Cholinergic modulation of striatal microcircuits
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, com...
Saved in:
Published in | The European journal of neuroscience Vol. 49; no. 5; pp. 604 - 622 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
France
Wiley Subscription Services, Inc
01.03.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0953-816X 1460-9568 1460-9568 |
DOI | 10.1111/ejn.13949 |
Cover
Loading…
Abstract | The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
We review literature on striatal cholinergic interneurons: their synaptic and non‐synaptic release, afferents, and connectivity with the activation of pre‐ and postsynaptic cholinergic receptors and their role in the modulation of normal and pathological microcircuits. Drawings illustrate glutamatergic and dopaminergic afferents and magnified microcircuit with cholinergic interneuron (red) surrounded by GABAergic interneurons (different colors) and medium spiny neurons (green). |
---|---|
AbstractList | The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre- and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine-mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre- and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine-mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included. The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included. The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included. We review literature on striatal cholinergic interneurons: their synaptic and non‐synaptic release, afferents, and connectivity with the activation of pre‐ and postsynaptic cholinergic receptors and their role in the modulation of normal and pathological microcircuits. Drawings illustrate glutamatergic and dopaminergic afferents and magnified microcircuit with cholinergic interneuron (red) surrounded by GABAergic interneurons (different colors) and medium spiny neurons (green). |
Author | Abudukeyoumu, Nilupaer Arbuthnott, Gordon W. Hernandez‐Flores, Teresa Garcia‐Munoz, Marianela |
AuthorAffiliation | 1 Okinawa Institute of Science and Technology Graduate University Okinawa Japan |
AuthorAffiliation_xml | – name: 1 Okinawa Institute of Science and Technology Graduate University Okinawa Japan |
Author_xml | – sequence: 1 givenname: Nilupaer surname: Abudukeyoumu fullname: Abudukeyoumu, Nilupaer organization: Okinawa Institute of Science and Technology Graduate University – sequence: 2 givenname: Teresa surname: Hernandez‐Flores fullname: Hernandez‐Flores, Teresa organization: Okinawa Institute of Science and Technology Graduate University – sequence: 3 givenname: Marianela surname: Garcia‐Munoz fullname: Garcia‐Munoz, Marianela organization: Okinawa Institute of Science and Technology Graduate University – sequence: 4 givenname: Gordon W. surname: Arbuthnott fullname: Arbuthnott, Gordon W. email: gordon@oist.jp organization: Okinawa Institute of Science and Technology Graduate University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29797362$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctKBDEQRYMoOj4W_oAMuNFFa97pbAQZfCK6UXAX0pm0ZkgnmnQr_r3RUVFBs6lFTt2quncVLIYYLACbCO6h8vbtLOwhIqlcACNEOawk4_UiGEHJSFUjfrsCVnOeQQhrTtkyWMFSSEE4HgE4uY_eBZvunBl3cTp43bsYxrEd5z453Ws_7pxJ0bhkBtfndbDUap_txkddAzfHR9eT0-ri6uRscnhRGcaIrBitbdsw1hojpgJNBW9qahuEtUHUcswloRSJWlhMaEMbQzQxpmYQQ04Y5mQNHMx1H4ams1NjQ5-0Vw_JdTq9qKid-vkT3L26i0-Ks1oICovAzodAio-Dzb3qXDbWex1sHLLCkJY5klJZ0O1f6CwOKZTzFEaSSCyLu4Xa-r7R1yqfZhZgdw4Uu3JOtv1CEFRvQakSlHoPqrD7v1jj-nfryzHO_9fx7Lx9-VtaHZ1fzjteAQkFo2g |
CitedBy_id | crossref_primary_10_3389_fnsyn_2021_734975 crossref_primary_10_1016_j_pnpbp_2024_111167 crossref_primary_10_2217_pgs_2019_0100 crossref_primary_10_7554_eLife_56920 crossref_primary_10_1002_ana_26805 crossref_primary_10_1007_s12021_022_09588_1 crossref_primary_10_1242_dmm_050338 crossref_primary_10_1111_ejn_14742 crossref_primary_10_1523_ENEURO_0196_21_2021 crossref_primary_10_1016_j_neuroscience_2019_07_033 crossref_primary_10_1073_pnas_2409325122 crossref_primary_10_7554_eLife_60580 crossref_primary_10_1007_s12640_020_00198_w crossref_primary_10_3390_cimb46090607 crossref_primary_10_1016_j_neures_2022_12_008 crossref_primary_10_1038_s42003_023_05068_7 crossref_primary_10_1002_mds_28750 crossref_primary_10_1016_j_pestbp_2023_105433 crossref_primary_10_1038_s41537_020_0105_9 crossref_primary_10_3389_fncir_2021_748989 crossref_primary_10_1523_ENEURO_0019_23_2023 crossref_primary_10_3389_fncel_2024_1386715 crossref_primary_10_3390_ijms23115954 crossref_primary_10_3389_fphar_2019_01488 crossref_primary_10_3390_cells10040907 crossref_primary_10_3389_fneur_2022_912818 crossref_primary_10_3389_fnins_2021_665820 crossref_primary_10_1007_s10571_022_01232_5 crossref_primary_10_1093_braincomms_fcac291 crossref_primary_10_3389_fncel_2024_1412897 crossref_primary_10_1016_j_nbd_2024_106774 crossref_primary_10_1007_s00424_023_02845_5 crossref_primary_10_3389_fnbeh_2024_1420028 crossref_primary_10_1017_neu_2021_33 crossref_primary_10_1111_ejn_14873 crossref_primary_10_3389_fncel_2021_674399 crossref_primary_10_3390_brainsci13081193 crossref_primary_10_1016_j_preteyeres_2019_06_003 crossref_primary_10_1016_j_celrep_2023_113384 crossref_primary_10_1007_s00429_019_01967_w crossref_primary_10_1038_s41583_023_00677_x crossref_primary_10_3389_dyst_2024_12413 crossref_primary_10_1016_j_celrep_2022_111034 crossref_primary_10_1016_j_celrep_2023_112204 crossref_primary_10_1096_fj_202101425R crossref_primary_10_7554_eLife_76039 crossref_primary_10_1093_brain_awad150 crossref_primary_10_1002_jnr_25046 crossref_primary_10_1007_s11055_021_01170_7 crossref_primary_10_1111_gbb_12847 crossref_primary_10_1523_JNEUROSCI_1211_21_2021 crossref_primary_10_1111_ejn_14367 crossref_primary_10_1111_ejn_15135 crossref_primary_10_3389_fnhum_2021_745689 crossref_primary_10_7554_eLife_75829 crossref_primary_10_1136_jnnp_2024_334545 crossref_primary_10_1007_s00429_022_02604_9 crossref_primary_10_1002_syn_22287 crossref_primary_10_1038_s41398_022_01865_6 crossref_primary_10_4103_1673_5374_382987 crossref_primary_10_1016_j_neuroscience_2021_05_026 crossref_primary_10_1111_jnc_15677 crossref_primary_10_1111_ejn_14939 crossref_primary_10_1002_jnr_24560 crossref_primary_10_1371_journal_pbio_3000613 crossref_primary_10_3389_fncir_2021_803501 crossref_primary_10_3389_fncel_2022_1010121 crossref_primary_10_1111_ejn_14854 crossref_primary_10_1002_jnr_24522 crossref_primary_10_3389_fnsyn_2022_945816 crossref_primary_10_1002_jnr_24843 crossref_primary_10_1016_j_phrs_2024_107190 crossref_primary_10_3389_fgene_2021_683959 crossref_primary_10_1111_ejn_14891 crossref_primary_10_1111_jnc_15243 crossref_primary_10_3389_fnmol_2019_00204 crossref_primary_10_1080_17513758_2023_2269986 crossref_primary_10_1016_j_prdoa_2020_100071 crossref_primary_10_1007_s00213_022_06138_0 crossref_primary_10_3390_brainsci14050484 crossref_primary_10_1007_s11910_021_01140_z crossref_primary_10_1126_sciadv_abh4315 crossref_primary_10_1523_ENEURO_0326_24_2024 crossref_primary_10_1016_j_phrs_2023_106764 crossref_primary_10_1073_pnas_2410828121 crossref_primary_10_1093_cercor_bhaa387 |
Cites_doi | 10.1038/344240a0 10.1016/j.celrep.2012.05.011 10.1016/j.neuroscience.2017.07.060 10.1073/pnas.81.15.4998 10.1523/JNEUROSCI.4627-13.2014 10.1002/mds.26304 10.1016/S0165-0173(99)00018-1 10.1016/S0361-9230(99)00061-1 10.1016/j.neuropharm.2013.07.006 10.1016/j.neuron.2012.04.038 10.1523/JNEUROSCI.16-16-05141.1996 10.1016/j.brainresrev.2008.02.004 10.1016/j.phrs.2016.11.013 10.1523/JNEUROSCI.0658-17.2017 10.1523/JNEUROSCI.5071-13.2014 10.1016/0166-2236(95)98374-8 10.1146/annurev.neuro.28.061604.135722 10.1523/JNEUROSCI.2411-08.2008 10.1016/j.neuroscience.2009.03.015 10.1016/0024-3205(95)00030-A 10.3389/fncel.2015.00116 10.1523/JNEUROSCI.0589-14.2014 10.1016/0306-4522(95)00421-1 10.1038/ncomms15860 10.1152/jn.00283.2012 10.1093/brain/121.12.2335 10.1016/S0300-9084(00)01176-7 10.3389/fnsyn.2014.00022 10.1046/j.1460-9568.2000.00175.x 10.1016/j.expneurol.2017.06.005 10.3389/fnana.2017.00020 10.1016/j.neuroscience.2011.08.067 10.1046/j.0953-816x.2001.01783.x 10.1016/j.neuron.2013.12.027 10.1002/cne.24013 10.1016/j.jphysparis.2016.08.001 10.1002/cne.902690207 10.1523/JNEUROSCI.18-23-10207.1998 10.1016/j.neuint.2010.03.010 10.1016/j.tins.2012.09.006 10.1111/jnc.14105 10.1523/JNEUROSCI.3225-04.2004 10.1038/nrn3469 10.1002/cne.10660 10.1523/JNEUROSCI.18-20-08539.1998 10.1523/JNEUROSCI.23-15-06245.2003 10.1073/pnas.97.12.6245 10.1007/s00018-016-2359-y 10.1111/j.1474-8673.2006.00368.x 10.1111/nyas.12762 10.1016/j.neuroscience.2017.12.002 10.1523/JNEUROSCI.3833-10.2011 10.1007/978-1-4757-3538-3_44 10.1038/nrn3962 10.1016/j.neuropharm.2017.01.038 10.1523/JNEUROSCI.4644-06.2007 10.1002/mds.26300 10.1073/pnas.88.6.2608 10.1016/S0079-6123(08)61338-2 10.1038/sj.bjp.0703366 10.1523/JNEUROSCI.19-09-03629.1999 10.1111/ejn.13638 10.1073/pnas.95.11.6480 10.1016/0306-4522(84)90164-7 10.1016/j.tins.2015.11.001 10.3389/fncir.2014.00021 10.1111/j.1460-9568.2005.04154.x 10.1016/0306-4522(84)90165-9 10.1021/cn200110q 10.1073/pnas.1006511108 10.1016/j.bcp.2009.05.024 10.1002/cne.23295 10.3389/fphar.2016.00295 10.1126/science.aam9080 10.1016/j.neuron.2010.06.017 10.1016/j.neuint.2016.08.009 10.1002/cne.901940308 10.1371/journal.pone.0123381 10.1212/WNL.0000000000002599 10.1016/0006-8993(72)90494-5 10.1371/journal.pone.0024261 10.1016/0006-8993(81)90211-0 10.1152/jn.1996.76.6.3771 10.1126/science.1160575 10.1212/WNL.32.12.1391 10.1007/s12013-009-9052-9 10.1016/S0896-6273(00)80402-X 10.1016/S0306-4522(98)00187-0 10.1371/journal.pone.0019155 10.1016/j.neuron.2016.03.016 10.1523/JNEUROSCI.1381-05.2005 10.1016/j.nbd.2009.12.003 10.1523/JNEUROSCI.19-14-06102.1999 10.1016/0014-2999(86)90629-1 10.1016/S0306-4522(03)00220-3 10.1111/j.1476-5381.1989.tb16873.x 10.1016/j.neuroscience.2010.03.062 10.1016/j.tins.2007.07.008 10.1021/acschemneuro.6b00333 10.1002/cne.902670402 10.1523/JNEUROSCI.4029-08.2009 10.1073/pnas.85.15.5733 10.1016/j.tins.2013.06.003 10.1523/JNEUROSCI.4646-13.2014 10.1016/0006-8993(71)90625-1 10.1016/0306-4522(95)00507-2 10.1155/2015/472676 10.1093/brain/awp142 10.1523/JNEUROSCI.18-22-09438.1998 10.1113/jphysiol.2005.098269 10.1523/JNEUROSCI.3206-11.2011 10.1523/JNEUROSCI.4870-09.2010 10.1111/j.1469-7793.1998.441bk.x 10.1523/JNEUROSCI.0466-16.2016 10.1523/JNEUROSCI.2734-05.2005 10.1186/s12877-015-0029-9 10.1038/nature12983 10.1073/pnas.1605658113 10.1039/c002938f 10.1021/cn500003z 10.1073/pnas.1517629112 10.1038/nrn1763 10.1016/S0079-6123(00)25005-X 10.1016/j.expneurol.2008.01.023 10.1016/j.neuron.2016.09.007 10.1016/j.neuroimage.2013.05.084 10.1007/s11655-013-1455-1 10.1016/j.brainresbull.2011.09.016 10.1016/j.neuropharm.2009.09.011 10.1152/jn.1993.70.5.1937 10.1016/j.nbd.2012.04.015 10.1152/jn.00630.2005 10.1101/lm.82104 10.1007/s11302-013-9386-z 10.3389/fnsys.2017.00053 10.1046/j.1471-4159.2002.00815.x 10.1016/j.coph.2006.08.010 10.1038/nn.2984 10.1002/cne.22206 10.3389/fnsys.2017.00080 