962
  end-page: 807
  article-title: The pathogenesis of Parkinson's disease: a new hypothesis
  publication-title: Can. Med. Assoc. J.
– volume: 19
  start-page: 6102
  year: 1999b
  end-page: 6110
  article-title: Glutamate‐triggered events inducing corticostriatal long‐term depression
  publication-title: J. Neurosci.
– volume: 37
  start-page: 9977
  year: 2017
  end-page: 9998
  article-title: A population of indirect pathway striatal projection neurons is selectively entrained to parkinsonian beta oscillations
  publication-title: J. Neurosci.
– volume: 32
  start-page: 1391
  year: 1982
  end-page: 1395
  article-title: Quantitative autoradiography of neurotransmitter receptors in Huntington disease
  publication-title: Neurology
– volume: 1344
  start-page: 104
  year: 2010
  end-page: 123
  article-title: Immunohistochemical localization of AMPA‐type glutamate receptor subunits in the striatum of rhesus monkey
  publication-title: Brain Res.
– volume: 5
  start-page: 11
  year: 2011
  article-title: Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons
  publication-title: Front. Syst. Neurosci.
– volume: 1349
  start-page: 1
  year: 2015
  end-page: 45
  article-title: Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 142
  start-page: 90
  issue: Suppl. 2
  year: 2017
  end-page: 102
  article-title: Cholinergic/glutamatergic co‐transmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation
  publication-title: J. Neurochem.
– volume: 96
  start-page: 267
  year: 2017
  end-page: 284
  article-title: Striatal local circuitry: a new framework for lateral inhibition
  publication-title: Neuron
– volume: 24
  start-page: 31
  year: 2001
  end-page: 55
  article-title: The role and regulation of adenosine in the central nervous system
  publication-title: Ann. Rev. Neurosci.
– volume: 97
  start-page: 6245
  year: 2000
  end-page: 6247
  article-title: A multiplicity of muscarinic mechanisms: enough signaling pathways to take your breath away
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 130
  start-page: 886
  year: 2000
  end-page: 890
  article-title: Adenosine receptor expression and function in rat striatal cholinergic interneurons
  publication-title: Br. J. Pharmacol.
– volume: 592
  start-page: 3559
  year: 2014
  end-page: 3576
  article-title: Temporal components of cholinergic terminal to dopaminergic terminal transmission in dorsal striatum slices of mice
  publication-title: J. Physiol.
– volume: 31
  start-page: 1850
  year: 2011
  end-page: 1862
  article-title: The distinct role of medium spiny neurons and cholinergic interneurons in the D(2)/A(2)A receptor interaction in the striatum: implications for Parkinson's disease
  publication-title: J. Neurosci.
– volume: 75
  start-page: 58
  year: 2012
  end-page: 64
  article-title: Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons
  publication-title: Neuron
– volume: 34
  start-page: 3101
  year: 2014
  end-page: 3117
  article-title: Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli
  publication-title: J. Neurosci.
– volume: 45
  start-page: 1044
  year: 2017
  end-page: 1056
  article-title: Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons
  publication-title: Eur. J. Neurosci.
– volume: 58
  start-page: 303
  year: 2008
  end-page: 313
  article-title: Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway
  publication-title: Brain Res. Rev.
– volume: 4
  start-page: 325
  year: 2005
  end-page: 329
  article-title: What can adenosine neuromodulation do for neuroprotection?
  publication-title: Curr. Drug Targets
– volume: 360
  start-page: 81
  year: 2017
  end-page: 94
  article-title: The role of the intrinsic cholinergic system of the striatum: what have we learned from TAN recordings in behaving animals?
  publication-title: Neuroscience
– volume: 29
  start-page: 444
  year: 2009
  end-page: 453
  article-title: Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum
  publication-title: J. Neurosci.
– volume: 58
  start-page: 413
  year: 2010
  end-page: 422
  article-title: Substance P selectively modulates GABA(A) receptor‐mediated synaptic transmission in striatal cholinergic interneurons
  publication-title: Neuropharmacology
– volume: 8
  start-page: 235
  year: 2017
  end-page: 242
  article-title: The striosome and matrix compartments of the striatum: a path through the labyrinth from neurochemistry toward function
  publication-title: ACS Chem. Neurosci.
– volume: 22
  start-page: 5442
  year: 2002
  end-page: 5451
  article-title: A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons
  publication-title: J. Neurosci.
– volume: 74
  start-page: 495
  year: 2017
  end-page: 508
  article-title: Modulation of Kv7 channels and excitability in the brain
  publication-title: Cell. Mol. Life Sci.
– volume: 38
  start-page: 747
  year: 2000
  end-page: 761
  article-title: Muscarinic toxins: novel pharmacological tools for the muscarinic cholinergic system
  publication-title: Toxicon
– volume: 23
  start-page: 6245
  year: 2003b
  end-page: 6254
  article-title: Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons
  publication-title: J. Neurosci.
– volume: 19
  start-page: 1115
  year: 1997
  end-page: 1126
  article-title: D5 dopamine receptors enhance Zn2 + ‐sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade
  publication-title: Neuron
– volume: 21
  start-page: 425
  year: 2011
  end-page: 432
  article-title: Cholinergic modulation of synaptic integration and dendritic excitability in the striatum
  publication-title: Curr. Opin. Neurobiol.
– volume: 195
  start-page: 567
  year: 1981
  end-page: 584
  article-title: Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi‐peroxidase transport‐degeneration procedure
  publication-title: J. Comp. Neurol.
– volume: 11
  start-page: 80
  year: 2017
  article-title: Pauses in striatal cholinergic interneurons: what is revealed by their common themes and variations?
  publication-title: Front. Syst. Neurosci.
– volume: 10
  start-page: 111
  year: 2016
  article-title: Mutual control of cholinergic and low‐threshold spike interneurons in the striatum
  publication-title: Front. Cell. Neurosci.
– volume: 15
  start-page: 31
  year: 2015
  article-title: Anticholinergic burden quantified by anticholinergic risk scales and adverse outcomes in older people: a systematic review
  publication-title: BMC Geriatr.
– volume: 108
  start-page: 771
  year: 2012
  end-page: 781
  article-title: Complex autonomous firing patterns of striatal low‐threshold spike interneurons
  publication-title: J. Neurophysiol.
– volume: 30
  start-page: 545
  year: 2007
  end-page: 553
  article-title: Re‐emergence of striatal cholinergic interneurons in movement disorders
  publication-title: Trends Neurosci.
– volume: 19
  start-page: 3629
  year: 1999
  end-page: 3638
  article-title: Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors
  publication-title: J. Neurosci.
– volume: 168
  start-page: 395
  year: 2010
  end-page: 404
  article-title: Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum
  publication-title: Neuroscience
– volume: 510
  start-page: 441
  issue: Pt 2
  year: 1998
  end-page: 453
  article-title: Identification of an ATP‐sensitive potassium channel current in rat striatal cholinergic interneurones
  publication-title: J. Physiol.
– volume: 113
  start-page: E3159
  year: 2016
  end-page: E3168
  article-title: Striatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 1458
  year: 2007
  end-page: 1466
  article-title: Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons
  publication-title: Nat. Neurosci.
– volume: 58
  start-page: 689
  year: 2011
  end-page: 692
  article-title: Snake toxins from mamba venoms: unique tools for the physiologist
  publication-title: Acta Chim. Slov.
– volume: 30
  start-page: 8229
  year: 2010
  end-page: 8233
  article-title: Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate
  publication-title: J. Neurosci.
– volume: 13
  start-page: 1071
  year: 2001
  end-page: 1077
  article-title: Dopaminergic control of synaptic plasticity in the dorsal striatum
  publication-title: Eur. J. Neurosci.
– volume: 7
  start-page: 295
  year: 2016
  article-title: Presynaptic release‐regulating mGlu1 receptors in central nervous system
  publication-title: Front. Pharmacol.
– volume: 53
  start-page: 603
  year: 1997
  end-page: 625
  article-title: Diffuse transmission by acetylcholine in the CNS
  publication-title: Prog. Neurogibol.
– volume: 215
  start-page: 388
  year: 2009
  end-page: 396
  article-title: Enhanced sensitivity to group II mGlu receptor activation at corticostriatal synapses in mice lacking the familial parkinsonism‐linked genes PINK1 or Parkin
  publication-title: Exp. Neurol.
– volume: 32
  start-page: 1840
  year: 2007
  end-page: 1854
  article-title: Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5‐HT 2C, 5‐HT6, and 5‐HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors
  publication-title: Neuropsychopharmacology
– volume: 10
  start-page: 75
  year: 2015
  end-page: 87
  article-title: Input‐ and cell‐type‐specific endocannabinoid‐dependent LTD in the striatum
  publication-title: Cell Rep.
– volume: 986
  start-page: 22
  year: 2003
  end-page: 29
  article-title: Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat
  publication-title: Brain Res.
– volume: 99
  start-page: 1435
  year: 2008
  end-page: 1450
  article-title: Encoding network states by striatal cell assemblies
  publication-title: J. Neurophysiol.
– volume: 27
  start-page: 143
  year: 2004
  end-page: 164
  article-title: Differential loss of striatal projection systems in Huntington's disease: a quantitative immunohistochemical study
  publication-title: J. Chem. Neuroanat.
– volume: 281
  start-page: 271
  year: 1995
  end-page: 277
  article-title: Muscarinic receptors modulate the afterhyperpolarizing potential in neostriatal neurons
  publication-title: Eur. J. Pharmacol.
– volume: 423
  start-page: 500
  year: 2000
  end-page: 511
  article-title: Neurokinin 1 receptor distribution in cholinergic neurons and targets of substance P terminals in the rat nucleus accumbens
  publication-title: J. Comp. Neurol.
– volume: 7
  start-page: 78
  year: 2013
  article-title: Global actions of nicotine on the striatal microcircuit
  publication-title: Front. Syst. Neurosci.
– volume: 510
  start-page: 421
  issue: Pt 2
  year: 1998c
  end-page: 427
  article-title: Muscarinic IPSPs in rat striatal cholinergic interneurones
  publication-title: J. Physiol.
– volume: 2
  start-page: e1174
  year: 2007
  article-title: Cholinergic interneurons are differentially distributed in the human striatum
  publication-title: PLoS One
– volume: 12
  start-page: 687
  year: 1984a
  end-page: 709
  article-title: The section‐Golgi‐impregnation procedure–3. Combination of Golgi‐impregnation with enzyme histochemistry and electron microscopy to characterize acetylcholinesterase‐containing neurons in the rat neostriatum
  publication-title: Neuroscience
– volume: 38
  start-page: 323
  year: 1999a
  end-page: 326
  article-title: Activation of M1‐like muscarinic receptors is required for the induction of corticostriatal LTP
  publication-title: Neuropharmacology
– volume: 67
  start-page: 294
  year: 2010
  end-page: 307
  article-title: Thalamic gating of corticostriatal signaling by cholinergic interneurons
  publication-title: Neuron
– volume: 28
  start-page: 131
  year: 2013
  end-page: 144
  article-title: Novel nondopaminergic targets for motor features of Parkinson's disease: review of recent trials
  publication-title: Mov. Disord.
– volume: 45
  start-page: 617
  year: 1972
  end-page: 621
  article-title: The demonstration of acetylcholinesterase containing neurones within the caudate nucleus of the rat
  publication-title: Brain Res.
– volume: 121
  start-page: 2335
  issue: Pt 12
  year: 1998
  end-page: 2339
  article-title: The role of DYT1 in primary torsion dystonia in Europe
  publication-title: Brain
– volume: 88
  start-page: 762
  year: 2015
  end-page: 773
  article-title: M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of L‐DOPA‐induced dyskinesia
  publication-title: Neuron
– volume: 65
  start-page: 1526
  year: 2004
  end-page: 1535
  article-title: Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice
  publication-title: Mol. Pharmacol.
– volume: 132
  start-page: 2125
  year: 2009
  end-page: 2138
  article-title: The neurophysiological correlates of motor tics following focal striatal disinhibition
  publication-title: Brain
– volume: 37
  start-page: 558
  year: 2010
  end-page: 573
  article-title: Convergent evidence for abnormal striatal synaptic plasticity in dystonia
  publication-title: Neurobiol. Dis.
– volume: 34
  start-page: 8772
  year: 2014
  end-page: 8777
  article-title: Striatal cholinergic neurotransmission requires VGLUT3
  publication-title: J. Neurosci.
– volume: 9
  start-page: e1001194
  year: 2011
  article-title: Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic‐glutamatergic co‐transmission
  publication-title: PLoS Biol.
– volume: 27
  start-page: 6781
  year: 2007
  end-page: 6787
  article-title: Combined activation of L‐type Ca channels and synaptic transmission is sufficient to induce striatal long‐term depression
  publication-title: J. Neurosci.
– volume: 81
  start-page: 142
  year: 2002
  end-page: 149
  article-title: Functional and molecular characterization of metabotropic glutamate receptors expressed in rat striatal cholinergic interneurones
  publication-title: J. Neurochem.
– volume: 574
  start-page: 307
  year: 1992
  end-page: 311
  article-title: Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons
  publication-title: Brain Res.
– volume: 70
  start-page: 1
  year: 1996
  end-page: 5
  article-title: Dopamine reverses the depression of rat corticostriatal synapses which normally follows high‐frequency stimulation of cortex in vitro
  publication-title: Neuroscience
– volume: 10
  start-page: 508
  year: 1990
  end-page: 519
  article-title: Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum
  publication-title: J. Neurosci.
– volume: 18
  start-page: 9438
  year: 1998
  end-page: 9452
  article-title: Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat
  publication-title: J. Neurosci.
– volume: 71
  start-page: 937
  year: 1996
  end-page: 947
  article-title: Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum
  publication-title: Neuroscience
– volume: 211
  start-page: 227
  year: 2008
  end-page: 233
  article-title: Pallidal neuronal discharge in Huntington's disease: support for selective loss of striatal cells originating the indirect pathway
  publication-title: Exp. Neurol.
– volume: 112
  start-page: 13687
  year: 2015
  end-page: 13692
  article-title: Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 30
  start-page: 1014
  year: 2015
  end-page: 1025
  article-title: Striatal cholinergic interneurons and cortico‐striatal synaptic plasticity in health and disease
  publication-title: Mov. Disord.
– volume: 10
  start-page: e0123381
  year: 2015
  article-title: Whole‐brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum
  publication-title: PLoS One
– volume: 86
  start-page: 367
  year: 2011
  end-page: 372
  article-title: The involvement of RGS9 in l‐3,4‐dihydroxyphenylalanine‐induced dyskinesias in unilateral 6‐OHDA lesion rat model
  publication-title: Brain Res. Bull.
– volume: 8
  start-page: 15860
  year: 2017
  article-title: Differential processing of thalamic information via distinct striatal interneuron circuits
  publication-title: Nat. Commun.
– volume: 460
  start-page: 280
  year: 2003
  end-page: 291
  article-title: Fine structural features of the acetylcholine innervation in the developing neostriatum of rat
  publication-title: J. Comp. Neurol.
– volume: 117
  start-page: 114
  year: 2017
  end-page: 123
  article-title: Metabotropic glutamate receptor 2 inhibits thalamically‐driven glutamate and dopamine release in the dorsal striatum
  publication-title: Neuropharmacology
– volume: 75
  start-page: 5723
  year: 1978
  end-page: 5726
  article-title: Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 115
  start-page: 179
  year: 2017
  end-page: 191
  article-title: Metabotropic glutamate receptors and neurodegenerative diseases
  publication-title: Pharmacol. Res.
– volume: 15
  start-page: 123
  year: 2012
  end-page: 130
  article-title: GABAergic circuits mediate the reinforcement‐related signals of striatal cholinergic interneurons
  publication-title: Nat. Neurosci.
– volume: 13
  start-page: 1189
  year: 1984
  end-page: 1215
  article-title: Tyrosine hydroxylase‐immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines
  publication-title: Neuroscience
– volume: 22
  start-page: 6176
  year: 2002
  end-page: 6185
  article-title: Metabotropic glutamate 2 receptors modulate synaptic inputs and calcium signals in striatal cholinergic interneurons
  publication-title: J. Neurosci.
– volume: 136
  start-page: 427
  year: 2017
  end-page: 437
  article-title: Allosteric modulators targeting CNS muscarinic receptors
  publication-title: Neuropharmacology
– volume: 30
  start-page: 62
  year: 2007
  end-page: 69
  article-title: Space, time and dopamine
  publication-title: Trends Neurosci.
– volume: 518
  start-page: 277
  year: 2010
  end-page: 291
  article-title: Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome
  publication-title: J. Comp. Neurol.
– volume: 34
  start-page: 4509
  year: 2014
  end-page: 4518
  article-title: A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem
  publication-title: J. Neurosci.
– volume: 60
  start-page: 780
  year: 2011
  end-page: 788
  article-title: Spike‐timing dependent plasticity in striatal interneurons
  publication-title: Neuropharmacology
– volume: 500
  start-page: 788
  year: 2007
  end-page: 806
  article-title: Comparative analysis of the subcellular and subsynaptic localization of mGluR1a and mGluR5 metabotropic glutamate receptors in the shell and core of the nucleus accumbens in rat and monkey
  publication-title: J. Comp. Neurol.
– start-page: 191
  year: 2002
  end-page: 194
– volume: 58
  start-page: 319
  year: 1993
  end-page: 379
  article-title: Muscarinic receptors–characterization, coupling and function
  publication-title: Pharmacol. Ther.
– volume: 153
  start-page: S283
  issue: Suppl. 1
  year: 2008
  end-page: S297
  article-title: Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission
  publication-title: Br. J. Pharmacol.
– volume: 75
  start-page: 78
  year: 2013
  end-page: 85
  article-title: Powerful inhibitory action of mu opioid receptors (MOR) on cholinergic interneuron excitability in the dorsal striatum
  publication-title: Neuropharmacology
– volume: 28
  start-page: 10075
  year: 2008
  end-page: 10080
  article-title: Uncoordinated firing rate changes of striatal fast‐spiking interneurons during behavioral task performance
  publication-title: J. Neurosci.
– volume: 566
  start-page: 106
  year: 2014
  end-page: 110
  article-title: Subsynaptic localization of nicotinic acetylcholine receptor subunits: a comparative study in the mouse and rat striatum
  publication-title: Neurosci. Lett.
– volume: 61
  start-page: 231
  year: 2000
  end-page: 265
  article-title: Synaptic transmission in the striatum: from plasticity to neurodegeneration
  publication-title: Prog. Neurogibol.
– volume: 34
  start-page: 2087
  year: 2014
  end-page: 2099
  article-title: Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways
  publication-title: J. Neurosci.
– volume: 19
  start-page: 323
  year: 2013
  end-page: 329
  article-title: Volume transmission and its different forms in the central nervous system
  publication-title: Chin. J. Integr. Med.
– volume: 30
  start-page: 1306
  year: 2015
  end-page: 1318
  article-title: Probing striatal microcircuitry to understand the functional role of cholinergic interneurons
  publication-title: Mov. Disord.
– volume: 569
  start-page: 715
  year: 2005
  end-page: 721
  article-title: Excitatory effects of serotonin on rat striatal cholinergic interneurones
  publication-title: J. Physiol.
– volume: 371
  start-page: 155
  year: 2017
  end-page: 165
  article-title: Enhanced activities of delta subunit‐containing GABAA receptors blocked spinal long‐term potentiation and attenuated formalin‐induced spontaneous pain
  publication-title: Neuroscience
– volume: 3
  start-page: 136
  year: 2012
  article-title: Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal‐glial networks
  publication-title: Front. Physiol.
– volume: 12
  start-page: 1121
  year: 2009
  end-page: 1128
  article-title: Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration
  publication-title: Nat. Neurosci.
– volume: 82
  start-page: 793
  year: 2000
  end-page: 806
  article-title: Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors
  publication-title: Biochimie
– volume: 35
  start-page: 6667
  year: 2015
  end-page: 6688
  article-title: Prototypic and arkypallidal neurons in the dopamine‐intact external globus pallidus
  publication-title: J. Neurosci.
– volume: 49
  start-page: 285
  year: 1999
  end-page: 289
  article-title: Muscarinic presynaptic inhibition of neostriatal glutamatergic afferents is mediated by Q‐type Ca channels
  publication-title: Brain Res. Bull.
– volume: 12
  start-page: 3591
  year: 1992
  end-page: 3600
  article-title: Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes
  publication-title: J. Neurosci.
– volume: 6
  start-page: 22
  year: 2014
  article-title: Striatal cholinergic interneuron regulation and circuit effects
  publication-title: Front. Synaptic Neurosci.
– volume: 413
  start-page: 603
  year: 1999
  end-page: 618
  article-title: Chemical heterogeneity of the striosomal compartment in the human striatum
  publication-title: J. Comp. Neurol.
– volume: 7
  start-page: 50
  year: 2013
  article-title: Motor tics evoked by striatal disinhibition in the rat
  publication-title: Front. Syst. Neurosci.
– volume: 30
  start-page: 182
  year: 2008
  end-page: 189
  article-title: Donepezil use in children and adolescents with tics and attention‐deficit/hyperactivity disorder: an 18‐week, single‐center, dose‐escalating, prospective, open‐label study
  publication-title: Clin. Ther.
– volume: 11
  start-page: 53
  year: 2017
  article-title: Sensory processing in the dorsolateral striatum: the contribution of thalamostriatal pathways
  publication-title: Front. Syst. Neurosci.
– volume: 36
  start-page: 9505
  year: 2016
  end-page: 9511
  article-title: Neostriatal GABAergic interneurons mediate cholinergic inhibition of spiny projection neurons
  publication-title: J. Neurosci.
– volume: 20
  start-page: 8493
  year: 2000
  end-page: 8503
  article-title: Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons
  publication-title: J. Neurosci.
– volume: 34
  start-page: 8557
  year: 2014
  end-page: 8569
  article-title: Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents
  publication-title: J. Neurosci.
– volume: 39
  start-page: 26
  year: 2016
  end-page: 39
  article-title: Roles of Presynaptic NMDA Receptors in Neurotransmission and Plasticity
  publication-title: Trends Neurosci.
– volume: 24
  start-page: 10289
  year: 2004
  end-page: 10301
  article-title: D2 dopamine receptor‐mediated modulation of voltage‐dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons
  publication-title: J. Neurosci.
– volume: 60
  start-page: 543
  year: 2008
  end-page: 554
  article-title: Striatal plasticity and basal ganglia circuit function
  publication-title: Neuron
– volume: 26
  start-page: 4160
  year: 2016
  end-page: 4169
  article-title: Cortical control of striatal dopamine transmission via striatal cholinergic interneurons
  publication-title: Cereb. Cortex
– volume: 295
  start-page: 162
  year: 2017
  end-page: 175
  article-title: Strength of cholinergic tone dictates the polarity of dopamine D2 receptor modulation of striatal cholinergic interneuron excitability in DYT1 dystonia
  publication-title: Exp. Neurol.
– volume: 10
  start-page: 3020
  year: 1998a
  end-page: 3023
  article-title: Blockade of M2‐like muscarinic receptors enhances long‐term potentiation at corticostriatal synapses
  publication-title: Eur. J. Neurosci.
– volume: 593
  start-page: 2295
  year: 2015
  end-page: 2310
  article-title: Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABAB and mGlu2/3 receptors
  publication-title: J. Physiol.