10.1016/0306-4522(79)90084-8 10.1016/j.neuropharm.2015.08.013 10.1016/S0028-3908(98)00199-3 10.1016/j.jchemneu.2004.02.005 10.1523/JNEUROSCI.3572-12.2013 10.1523/JNEUROSCI.1623-10.2010 10.1073/pnas.87.18.7050 10.1016/j.nbd.2017.10.010 10.1152/jn.1995.73.3.1234 10.1016/j.neuron.2004.12.053 10.1038/nn1700 10.1016/0014-2999(95)00263-K 10.1152/jn.2000.83.1.322 10.1523/JNEUROSCI.5196-09.2010 10.1016/S0301-0082(97)00050-6 10.1038/nrn.2017.30 10.1002/ana.410300607 10.1523/JNEUROSCI.12-11-04224.1992 10.1113/jphysiol.2007.144501 10.1523/JNEUROSCI.22-05-01709.2002 10.1016/j.neuropharm.2016.01.029 10.1016/S0006-8993(03)03165-2 10.1523/JNEUROSCI.2628-11.2011 10.1016/j.toxicon.2011.08.004 10.1016/j.neuron.2015.10.039 10.1371/journal.pbio.1001194 10.1523/JNEUROSCI.0280-07.2007 10.3390/molecules22081300 10.1523/JNEUROSCI.5027-04.2005 10.1016/j.neuropharm.2017.09.024 10.1016/j.pneurobio.2015.02.002 10.1016/j.neuron.2017.09.019 10.1523/JNEUROSCI.20-13-05102.2000 10.1016/0163-7258(93)90027-B 10.1371/journal.pone.0157682 10.1016/j.neuroscience.2018.01.027 10.1152/jn.00827.2014 10.1523/JNEUROSCI.14-05-03005.1994 10.1002/cne.21214 10.1152/jn.1992.67.6.1669 10.3389/fphys.2012.00136 10.1523/JNEUROSCI.16-08-02592.1996 10.1002/cne.903320409 10.1016/j.neubiorev.2015.01.014 10.1097/00004583-198907000-00015 10.1016/0006-8993(92)91132-X 10.1177/1073858415588264 10.1016/j.conb.2011.04.004 10.1002/cne.903150203 10.1016/0306-4522(94)90471-5 10.1016/0006-8993(92)90830-3 10.1146/annurev-biophys-070816-033647 10.1523/JNEUROSCI.22-13-05442.2002 10.1523/JNEUROSCI.4662-14.2015 10.1111/ejn.13287 10.1152/jn.00853.2004 10.1016/j.neulet.2014.02.018 10.1016/S0306-4522(01)00039-2 10.1016/0306-4522(92)90293-B 10.1046/j.0953-816x.2001.01485.x 10.3389/fnsyn.2011.00004 10.3389/fnana.2011.00059 10.1523/JNEUROSCI.5996-09.2010 10.1111/jnc.14003 10.1016/j.neuropharm.2011.01.023 10.1212/WNL.36.2.160 10.1002/cne.902000202 10.1523/JNEUROSCI.10-02-00508.1990 10.1523/JNEUROSCI.4199-08.2008 10.1111/j.1748-1716.1986.tb07967.x 10.1016/0306-4522(84)90294-X 10.1111/adb.12598 10.1523/JNEUROSCI.14-05-03351.1994 10.1016/0306-4522(94)90464-2 10.1523/JNEUROSCI.19-13-05586.1999 10.1038/308278a0 10.1002/cne.23031 10.1038/sj.bjp.0707510 10.1016/0306-4522(95)00436-M 10.1523/JNEUROSCI.20-22-08493.2000 10.1016/j.celrep.2016.08.016 10.1172/JCI90132 10.1152/jn.01131.2007 10.1111/ejn.12915 10.1523/JNEUROSCI.3226-11.2011 10.1007/s00429-013-0601-z 10.1111/j.1471-4159.2007.04944.x 10.1523/JNEUROSCI.6345-10.2011 10.1523/JNEUROSCI.4896-13.2014 10.1038/ncomms2144 10.1146/annurev-physiol-020911-153315 10.1523/JNEUROSCI.0901-14.2014 10.1002/cne.1186 10.1016/j.tins.2014.07.010 10.1111/j.1460-9568.1998.00294.x 10.1002/mds.26340 10.3389/fnsys.2013.00078 10.1016/j.neuropharm.2017.03.017 10.1073/pnas.75.11.5723 10.1002/neu.10150 10.1523/JNEUROSCI.15-07-05297.1995 10.1007/BF00228811 10.1093/cercor/bhu179 10.1038/sj.npp.1301294 10.1016/0959-4388(95)80100-6 10.1523/JNEUROSCI.2192-08.2008 10.1016/0166-2236(94)90005-1 10.1002/mds.25273 10.1073/pnas.0407416101 10.3389/fnbeh.2014.00188 10.1113/jphysiol.2012.241786 10.1002/mds.25546 10.1002/cne.901950403 10.1038/nn.2368 10.1016/j.neuron.2012.04.027 10.3389/fncel.2016.00111 10.1038/8138 10.1046/j.1460-9568.2002.02262.x 10.1093/cercor/bhw252 10.1113/jphysiol.2014.271825 10.1523/JNEUROSCI.12-09-03591.1992 10.1523/JNEUROSCI.4402-07.2008 10.1523/JNEUROSCI.22-14-06176.2002 10.1523/JNEUROSCI.21-17-06492.2001 10.1152/jn.00134.2009 10.1002/(SICI)1096-9861(19991101)413:4<603::AID-CNE9>3.0.CO;2-K 10.1073/pnas.95.11.6486 10.1016/j.neuropharm.2015.03.036 10.1523/JNEUROSCI.5493-07.2008 10.1016/0306-4522(84)90163-5 10.1016/j.neuron.2014.04.021 10.1016/0006-8993(86)90629-3 10.1007/s00429-015-1000-4 10.1016/j.bcp.2009.06.004 10.1016/j.brainres.2010.05.003 10.3389/fnsys.2011.00011 10.1016/S0301-0082(99)00030-1 10.1016/j.neurol.2012.06.015 10.1038/sj.bjp.0703692 10.1016/j.clinthera.2008.01.010 10.1016/0006-8993(87)90694-9 10.1111/j.1460-9568.1998.00348.x 10.1016/S0041-0101(99)00196-8 10.1146/annurev.neuro.051508.135422 10.1073/pnas.1419533112 10.1016/j.neuron.2013.04.039 10.1002/cne.902380305 10.1523/JNEUROSCI.22-20-08785.2002 10.1371/journal.pone.0001174 10.1016/j.celrep.2014.12.005 10.1038/nn1972 10.1523/JNEUROSCI.3709-06.2007 10.1124/mol.65.6.1526 10.1002/mds.26102 10.1038/nn769 10.1523/JNEUROSCI.4082-10.2011 10.1016/0306-4522(92)90057-9 10.1523/JNEUROSCI.23-24-08506.2003 10.1113/JP270045 10.1523/JNEUROSCI.18-14-05180.1998 10.1523/JNEUROSCI.1754-10.2010 10.1523/ENEURO.0178-17.2017 10.1152/jn.1997.77.2.1003 10.3389/fnsys.2013.00050 10.1152/jn.00519.2001 10.1002/syn.10114 10.1093/hmg/ddl252 10.1002/cne.1345 10.1016/j.neuroscience.2011.08.066 10.1016/j.nbd.2013.08.009 10.1523/JNEUROSCI.2155-04.2004 10.1523/JNEUROSCI.15-12-07821.1995 10.1523/JNEUROSCI.0873-16.2016 10.1016/j.neuron.2012.09.023 10.1146/annurev.neuro.24.1.31 10.1523/JNEUROSCI.13-11-04908.1993 10.1016/S0006-8993(00)03170-X 10.1038/nm.3246 10.1016/0306-4522(89)90168-1 10.2183/pjab.89.226 10.1002/1096-9861(20000731)423:3<500::AID-CNE12>3.0.CO;2-9 10.1016/j.expneurol.2008.11.001 10.1016/j.neuropharm.2014.09.028 10.1016/j.tins.2006.12.003 10.1111/j.1469-7793.1998.421bk.x 10.1016/S0028-3908(98)00131-2 10.1523/JNEUROSCI.5535-06.2007 10.1523/JNEUROSCI.21-18-07247.2001 10.1016/j.neuron.2006.04.010 10.1523/JNEUROSCI.22-02-00529.2002 10.1016/j.neuron.2008.11.005 10.1523/JNEUROSCI.22-15-06347.2002 10.1093/brain/awq285 |
ContentType | Journal Article |
Copyright | 2018 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. Copyright © 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2018 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: Copyright © 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
DBID | 24P AAYXX CITATION NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 5PM |
DOI | 10.1111/ejn.13949 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Chemoreception Abstracts PubMed CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | N. Abudukeyoumu et al |
EISSN | 1460-9568 |
EndPage | 622 |
ExternalDocumentID | PMC6587740 29797362 10_1111_ejn_13949 EJN13949 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Government of Japan |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QP 7QR 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5539-548efb55fcc7d71d76b84eb12ac14e62693441787e234b4bc3a3cc85020635263 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Thu Aug 21 13:22:15 EDT 2025 Fri Jul 11 04:28:20 EDT 2025 Mon Jul 14 07:29:27 EDT 2025 Wed Feb 19 02:30:33 EST 2025 Thu Apr 24 23:06:22 EDT 2025 Tue Jul 01 03:02:18 EDT 2025 Wed Jan 22 16:49:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | neuromodulation cholinergic interneurons acetylcholine striatum |
Language | English |
License | Attribution 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5539-548efb55fcc7d71d76b84eb12ac14e62693441787e234b4bc3a3cc85020635263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Edited by Paul Bolam. Reviewed by Paul Apiella, Jose Bargas and Margaret E. Rice. N.A. and T.H.‐F. contributed equally to this work. All peer review communications can be found with the online version of the article. |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13949 |
PMID | 29797362 |
PQID | 2193929139 |
PQPubID | 34057 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6587740 proquest_miscellaneous_2045269449 proquest_journals_2193929139 pubmed_primary_29797362 crossref_primary_10_1111_ejn_13949 crossref_citationtrail_10_1111_ejn_13949 wiley_primary_10_1111_ejn_13949_EJN13949 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationPlace | France |
PublicationPlace_xml | – name: France – name: Chichester – name: Hoboken |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2007; 500 2012; 520 2004; 27 1999; 49 2004; 24 1998b; 10 1996; 71 2008; 30 1996; 70 2012; 15 2008; 586 1990; 344 2016; 39 1972; 45 2016; 36 1996; 76 1992; 51 1998; 18 2017; 74 2010; 518 1992; 594 2000; 12 2002; 87 2008; 28 1984b; 12 2013; 60 1979; 4 1992; 46 2013; 591 1999a; 38 1988; 85 1998c; 510 2010; 6 2015; 127–128 1981; 200 2013; 89 1995; 56 2010; 168 2016; 10 2008; 58 2002; 81 2017; 371 2018; 109 2011; 3 2007; 10 2001; 24 2011; 6 2016; 16 2017; 136 2011; 5 2011; 134 2011; 9 2016; 11 2001; 21 2009; 78 2016; 7 2003; 986 2015; 113 2013; 79 1971; 35 2015; 112 2013; 75 2015; 593 2015; 2015 2005; 4 1994; 14 2005; 6 1999; 31 2017; 142 2005; 93 1994; 17 2012; 47 2016; 26 2016; 22 2010; 56 2004; 65 1990; 10 2010; 58 2013; 28 2002; 53 1993; 60 1986; 36 2017; 46 2017; 45 2016; 100 2016; 221 2016; 106 2016; 105 1998; 510 2007; 30 2007; 32 2017; 357 2017; 115 2001; 103 2017; 117 2017; 118 2010; 67 2013; 19 1981; 195 2014; 5 2013; 14 2017; 37 1999; 19 1993; 70 2002; 46 1984; 12 1984; 13 2016; 113 2016; 110 2017; 360 2014; 8 2001; 13 2001; 14 2008; 60 2014; 6 2017; 127 2007; 27 2012 1995; 15 2015; 95 2017; 27 2017; 22 1991; 30 2003b; 23 2006; 15 2008; 99 1995; 18 2002 2014; 85 2008; 321 2015; 9 2014; 82 1989; 28 2002a; 22 2014; 81 2013; 36 2011; 108 2014; 505 2013; 33 1997; 77 1987; 411 2017; 11 1993; 99 2002; 22 2018 2017 1985; 238 2017; 18 2008; 211 1992; 67 2010; 1344 2002; 16 2007; 103 1999b; 19 1978; 75 2011; 60 2013; 521 2000; 130 2000; 131 2011; 58 2013; 7 1998; 87 1994; 62 2011; 198 2018; 47 2009; 12 2015; 89 1989; 30 2001; 894 2000; 125 1997; 53 1991; 88 2015; 88 2006; 26 2000; 97 2007; 7 2007; 2 2015; 1349 1998; 95 2010; 30 2003a; 23 2014; 10 2010; 37 2006; 50 1982; 32 2015; 54 2016; 92 1980; 194 1996; 16 2012; 108 1995; 5 2009; 215 1986; 128 1993; 58 2000; 83 2011; 86 2014; 37 2009; 102 2000; 82 2002b; 22 2014; 30 2001; 439 2001; 434 2014; 34 2003; 460 2015; 35 1995; 73 2017; 8 2003; 119 2014; 219 2017; 4 2012; 168 1986; 132 2009; 160 2015; 30 1981; 220 1988; 267 2005; 21 1992; 12 1998a; 10 2005; 25 1988; 269 1990; 87 1984a; 12 2009; 54 2016; 90 2015; 42 2018; 376 2000; 61 1997; 19 2016; 86 1992; 315 2011; 21 1962; 87 1998; 121 2008; 153 1999; 413 2014; 566 1995; 281 1993; 332 2004; 101 2015; 15 2015; 16 1984; 81 2006; 95 1986; 397 2006; 9 2000; 20 2015; 10 2011; 31 2009; 132 1984; 308 2016; 524 2017; 295 1999; 2 2014; 592 2012; 76 2012; 75 2005; 45 2012; 74 1990; 82 2009; 29 2004; 11 1998; 37 1993; 13 2017; 96 2012; 2 2012; 3 2000; 38 2009; 32 1989; 98 2000; 423 2001; 4 1992; 574 2005; 569 e_1_2_23_18_1 e_1_2_23_101_1 e_1_2_23_147_1 e_1_2_23_124_1 e_1_2_23_185_1 e_1_2_23_207_1 e_1_2_23_162_1 e_1_2_23_331_1 e_1_2_23_210_1 e_1_2_23_233_1 e_1_2_23_82_1 e_1_2_23_328_1 e_1_2_23_256_1 e_1_2_23_279_1 e_1_2_23_305_1 e_1_2_23_21_1 e_1_2_23_67_1 e_1_2_23_294_1 e_1_2_23_3_1 e_1_2_23_271_1 e_1_2_23_44_1 e_1_2_23_159_1 e_1_2_23_342_1 Ribeiro J.A. (e_1_2_23_264_1) 2005; 4 e_1_2_23_113_1 e_1_2_23_136_1 e_1_2_23_197_1 Tepper J.M. (e_1_2_23_302_1) 2017 e_1_2_23_151_1 e_1_2_23_174_1 e_1_2_23_218_1 e_1_2_23_71_1 e_1_2_23_94_1 e_1_2_23_244_1 e_1_2_23_221_1 e_1_2_23_339_1 e_1_2_23_267_1 e_1_2_23_316_1 e_1_2_23_10_1 e_1_2_23_33_1 e_1_2_23_56_1 e_1_2_23_79_1 e_1_2_23_282_1 