– volume: 118
  start-page: 209
  year: 2017
  end-page: 222
  article-title: M1 muscarinic activation induces long‐lasting increase in intrinsic excitability of striatal projection neurons
  publication-title: Neuropharmacology
– volume: 108
  start-page: 840
  year: 2011
  end-page: 845
  article-title: Enhanced striatal cholinergic neuronal activity mediates L‐DOPA‐induced dyskinesia in parkinsonian mice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 95
  start-page: 6480
  year: 1998
  end-page: 6485
  article-title: Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 219
  year: 2006
  end-page: 233
  article-title: Muscarinic receptor subtypes in neuronal and non‐neuronal cholinergic function
  publication-title: Auton. Autacoid Pharmacol.
– volume: 67
  start-page: 1669
  year: 1992
  end-page: 1682
  article-title: Large aspiny cells in the matrix of the rat neostriatum in vitro: physiological identification, relation to the compartments and excitatory postsynaptic currents
  publication-title: J. Neurophysiol.
– volume: 8
  start-page: 21
  year: 2014
  article-title: Interaction between the 5‐HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease
  publication-title: Front. Neural. Circuits.
– volume: 70
  start-page: 1937
  year: 1993
  end-page: 1949
  article-title: Short‐ and long‐term synaptic depression in rat neostriatum
  publication-title: J. Neurophysiol.
– volume: 30
  start-page: 2223
  year: 2010
  end-page: 2234
  article-title: Distinct roles of GABAergic interneurons in the regulation of striatal output pathways
  publication-title: J. Neurosci.
– volume: 11
  start-page: 755
  year: 2004
  end-page: 760
  article-title: Coordinate high‐frequency pattern of stimulation and calcium levels control the induction of LTP in striatal cholinergic interneurons
  publication-title: Learn Memory
– volume: 520
  start-page: 2123
  year: 2012
  end-page: 2142
  article-title: Density gradients of vesicular glutamate‐ and GABA transporter‐immunoreactive boutons in calbindinand mu‐opioid receptor‐defined compartments in the rat striatum
  publication-title: J. Comp. Neurol.
– volume: 99
  start-page: 51
  year: 1993
  end-page: 72
  article-title: GABAergic circuits of the striatum
  publication-title: Prog. Brain Res.
– volume: 36
  start-page: 160
  year: 1986
  end-page: 164
  article-title: Torsion dystonia: a double‐blind, prospective trial of high‐dosage trihexyphenidyl
  publication-title: Neurology
– volume: 2015
  start-page: Article ID 472676
  year: 2015
  article-title: KV7 channels regulate firing during synaptic integration in GABAergic striatal neurons
  publication-title: Neural. Plast.
– volume: 46
  start-page: 351
  year: 1992
  end-page: 360
  article-title: Ultrastructural relationships between choline acetyltransferase‐ and neuropeptide y‐containing neurons in the rat striatum
  publication-title: Neuroscience
– volume: 586
  start-page: 265
  year: 2008
  end-page: 282
  article-title: Cell‐specific spike‐timing‐dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices
  publication-title: J. Physiol.
– volume: 18
  start-page: 10207
  year: 1998
  end-page: 10218
  article-title: Subcellular redistribution of m2 muscarinic acetylcholine receptors in striatal interneurons in vivo after acute cholinergic stimulation
  publication-title: J. Neurosci.
– volume: 14
  start-page: 1577
  year: 2001
  end-page: 1589
  article-title: Differential sensitivity of medium‐ and large‐sized striatal neurons to NMDA but not kainate receptor activation in the rat
  publication-title: Eur. J. Neurosci.
– volume: 30
  start-page: 785
  year: 1991
  end-page: 793
  article-title: Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington's disease
  publication-title: Ann. Neurol.
– volume: 22
  start-page: 8785
  year: 2002
  end-page: 8789
  article-title: Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum
  publication-title: J. Neurosci.
– volume: 594
  start-page: 253
  year: 1992
  end-page: 262
  article-title: Ultrastructural examination of enkephalin and substance P input to cholinergic neurons within the rat neostriatum
  publication-title: Brain Res.
– volume: 88
  start-page: 2608
  year: 1991
  end-page: 2611
  article-title: Distinct muscarinic receptors inhibit release of gamma‐aminobutyric acid and excitatory amino acids in mammalian brain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 344
  start-page: 240
  year: 1990
  end-page: 242
  article-title: Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons
  publication-title: Nature
– volume: 219
  start-page: 1787
  year: 2014
  end-page: 1800
  article-title: Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum
  publication-title: Brain Struct. Funct.
– volume: 15
  start-page: 3119
  year: 2006
  end-page: 3131
  article-title: Cholinergic neuronal defect without cell loss in Huntington's disease
  publication-title: Hum. Mol. Genet.
– volume: 47
  start-page: 416
  year: 2012
  end-page: 427
  article-title: Cholinergic dysregulation produced by selective inactivation of the dystonia‐associated protein torsinA
  publication-title: Neurobiol. Dis.
– volume: 60
  start-page: 40
  year: 1993
  end-page: 52
  article-title: Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons
  publication-title: Adv. Neurol.
– volume: 16
  start-page: 2749
  year: 2016
  end-page: 2762
  article-title: Decrease of a current mediated by Kv1.3 channels causes striatal cholinergic interneuron hyperexcitability in experimental parkinsonism
  publication-title: Cell Rep.
– volume: 62
  start-page: 707
  year: 1994
  end-page: 719
  article-title: Synaptic input and output of parvalbumin‐immunoreactive neurons in the neostriatum of the rat
  publication-title: Neuroscience
– volume: 269
  start-page: 219
  year: 1988
  end-page: 234
  article-title: Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat
  publication-title: J. Comp. Neurol.
– volume: 95
  start-page: 6486
  year: 1998
  end-page: 6491
  article-title: Preferential localization of self‐stimulation sites in striosomes/patches in the rat striatum
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 217
  year: 1979
  end-page: 225
  article-title: The localization of acetylcholinesterase in the corpus striatum and substantia nigra of the rat following kainic acid lesion of the corpus striatum: a biochemical and histochemical study
  publication-title: Neuroscience
– volume: 4
  start-page: 1224
  year: 2001
  end-page: 1229
  article-title: Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum
  publication-title: Nat. Neurosci.
– volume: 10
  start-page: 294
  year: 2016
  article-title: Cannabinoid receptors in the central nervous system: their signaling and roles in disease
  publication-title: Front. Cell Neurosci.
– volume: 21
  start-page: 3301
  year: 2005
  end-page: 3309
  article-title: Functional mu opioid receptors are expressed in cholinergic interneurons of the rat dorsal striatum: territorial specificity and diurnal variation
  publication-title: Eur. J. Neurosci.
– volume: 5
  start-page: 733
  year: 1995
  end-page: 741
  article-title: Building action repertoires: memory and learning functions of the basal ganglia
  publication-title: Curr. Opin. Neurobiol.
– volume: 74
  start-page: 225
  year: 2012
  end-page: 243
  article-title: Neurotransmitter corelease: mechanism and physiological role
  publication-title: Ann. Rev. Physiol.
– volume: 20
  start-page: 5102
  year: 2000
  end-page: 5114
  article-title: Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting
  publication-title: J. Neurosci.
– volume: 12
  start-page: 2871
  year: 2000
  end-page: 2880
  article-title: Differential modulation of AMPA receptors by cyclothiazide in two types of striatal neurons
  publication-title: Eur. J. Neurosci.
– volume: 77
  start-page: 1003
  year: 1997
  end-page: 1015
  article-title: D2 dopamine receptors reduce N‐type Ca2 +  currents in rat neostriatal cholinergic interneurons through a membrane‐delimited, protein‐kinase‐C‐insensitive pathway
  publication-title: J. Neurophysiol.
– volume: 30
  start-page: 6999
  year: 2010
  end-page: 7016
  article-title: Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase‐expressing neurons in adult mouse striatum
  publication-title: J. Neurosci.
– volume: 25
  start-page: 7449
  year: 2005
  end-page: 7458
  article-title: Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons
  publication-title: J. Neurosci.
– volume: 74
  start-page: 1075
  year: 2012
  end-page: 1086
  article-title: Dichotomous organization of the external globus pallidus
  publication-title: Neuron
– volume: 53
  start-page: 590
  year: 2002
  end-page: 605
  article-title: Cholinergic interneuron characteristics and nicotinic properties in the striatum
  publication-title: J. Neurobiol.
– volume: 18
  start-page: 8539
  year: 1998
  end-page: 8549
  article-title: Synaptic regulation of action potential timing in neostriatal cholinergic interneurons
  publication-title: J. Neurosci.
– volume: 62
  start-page: 635
  year: 1994
  end-page: 640
  article-title: Delta‐opioid receptor gene expression in the mouse forebrain: localization in cholinergic neurons of the striatum
  publication-title: Neuroscience
– volume: 89
  start-page: 226
  year: 2013
  end-page: 256
  article-title: Molecular properties of muscarinic acetylcholine receptors
  publication-title: Proc. Jpn Acad. Ser. B Phys. Biol. Sci.
– volume: 102
  start-page: 682
  year: 2009
  end-page: 690
  article-title: Muscarinic enhancement of persistent sodium current synchronizes striatal medium spiny neurons
  publication-title: J. Neurophysiol.
– volume: 397
  start-page: 279
  year: 1986
  end-page: 289
  article-title: Substance P‐containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat
  publication-title: Brain Res.
– volume: 19
  start-page: 1030
  year: 2013
  end-page: 1038
  article-title: Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models
  publication-title: Nat. Med.
– volume: 9
  start-page: 832
  year: 2006
  end-page: 842
  article-title: RGS4‐dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion
  publication-title: Nat. Neurosci.
– volume: 14
  start-page: 3351
  year: 1994
  end-page: 3363
  article-title: Distribution of m1‐m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype‐specific antibodies
  publication-title: J. Neurosci.
– volume: 8
  start-page: 188
  year: 2014
  article-title: Local control of striatal dopamine release
  publication-title: Front. Behav. Neurosci.
– volume: 92
  start-page: 84
  year: 2016
  end-page: 92
  article-title: Principles of synaptic organization of GABAergic interneurons in the striatum
  publication-title: Neuron
– volume: 168
  start-page: 569
  year: 2012
  end-page: 575
  article-title: Functional anatomy of the basal ganglia: limbic aspects
  publication-title: Rev. Neurol. (Paris)
– volume: 308
  start-page: 278
  year: 1984
  end-page: 280
  article-title: Kappa‐ and delta‐opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release
  publication-title: Nature
– volume: 22
  start-page: 1
  year: 2017
  end-page: 15
  article-title: Ultrafast and slow cholinergic transmission. different involvement of acetylcholinesterase molecular forms
  publication-title: Molecules
– volume: 25
  start-page: 10230
  year: 2005
  end-page: 10238
  article-title: Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium‐activated potassium currents in striatal cholinergic interneurons
  publication-title: J. Neurosci.
– volume: 10
  start-page: 269
  year: 2014
  end-page: 281
  article-title: Modulation of Ca ‐currents by sequential and simultaneous activation of adenosine A1 and A 2A receptors in striatal projection neurons
  publication-title: Purinergic Signal.
– volume: 28
  start-page: 14245
  year: 2008
  end-page: 14258
  article-title: Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity
  publication-title: J. Neurosci.
– volume: 591
  start-page: 203
  year: 2013
  end-page: 217
  article-title: Direct and GABA‐mediated indirect effects of nicotinic ACh receptor agonists on striatal neurones
  publication-title: J. Physiol.
– volume: 109
  start-page: 148
  year: 2018
  end-page: 162
  article-title: Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum
  publication-title: Neurobiol. Dis.
– volume: 134
  start-page: 110
  year: 2011
  end-page: 118
  article-title: Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies
  publication-title: Brain
– volume: 16
  start-page: 2017
  year: 2002
  end-page: 2026
  article-title: Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events
  publication-title: Eur. J. Neurosci.