e_1_2_23_19_1 e_1_2_23_148_1 e_1_2_23_186_1 e_1_2_23_102_1 e_1_2_23_125_1 e_1_2_23_206_1 e_1_2_23_140_1 e_1_2_23_163_1 e_1_2_23_229_1 Unzai T. (e_1_2_23_309_1) 2017; 27 e_1_2_23_330_1 e_1_2_23_60_1 e_1_2_23_83_1 e_1_2_23_255_1 e_1_2_23_232_1 e_1_2_23_304_1 e_1_2_23_327_1 e_1_2_23_278_1 e_1_2_23_22_1 e_1_2_23_45_1 e_1_2_23_68_1 e_1_2_23_293_1 e_1_2_23_2_1 e_1_2_23_270_1 e_1_2_23_341_1 e_1_2_23_137_1 e_1_2_23_175_1 e_1_2_23_114_1 e_1_2_23_198_1 e_1_2_23_217_1 e_1_2_23_303_1 e_1_2_23_152_1 e_1_2_23_190_1 e_1_2_23_220_1 e_1_2_23_243_1 e_1_2_23_266_1 e_1_2_23_289_1 e_1_2_23_95_1 e_1_2_23_72_1 e_1_2_23_315_1 e_1_2_23_338_1 e_1_2_23_11_1 e_1_2_23_57_1 e_1_2_23_34_1 e_1_2_23_281_1 e_1_2_23_122_1 e_1_2_23_168_1 e_1_2_23_145_1 e_1_2_23_160_1 e_1_2_23_183_1 e_1_2_23_333_1 e_1_2_23_209_1 e_1_2_23_310_1 Goldberg J.A. (e_1_2_23_142_1) 2017 e_1_2_23_84_1 e_1_2_23_61_1 e_1_2_23_212_1 e_1_2_23_235_1 e_1_2_23_258_1 e_1_2_23_296_1 e_1_2_23_307_1 e_1_2_23_119_1 e_1_2_23_46_1 e_1_2_23_69_1 e_1_2_23_250_1 e_1_2_23_273_1 e_1_2_23_23_1 e_1_2_23_111_1 e_1_2_23_134_1 e_1_2_23_157_1 e_1_2_23_172_1 e_1_2_23_195_1 e_1_2_23_321_1 e_1_2_23_50_1 e_1_2_23_73_1 e_1_2_23_200_1 e_1_2_23_318_1 e_1_2_23_223_1 e_1_2_23_246_1 e_1_2_23_108_1 e_1_2_23_58_1 e_1_2_23_284_1 e_1_2_23_261_1 e_1_2_23_12_1 e_1_2_23_35_1 e_1_2_23_96_1 e_1_2_23_100_1 e_1_2_23_123_1 e_1_2_23_146_1 e_1_2_23_169_1 e_1_2_23_161_1 e_1_2_23_208_1 e_1_2_23_332_1 e_1_2_23_62_1 e_1_2_23_211_1 e_1_2_23_306_1 e_1_2_23_329_1 e_1_2_23_234_1 e_1_2_23_257_1 e_1_2_23_47_1 e_1_2_23_295_1 e_1_2_23_272_1 e_1_2_23_24_1 e_1_2_23_85_1 e_1_2_23_112_1 e_1_2_23_158_1 e_1_2_23_9_1 e_1_2_23_343_1 e_1_2_23_135_1 e_1_2_23_150_1 e_1_2_23_196_1 e_1_2_23_173_1 e_1_2_23_219_1 e_1_2_23_320_1 e_1_2_23_222_1 e_1_2_23_51_1 e_1_2_23_317_1 e_1_2_23_245_1 e_1_2_23_268_1 e_1_2_23_109_1 e_1_2_23_283_1 e_1_2_23_59_1 e_1_2_23_36_1 e_1_2_23_74_1 e_1_2_23_260_1 e_1_2_23_13_1 e_1_2_23_97_1 e_1_2_23_120_1 e_1_2_23_105_1 e_1_2_23_189_1 e_1_2_23_166_1 e_1_2_23_335_1 e_1_2_23_249_1 e_1_2_23_312_1 e_1_2_23_181_1 e_1_2_23_252_1 e_1_2_23_275_1 e_1_2_23_40_1 e_1_2_23_214_1 e_1_2_23_237_1 e_1_2_23_298_1 e_1_2_23_117_1 e_1_2_23_48_1 e_1_2_23_25_1 e_1_2_23_63_1 e_1_2_23_290_1 e_1_2_23_86_1 e_1_2_23_8_1 e_1_2_23_132_1 e_1_2_23_49_1 e_1_2_23_155_1 e_1_2_23_178_1 e_1_2_23_193_1 e_1_2_23_300_1 e_1_2_23_323_1 e_1_2_23_170_1 e_1_2_23_263_1 e_1_2_23_90_1 e_1_2_23_202_1 e_1_2_23_248_1 e_1_2_23_286_1 e_1_2_23_225_1 e_1_2_23_106_1 e_1_2_23_129_1 e_1_2_23_14_1 e_1_2_23_37_1 e_1_2_23_52_1 e_1_2_23_75_1 e_1_2_23_98_1 e_1_2_23_240_1 e_1_2_23_121_1 e_1_2_23_38_1 e_1_2_23_144_1 e_1_2_23_167_1 e_1_2_23_182_1 e_1_2_23_311_1 e_1_2_23_334_1 Kitai S.T. (e_1_2_23_191_1) 1993; 60 e_1_2_23_308_1 e_1_2_23_274_1 e_1_2_23_213_1 e_1_2_23_259_1 e_1_2_23_297_1 e_1_2_23_236_1 e_1_2_23_118_1 e_1_2_23_26_1 e_1_2_23_41_1 e_1_2_23_64_1 e_1_2_23_87_1 e_1_2_23_251_1 e_1_2_23_6_1 e_1_2_23_7_1 e_1_2_23_133_1 e_1_2_23_179_1 e_1_2_23_27_1 e_1_2_23_110_1 e_1_2_23_156_1 e_1_2_23_171_1 e_1_2_23_194_1 e_1_2_23_322_1 e_1_2_23_319_1 e_1_2_23_201_1 e_1_2_23_224_1 e_1_2_23_247_1 e_1_2_23_285_1 e_1_2_23_91_1 e_1_2_23_30_1 e_1_2_23_107_1 e_1_2_23_15_1 e_1_2_23_262_1 e_1_2_23_53_1 e_1_2_23_99_1 e_1_2_23_76_1 e_1_2_23_39_1 e_1_2_23_16_1 e_1_2_23_149_1 e_1_2_23_187_1 e_1_2_23_126_1 e_1_2_23_164_1 Rowan E.G. (e_1_2_23_269_1) 2011; 58 e_1_2_23_103_1 e_1_2_23_205_1 e_1_2_23_228_1 e_1_2_23_314_1 e_1_2_23_141_1 e_1_2_23_231_1 e_1_2_23_254_1 e_1_2_23_277_1 e_1_2_23_80_1 e_1_2_23_326_1 e_1_2_23_292_1 e_1_2_23_42_1 e_1_2_23_88_1 e_1_2_23_5_1 e_1_2_23_65_1 e_1_2_23_340_1 e_1_2_23_115_1 e_1_2_23_138_1 e_1_2_23_153_1 e_1_2_23_176_1 e_1_2_23_199_1 e_1_2_23_216_1 e_1_2_23_239_1 e_1_2_23_325_1 Barbeau A. (e_1_2_23_28_1) 1962; 87 e_1_2_23_130_1 e_1_2_23_265_1 e_1_2_23_92_1 e_1_2_23_242_1 e_1_2_23_204_1 e_1_2_23_288_1 e_1_2_23_337_1 e_1_2_23_280_1 e_1_2_23_31_1 e_1_2_23_54_1 e_1_2_23_77_1 e_1_2_23_17_1 e_1_2_23_104_1 e_1_2_23_127_1 e_1_2_23_165_1 e_1_2_23_188_1 e_1_2_23_313_1 e_1_2_23_336_1 e_1_2_23_227_1 e_1_2_23_180_1 e_1_2_23_230_1 e_1_2_23_276_1 e_1_2_23_81_1 e_1_2_23_253_1 e_1_2_23_215_1 e_1_2_23_299_1 Goldberg J.A. (e_1_2_23_143_1) 2012 e_1_2_23_20_1 e_1_2_23_89_1 e_1_2_23_139_1 e_1_2_23_4_1 e_1_2_23_43_1 e_1_2_23_66_1 Kendall D.A. (e_1_2_23_184_1) 2016; 10 e_1_2_23_291_1 e_1_2_23_29_1 e_1_2_23_131_1 e_1_2_23_116_1 e_1_2_23_154_1 e_1_2_23_177_1 e_1_2_23_238_1 e_1_2_23_324_1 e_1_2_23_301_1 e_1_2_23_192_1 e_1_2_23_70_1 e_1_2_23_241_1 e_1_2_23_93_1 e_1_2_23_203_1 e_1_2_23_226_1 e_1_2_23_287_1 e_1_2_23_32_1 e_1_2_23_78_1 e_1_2_23_128_1 e_1_2_23_55_1 |
References_xml | – volume: 18 start-page: 527 year: 1995 end-page: 535 article-title: Striatal interneurones: chemical, physiological and morphological characterization publication-title: Trends Neurosci. – volume: 106 start-page: 74 year: 2016 end-page: 84 article-title: Histamine and the striatum publication-title: Neuropharmacology – volume: 60 start-page: 89 year: 2013 end-page: 107 article-title: Loss of corticostriatal and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice publication-title: Neurobiol. Dis. – volume: 6 start-page: e24261 year: 2011 article-title: Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia publication-title: PLoS One – volume: 31 start-page: 1183 year: 2011 end-page: 1192 article-title: Functional connectome of the striatal medium spiny neuron publication-title: J. Neurosci. – volume: 2 start-page: 467 year: 1999 end-page: 472 article-title: Inhibitory control of neostriatal projection neurons by GABAergic interneurons publication-title: Nat. Neurosci. – volume: 56 start-page: 850 year: 2010 end-page: 855 article-title: In vivo modulation of alpha7 nicotinic receptors on striatal glutamate release induced by anatoxin‐A publication-title: Neurochem. Int. – volume: 220 start-page: 67 year: 1981 end-page: 80 article-title: Spontaneous firing patterns of identified spiny neurons in the rat neostriatum publication-title: Brain Res. – volume: 81 start-page: 901 year: 2014 end-page: 912 article-title: Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling publication-title: Neuron – volume: 11 start-page: 20 year: 2017 article-title: Striatal cholinergic interneurons modulate spike‐timing in striosomes and matrix by an amphetamine‐sensitive mechanism publication-title: Front. Neuroanat. – volume: 83 start-page: 322 year: 2000 end-page: 332 article-title: Adenosine receptor expression and modulation of Ca(2 + ) channels in rat striatal cholinergic interneurons publication-title: J. Neurophysiol. – volume: 17 start-page: 228 year: 1994 end-page: 233 article-title: Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions publication-title: Trends Neurosci. – volume: 95 start-page: 196 year: 2006 end-page: 204 article-title: Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons publication-title: J. Neurophysiol. – volume: 30 start-page: 1171 year: 2015 end-page: 1178 article-title: Pathophysiology of tic disorders publication-title: Mov. Disord. – volume: 439 start-page: 235 year: 2001 end-page: 247 article-title: Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones publication-title: J. Comp. Neurol. – volume: 82 start-page: 1145 year: 2014 end-page: 1156 article-title: Neurons in the ventral striatum exhibit cell‐type‐specific representations of outcome during learning publication-title: Neuron – volume: 10 start-page: 2887 year: 1998b end-page: 2895 article-title: Endogenous ACh enhances striatal NMDA‐responses via M1‐like muscarinic receptors and PKC activation publication-title: Eur. J. Neurosci. – volume: 13 start-page: 4908 year: 1993 end-page: 4923 article-title: Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum publication-title: J. Neurosci. – volume: 89 start-page: 232 year: 2015 end-page: 244 article-title: Modulation of direct pathway striatal projection neurons by muscarinic M(4)‐type receptors publication-title: Neuropharmacology – volume: 46 start-page: 215 year: 2002 end-page: 223 article-title: Muscarinic receptors involved in the subthreshold cholinergic actions of neostriatal spiny neurons publication-title: Synapse – volume: 26 start-page: 96 year: 2016 end-page: 105 article-title: Novel striatal GABAergic interneuron populations labeled in the 5HT3a(EGFP) mouse publication-title: Cereb. Cortex – volume: 28 start-page: 5504 year: 2008 end-page: 5512 article-title: Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease publication-title: J. Neurosci. – volume: 524 start-page: 3518 year: 2016 end-page: 3529 article-title: Cholinergic interneurons in the Q140 knockin mouse model of Huntington's disease: Reductions in dendritic branching and thalamostriatal input publication-title: J. Comp. Neurol. – volume: 30 start-page: 767 year: 1989 end-page: 777 article-title: Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system publication-title: Neuroscience – volume: 113 start-page: 688 year: 2015 end-page: 700 article-title: Cell‐type‐specific resonances shape the responses of striatal neurons to synaptic input publication-title: J. Neurophysiol. – volume: 131 start-page: 1135 year: 2000 end-page: 1142 article-title: Histamine depolarizes cholinergic interneurones in the rat striatum via a H(1)‐receptor mediated action publication-title: Br. J. Pharmacol. – volume: 42 start-page: 1764 year: 2015 end-page: 1774 article-title: Novel fast adapting interneurons mediate cholinergic‐induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons publication-title: Eur. J. Neurosci. – volume: 37 start-page: 1493 year: 1998 end-page: 1502 article-title: 3‐Alpha‐chloro‐imperialine, a potent blocker of cholinergic presynaptic modulation of glutamatergic afferents in the rat neostriatum publication-title: Neuropharmacology – volume: 27 start-page: 496 year: 2007 end-page: 506 article-title: Tonic enhancement of endocannabinoid‐mediated retrograde suppression of inhibition by cholinergic interneuron activity in the striatum publication-title: J. Neurosci. – volume: 45 start-page: 575 year: 2005 end-page: 585 article-title: The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons publication-title: Neuron – volume: 27 start-page: 391 year: 2007 end-page: 400 article-title: Cholinergic interneurons control the excitatory input to the striatum publication-title: J. Neurosci. – volume: 30 start-page: 2198 year: 2010 end-page: 2210 article-title: VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety publication-title: J. Neurosci. – volume: 18 start-page: 5180 year: 1998 end-page: 5190 article-title: Dopamine D1‐like receptor activation excites rat striatal large aspiny neurons in vitro publication-title: J. Neurosci. – volume: 35 start-page: 308 year: 1971 end-page: 314 article-title: Neostriatal choline acetylase and cholinesterase following selective brain lesions publication-title: Brain Res. – volume: 95 start-page: 468 year: 2015 end-page: 476 article-title: Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons publication-title: Neuropharmacology – volume: 2 start-page: 33 year: 2012 end-page: 41 article-title: Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing publication-title: Cell Rep. – volume: 87 start-page: 7050 year: 1990 end-page: 7054 article-title: Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia publication-title: Proc. Natl. Acad. Sci. USA – volume: 90 start-page: 507 year: 2016 end-page: 520 article-title: PIAS1 regulates mutant Huntingtin accumulation and Huntington's disease‐associated phenotypes in vivo publication-title: Neuron – volume: 23 start-page: 8506 year: 2003a end-page: 8512 article-title: Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity publication-title: J. Neurosci. – volume: 27 start-page: 3148 year: 2007 end-page: 3156 article-title: Involvement of I(h) in dopamine modulation of tonic firing in striatal cholinergic interneurons publication-title: J. Neurosci. – volume: 127–128 start-page: 91 year: 2015 end-page: 107 article-title: Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia publication-title: Prog. Neurogibol. – volume: 31 start-page: 16757 year: 2011 end-page: 16769 article-title: A novel functionally distinct subtype of striatal neuropeptide Y interneuron publication-title: J. Neurosci. – volume: 50 start-page: 443 year: 2006 end-page: 452 article-title: Dopaminergic control of corticostriatal long‐term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons publication-title: Neuron – volume: 15 start-page: 7821 year: 1995 end-page: 7836 article-title: Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain publication-title: J. Neurosci. – volume: 5 start-page: 59 year: 2011 article-title: Basal Ganglia disorders associated with imbalances in the striatal striosome and matrix compartments publication-title: Front. Neuroanat. – volume: 22 start-page: 529 year: 2002 end-page: 535 article-title: Dual cholinergic control of fast‐spiking interneurons in the neostriatum publication-title: J. Neurosci. – volume: 119 start-page: 965 year: 2003 end-page: 977 article-title: Co‐expression of alpha7 and beta2 nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons publication-title: Neuroscience – volume: 87 start-page: 802 year: 1962 end-page: 807 article-title: The pathogenesis of Parkinson's disease: a new hypothesis publication-title: Can. Med. Assoc. J. – volume: 19 start-page: 6102 year: 1999b end-page: 6110 article-title: Glutamate‐triggered events inducing corticostriatal long‐term depression publication-title: J. Neurosci. – volume: 37 start-page: 9977 year: 2017 end-page: 9998 article-title: A population of indirect pathway striatal projection neurons is selectively entrained to parkinsonian beta oscillations publication-title: J. Neurosci. – volume: 32 start-page: 1391 year: 1982 end-page: 1395 article-title: Quantitative autoradiography of neurotransmitter receptors in Huntington disease publication-title: Neurology – volume: 1344 start-page: 104 year: 2010 end-page: 123 article-title: Immunohistochemical localization of AMPA‐type glutamate receptor subunits in the striatum of rhesus monkey publication-title: Brain Res. – volume: 5 start-page: 11 year: 2011 article-title: Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons publication-title: Front. Syst. Neurosci. – volume: 1349 start-page: 1 year: 2015 end-page: 45 article-title: Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions publication-title: Ann. N. Y. Acad. Sci. – volume: 142 start-page: 90 issue: Suppl. 2 year: 2017 end-page: 102 article-title: Cholinergic/glutamatergic co‐transmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation publication-title: J. Neurochem. – volume: 96 start-page: 267 year: 2017 end-page: 284 article-title: Striatal local circuitry: a new framework for lateral inhibition publication-title: Neuron – volume: 24 start-page: 31 year: 2001 end-page: 55 article-title: The role and regulation of adenosine in the central nervous system publication-title: Ann. Rev. Neurosci. – volume: 97 start-page: 6245 year: 2000 end-page: 6247 article-title: A multiplicity of muscarinic mechanisms: enough signaling pathways to take your breath away publication-title: Proc. Natl. Acad. Sci. USA – volume: 130 start-page: 886 year: 2000 end-page: 890 article-title: Adenosine receptor expression and function in rat striatal cholinergic interneurons publication-title: Br. J. Pharmacol. – volume: 592 start-page: 3559 year: 2014 end-page: 3576 article-title: Temporal components of cholinergic terminal to dopaminergic terminal transmission in dorsal striatum slices of mice publication-title: J. Physiol. – volume: 31 start-page: 1850 year: 2011 end-page: 1862 article-title: The distinct role of medium spiny neurons and cholinergic interneurons in the D(2)/A(2)A receptor interaction in the striatum: implications for Parkinson's disease publication-title: J. Neurosci. – volume: 75 start-page: 58 year: 2012 end-page: 64 article-title: Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons publication-title: Neuron – volume: 34 start-page: 3101 year: 2014 end-page: 3117 article-title: Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli publication-title: J. Neurosci. – volume: 45 start-page: 1044 year: 2017 end-page: 1056 article-title: Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons publication-title: Eur. J. Neurosci. – volume: 58 start-page: 303 year: 2008 end-page: 313 article-title: Dopamine spillover after quantal release: rethinking dopamine transmission in the nigrostriatal pathway publication-title: Brain Res. Rev. – volume: 4 start-page: 325 year: 2005 end-page: 329 article-title: What can adenosine neuromodulation do for neuroprotection? publication-title: Curr. Drug Targets – volume: 360 start-page: 81 year: 2017 end-page: 94 article-title: The role of the intrinsic cholinergic system of the striatum: what have we learned from TAN recordings in behaving animals? publication-title: Neuroscience – volume: 29 start-page: 444 year: 2009 end-page: 453 article-title: Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum publication-title: J. Neurosci. – volume: 58 start-page: 413 year: 2010 end-page: 422 article-title: Substance P selectively modulates GABA(A) receptor‐mediated synaptic transmission in striatal cholinergic interneurons publication-title: Neuropharmacology – volume: 8 start-page: 235 year: 2017 end-page: 242 article-title: The striosome and matrix compartments of the striatum: a path through the labyrinth from neurochemistry toward function publication-title: ACS Chem. Neurosci. – volume: 22 start-page: 5442 year: 2002 end-page: 5451 article-title: A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons publication-title: J. Neurosci. – volume: 74 start-page: 495 year: 2017 end-page: 508 article-title: Modulation of Kv7 channels and excitability in the brain publication-title: Cell. Mol. Life Sci. – volume: 38 start-page: 747 year: 2000 end-page: 761 article-title: Muscarinic toxins: novel pharmacological tools for the muscarinic cholinergic system publication-title: Toxicon – volume: 23 start-page: 6245 year: 2003b end-page: 6254 article-title: Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons publication-title: J. Neurosci. – volume: 19 start-page: 1115 year: 1997 end-page: 1126 article-title: D5 dopamine receptors enhance Zn2 + ‐sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade publication-title: Neuron – volume: 21 start-page: 425 year: 2011 end-page: 432 article-title: Cholinergic modulation of synaptic integration and dendritic excitability in the striatum publication-title: Curr. Opin. Neurobiol. – volume: 195 start-page: 567 year: 1981 end-page: 584 article-title: Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi‐peroxidase transport‐degeneration procedure publication-title: J. Comp. Neurol. – volume: 11 start-page: 80 year: 2017 article-title: Pauses in striatal cholinergic interneurons: what is revealed by their common themes and variations? publication-title: Front. Syst. Neurosci. – volume: 10 start-page: 111 year: 2016 article-title: Mutual control of cholinergic and low‐threshold spike interneurons in the striatum publication-title: Front. Cell. Neurosci. – volume: 15 start-page: 31 year: 2015 article-title: Anticholinergic burden quantified by anticholinergic risk scales and adverse outcomes in older people: a systematic review publication-title: BMC Geriatr. – volume: 108 start-page: 771 year: 2012 end-page: 781 article-title: Complex autonomous firing patterns of striatal low‐threshold spike interneurons publication-title: J. Neurophysiol. – volume: 30 start-page: 545 year: 2007 end-page: 553 article-title: Re‐emergence of striatal cholinergic interneurons in movement disorders publication-title: Trends Neurosci. – volume: 19 start-page: 3629 year: 1999 end-page: 3638 article-title: Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors publication-title: J. Neurosci. – volume: 168 start-page: 395 year: 2010 end-page: 404 article-title: Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum publication-title: Neuroscience – volume: 510 start-page: 441 issue: Pt 2 year: 1998 end-page: 453 article-title: Identification of an ATP‐sensitive potassium channel current in rat striatal cholinergic interneurones publication-title: J. Physiol. – volume: 113 start-page: E3159 year: 2016 end-page: E3168 article-title: Striatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 1458 year: 2007 end-page: 1466 article-title: Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons publication-title: Nat. Neurosci. – volume: 58 start-page: 689 year: 2011 end-page: 692 article-title: Snake toxins from mamba venoms: unique tools for the physiologist publication-title: Acta Chim. Slov. – volume: 30 start-page: 8229 year: 2010 end-page: 8233 article-title: Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate publication-title: J. Neurosci. – volume: 13 start-page: 1071 year: 2001 end-page: 1077 article-title: Dopaminergic control of synaptic plasticity in the dorsal striatum publication-title: Eur. J. Neurosci. – volume: 7 start-page: 295 year: 2016 article-title: Presynaptic release‐regulating mGlu1 receptors in central nervous system publication-title: Front. Pharmacol. – volume: 53 start-page: 603 year: 1997 end-page: 625 article-title: Diffuse transmission by acetylcholine in the CNS publication-title: Prog. Neurogibol. – volume: 215 start-page: 388 year: 2009 end-page: 396 article-title: Enhanced sensitivity to group II mGlu receptor activation at corticostriatal synapses in mice lacking the familial parkinsonism‐linked genes PINK1 or Parkin publication-title: Exp. Neurol. – volume: 32 start-page: 1840 year: 2007 end-page: 1854 article-title: Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5‐HT 2C, 5‐HT6, and 5‐HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors publication-title: Neuropsychopharmacology – volume: 10 start-page: 75 year: 2015 end-page: 87 article-title: Input‐ and cell‐type‐specific endocannabinoid‐dependent LTD in the striatum publication-title: Cell Rep. – volume: 986 start-page: 22 year: 2003 end-page: 29 article-title: Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat publication-title: Brain Res. – volume: 99 start-page: 1435 year: 2008 end-page: 1450 article-title: Encoding network states by striatal cell assemblies publication-title: J. Neurophysiol. – volume: 27 start-page: 143 year: 2004 end-page: 164 article-title: Differential loss of striatal projection systems in Huntington's disease: a quantitative immunohistochemical study publication-title: J. Chem. Neuroanat. – volume: 281 start-page: 271 year: 1995 end-page: 277 article-title: Muscarinic receptors modulate the afterhyperpolarizing potential in neostriatal neurons publication-title: Eur. J. Pharmacol. – volume: 423 start-page: 500 year: 2000 end-page: 511 article-title: Neurokinin 1 receptor distribution in cholinergic neurons and targets of substance P terminals in the rat nucleus accumbens publication-title: J. Comp. Neurol. – volume: 7 start-page: 78 year: 2013 article-title: Global actions of nicotine on the striatal microcircuit publication-title: Front. Syst. Neurosci. – volume: 510 start-page: 421 issue: Pt 2 year: 1998c end-page: 427 article-title: Muscarinic IPSPs in rat striatal cholinergic interneurones publication-title: J. Physiol. – volume: 2 start-page: e1174 year: 2007 article-title: Cholinergic interneurons are differentially distributed in the human striatum publication-title: PLoS One – volume: 12 start-page: 687 year: 1984a end-page: 709 article-title: The section‐Golgi‐impregnation procedure–3. Combination of Golgi‐impregnation with enzyme histochemistry and electron microscopy to characterize acetylcholinesterase‐containing neurons in the rat neostriatum publication-title: Neuroscience – volume: 38 start-page: 323 year: 1999a end-page: 326 article-title: Activation of M1‐like muscarinic receptors is required for the induction of corticostriatal LTP publication-title: Neuropharmacology – volume: 67 start-page: 294 year: 2010 end-page: 307 article-title: Thalamic gating of corticostriatal signaling by cholinergic interneurons publication-title: Neuron – volume: 28 start-page: 131 year: 2013 end-page: 144 article-title: Novel nondopaminergic targets for motor features of Parkinson's disease: review of recent trials publication-title: Mov. Disord. – volume: 45 start-page: 617 year: 1972 end-page: 621 article-title: The demonstration of acetylcholinesterase containing neurones within the caudate nucleus of the rat publication-title: Brain Res. – volume: 121 start-page: 2335 issue: Pt 12 year: 1998 end-page: 2339 article-title: The role of DYT1 in primary torsion dystonia in Europe publication-title: Brain – volume: 88 start-page: 762 year: 2015 end-page: 773 article-title: M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of L‐DOPA‐induced dyskinesia publication-title: Neuron – volume: 65 start-page: 1526 year: 2004 end-page: 1535 article-title: Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice publication-title: Mol. Pharmacol. – volume: 132 start-page: 2125 year: 2009 end-page: 2138 article-title: The neurophysiological correlates of motor tics following focal striatal disinhibition publication-title: Brain – volume: 37 start-page: 558 year: 2010 end-page: 573 article-title: Convergent evidence for abnormal striatal synaptic plasticity in dystonia publication-title: Neurobiol. Dis. – volume: 34 start-page: 8772 year: 2014 end-page: 8777 article-title: Striatal cholinergic neurotransmission requires VGLUT3 publication-title: J. Neurosci. – volume: 9 start-page: e1001194 year: 2011 article-title: Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic‐glutamatergic co‐transmission publication-title: PLoS Biol. – volume: 27 start-page: 6781 year: 2007 end-page: 6787 article-title: Combined activation of L‐type Ca channels and synaptic transmission is sufficient to induce striatal long‐term depression publication-title: J. Neurosci. – volume: 81 start-page: 142 year: 2002 end-page: 149 article-title: Functional and molecular characterization of metabotropic glutamate receptors expressed in rat striatal cholinergic interneurones publication-title: J. Neurochem. – volume: 574 start-page: 307 year: 1992 end-page: 311 article-title: Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons publication-title: Brain Res. – volume: 70 start-page: 1 year: 1996 end-page: 5 article-title: Dopamine reverses the depression of rat corticostriatal synapses which normally follows high‐frequency stimulation of cortex in vitro publication-title: Neuroscience – volume: 10 start-page: 508 year: 1990 end-page: 519 article-title: Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum publication-title: J. Neurosci. – volume: 18 start-page: 9438 year: 1998 end-page: 9452 article-title: Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat publication-title: J. Neurosci. – volume: 71 start-page: 937 year: 1996 end-page: 947 article-title: Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum publication-title: Neuroscience – volume: 211 start-page: 227 year: 2008 end-page: 233 article-title: Pallidal neuronal discharge in Huntington's disease: support for selective loss of striatal cells originating the indirect pathway publication-title: Exp. Neurol. – volume: 112 start-page: 13687 year: 2015 end-page: 13692 article-title: Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 start-page: 1014 year: 2015 end-page: 1025 article-title: Striatal cholinergic interneurons and cortico‐striatal synaptic plasticity in health and disease publication-title: Mov. Disord. – volume: 10 start-page: e0123381 year: 2015 article-title: Whole‐brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum publication-title: PLoS One – volume: 86 start-page: 367 year: 2011 end-page: 372 article-title: The involvement of RGS9 in l‐3,4‐dihydroxyphenylalanine‐induced dyskinesias in unilateral 6‐OHDA lesion rat model publication-title: Brain Res. Bull. – volume: 8 start-page: 15860 year: 2017 article-title: Differential processing of thalamic information via distinct striatal interneuron circuits publication-title: Nat. Commun. – volume: 460 start-page: 280 year: 2003 end-page: 291 article-title: Fine structural features of the acetylcholine innervation in the developing neostriatum of rat publication-title: J. Comp. Neurol. – volume: 117 start-page: 114 year: 2017 end-page: 123 article-title: Metabotropic glutamate receptor 2 inhibits thalamically‐driven glutamate and dopamine release in the dorsal striatum publication-title: Neuropharmacology – volume: 75 start-page: 5723 year: 1978 end-page: 5726 article-title: Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining publication-title: Proc. Natl. Acad. Sci. USA – volume: 115 start-page: 179 year: 2017 end-page: 191 article-title: Metabotropic glutamate receptors and neurodegenerative diseases publication-title: Pharmacol. Res. – volume: 15 start-page: 123 year: 2012 end-page: 130 article-title: GABAergic circuits mediate the reinforcement‐related signals of striatal cholinergic interneurons publication-title: Nat. Neurosci. – volume: 13 start-page: 1189 year: 1984 end-page: 1215 article-title: Tyrosine hydroxylase‐immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines publication-title: Neuroscience – volume: 22 start-page: 6176 year: 2002 end-page: 6185 article-title: Metabotropic glutamate 2 receptors modulate synaptic inputs and calcium signals in striatal cholinergic interneurons publication-title: J. Neurosci. – volume: 136 start-page: 427 year: 2017 end-page: 437 article-title: Allosteric modulators targeting CNS muscarinic receptors publication-title: Neuropharmacology – volume: 30 start-page: 62 year: 2007 end-page: 69 article-title: Space, time and dopamine publication-title: Trends Neurosci. – volume: 518 start-page: 277 year: 2010 end-page: 291 article-title: Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome publication-title: J. Comp. Neurol. – volume: 34 start-page: 4509 year: 2014 end-page: 4518 article-title: A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem publication-title: J. Neurosci. – volume: 60 start-page: 780 year: 2011 end-page: 788 article-title: Spike‐timing dependent plasticity in striatal interneurons publication-title: Neuropharmacology – volume: 500 start-page: 788 year: 2007 end-page: 806 article-title: Comparative analysis of the subcellular and subsynaptic localization of mGluR1a and mGluR5 metabotropic glutamate receptors in the shell and core of the nucleus accumbens in rat and monkey publication-title: J. Comp. Neurol. – start-page: 191 year: 2002 end-page: 194 – volume: 58 start-page: 319 year: 1993 end-page: 379 article-title: Muscarinic receptors–characterization, coupling and function publication-title: Pharmacol. Ther. – volume: 153 start-page: S283 issue: Suppl. 1 year: 2008 end-page: S297 article-title: Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission publication-title: Br. J. Pharmacol. – volume: 75 start-page: 78 year: 2013 end-page: 85 article-title: Powerful inhibitory action of mu opioid receptors (MOR) on cholinergic interneuron excitability in the dorsal striatum publication-title: Neuropharmacology – volume: 28 start-page: 10075 year: 2008 end-page: 10080 article-title: Uncoordinated firing rate changes of striatal fast‐spiking interneurons during behavioral task performance publication-title: J. Neurosci. – volume: 566 start-page: 106 year: 2014 end-page: 110 article-title: Subsynaptic localization of nicotinic acetylcholine receptor subunits: a comparative study in the mouse and rat striatum publication-title: Neurosci. Lett. – volume: 61 start-page: 231 year: 2000 end-page: 265 article-title: Synaptic transmission in the striatum: from plasticity to neurodegeneration publication-title: Prog. Neurogibol. – volume: 34 start-page: 2087 year: 2014 end-page: 2099 article-title: Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways publication-title: J. Neurosci. – volume: 19 start-page: 323 year: 2013 end-page: 329 article-title: Volume transmission and its different forms in the central nervous system publication-title: Chin. J. Integr. Med. – volume: 30 start-page: 1306 year: 2015 end-page: 1318 article-title: Probing striatal microcircuitry to understand the functional role of cholinergic interneurons publication-title: Mov. Disord. – volume: 569 start-page: 715 year: 2005 end-page: 721 article-title: Excitatory effects of serotonin on rat striatal cholinergic interneurones publication-title: J. Physiol. – volume: 371 start-page: 155 year: 2017 end-page: 165 article-title: Enhanced activities of delta subunit‐containing GABAA receptors blocked spinal long‐term potentiation and attenuated formalin‐induced spontaneous pain publication-title: Neuroscience – volume: 3 start-page: 136 year: 2012 