– volume: 12
  start-page: 711
  year: 1984b
  end-page: 718
  article-title: Characterization of cholinergic neurons in the rat neostriatum – a combination of choline‐acetyltransferase immunocytochemistry, golgi‐impregnation and electron‐microscopy
  publication-title: Neuroscience
– volume: 51
  start-page: 533
  year: 1992
  end-page: 545
  article-title: Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat
  publication-title: Neuroscience
– volume: 9
  start-page: 116
  year: 2015
  article-title: Potentiation of NMDA receptor‐mediated transmission in striatal cholinergic interneurons
  publication-title: Front. Cell Neurosci.
– volume: 100
  start-page: 30
  year: 2016
  end-page: 34
  article-title: Nicotinic receptor subtypes differentially modulate glutamate release in the dorsal medial striatum
  publication-title: Neurochem. Int.
– volume: 376
  start-page: 188
  year: 2018
  end-page: 203
  article-title: Histamine H3 receptors decrease dopamine release in the ventral striatum by reducing the activity of striatal cholinergic interneurons
  publication-title: Neuroscience
– volume: 76
  start-page: 33
  year: 2012
  end-page: 50
  article-title: Dopaminergic modulation of synaptic transmission in cortex and striatum
  publication-title: Neuron
– volume: 56
  start-page: 931
  year: 1995
  end-page: 938
  article-title: Diverse pre‐ and post‐synaptic expression of m1‐m4 muscarinic receptor proteins in neurons and afferents in the rat neostriatum
  publication-title: Life Sci.
– volume: 357
  start-page: 1255
  year: 2017
  end-page: 1261
  article-title: Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease
  publication-title: Science
– volume: 31
  start-page: 14972
  year: 2011
  end-page: 14983
  article-title: Dopaminergic modulation of the striatal microcircuit: receptor‐specific configuration of cell assemblies
  publication-title: J. Neurosci.
– volume: 93
  start-page: 2507
  year: 2005
  end-page: 2519
  article-title: Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2 +  channels
  publication-title: J. Neurophysiol.
– volume: 85
  start-page: 637
  issue: Pt 2
  year: 2014
  end-page: 647
  article-title: Oscillations and the basal ganglia: motor control and beyond
  publication-title: NeuroImage
– volume: 87
  start-page: 1007
  year: 2002
  end-page: 1017
  article-title: Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations
  publication-title: J. Neurophysiol.
– volume: 128
  start-page: 201
  year: 1986
  end-page: 207
  article-title: A correlation analysis of the regional distribution of central enkephalin and beta‐endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission
  publication-title: Acta Physiol. Scand.
– volume: 6
  start-page: 787
  year: 2005
  end-page: 798
  article-title: Metabotropic glutamate receptors in the basal ganglia motor circuit
  publication-title: Nat. Rev. Neurosci.
– volume: 332
  start-page: 499
  year: 1993
  end-page: 513
  article-title: Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum
  publication-title: J. Comp. Neurol.
– volume: 894
  start-page: 12
  year: 2001
  end-page: 20
  article-title: Biotinylated m4‐toxin demonstrates more M4 muscarinic receptor protein on direct than indirect striatal projection neurons
  publication-title: Brain Res.
– volume: 31
  start-page: 6553
  year: 2011
  end-page: 6564
  article-title: Reduction of an afterhyperpolarization current increases excitability in striatal cholinergic interneurons in rat parkinsonism
  publication-title: J. Neurosci.
– volume: 142
  start-page: 857
  year: 2017
  end-page: 875
  article-title: Vesicular acetylcholine transporter (VAChT) over‐expression induces major modifications of striatal cholinergic interneuron morphology and function
  publication-title: J. Neurochem.
– volume: 76
  start-page: 3771
  year: 1996
  end-page: 3786
  article-title: Neural information transferred from the putamen to the globus pallidus during learned movement in the monkey
  publication-title: J. Neurophysiol.
– volume: 36
  start-page: 41
  year: 2013
  end-page: 50
  article-title: Pause and rebound: sensory control of cholinergic signaling in the striatum
  publication-title: Trends Neurosci.
– volume: 31
  start-page: 13015
  year: 2011
  end-page: 13022
  article-title: A Ca(2 + ) threshold for induction of spike‐timing‐dependent depression in the mouse striatum
  publication-title: J. Neurosci.
– volume: 46
  start-page: 271
  year: 2017
  end-page: 293
  article-title: Imaging and optically manipulating neuronal ensembles
  publication-title: Ann. Rev. Biophys.
– volume: 198
  start-page: 27
  year: 2011
  end-page: 43
  article-title: Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum
  publication-title: Neuroscience
– volume: 14
  start-page: 278
  year: 2013
  end-page: 291
  article-title: Corticostriatal connectivity and its role in disease
  publication-title: Nat. Rev. Neurosci.
– volume: 434
  start-page: 445
  year: 2001
  end-page: 460
  article-title: Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: anatomical evidence for cholinergic modulation of glutamatergic prefronto‐striatal pathways
  publication-title: J. Comp. Neurol.
– volume: 54
  start-page: 89
  year: 2015
  end-page: 107
  article-title: Limbic circuitry of the midline thalamus
  publication-title: Neurosci. Biobehav. Rev.
– volume: 47
  start-page: 1148
  year: 2018
  end-page: 1158
  article-title: Striatal cholinergic interneurons and Parkinson's disease
  publication-title: Eur. J. Neurosci.
– volume: 127
  start-page: 720
  year: 2017
  end-page: 734
  article-title: Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy
  publication-title: J. Clin. Invest.
– volume: 15
  start-page: 5297
  year: 1995
  end-page: 5307
  article-title: NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum
  publication-title: J. Neurosci.
– volume: 87
  start-page: 649
  year: 1998
  end-page: 658
  article-title: Characterization of the mechanism of action of tachykinins in rat striatal cholinergic interneurons
  publication-title: Neuroscience
– volume: 11
  start-page: e0157682
  year: 2016
  article-title: Quantitative imaging of cholinergic interneurons reveals a distinctive spatial organization and a functional gradient across the mouse striatum
  publication-title: PLoS One
– volume: 30
  start-page: 259
  year: 2007
  end-page: 288
  article-title: Multiple dopamine functions at different time courses
  publication-title: Ann. Rev. Neurosci.
– volume: 33
  start-page: 1678
  year: 2013
  end-page: 1683
  article-title: Target selectivity of feedforward inhibition by striatal fast‐spiking interneurons
  publication-title: J. Neurosci.
– volume: 101
  start-page: 16339
  year: 2004
  end-page: 16344
  article-title: RGS9‐2 modulates D2 dopamine receptor‐mediated Ca channel inhibition in rat striatal cholinergic interneurons
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 238
  year: 2016
  end-page: 251
  article-title: Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission
  publication-title: Neuroscientist
– volume: 103
  start-page: 2153
  year: 2007
  end-page: 2163
  article-title: Tachykinin regulation of cholinergic transmission in the limbic/prefrontal territory of the rat dorsal striatum: implication of new neurokinine 1‐sensitive receptor binding site and interaction with enkephalin/mu opioid receptor transmission
  publication-title: J. Neurochem.
– volume: 125
  start-page: 27
  year: 2000
  end-page: 47
  article-title: Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system
  publication-title: Prog. Brain Res.
– volume: 78
  start-page: 703
  year: 2009
  end-page: 711
  article-title: Structural and functional diversity of native brain neuronal nicotinic receptors
  publication-title: Biochem. Pharmacol.
– volume: 14
  start-page: 3005
  year: 1994
  end-page: 3018
  article-title: Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat
  publication-title: J. Neurosci.
– volume: 132
  start-page: 337
  year: 1986
  end-page: 338
  article-title: Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats
  publication-title: Eur. J. Pharmacol.
– volume: 12
  start-page: 4224
  year: 1992
  end-page: 4233
  article-title: Long‐term synaptic depression in the striatum: physiological and pharmacological characterization
  publication-title: J. Neurosci.
– volume: 267
  start-page: 455
  year: 1988
  end-page: 471
  article-title: Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium‐size spiny neurons in the rat neostriatum
  publication-title: J. Comp. Neurol.
– volume: 18
  start-page: 299
  year: 2017
  end-page: 309
  article-title: Genetic and activity‐dependent mechanisms underlying interneuron diversity
  publication-title: Nat. Rev. Neurosci.
– volume: 36
  start-page: 9161
  year: 2016
  end-page: 9172
  article-title: Involvement of striatal cholinergic interneurons and M1 and M4 muscarinic receptors in motor symptoms of Parkinson's disease
  publication-title: J. Neurosci.
– volume: 28
  start-page: 2435
  year: 2008
  end-page: 2446
  article-title: Dopamine receptor activation is required for corticostriatal spike‐timing‐dependent plasticity
  publication-title: J. Neurosci.
– volume: 521
  start-page: 2502
  year: 2013
  end-page: 2522
  article-title: GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen
  publication-title: J. Comp. Neurol.
– volume: 238
  start-page: 286
  year: 1985
  end-page: 307
  article-title: Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses
  publication-title: J. Comp. Neurol.
– volume: 315
  start-page: 137
  year: 1992
  end-page: 159
  article-title: Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA‐L study of subcortical projections
  publication-title: J. Comp. Neurol.
– volume: 58
  start-page: 455
  year: 2011
  end-page: 463
  article-title: Muscarinic toxins
  publication-title: Toxicon
– volume: 30
  start-page: 14610
  year: 2010
  end-page: 14618
  article-title: Cortical and thalamic innervation of direct and indirect pathway medium‐sized spiny neurons in mouse striatum
  publication-title: J. Neurosci.
– start-page: 137
  year: 2017
  end-page: 155
– volume: 85
  start-page: 5733
  year: 1988
  end-page: 5737
  article-title: Differential loss of striatal projection neurons in Huntington disease
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 221
  start-page: 1737
  year: 2016
  end-page: 1749
  article-title: The neostriatum: two entities, one structure?
  publication-title: Brain Struct. Funct.
– volume: 110
  start-page: 3
  year: 2016
  end-page: 9
  article-title: Modulatory compartments in cortex and local regulation of cholinergic tone
  publication-title: J. Physiol. Paris
– volume: 32
  start-page: 127
  year: 2009
  end-page: 147
  article-title: Physiology and pharmacology of striatal neurons
  publication-title: Ann. Rev. Neurosci.
– volume: 73
  start-page: 1234
  year: 1995
  end-page: 1252
  article-title: Temporal and spatial characteristics of tonically active neurons of the primate's striatum
  publication-title: J. Neurophysiol.
– volume: 16
  start-page: 487
  year: 2015
  end-page: 497
  article-title: From the neuron doctrine to neural networks
  publication-title: Nat. Rev.
– volume: 36
  start-page: 543
  year: 2013
  end-page: 554
  article-title: Advances in the pharmacological treatment of Parkinson's disease: targeting neurotransmitter systems
  publication-title: Trends Neurosci.
– volume: 54
  start-page: 33
  year: 2009
  end-page: 46
  article-title: The R7 RGS protein family: multi‐subunit regulators of neuronal G protein signaling
  publication-title: Cell Biochem. Biophys.
– volume: 3
  start-page: 4
  year: 2011
  article-title: A history of spike‐timing‐dependent plasticity
  publication-title: Front. Synaptic Neurosci.
– volume: 103
  start-page: 1017
  year: 2001
  end-page: 1024
  article-title: Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons
  publication-title: Neuroscience
– volume: 86
  start-page: 1531
  year: 2016
  end-page: 1542
  article-title: Intrinsic circuits of the striatum: complexity and clinical correlations
  publication-title: Neurology
– volume: 505
  start-page: 318
  year: 2014
  end-page: 326
  article-title: Interneuron cell types are fit to function
  publication-title: Nature
– start-page: 223
  year: 2012
  end-page: 241
– volume: 28
  start-page: 851
  year: 2013
  end-page: 862
  article-title: Translation of Oppenheim's 1911 paper on dystonia
  publication-title: Mov. Disord.