article-title: Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal‐glial networks publication-title: Front. Physiol. – volume: 12 start-page: 1121 year: 2009 end-page: 1128 article-title: Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration publication-title: Nat. Neurosci. – volume: 82 start-page: 793 year: 2000 end-page: 806 article-title: Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors publication-title: Biochimie – volume: 35 start-page: 6667 year: 2015 end-page: 6688 article-title: Prototypic and arkypallidal neurons in the dopamine‐intact external globus pallidus publication-title: J. Neurosci. – volume: 49 start-page: 285 year: 1999 end-page: 289 article-title: Muscarinic presynaptic inhibition of neostriatal glutamatergic afferents is mediated by Q‐type Ca channels publication-title: Brain Res. Bull. – volume: 12 start-page: 3591 year: 1992 end-page: 3600 article-title: Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes publication-title: J. Neurosci. – volume: 6 start-page: 22 year: 2014 article-title: Striatal cholinergic interneuron regulation and circuit effects publication-title: Front. Synaptic Neurosci. – volume: 413 start-page: 603 year: 1999 end-page: 618 article-title: Chemical heterogeneity of the striosomal compartment in the human striatum publication-title: J. Comp. Neurol. – volume: 7 start-page: 50 year: 2013 article-title: Motor tics evoked by striatal disinhibition in the rat publication-title: Front. Syst. Neurosci. – volume: 30 start-page: 182 year: 2008 end-page: 189 article-title: Donepezil use in children and adolescents with tics and attention‐deficit/hyperactivity disorder: an 18‐week, single‐center, dose‐escalating, prospective, open‐label study publication-title: Clin. Ther. – volume: 11 start-page: 53 year: 2017 article-title: Sensory processing in the dorsolateral striatum: the contribution of thalamostriatal pathways publication-title: Front. Syst. Neurosci. – volume: 36 start-page: 9505 year: 2016 end-page: 9511 article-title: Neostriatal GABAergic interneurons mediate cholinergic inhibition of spiny projection neurons publication-title: J. Neurosci. – volume: 20 start-page: 8493 year: 2000 end-page: 8503 article-title: Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons publication-title: J. Neurosci. – volume: 34 start-page: 8557 year: 2014 end-page: 8569 article-title: Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents publication-title: J. Neurosci. – volume: 39 start-page: 26 year: 2016 end-page: 39 article-title: Roles of Presynaptic NMDA Receptors in Neurotransmission and Plasticity publication-title: Trends Neurosci. – volume: 24 start-page: 10289 year: 2004 end-page: 10301 article-title: D2 dopamine receptor‐mediated modulation of voltage‐dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons publication-title: J. Neurosci. – volume: 60 start-page: 543 year: 2008 end-page: 554 article-title: Striatal plasticity and basal ganglia circuit function publication-title: Neuron – volume: 26 start-page: 4160 year: 2016 end-page: 4169 article-title: Cortical control of striatal dopamine transmission via striatal cholinergic interneurons publication-title: Cereb. Cortex – volume: 295 start-page: 162 year: 2017 end-page: 175 article-title: Strength of cholinergic tone dictates the polarity of dopamine D2 receptor modulation of striatal cholinergic interneuron excitability in DYT1 dystonia publication-title: Exp. Neurol. – volume: 10 start-page: 3020 year: 1998a end-page: 3023 article-title: Blockade of M2‐like muscarinic receptors enhances long‐term potentiation at corticostriatal synapses publication-title: Eur. J. Neurosci. – volume: 593 start-page: 2295 year: 2015 end-page: 2310 article-title: Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABAB and mGlu2/3 receptors publication-title: J. Physiol. – volume: 118 start-page: 209 year: 2017 end-page: 222 article-title: M1 muscarinic activation induces long‐lasting increase in intrinsic excitability of striatal projection neurons publication-title: Neuropharmacology – volume: 108 start-page: 840 year: 2011 end-page: 845 article-title: Enhanced striatal cholinergic neuronal activity mediates L‐DOPA‐induced dyskinesia in parkinsonian mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 95 start-page: 6480 year: 1998 end-page: 6485 article-title: Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 start-page: 219 year: 2006 end-page: 233 article-title: Muscarinic receptor subtypes in neuronal and non‐neuronal cholinergic function publication-title: Auton. Autacoid Pharmacol. – volume: 67 start-page: 1669 year: 1992 end-page: 1682 article-title: Large aspiny cells in the matrix of the rat neostriatum in vitro: physiological identification, relation to the compartments and excitatory postsynaptic currents publication-title: J. Neurophysiol. – volume: 8 start-page: 21 year: 2014 article-title: Interaction between the 5‐HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease publication-title: Front. Neural. Circuits. – volume: 70 start-page: 1937 year: 1993 end-page: 1949 article-title: Short‐ and long‐term synaptic depression in rat neostriatum publication-title: J. Neurophysiol. – volume: 30 start-page: 2223 year: 2010 end-page: 2234 article-title: Distinct roles of GABAergic interneurons in the regulation of striatal output pathways publication-title: J. Neurosci. – volume: 11 start-page: 755 year: 2004 end-page: 760 article-title: Coordinate high‐frequency pattern of stimulation and calcium levels control the induction of LTP in striatal cholinergic interneurons publication-title: Learn Memory – volume: 520 start-page: 2123 year: 2012 end-page: 2142 article-title: Density gradients of vesicular glutamate‐ and GABA transporter‐immunoreactive boutons in calbindinand mu‐opioid receptor‐defined compartments in the rat striatum publication-title: J. Comp. Neurol. – volume: 99 start-page: 51 year: 1993 end-page: 72 article-title: GABAergic circuits of the striatum publication-title: Prog. Brain Res. – volume: 36 start-page: 160 year: 1986 end-page: 164 article-title: Torsion dystonia: a double‐blind, prospective trial of high‐dosage trihexyphenidyl publication-title: Neurology – volume: 2015 start-page: Article ID 472676 year: 2015 article-title: KV7 channels regulate firing during synaptic integration in GABAergic striatal neurons publication-title: Neural. Plast. – volume: 46 start-page: 351 year: 1992 end-page: 360 article-title: Ultrastructural relationships between choline acetyltransferase‐ and neuropeptide y‐containing neurons in the rat striatum publication-title: Neuroscience – volume: 586 start-page: 265 year: 2008 end-page: 282 article-title: Cell‐specific spike‐timing‐dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices publication-title: J. Physiol. – volume: 18 start-page: 10207 year: 1998 end-page: 10218 article-title: Subcellular redistribution of m2 muscarinic acetylcholine receptors in striatal interneurons in vivo after acute cholinergic stimulation publication-title: J. Neurosci. – volume: 14 start-page: 1577 year: 2001 end-page: 1589 article-title: Differential sensitivity of medium‐ and large‐sized striatal neurons to NMDA but not kainate receptor activation in the rat publication-title: Eur. J. Neurosci. – volume: 30 start-page: 785 year: 1991 end-page: 793 article-title: Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington's disease publication-title: Ann. Neurol. – volume: 22 start-page: 8785 year: 2002 end-page: 8789 article-title: Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum publication-title: J. Neurosci. – volume: 594 start-page: 253 year: 1992 end-page: 262 article-title: Ultrastructural examination of enkephalin and substance P input to cholinergic neurons within the rat neostriatum publication-title: Brain Res. – volume: 88 start-page: 2608 year: 1991 end-page: 2611 article-title: Distinct muscarinic receptors inhibit release of gamma‐aminobutyric acid and excitatory amino acids in mammalian brain publication-title: Proc. Natl. Acad. Sci. USA – volume: 344 start-page: 240 year: 1990 end-page: 242 article-title: Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons publication-title: Nature – volume: 219 start-page: 1787 year: 2014 end-page: 1800 article-title: Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum publication-title: Brain Struct. Funct. – volume: 15 start-page: 3119 year: 2006 end-page: 3131 article-title: Cholinergic neuronal defect without cell loss in Huntington's disease publication-title: Hum. Mol. Genet. – volume: 47 start-page: 416 year: 2012 end-page: 427 article-title: Cholinergic dysregulation produced by selective inactivation of the dystonia‐associated protein torsinA publication-title: Neurobiol. Dis. – volume: 60 start-page: 40 year: 1993 end-page: 52 article-title: Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons publication-title: Adv. Neurol. – volume: 16 start-page: 2749 year: 2016 end-page: 2762 article-title: Decrease of a current mediated by Kv1.3 channels causes striatal cholinergic interneuron hyperexcitability in experimental parkinsonism publication-title: Cell Rep. – volume: 62 start-page: 707 year: 1994 end-page: 719 article-title: Synaptic input and output of parvalbumin‐immunoreactive neurons in the neostriatum of the rat publication-title: Neuroscience – volume: 269 start-page: 219 year: 1988 end-page: 234 article-title: Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat publication-title: J. Comp. Neurol. – volume: 95 start-page: 6486 year: 1998 end-page: 6491 article-title: Preferential localization of self‐stimulation sites in striosomes/patches in the rat striatum publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 217 year: 1979 end-page: 225 article-title: The localization of acetylcholinesterase in the corpus striatum and substantia nigra of the rat following kainic acid lesion of the corpus striatum: a biochemical and histochemical study publication-title: Neuroscience – volume: 4 start-page: 1224 year: 2001 end-page: 1229 article-title: Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum publication-title: Nat. Neurosci. – volume: 10 start-page: 294 year: 2016 article-title: Cannabinoid receptors in the central nervous system: their signaling and roles in disease publication-title: Front. Cell Neurosci. – volume: 21 start-page: 3301 year: 2005 end-page: 3309 article-title: Functional mu opioid receptors are expressed in cholinergic interneurons of the rat dorsal striatum: territorial specificity and diurnal variation publication-title: Eur. J. Neurosci. – volume: 5 start-page: 733 year: 1995 end-page: 741 article-title: Building action repertoires: memory and learning functions of the basal ganglia publication-title: Curr. Opin. Neurobiol. – volume: 74 start-page: 225 year: 2012 end-page: 243 article-title: Neurotransmitter corelease: mechanism and physiological role publication-title: Ann. Rev. Physiol. – volume: 20 start-page: 5102 year: 2000 end-page: 5114 article-title: Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting publication-title: J. Neurosci. – volume: 12 start-page: 2871 year: 2000 end-page: 2880 article-title: Differential modulation of AMPA receptors by cyclothiazide in two types of striatal neurons publication-title: Eur. J. Neurosci. – volume: 77 start-page: 1003 year: 1997 end-page: 1015 article-title: D2 dopamine receptors reduce N‐type Ca2 + currents in rat neostriatal cholinergic interneurons through a membrane‐delimited, protein‐kinase‐C‐insensitive pathway publication-title: J. Neurophysiol. – volume: 30 start-page: 6999 year: 2010 end-page: 7016 article-title: Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase‐expressing neurons in adult mouse striatum publication-title: J. Neurosci. – volume: 25 start-page: 7449 year: 2005 end-page: 7458 article-title: Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons publication-title: J. Neurosci. – volume: 74 start-page: 1075 year: 2012 end-page: 1086 article-title: Dichotomous organization of the external globus pallidus publication-title: Neuron – volume: 53 start-page: 590 year: 2002 end-page: 605 article-title: Cholinergic interneuron characteristics and nicotinic properties in the striatum publication-title: J. Neurobiol. – volume: 18 start-page: 8539 year: 1998 end-page: 8549 article-title: Synaptic regulation of action potential timing in neostriatal cholinergic interneurons publication-title: J. Neurosci. – volume: 62 start-page: 635 year: 1994 end-page: 640 article-title: Delta‐opioid receptor gene expression in the mouse forebrain: localization in cholinergic neurons of the striatum publication-title: Neuroscience – volume: 89 start-page: 226 year: 2013 end-page: 256 article-title: Molecular properties of muscarinic acetylcholine receptors publication-title: Proc. Jpn Acad. Ser. B Phys. Biol. Sci. – volume: 102 start-page: 682 year: 2009 end-page: 690 article-title: Muscarinic enhancement of persistent sodium current synchronizes striatal medium spiny neurons publication-title: J. Neurophysiol. – volume: 397 start-page: 279 year: 1986 end-page: 289 article-title: Substance P‐containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat publication-title: Brain Res. – volume: 19 start-page: 1030 year: 2013 end-page: 1038 article-title: Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models publication-title: Nat. Med. – volume: 9 start-page: 832 year: 2006 end-page: 842 article-title: RGS4‐dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion publication-title: Nat. Neurosci. – volume: 14 start-page: 3351 year: 1994 end-page: 3363 article-title: Distribution of m1‐m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype‐specific antibodies publication-title: J. Neurosci. – volume: 8 start-page: 188 year: 2014 article-title: Local control of striatal dopamine release publication-title: Front. Behav. Neurosci. – volume: 92 start-page: 84 year: 2016 end-page: 92 article-title: Principles of synaptic organization of GABAergic interneurons in the striatum publication-title: Neuron – volume: 168 start-page: 569 year: 2012 end-page: 575 article-title: Functional anatomy of the basal ganglia: limbic aspects publication-title: Rev. Neurol. (Paris) – volume: 308 start-page: 278 year: 1984 end-page: 280 article-title: Kappa‐ and delta‐opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release publication-title: Nature – volume: 22 start-page: 1 year: 2017 end-page: 15 article-title: Ultrafast and slow cholinergic transmission. different involvement of acetylcholinesterase molecular forms publication-title: Molecules – volume: 25 start-page: 10230 year: 2005 end-page: 10238 article-title: Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium‐activated potassium currents in striatal cholinergic interneurons publication-title: J. Neurosci. – volume: 10 start-page: 269 year: 2014 end-page: 281 article-title: Modulation of Ca ‐currents by sequential and simultaneous activation of adenosine A1 and A 2A receptors in striatal projection neurons publication-title: Purinergic Signal. – volume: 28 start-page: 14245 year: 2008 end-page: 14258 article-title: Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity publication-title: J. Neurosci. – volume: 591 start-page: 203 year: 2013 end-page: 217 article-title: Direct and GABA‐mediated indirect effects of nicotinic ACh receptor agonists on striatal neurones publication-title: J. Physiol. – volume: 109 start-page: 148 year: 2018 end-page: 162 article-title: Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum publication-title: Neurobiol. Dis. – volume: 134 start-page: 110 year: 2011 end-page: 118 article-title: Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies publication-title: Brain – volume: 16 start-page: 2017 year: 2002 end-page: 2026 article-title: Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events publication-title: Eur. J. Neurosci. – volume: 12 start-page: 711 year: 1984b end-page: 718 article-title: Characterization of cholinergic neurons in the rat neostriatum – a combination of choline‐acetyltransferase immunocytochemistry, golgi‐impregnation and electron‐microscopy publication-title: Neuroscience – volume: 51 start-page: 533 year: 1992 end-page: 545 article-title: Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat publication-title: Neuroscience – volume: 9 start-page: 116 year: 2015 article-title: Potentiation of NMDA receptor‐mediated transmission in striatal cholinergic interneurons publication-title: Front. Cell Neurosci. – volume: 100 start-page: 30 year: 2016 end-page: 34 article-title: Nicotinic receptor subtypes differentially modulate glutamate release in the dorsal medial striatum publication-title: Neurochem. Int. – volume: 376 start-page: 188 year: 2018 end-page: 203 article-title: Histamine H3 receptors decrease dopamine release in the ventral striatum by reducing the activity of striatal cholinergic interneurons publication-title: Neuroscience – volume: 76 start-page: 33 year: 2012 end-page: 50 article-title: Dopaminergic modulation of synaptic transmission in cortex and striatum publication-title: Neuron – volume: 56 start-page: 931 year: 1995 end-page: 938 article-title: Diverse pre‐ and post‐synaptic expression of m1‐m4 muscarinic receptor proteins in neurons and afferents in the rat neostriatum publication-title: Life Sci. – volume: 357 start-page: 1255 year: 2017 end-page: 1261 article-title: Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease publication-title: Science – volume: 31 start-page: 14972 year: 2011 end-page: 14983 article-title: Dopaminergic modulation of the striatal microcircuit: receptor‐specific configuration of cell assemblies publication-title: J. Neurosci. – volume: 93 start-page: 2507 year: 2005 end-page: 2519 article-title: Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2 + channels publication-title: J. Neurophysiol. – volume: 85 start-page: 637 issue: Pt 2 year: 2014 end-page: 647 article-title: Oscillations and the basal ganglia: motor control and beyond publication-title: NeuroImage – volume: 87 start-page: 1007 year: 2002 end-page: 1017 article-title: Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations publication-title: J. Neurophysiol. – volume: 128 start-page: 201 year: 1986 end-page: 207 article-title: A correlation analysis of the regional distribution of central enkephalin and beta‐endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission publication-title: Acta Physiol. Scand. – volume: 6 start-page: 787 year: 2005 end-page: 798 article-title: Metabotropic glutamate receptors in the basal ganglia motor circuit publication-title: Nat. Rev. Neurosci. – volume: 332 start-page: 499 year: 1993 end-page: 513 article-title: Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum publication-title: J. Comp. Neurol. – volume: 894 start-page: 12 year: 2001 end-page: 20 article-title: Biotinylated m4‐toxin demonstrates more M4 muscarinic receptor protein on direct than indirect striatal projection neurons publication-title: Brain Res. – volume: 31 start-page: 6553 year: 2011 end-page: 6564 article-title: Reduction of an afterhyperpolarization current increases excitability in striatal cholinergic interneurons in rat parkinsonism publication-title: J. Neurosci. – volume: 142 start-page: 857 year: 2017 end-page: 875 article-title: Vesicular acetylcholine transporter (VAChT) over‐expression induces major modifications of striatal cholinergic interneuron morphology and function publication-title: J. Neurochem. – volume: 76 start-page: 3771 year: 1996 end-page: 3786 article-title: Neural information transferred from the putamen to the globus pallidus during learned movement in the monkey publication-title: J. Neurophysiol. – volume: 36 start-page: 41 year: 2013 end-page: 50 article-title: Pause and rebound: sensory control of cholinergic signaling in the striatum publication-title: Trends Neurosci. – volume: 31 start-page: 13015 year: 2011 end-page: 13022 article-title: A Ca(2 + ) threshold for induction of spike‐timing‐dependent depression in the mouse striatum publication-title: J. Neurosci. – volume: 46 start-page: 271 year: 2017 end-page: 293 article-title: Imaging and optically manipulating neuronal ensembles publication-title: Ann. Rev. Biophys. – volume: 198 start-page: 27 year: 2011 end-page: 43 article-title: Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum publication-title: Neuroscience – volume: 14 start-page: 278 year: 2013 end-page: 291 article-title: Corticostriatal connectivity and its role in disease publication-title: Nat. Rev. Neurosci. – volume: 434 start-page: 445 year: 2001 end-page: 460 article-title: Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: anatomical evidence for cholinergic modulation of glutamatergic prefronto‐striatal pathways publication-title: J. Comp. Neurol. – volume: 54 start-page: 89 year: 2015 end-page: 107 article-title: Limbic circuitry of the midline thalamus publication-title: Neurosci. Biobehav. Rev. – volume: 47 start-page: 1148 year: 2018 end-page: 1158 article-title: Striatal cholinergic interneurons and Parkinson's disease publication-title: Eur. J. Neurosci. – volume: 127 start-page: 720 year: 2017 end-page: 734 article-title: Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy publication-title: J. Clin. Invest. – volume: 15 start-page: 5297 year: 1995 end-page: 5307 article-title: NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum publication-title: J. Neurosci. – volume: 87 start-page: 649 year: 1998 end-page: 658 article-title: Characterization of the mechanism of action of tachykinins in rat striatal cholinergic interneurons publication-title: Neuroscience – volume: 11 start-page: e0157682 year: 2016 article-title: Quantitative imaging of cholinergic interneurons reveals a distinctive spatial organization and a functional