– volume: 3
  start-page: 80
  year: 2012
  end-page: 89
  article-title: Muscarinic acetylcholine receptor subtypes as potential drug targets for the treatment of schizophrenia, drug abuse and Parkinson's disease
  publication-title: ACS Chem. Neurosci.
– volume: 21
  start-page: 7247
  year: 2001
  end-page: 7260
  article-title: The nigrostriatal pathway in the rat: a single‐axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments
  publication-title: J. Neurosci.
– volume: 4
  start-page: ENEURO.0178‐17.2017
  year: 2017
  article-title: Normal striatal vesicular acetylcholine transporter expression in tourette syndrome
  publication-title: eNeuro
– volume: 3
  start-page: 1172
  year: 2012
  article-title: Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits
  publication-title: Nat. Commun.
– volume: 16
  start-page: 2592
  year: 1996
  end-page: 2604
  article-title: Muscarinic (m2/m4) receptors reduce N‐ and P‐type Ca2 +  currents in rat neostriatal cholinergic interneurons through a fast, membrane‐delimited, G‐protein pathway
  publication-title: J. Neurosci.
– volume: 6
  start-page: e19155
  year: 2011
  article-title: Cholinergic interneurons mediate fast VGluT3‐dependent glutamatergic transmission in the striatum
  publication-title: PLoS One
– volume: 16
  start-page: 5141
  year: 1996
  end-page: 5153
  article-title: Actions of substance P on rat neostriatal neurons
  publication-title: J. Neurosci.
– volume: 12
  start-page: 669
  year: 1984
  end-page: 686
  article-title: Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry
  publication-title: Neuroscience
– volume: 71
  start-page: 157
  year: 1996
  end-page: 165
  article-title: Role of the parafascicular thalamic nucleus and N‐methyl‐D‐aspartate transmission in the D1‐dependent control of in vivo acetylcholine release in rat striatum
  publication-title: Neuroscience
– volume: 98
  start-page: 135
  year: 1989
  end-page: 140
  article-title: Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording
  publication-title: Br. J. Pharmacol.
– volume: 28
  start-page: 8682
  year: 2008
  end-page: 8690
  article-title: Recurrent inhibitory network among striatal cholinergic interneurons
  publication-title: J. Neurosci.
– volume: 78
  start-page: 744
  year: 2009
  end-page: 755
  article-title: Nicotinic acetylcholine receptors and the ascending dopamine pathways
  publication-title: Biochem. Pharmacol.
– volume: 6
  start-page: 1345
  year: 2010
  end-page: 1354
  article-title: Allosteric activators of muscarinic receptors as novel approaches for treatment of CNS disorders
  publication-title: Mol. BioSyst.
– volume: 411
  start-page: 162
  year: 1987
  end-page: 166
  article-title: Sparing of acetylcholinesterase‐containing striatal neurons in Huntington's disease
  publication-title: Brain Res.
– volume: 34
  start-page: 3253
  year: 2014
  end-page: 3262
  article-title: M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor's location
  publication-title: J. Neurosci.
– volume: 21
  start-page: 6492
  year: 2001
  end-page: 6501
  article-title: Dopamine‐dependent synaptic plasticity in the striatal cholinergic interneurons
  publication-title: J. Neurosci.
– volume: 28
  start-page: 566
  year: 1989
  end-page: 573
  article-title: The Yale Global Tic Severity Scale: initial testing of a clinician‐rated scale of tic severity
  publication-title: J. Am. Acad. Child. Adolesc. Psychiat.
– volume: 321
  start-page: 848
  year: 2008
  end-page: 851
  article-title: Dichotomous dopaminergic control of striatal synaptic plasticity
  publication-title: Science
– volume: 81
  start-page: 4998
  year: 1984
  end-page: 5001
  article-title: Tonically discharging putamen neurons exhibit set‐dependent responses
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 157
  year: 2017
  end-page: 178
– volume: 30
  start-page: 4
  year: 2014
  end-page: 18
  article-title: The medical treatment of Parkinson disease from James Parkinson to George Cotzias
  publication-title: Mov. Disord.
– volume: 25
  start-page: 3857
  year: 2005
  end-page: 3869
  article-title: Feedforward inhibition of projection neurons by fast‐spiking GABA interneurons in the rat striatum in vivo
  publication-title: J. Neurosci.
– volume: 24
  start-page: 9870
  year: 2004
  end-page: 9877
  article-title: Modulation of an afterhyperpolarization by the substantia nigra induces pauses in the tonic firing of striatal cholinergic interneurons
  publication-title: J. Neurosci.
– volume: 160
  start-page: 744
  year: 2009
  end-page: 754
  article-title: Asymmetric spike‐timing dependent plasticity of striatal nitric oxide‐synthase interneurons
  publication-title: Neuroscience
– volume: 198
  start-page: 112
  year: 2011
  end-page: 137
  article-title: Dopamine release in the basal ganglia
  publication-title: Neuroscience
– volume: 194
  start-page: 599
  year: 1980
  end-page: 615
  article-title: Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase
  publication-title: J. Comp. Neurol.
– volume: 112
  start-page: 893
  year: 2015
  end-page: 898
  article-title: Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 105
  start-page: 318
  year: 2016
  end-page: 328
  article-title: Nicotinic acetylcholine receptor‐mediated GABAergic inputs to cholinergic interneurons in the striosomes and the matrix compartments of the mouse striatum
  publication-title: Neuropharmacology
– volume: 5
  start-page: 318
  year: 2014
  end-page: 324
  article-title: M4 mAChR‐mediated modulation of glutamatergic transmission at corticostriatal synapses
  publication-title: ACS Chem. Neurosci.
– volume: 31
  start-page: 1
  year: 1999
  end-page: 5
  article-title: Permissive role of interneurons in corticostriatal synaptic plasticity
  publication-title: Brain Res. Brain Res. Rev.
– volume: 200
  start-page: 151
  year: 1981
  end-page: 201
  article-title: The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat
  publication-title: J. Comp. Neurol.
– volume: 82
  start-page: 672
  year: 1990
  end-page: 676
  article-title: Physiological properties of projection neurons in the monkey striatum to the globus pallidus
  publication-title: Exp. Brain Res.
– volume: 22
  start-page: 6347
  year: 2002b
  end-page: 6352
  article-title: Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1‐M5 muscarinic receptor knock‐out mice
  publication-title: J. Neurosci.
– volume: 37
  start-page: 663
  year: 2014
  end-page: 673
  article-title: Presynaptic long‐term depression mediated by G‐coupled receptors
  publication-title: Trends Neurosci.
– volume: 19
  start-page: 5586
  year: 1999
  end-page: 5596
  article-title: Spontaneous activity of neostriatal cholinergic interneurons in vitro
  publication-title: J. Neurosci.
– volume: 22
  start-page: 1709
  year: 2002a
  end-page: 1717
  article-title: Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock‐out mice
  publication-title: J. Neurosci.
– year: 2018
  article-title: Acute and chronic modulation of striatal endocannabinoid‐mediated plasticity by nicotine
  publication-title: Addict. Biol.
– volume: 7
  start-page: 106
  year: 2007
  end-page: 111
  article-title: Plastic abnormalities in experimental Huntington's disease
  publication-title: Curr. Opin. Pharmacol.
– volume: 79
  start-page: 153
  year: 2013
  end-page: 166
  article-title: The thalamostriatal pathway and cholinergic control of goal‐directed action: interlacing new with existing learning in the striatum
  publication-title: Neuron
– volume: 27
  start-page: 1164
  year: 2017
  end-page: 1181
  article-title: Quantitative analyses of the projection of individual neurons from the midline thalamic nuclei to the striosome and matrix compartments of the rat striatum
  publication-title: Cereb. Cortex
– ident: e_1_2_23_6_1
  doi: 10.1038/344240a0
– ident: e_1_2_23_64_1
  doi: 10.1016/j.celrep.2012.05.011
– ident: e_1_2_23_20_1
  doi: 10.1016/j.neuroscience.2017.07.060
– ident: e_1_2_23_187_1
  doi: 10.1073/pnas.81.15.4998
– ident: e_1_2_23_113_1
  doi: 10.1523/JNEUROSCI.4627-13.2014
– ident: e_1_2_23_329_1
  doi: 10.1002/mds.26304
– ident: e_1_2_23_80_1
  doi: 10.1016/S0165-0173(99)00018-1
– ident: e_1_2_23_29_1
  doi: 10.1016/S0361-9230(99)00061-1
– start-page: 137
  volume-title: Handbook of Basal Ganglia Structure and Function
  year: 2017
  ident: e_1_2_23_142_1
– ident: e_1_2_23_258_1
  doi: 10.1016/j.neuropharm.2013.07.006
– ident: e_1_2_23_305_1
  doi: 10.1016/j.neuron.2012.04.038
– ident: e_1_2_23_16_1
  doi: 10.1523/JNEUROSCI.16-16-05141.1996
– start-page: 223
  volume-title: Handbook of Experimental Pharmacology
  year: 2012
  ident: e_1_2_23_143_1
– ident: e_1_2_23_266_1
  doi: 10.1016/j.brainresrev.2008.02.004
– ident: e_1_2_23_265_1
  doi: 10.1016/j.phrs.2016.11.013
– ident: e_1_2_23_281_1
  doi: 10.1523/JNEUROSCI.0658-17.2017
– ident: e_1_2_23_96_1
  doi: 10.1523/JNEUROSCI.5071-13.2014
– ident: e_1_2_23_183_1
  doi: 10.1016/0166-2236(95)98374-8
– ident: e_1_2_23_276_1
  doi: 10.1146/annurev.neuro.28.061604.135722
– ident: e_1_2_23_297_1
  doi: 10.1523/JNEUROSCI.2411-08.2008
– ident: e_1_2_23_131_1
  doi: 10.1016/j.neuroscience.2009.03.015
– ident: e_1_2_23_159_1
  doi: 10.1016/0024-3205(95)00030-A
– ident: e_1_2_23_240_1
  doi: 10.3389/fncel.2015.00116
– ident: e_1_2_23_293_1
  doi: 10.1523/JNEUROSCI.0589-14.2014
– ident: e_1_2_23_90_1
  doi: 10.1016/0306-4522(95)00421-1
– ident: e_1_2_23_22_1
  doi: 10.1038/ncomms15860
– ident: e_1_2_23_30_1
  doi: 10.1152/jn.00283.2012
– ident: e_1_2_23_310_1
  doi: 10.1093/brain/121.12.2335
– ident: e_1_2_23_179_1
  doi: 10.1016/S0300-9084(00)01176-7
– ident: e_1_2_23_208_1
  doi: 10.3389/fnsyn.2014.00022
– ident: e_1_2_23_313_1
  doi: 10.1046/j.1460-9568.2000.00175.x
– ident: e_1_2_23_275_1
  doi: 10.1016/j.expneurol.2017.06.005
– ident: e_1_2_23_94_1
  doi: 10.3389/fnana.2017.00020
– ident: e_1_2_23_141_1
  doi: 10.1016/j.neuroscience.2011.08.067
– ident: e_1_2_23_84_1
  doi: 10.1046/j.0953-816x.2001.01783.x
– ident: e_1_2_23_88_1
  doi: 10.1016/j.neuron.2013.12.027
– start-page: 157
  volume-title: Handbook of Basal Ganglia Structure and Function
  year: 2017
  ident: e_1_2_23_302_1
– ident: e_1_2_23_101_1
  doi: 10.1002/cne.24013
– ident: e_1_2_23_92_1
  doi: 10.1016/j.jphysparis.2016.08.001
– ident: e_1_2_23_171_1
  doi: 10.1002/cne.902690207
– ident: e_1_2_23_44_1
  doi: 10.1523/JNEUROSCI.18-23-10207.1998
– ident: e_1_2_23_74_1
  doi: 10.1016/j.neuint.2010.03.010
– ident: e_1_2_23_277_1
  doi: 10.1016/j.tins.2012.09.006
– ident: e_1_2_23_173_1
  doi: 10.1111/jnc.14105
– ident: e_1_2_23_263_1
  doi: 10.1523/JNEUROSCI.3225-04.2004
– ident: e_1_2_23_286_1
  doi: 10.1038/nrn3469
– ident: e_1_2_23_26_1
  doi: 10.1002/cne.10660
– ident: e_1_2_23_37_1
  doi: 10.1523/JNEUROSCI.18-20-08539.1998
– ident: e_1_2_23_83_1
  doi: 10.1523/JNEUROSCI.23-15-06245.2003
– ident: e_1_2_23_236_1
  doi: 10.1073/pnas.97.12.6245
– ident: e_1_2_23_151_1
  doi: 10.1007/s00018-016-2359-y
– ident: e_1_2_23_118_1
  doi: 10.1111/j.1474-8673.2006.00368.x
– ident: e_1_2_23_145_1
  doi: 10.1111/nyas.12762
– ident: e_1_2_23_209_1
  doi: 10.1016/j.neuroscience.2017.12.002
– ident: e_1_2_23_87_1
  doi: 10.1523/JNEUROSCI.3833-10.2011
– ident: e_1_2_23_232_1
  doi: 10.1007/978-1-4757-3538-3_44
– ident: e_1_2_23_335_1
  doi: 10.1038/nrn3962
– ident: e_1_2_23_176_1
  doi: 10.1016/j.neuropharm.2017.01.038
– ident: e_1_2_23_235_1
  doi: 10.1523/JNEUROSCI.4644-06.2007
– ident: e_1_2_23_97_1
  doi: 10.1002/mds.26300
– ident: e_1_2_23_296_1
  doi: 10.1073/pnas.88.6.2608
– ident: e_1_2_23_190_1
  doi: 10.1016/S0079-6123(08)61338-2
– ident: e_1_2_23_261_1
  doi: 10.1038/sj.bjp.0703366
– ident: e_1_2_23_136_1
  doi: 10.1523/JNEUROSCI.19-09-03629.1999
– ident: e_1_2_23_300_1
  doi: 10.1111/ejn.13638
– ident: e_1_2_23_85_1
  doi: 10.1073/pnas.95.11.6480
– ident: e_1_2_23_49_1
  doi: 10.1016/0306-4522(84)90164-7
– ident: e_1_2_23_27_1
  doi: 10.1016/j.tins.2015.11.001
– ident: e_1_2_23_230_1
  doi: 10.3389/fncir.2014.00021
– ident: e_1_2_23_172_1
  doi: 10.1111/j.1460-9568.2005.04154.x
– ident: e_1_2_23_50_1
  doi: 10.1016/0306-4522(84)90165-9
– ident: e_1_2_23_98_1
  doi: 10.1021/cn200110q
– ident: e_1_2_23_111_1
  doi: 10.1073/pnas.1006511108
– ident: e_1_2_23_146_1
  doi: 10.1016/j.bcp.2009.05.024
– ident: e_1_2_23_144_1
  doi: 10.1002/cne.23295
– ident: e_1_2_23_256_1
  doi: 10.3389/fphar.2016.00295
– ident: e_1_2_23_60_1
  doi: 10.1126/science.aam9080
– ident: e_1_2_23_110_1
  doi: 10.1016/j.neuron.2010.06.017
– ident: e_1_2_23_163_1
  doi: 10.1016/j.neuint.2016.08.009
– ident: e_1_2_23_321_1
  doi: 10.1002/cne.901940308
– ident: e_1_2_23_152_1
  doi: 10.1371/journal.pone.0123381
– ident: e_1_2_23_35_1
  doi: 10.1212/WNL.0000000000002599
– ident: e_1_2_23_215_1
  doi: 10.1016/0006-8993(72)90494-5
– ident: e_1_2_23_278_1
  doi: 10.1371/journal.pone.0024261
– ident: e_1_2_23_322_1
  doi: 10.1016/0006-8993(81)90211-0
– ident: e_1_2_23_189_1
  doi: 10.1152/jn.1996.76.6.3771
– ident: e_1_2_23_284_1
  doi: 10.1126/science.1160575
– ident: e_1_2_23_246_1
  doi: 10.1212/WNL.32.12.1391
– ident: e_1_2_23_15_1
  doi: 10.1007/s12013-009-9052-9
– ident: e_1_2_23_331_1
  doi: 10.1016/S0896-6273(00)80402-X
– ident: e_1_2_23_32_1
  doi: 10.1016/S0306-4522(98)00187-0
– ident: e_1_2_23_161_1
  doi: 10.1371/journal.pone.0019155
– ident: e_1_2_23_238_1
  doi: 10.1016/j.neuron.2016.03.016
– ident: e_1_2_23_282_1
  doi: 10.1523/JNEUROSCI.1381-05.2005
– ident: e_1_2_23_250_1
  doi: 10.1016/j.nbd.2009.12.003
– ident: e_1_2_23_72_1
  doi: 10.1523/JNEUROSCI.19-14-06102.1999
– ident: e_1_2_23_168_1
  doi: 10.1016/0014-2999(86)90629-1
– ident: e_1_2_23_25_1
  doi: 10.1016/S0306-4522(03)00220-3
– ident: e_1_2_23_66_1
  doi: 10.1111/j.1476-5381.1989.tb16873.x
– ident: e_1_2_23_169_1
  doi: 10.1016/j.neuroscience.2010.03.062
– ident: e_1_2_23_255_1
  doi: 10.1016/j.tins.2007.07.008
– ident: e_1_2_23_56_1
  doi: 10.1021/acschemneuro.6b00333
– ident: e_1_2_23_114_1
  doi: 10.1002/cne.902670402
– ident: e_1_2_23_225_1
  doi: 10.1523/JNEUROSCI.4029-08.2009
– ident: e_1_2_23_262_1
  doi: 10.1073/pnas.85.15.5733
– ident: e_1_2_23_55_1
  doi: 10.1016/j.tins.2013.06.003
– ident: e_1_2_23_223_1
  doi: 10.1523/JNEUROSCI.4646-13.2014
– ident: e_1_2_23_228_1
  doi: 10.1016/0006-8993(71)90625-1
– ident: e_1_2_23_91_1
  doi: 10.1016/0306-4522(95)00507-2
– ident: e_1_2_23_248_1
  doi: 10.1155/2015/472676
– ident: e_1_2_23_227_1
  doi: 10.1093/brain/awp142
– ident: e_1_2_23_45_1
  doi: 10.1523/JNEUROSCI.18-22-09438.1998
– ident: e_1_2_23_46_1
  doi: 10.1113/jphysiol.2005.098269
– ident: e_1_2_23_287_1
  doi: 10.1523/JNEUROSCI.3206-11.2011
– ident: e_1_2_23_139_1
  doi: 10.1523/JNEUROSCI.4870-09.2010
– ident: e_1_2_23_206_1
  doi: 10.1111/j.1469-7793.1998.441bk.x
– ident: e_1_2_23_125_1
  doi: 10.1523/JNEUROSCI.0466-16.2016
– ident: e_1_2_23_140_1
  doi: 10.1523/JNEUROSCI.2734-05.2005
– ident: e_1_2_23_271_1
  doi: 10.1186/s12877-015-0029-9
– ident: e_1_2_23_185_1
  doi: 10.1038/nature12983
– ident: e_1_2_23_194_1
  doi: 10.1073/pnas.1605658113
– ident: e_1_2_23_108_1
  doi: 10.1039/c002938f
– ident: e_1_2_23_243_1
  doi: 10.1021/cn500003z
– ident: e_1_2_23_126_1
  doi: 10.1073/pnas.1517629112
– ident: e_1_2_23_89_1
  doi: 10.1038/nrn1763
– ident: e_1_2_23_105_1
  doi: 10.1016/S0079-6123(00)25005-X
– ident: e_1_2_23_292_1
  doi: 10.1016/j.expneurol.2008.01.023
– ident: e_1_2_23_294_1
  doi: 10.1016/j.neuron.2016.09.007
– ident: e_1_2_23_57_1
  doi: 10.1016/j.neuroimage.2013.05.084
– ident: e_1_2_23_135_1
  doi: 10.1007/s11655-013-1455-1
– ident: e_1_2_23_334_1
  doi: 10.1016/j.brainresbull.2011.09.016
– ident: e_1_2_23_147_1
  doi: 10.1016/j.neuropharm.2009.09.011
– ident: e_1_2_23_212_1
  doi: 10.1152/jn.1993.70.5.1937
– ident: e_1_2_23_279_1
  doi: 10.1016/j.nbd.2012.04.015
– ident: e_1_2_23_325_1
  doi: 10.1152/jn.00630.2005
– ident: e_1_2_23_52_1
  doi: 10.1101/lm.82104
– ident: e_1_2_23_157_1
  doi: 10.1007/s11302-013-9386-z
– ident: e_1_2_23_13_1
  doi: 10.3389/fnsys.2017.00053
– ident: e_1_2_23_34_1
  doi: 10.1046/j.1471-4159.2002.00815.x
– ident: e_1_2_23_107_1
  doi: 10.1016/j.coph.2006.08.010
– ident: e_1_2_23_120_1
  doi: 10.1038/nn.2984
– ident: e_1_2_23_180_1
  doi: 10.1002/cne.22206
– ident: e_1_2_23_338_1
  doi: 10.3389/fnsys.2017.00080
– ident: e_1_2_23_207_1
  doi: 10.1016/0306-4522(79)90084-8
– ident: e_1_2_23_48_1
  doi: 10.1016/j.neuropharm.2015.08.013
– ident: e_1_2_23_71_1
  doi: 10.1016/S0028-3908(98)00199-3
– ident: e_1_2_23_99_1
  doi: 10.1016/j.jchemneu.2004.02.005
– ident: e_1_2_23_299_1
  doi: 10.1523/JNEUROSCI.3572-12.2013
– ident: e_1_2_23_112_1
  doi: 10.1523/JNEUROSCI.1623-10.2010
– ident: e_1_2_23_318_1
  doi: 10.1073/pnas.87.18.7050
– ident: e_1_2_23_11_1
  doi: 10.1016/j.nbd.2017.10.010
– ident: e_1_2_23_17_1
  doi: 10.1152/jn.1995.73.3.1234
– ident: e_1_2_23_324_1
  doi: 10.1016/j.neuron.2004.12.053