gradient across the mouse striatum publication-title: PLoS One – volume: 30 start-page: 259 year: 2007 end-page: 288 article-title: Multiple dopamine functions at different time courses publication-title: Ann. Rev. Neurosci. – volume: 33 start-page: 1678 year: 2013 end-page: 1683 article-title: Target selectivity of feedforward inhibition by striatal fast‐spiking interneurons publication-title: J. Neurosci. – volume: 101 start-page: 16339 year: 2004 end-page: 16344 article-title: RGS9‐2 modulates D2 dopamine receptor‐mediated Ca channel inhibition in rat striatal cholinergic interneurons publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 238 year: 2016 end-page: 251 article-title: Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission publication-title: Neuroscientist – volume: 103 start-page: 2153 year: 2007 end-page: 2163 article-title: Tachykinin regulation of cholinergic transmission in the limbic/prefrontal territory of the rat dorsal striatum: implication of new neurokinine 1‐sensitive receptor binding site and interaction with enkephalin/mu opioid receptor transmission publication-title: J. Neurochem. – volume: 125 start-page: 27 year: 2000 end-page: 47 article-title: Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system publication-title: Prog. Brain Res. – volume: 78 start-page: 703 year: 2009 end-page: 711 article-title: Structural and functional diversity of native brain neuronal nicotinic receptors publication-title: Biochem. Pharmacol. – volume: 14 start-page: 3005 year: 1994 end-page: 3018 article-title: Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat publication-title: J. Neurosci. – volume: 132 start-page: 337 year: 1986 end-page: 338 article-title: Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats publication-title: Eur. J. Pharmacol. – volume: 12 start-page: 4224 year: 1992 end-page: 4233 article-title: Long‐term synaptic depression in the striatum: physiological and pharmacological characterization publication-title: J. Neurosci. – volume: 267 start-page: 455 year: 1988 end-page: 471 article-title: Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium‐size spiny neurons in the rat neostriatum publication-title: J. Comp. Neurol. – volume: 18 start-page: 299 year: 2017 end-page: 309 article-title: Genetic and activity‐dependent mechanisms underlying interneuron diversity publication-title: Nat. Rev. Neurosci. – volume: 36 start-page: 9161 year: 2016 end-page: 9172 article-title: Involvement of striatal cholinergic interneurons and M1 and M4 muscarinic receptors in motor symptoms of Parkinson's disease publication-title: J. Neurosci. – volume: 28 start-page: 2435 year: 2008 end-page: 2446 article-title: Dopamine receptor activation is required for corticostriatal spike‐timing‐dependent plasticity publication-title: J. Neurosci. – volume: 521 start-page: 2502 year: 2013 end-page: 2522 article-title: GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen publication-title: J. Comp. Neurol. – volume: 238 start-page: 286 year: 1985 end-page: 307 article-title: Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses publication-title: J. Comp. Neurol. – volume: 315 start-page: 137 year: 1992 end-page: 159 article-title: Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA‐L study of subcortical projections publication-title: J. Comp. Neurol. – volume: 58 start-page: 455 year: 2011 end-page: 463 article-title: Muscarinic toxins publication-title: Toxicon – volume: 30 start-page: 14610 year: 2010 end-page: 14618 article-title: Cortical and thalamic innervation of direct and indirect pathway medium‐sized spiny neurons in mouse striatum publication-title: J. Neurosci. – start-page: 137 year: 2017 end-page: 155 – volume: 85 start-page: 5733 year: 1988 end-page: 5737 article-title: Differential loss of striatal projection neurons in Huntington disease publication-title: Proc. Natl. Acad. Sci. USA – volume: 221 start-page: 1737 year: 2016 end-page: 1749 article-title: The neostriatum: two entities, one structure? publication-title: Brain Struct. Funct. – volume: 110 start-page: 3 year: 2016 end-page: 9 article-title: Modulatory compartments in cortex and local regulation of cholinergic tone publication-title: J. Physiol. Paris – volume: 32 start-page: 127 year: 2009 end-page: 147 article-title: Physiology and pharmacology of striatal neurons publication-title: Ann. Rev. Neurosci. – volume: 73 start-page: 1234 year: 1995 end-page: 1252 article-title: Temporal and spatial characteristics of tonically active neurons of the primate's striatum publication-title: J. Neurophysiol. – volume: 16 start-page: 487 year: 2015 end-page: 497 article-title: From the neuron doctrine to neural networks publication-title: Nat. Rev. – volume: 36 start-page: 543 year: 2013 end-page: 554 article-title: Advances in the pharmacological treatment of Parkinson's disease: targeting neurotransmitter systems publication-title: Trends Neurosci. – volume: 54 start-page: 33 year: 2009 end-page: 46 article-title: The R7 RGS protein family: multi‐subunit regulators of neuronal G protein signaling publication-title: Cell Biochem. Biophys. – volume: 3 start-page: 4 year: 2011 article-title: A history of spike‐timing‐dependent plasticity publication-title: Front. Synaptic Neurosci. – volume: 103 start-page: 1017 year: 2001 end-page: 1024 article-title: Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons publication-title: Neuroscience – volume: 86 start-page: 1531 year: 2016 end-page: 1542 article-title: Intrinsic circuits of the striatum: complexity and clinical correlations publication-title: Neurology – volume: 505 start-page: 318 year: 2014 end-page: 326 article-title: Interneuron cell types are fit to function publication-title: Nature – start-page: 223 year: 2012 end-page: 241 – volume: 28 start-page: 851 year: 2013 end-page: 862 article-title: Translation of Oppenheim's 1911 paper on dystonia publication-title: Mov. Disord. – volume: 3 start-page: 80 year: 2012 end-page: 89 article-title: Muscarinic acetylcholine receptor subtypes as potential drug targets for the treatment of schizophrenia, drug abuse and Parkinson's disease publication-title: ACS Chem. Neurosci. – volume: 21 start-page: 7247 year: 2001 end-page: 7260 article-title: The nigrostriatal pathway in the rat: a single‐axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments publication-title: J. Neurosci. – volume: 4 start-page: ENEURO.0178‐17.2017 year: 2017 article-title: Normal striatal vesicular acetylcholine transporter expression in tourette syndrome publication-title: eNeuro – volume: 3 start-page: 1172 year: 2012 article-title: Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits publication-title: Nat. Commun. – volume: 16 start-page: 2592 year: 1996 end-page: 2604 article-title: Muscarinic (m2/m4) receptors reduce N‐ and P‐type Ca2 + currents in rat neostriatal cholinergic interneurons through a fast, membrane‐delimited, G‐protein pathway publication-title: J. Neurosci. – volume: 6 start-page: e19155 year: 2011 article-title: Cholinergic interneurons mediate fast VGluT3‐dependent glutamatergic transmission in the striatum publication-title: PLoS One – volume: 16 start-page: 5141 year: 1996 end-page: 5153 article-title: Actions of substance P on rat neostriatal neurons publication-title: J. Neurosci. – volume: 12 start-page: 669 year: 1984 end-page: 686 article-title: Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry publication-title: Neuroscience – volume: 71 start-page: 157 year: 1996 end-page: 165 article-title: Role of the parafascicular thalamic nucleus and N‐methyl‐D‐aspartate transmission in the D1‐dependent control of in vivo acetylcholine release in rat striatum publication-title: Neuroscience – volume: 98 start-page: 135 year: 1989 end-page: 140 article-title: Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording publication-title: Br. J. Pharmacol. – volume: 28 start-page: 8682 year: 2008 end-page: 8690 article-title: Recurrent inhibitory network among striatal cholinergic interneurons publication-title: J. Neurosci. – volume: 78 start-page: 744 year: 2009 end-page: 755 article-title: Nicotinic acetylcholine receptors and the ascending dopamine pathways publication-title: Biochem. Pharmacol. – volume: 6 start-page: 1345 year: 2010 end-page: 1354 article-title: Allosteric activators of muscarinic receptors as novel approaches for treatment of CNS disorders publication-title: Mol. BioSyst. – volume: 411 start-page: 162 year: 1987 end-page: 166 article-title: Sparing of acetylcholinesterase‐containing striatal neurons in Huntington's disease publication-title: Brain Res. – volume: 34 start-page: 3253 year: 2014 end-page: 3262 article-title: M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor's location publication-title: J. Neurosci. – volume: 21 start-page: 6492 year: 2001 end-page: 6501 article-title: Dopamine‐dependent synaptic plasticity in the striatal cholinergic interneurons publication-title: J. Neurosci. – volume: 28 start-page: 566 year: 1989 end-page: 573 article-title: The Yale Global Tic Severity Scale: initial testing of a clinician‐rated scale of tic severity publication-title: J. Am. Acad. Child. Adolesc. Psychiat. – volume: 321 start-page: 848 year: 2008 end-page: 851 article-title: Dichotomous dopaminergic control of striatal synaptic plasticity publication-title: Science – volume: 81 start-page: 4998 year: 1984 end-page: 5001 article-title: Tonically discharging putamen neurons exhibit set‐dependent responses publication-title: Proc. Natl. Acad. Sci. USA – start-page: 157 year: 2017 end-page: 178 – volume: 30 start-page: 4 year: 2014 end-page: 18 article-title: The medical treatment of Parkinson disease from James Parkinson to George Cotzias publication-title: Mov. Disord. – volume: 25 start-page: 3857 year: 2005 end-page: 3869 article-title: Feedforward inhibition of projection neurons by fast‐spiking GABA interneurons in the rat striatum in vivo publication-title: J. Neurosci. – volume: 24 start-page: 9870 year: 2004 end-page: 9877 article-title: Modulation of an afterhyperpolarization by the substantia nigra induces pauses in the tonic firing of striatal cholinergic interneurons publication-title: J. Neurosci. – volume: 160 start-page: 744 year: 2009 end-page: 754 article-title: Asymmetric spike‐timing dependent plasticity of striatal nitric oxide‐synthase interneurons publication-title: Neuroscience – volume: 198 start-page: 112 year: 2011 end-page: 137 article-title: Dopamine release in the basal ganglia publication-title: Neuroscience – volume: 194 start-page: 599 year: 1980 end-page: 615 article-title: Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase publication-title: J. Comp. Neurol. – volume: 112 start-page: 893 year: 2015 end-page: 898 article-title: Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome publication-title: Proc. Natl. Acad. Sci. USA – volume: 105 start-page: 318 year: 2