– ident: e_1_2_23_109_1
  doi: 10.1038/nn1700
– ident: e_1_2_23_253_1
  doi: 10.1016/0014-2999(95)00263-K
– ident: e_1_2_23_291_1
  doi: 10.1152/jn.2000.83.1.322
– ident: e_1_2_23_14_1
  doi: 10.1523/JNEUROSCI.5196-09.2010
– ident: e_1_2_23_104_1
  doi: 10.1016/S0301-0082(97)00050-6
– ident: e_1_2_23_315_1
  doi: 10.1038/nrn.2017.30
– ident: e_1_2_23_117_1
  doi: 10.1002/ana.410300607
– ident: e_1_2_23_67_1
  doi: 10.1523/JNEUROSCI.12-11-04224.1992
– ident: e_1_2_23_130_1
  doi: 10.1113/jphysiol.2007.144501
– ident: e_1_2_23_336_1
  doi: 10.1523/JNEUROSCI.22-05-01709.2002
– ident: e_1_2_23_170_1
  doi: 10.1016/j.neuropharm.2016.01.029
– ident: e_1_2_23_10_1
  doi: 10.1016/S0006-8993(03)03165-2
– ident: e_1_2_23_166_1
  doi: 10.1523/JNEUROSCI.2628-11.2011
– ident: e_1_2_23_280_1
  doi: 10.1016/j.toxicon.2011.08.004
– ident: e_1_2_23_285_1
  doi: 10.1016/j.neuron.2015.10.039
– ident: e_1_2_23_153_1
  doi: 10.1371/journal.pbio.1001194
– ident: e_1_2_23_3_1
  doi: 10.1523/JNEUROSCI.0280-07.2007
– ident: e_1_2_23_115_1
  doi: 10.3390/molecules22081300
– ident: e_1_2_23_216_1
  doi: 10.1523/JNEUROSCI.5027-04.2005
– ident: e_1_2_23_47_1
  doi: 10.1016/j.neuropharm.2017.09.024
– ident: e_1_2_23_121_1
  doi: 10.1016/j.pneurobio.2015.02.002
– ident: e_1_2_23_62_1
  doi: 10.1016/j.neuron.2017.09.019
– ident: e_1_2_23_290_1
  doi: 10.1523/JNEUROSCI.20-13-05102.2000
– ident: e_1_2_23_79_1
  doi: 10.1016/0163-7258(93)90027-B
– ident: e_1_2_23_224_1
  doi: 10.1371/journal.pone.0157682
– ident: e_1_2_23_311_1
  doi: 10.1016/j.neuroscience.2018.01.027
– ident: e_1_2_23_31_1
  doi: 10.1152/jn.00827.2014
– ident: e_1_2_23_303_1
  doi: 10.1523/JNEUROSCI.14-05-03005.1994
– ident: e_1_2_23_231_1
  doi: 10.1002/cne.21214
– ident: e_1_2_23_181_1
  doi: 10.1152/jn.1992.67.6.1669
– ident: e_1_2_23_134_1
  doi: 10.3389/fphys.2012.00136
– ident: e_1_2_23_330_1
  doi: 10.1523/JNEUROSCI.16-08-02592.1996
– ident: e_1_2_23_200_1
  doi: 10.1002/cne.903320409
– ident: e_1_2_23_312_1
  doi: 10.1016/j.neubiorev.2015.01.014
– ident: e_1_2_23_205_1
  doi: 10.1097/00004583-198907000-00015
– ident: e_1_2_23_222_1
  doi: 10.1016/0006-8993(92)91132-X
– ident: e_1_2_23_241_1
  doi: 10.1177/1073858415588264
– ident: e_1_2_23_239_1
  doi: 10.1016/j.conb.2011.04.004
– ident: e_1_2_23_270_1
  doi: 10.1002/cne.903150203
– ident: e_1_2_23_36_1
  doi: 10.1016/0306-4522(94)90471-5
– ident: e_1_2_23_86_1
  doi: 10.1016/0006-8993(92)90830-3
– ident: e_1_2_23_78_1
  doi: 10.1146/annurev-biophys-070816-033647
– ident: e_1_2_23_148_1
  doi: 10.1523/JNEUROSCI.22-13-05442.2002
– ident: e_1_2_23_2_1
  doi: 10.1523/JNEUROSCI.4662-14.2015
– ident: e_1_2_23_174_1
  doi: 10.1111/ejn.13287
– ident: e_1_2_23_249_1
  doi: 10.1152/jn.00853.2004
– ident: e_1_2_23_137_1
  doi: 10.1016/j.neulet.2014.02.018
– ident: e_1_2_23_333_1
  doi: 10.1016/S0306-4522(01)00039-2
– ident: e_1_2_23_203_1
  doi: 10.1016/0306-4522(92)90293-B
– ident: e_1_2_23_81_1
  doi: 10.1046/j.0953-816x.2001.01485.x
– ident: e_1_2_23_220_1
  doi: 10.3389/fnsyn.2011.00004
– ident: e_1_2_23_93_1
  doi: 10.3389/fnana.2011.00059
– ident: e_1_2_23_165_1
  doi: 10.1523/JNEUROSCI.5996-09.2010
– ident: e_1_2_23_193_1
  doi: 10.1111/jnc.14003
– ident: e_1_2_23_129_1
  doi: 10.1016/j.neuropharm.2011.01.023
– volume: 60
  start-page: 40
  year: 1993
  ident: e_1_2_23_191_1
  article-title: Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons
  publication-title: Adv. Neurol.
– ident: e_1_2_23_61_1
  doi: 10.1212/WNL.36.2.160
– ident: e_1_2_23_186_1
  doi: 10.1002/cne.902000202
– ident: e_1_2_23_323_1
  doi: 10.1523/JNEUROSCI.10-02-00508.1990
– ident: e_1_2_23_217_1
  doi: 10.1523/JNEUROSCI.4199-08.2008
– ident: e_1_2_23_5_1
  doi: 10.1111/j.1748-1716.1986.tb07967.x
– ident: e_1_2_23_133_1
  doi: 10.1016/0306-4522(84)90294-X
– ident: e_1_2_23_4_1
  doi: 10.1111/adb.12598
– ident: e_1_2_23_158_1
  doi: 10.1523/JNEUROSCI.14-05-03351.1994
– ident: e_1_2_23_204_1
  doi: 10.1016/0306-4522(94)90464-2
– ident: e_1_2_23_38_1
  doi: 10.1523/JNEUROSCI.19-13-05586.1999
– ident: e_1_2_23_233_1
  doi: 10.1038/308278a0
– ident: e_1_2_23_326_1
  doi: 10.1002/cne.23031
– ident: e_1_2_23_122_1
  doi: 10.1038/sj.bjp.0707510
– ident: e_1_2_23_320_1
  doi: 10.1016/0306-4522(95)00436-M
– volume: 4
  start-page: 325
  year: 2005
  ident: e_1_2_23_264_1
  article-title: What can adenosine neuromodulation do for neuroprotection?
  publication-title: Curr. Drug Targets
– ident: e_1_2_23_39_1
  doi: 10.1523/JNEUROSCI.20-22-08493.2000
– ident: e_1_2_23_308_1
  doi: 10.1016/j.celrep.2016.08.016
– ident: e_1_2_23_8_1
  doi: 10.1172/JCI90132
– ident: e_1_2_23_75_1
  doi: 10.1152/jn.01131.2007
– ident: e_1_2_23_124_1
  doi: 10.1111/ejn.12915
– ident: e_1_2_23_77_1
  doi: 10.1523/JNEUROSCI.3226-11.2011
– ident: e_1_2_23_164_1
  doi: 10.1007/s00429-013-0601-z
– ident: e_1_2_23_247_1
  doi: 10.1111/j.1471-4159.2007.04944.x
– ident: e_1_2_23_273_1
  doi: 10.1523/JNEUROSCI.6345-10.2011
– ident: e_1_2_23_132_1
  doi: 10.1523/JNEUROSCI.4896-13.2014
– ident: e_1_2_23_244_1
  doi: 10.1038/ncomms2144
– ident: e_1_2_23_162_1
  doi: 10.1146/annurev-physiol-020911-153315
– ident: e_1_2_23_237_1
  doi: 10.1523/JNEUROSCI.0901-14.2014
– ident: e_1_2_23_9_1
  doi: 10.1002/cne.1186
– ident: e_1_2_23_24_1
  doi: 10.1016/j.tins.2014.07.010
– ident: e_1_2_23_69_1
  doi: 10.1111/j.1460-9568.1998.00294.x
– ident: e_1_2_23_138_1
  doi: 10.1002/mds.26340
– ident: e_1_2_23_257_1
  doi: 10.3389/fnsys.2013.00078
– ident: e_1_2_23_214_1
  doi: 10.1016/j.neuropharm.2017.03.017
– ident: e_1_2_23_149_1
  doi: 10.1073/pnas.75.11.5723
– ident: e_1_2_23_341_1
  doi: 10.1002/neu.10150
– ident: e_1_2_23_202_1
  doi: 10.1523/JNEUROSCI.15-07-05297.1995
– ident: e_1_2_23_188_1
  doi: 10.1007/BF00228811
– ident: e_1_2_23_234_1
  doi: 10.1093/cercor/bhu179
– ident: e_1_2_23_53_1
  doi: 10.1038/sj.npp.1301294
– ident: e_1_2_23_150_1
  doi: 10.1016/0959-4388(95)80100-6
– ident: e_1_2_23_41_1
  doi: 10.1523/JNEUROSCI.2192-08.2008
– ident: e_1_2_23_106_1
  doi: 10.1016/0166-2236(94)90005-1
– ident: e_1_2_23_178_1
  doi: 10.1002/mds.25273
– ident: e_1_2_23_63_1
  doi: 10.1073/pnas.0407416101
– ident: e_1_2_23_65_1
  doi: 10.3389/fnbeh.2014.00188
– ident: e_1_2_23_213_1
  doi: 10.1113/jphysiol.2012.241786
– ident: e_1_2_23_192_1
  doi: 10.1002/mds.25546
– ident: e_1_2_23_289_1
  doi: 10.1002/cne.901950403
– ident: e_1_2_23_160_1
  doi: 10.1038/nn.2368
– volume: 10
  start-page: 294
  year: 2016
  ident: e_1_2_23_184_1
  article-title: Cannabinoid receptors in the central nervous system: their signaling and roles in disease
  publication-title: Front. Cell Neurosci.
– ident: e_1_2_23_218_1
  doi: 10.1016/j.neuron.2012.04.027
– ident: e_1_2_23_119_1
  doi: 10.3389/fncel.2016.00111
– ident: e_1_2_23_195_1
  doi: 10.1038/8138
– ident: e_1_2_23_19_1
  doi: 10.1046/j.1460-9568.2002.02262.x
– ident: e_1_2_23_197_1
  doi: 10.1093/cercor/bhw252
– ident: e_1_2_23_317_1
  doi: 10.1113/jphysiol.2014.271825
– ident: e_1_2_23_43_1
  doi: 10.1523/JNEUROSCI.12-09-03591.1992
– ident: e_1_2_23_245_1
  doi: 10.1523/JNEUROSCI.4402-07.2008
– ident: e_1_2_23_254_1
  doi: 10.1523/JNEUROSCI.22-14-06176.2002
– ident: e_1_2_23_298_1
  doi: 10.1523/JNEUROSCI.21-17-06492.2001
– ident: e_1_2_23_76_1
  doi: 10.1152/jn.00134.2009
– ident: e_1_2_23_259_1
  doi: 10.1002/(SICI)1096-9861(19991101)413:4<603::AID-CNE9>3.0.CO;2-K
– ident: e_1_2_23_319_1
  doi: 10.1073/pnas.95.11.6486
– ident: e_1_2_23_167_1
  doi: 10.1016/j.neuropharm.2015.03.036
– ident: e_1_2_23_301_1
  doi: 10.1523/JNEUROSCI.5493-07.2008
– ident: e_1_2_23_229_1
  doi: 10.1016/0306-4522(84)90163-5
– ident: e_1_2_23_23_1
  doi: 10.1016/j.neuron.2014.04.021
– ident: e_1_2_23_51_1
  doi: 10.1016/0006-8993(86)90629-3
– ident: e_1_2_23_211_1
  doi: 10.1007/s00429-015-1000-4
– ident: e_1_2_23_210_1
  doi: 10.1016/j.bcp.2009.06.004
– ident: e_1_2_23_102_1
  doi: 10.1016/j.brainres.2010.05.003
– ident: e_1_2_23_304_1
  doi: 10.3389/fnsys.2011.00011
– ident: e_1_2_23_73_1
  doi: 10.1016/S0301-0082(99)00030-1
– ident: e_1_2_23_59_1
  doi: 10.1016/j.neurol.2012.06.015
– ident: e_1_2_23_33_1
  doi: 10.1038/sj.bjp.0703692
– ident: e_1_2_23_95_1
  doi: 10.1016/j.clinthera.2008.01.010
– ident: e_1_2_23_127_1
  doi: 10.1016/0006-8993(87)90694-9
– volume: 58
  start-page: 689
  year: 2011
  ident: e_1_2_23_269_1
  article-title: Snake toxins from mamba venoms: unique tools for the physiologist
  publication-title: Acta Chim. Slov.
– ident: e_1_2_23_68_1
  doi: 10.1111/j.1460-9568.1998.00348.x
– ident: e_1_2_23_175_1
  doi: 10.1016/S0041-0101(99)00196-8
– ident: e_1_2_23_199_1
  doi: 10.1146/annurev.neuro.051508.135422
– ident: e_1_2_23_328_1
  doi: 10.1073/pnas.1419533112
– ident: e_1_2_23_54_1
  doi: 10.1016/j.neuron.2013.04.039
– ident: e_1_2_23_251_1
  doi: 10.1002/cne.902380305
– ident: e_1_2_23_342_1
  doi: 10.1523/JNEUROSCI.22-20-08785.2002
– ident: e_1_2_23_42_1
  doi: 10.1371/journal.pone.0001174
– ident: e_1_2_23_327_1
  doi: 10.1016/j.celrep.2014.12.005
– ident: e_1_2_23_283_1
  doi: 10.1038/nn1972
– ident: e_1_2_23_242_1
  doi: 10.1523/JNEUROSCI.3709-06.2007
– ident: e_1_2_23_272_1
  doi: 10.1124/mol.65.6.1526
– ident: e_1_2_23_123_1
  doi: 10.1002/mds.26102
– ident: e_1_2_23_340_1
  doi: 10.1038/nn769
– ident: e_1_2_23_306_1
  doi: 10.1523/JNEUROSCI.4082-10.2011
– volume: 27
  start-page: 1164
  year: 2017
  ident: e_1_2_23_309_1
  article-title: Quantitative analyses of the projection of individual neurons from the midline thalamic nuclei to the striosome and matrix compartments of the rat striatum
  publication-title: Cereb. Cortex
– volume: 87
  start-page: 802
  year: 1962
  ident: e_1_2_23_28_1
  article-title: The pathogenesis of Parkinson's disease: a new hypothesis
  publication-title: Can. Med. Assoc. J.
– ident: e_1_2_23_314_1
  doi: 10.1016/0306-4522(92)90057-9
– ident: e_1_2_23_82_1
  doi: 10.1523/JNEUROSCI.23-24-08506.2003
– ident: e_1_2_23_201_1
  doi: 10.1113/JP270045
– ident: e_1_2_23_18_1
  doi: 10.1523/JNEUROSCI.18-14-05180.1998
– ident: e_1_2_23_295_1
  doi: 10.1523/JNEUROSCI.1754-10.2010
– ident: e_1_2_23_7_1
  doi: 10.1523/ENEURO.0178-17.2017
– ident: e_1_2_23_332_1
  doi: 10.1152/jn.1997.77.2.1003
– ident: e_1_2_23_58_1
  doi: 10.3389/fnsys.2013.00050
– ident: e_1_2_23_339_1
  doi: 10.1152/jn.00519.2001
– ident: e_1_2_23_128_1
  doi: 10.1002/syn.10114
– ident: e_1_2_23_288_1
  doi: 10.1093/hmg/ddl252
– ident: e_1_2_23_177_1
  doi: 10.1002/cne.1345
– ident: e_1_2_23_267_1
  doi: 10.1016/j.neuroscience.2011.08.066
– ident: e_1_2_23_103_1
  doi: 10.1016/j.nbd.2013.08.009
– ident: e_1_2_23_226_1
  doi: 10.1523/JNEUROSCI.2155-04.2004
– ident: e_1_2_23_40_1
  doi: 10.1523/JNEUROSCI.15-12-07821.1995
– ident: e_1_2_23_343_1
  doi: 10.1523/JNEUROSCI.0873-16.2016
– ident: e_1_2_23_307_1
  doi: 10.1016/j.neuron.2012.09.023
– ident: e_1_2_23_116_1
  doi: 10.1146/annurev.neuro.24.1.31
– ident: e_1_2_23_182_1
  doi: 10.1523/JNEUROSCI.13-11-04908.1993
– ident: e_1_2_23_274_1
  doi: 10.1016/S0006-8993(00)03170-X
– ident: e_1_2_23_219_1
  doi: 10.1038/nm.3246
– ident: e_1_2_23_268_1
  doi: 10.1016/0306-4522(89)90168-1
– ident: e_1_2_23_154_1
  doi: 10.2183/pjab.89.226
– ident: e_1_2_23_252_1
  doi: 10.1002/1096-9861(20000731)423:3<500::AID-CNE12>3.0.CO;2-9
– ident: e_1_2_23_221_1
  doi: 10.1016/j.expneurol.2008.11.001
– ident: e_1_2_23_156_1
  doi: 10.1016/j.neuropharm.2014.09.028
– ident: e_1_2_23_21_1
  doi: 10.1016/j.tins.2006.12.003
– ident: e_1_2_23_70_1
  doi: 10.1111/j.1469-7793.1998.421bk.x
– ident: e_1_2_23_155_1
  doi: 10.1016/S0028-3908(98)00131-2
– ident: e_1_2_23_100_1
  doi: 10.1523/JNEUROSCI.5535-06.2007
– ident: e_1_2_23_260_1
  doi: 10.1523/JNEUROSCI.21-18-07247.2001
– ident: e_1_2_23_316_1
  doi: 10.1016/j.neuron.2006.04.010
– ident: e_1_2_23_196_1
  doi: 10.1523/JNEUROSCI.22-02-00529.2002
– ident: e_1_2_23_198_1
  doi: 10.1016/j.neuron.2008.11.005
– ident: e_1_2_23_337_1
  doi: 10.1523/JNEUROSCI.22-15-06347.2002
– ident: e_1_2_23_12_1
  doi: 10.1093/brain/awq285
SSID ssj0008645
Score 2.5541432
SecondaryResourceType review_article
Snippet The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 604
SubjectTerms acetylcholine
Acetylcholine receptors (muscarinic)
Acetylcholine receptors (nicotinic)
cholinergic interneurons
Dystonia
Ibags Special Issue
Innervation
Interneurons
Movement disorders
Neostriatum
Neurodegenerative diseases
Neurological diseases
Neuromodulation
Parkinson's disease
Special Issue Review
Spiny neurons
striatum
Synaptic plasticity
Title Cholinergic modulation of striatal microcircuits
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13949
https://www.ncbi.nlm.nih.gov/pubmed/29797362
https://www.proquest.com/docview/2193929139
https://www.proquest.com/docview/2045269449
https://pubmed.ncbi.nlm.nih.gov/PMC6587740
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH6oF724L3UjioiXlDSZTDJ4ktIigkXEQg9CyEwmWLWpdDnor_e9yaJ1AfEWmJdlljfzvcmb7wM40aqhERc4dpIqZjMdO7ZQvmcL15Gu0Cr1jNbhdYdfdtlVz-_NwXl5Fibnh6g23MgzzHxNDh7L8Scn149ZHeELo8N7lKtFgOj2gzoq5EagmOjU7LDBewWrEGXxVHfOrkXfAOb3PMnP-NUsQO0VuC8_Pc87eapPJ7Ku3r6wOv6zbquwXABT6yIfSWswp7N12LjIMCgfvFqnlkkVNXvw67DYLGXiNsBpPpDujx7hFGoNhkkhB2YNU8tIgiC4twaU9af6IzXtT8ab0G237pqXdiHDYCvf94SNMY1Ope-nSgVJ0EgCLkOGU7wbqwbTGBAJj3TMwkC7HpNMKi_2lAp9BKKc2Pe9LVjIhpneAStMKeBhgodcsIQxyQPpJpoJxhOOwXINzsoOiVTBUU5SGc9RGatgy0SmZWpwXJm-5MQcPxntl70aFb45jnCOJlCIBjU4qoqx1ehXSZzp4RRtHCO9zugR2_kgqN7iikAEuO7XIJgZHpUBMXbPlmT9B8PcjXAP4baD1TS9__uHR62rjrnY_bvpHiwhmhN5gtw-LExGU32AiGkiD2HeZTeHxkHeAX5FEh0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFfSkUCAghLqnSxHFiiUtVgQq0PaBW6gVFteOoBZqiLgf4esbOAmWRELdIniTexn7jTN4DOJOiIhEXWGYYCWIS2bNMJlzHZLbFbSZF5Gitw2aL1jvktut2F-Ay-xcm4YfID9yUZ-j1Wjm4OpD-5OXyMS4jfiFsEZaUorcOqO4_yKN8qiWKFaGa6VdoN-UVUnk8-a3zu9E3iPk9U_IzgtVb0PUaPGSVTzJPnsqzKS-Lty-8jv9t3TqsptjUqCaTaQMWZLwJW9UY4_Lhq3Fu6GxRfQy_Ccu1TCluC6xaX0n_yDGuosZwFKaKYMYoMrQqCOJ7Y6gS_8RgLGaD6WQbOtdX7VrdTJUYTOG6DjMxrJERd91ICC_0KqFHuU9wlbd7okIkxkTMUVJmvidth3DChdNzhPBdxKJUEfA7O1CIR7HcA8OPVMxDGPUpIyEhnHrcDiVhhIYU4-UiXGQjEoiUplypZTwHWbiCPRPoninCaW76knBz_GRUyoY1SN1zEuAyrXAhGhThJC_GXlNfS3qxHM3QxtLq60Q9YjeZBflbbOYxD7f-Inhz8yM3UKTd8yXxoK_JuxHxIeK2sJl6-H-veHB129IX-383PYblervZCBo3rbsDWEFwx5J8uRIUpuOZPEQANeVH2k_eARXMFWE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH64gHpxaV3qGkXES0qaTCYZPEm1aNUiYqEHIXQmE6zatHQ56K_3zWTRuoB4C8xLMtub-d7k5fsADqWoSMQFlhlGgphEti2TCdcxmW1xm0kROVrr8KZBL5qk3nJbU3CS_QuT8EPkB27KM_R6rRy8H0afnFw-xWWEL4RNwyyhlq-m9NndB3eUT7VCseJTM_0KbaW0QiqNJ791cjP6hjC_J0p-BrB6B6otwUNW9yTx5Lk8HvGyePtC6_jPxi3DYopMjdNkKq3AlIwLUDyNMSrvvhpHhs4V1YfwBZivZjpxRbCqj0r4Rw5wDTW6vTDVAzN6kaE1QRDdG12V9ic6AzHujIar0Kyd31cvzFSHwRSu6zATgxoZcdeNhPBCrxJ6lPsE13i7LSpEYkTEHCVk5nvSdggnXDhtRwjfRSRKFf2-swYzcS-WG2D4kYp4CKM-ZSQkhFOP26EkjNCQYrRcguNsQAKRkpQrrYyXIAtWsGcC3TMlOMhN-wkzx09G29moBqlzDgNcpBUqRIMS7OfF2GvqW0k7lr0x2lhae52oR6wnkyB_i8085uHGXwJvYnrkBoqye7Ik7jxq6m7Ee4i3LWymHv3fKx6c1xv6YvPvpnswd3tWC64vG1dbsIDIjiXJctswMxqM5Q6ipxHf1V7yDuZWFBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholinergic+modulation+of+striatal+microcircuits&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Abudukeyoumu%2C+Nilupaer&rft.au=Hernandez-Flores%2C+Teresa&rft.au=Garcia-Munoz%2C+Marianela&rft.au=Arbuthnott%2C+Gordon+W&rft.date=2019-03-01&rft.eissn=1460-9568&rft.volume=49&rft.issue=5&rft.spage=604&rft_id=info:doi/10.1111%2Fejn.13949&rft_id=info%3Apmid%2F29797362&rft.externalDocID=29797362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon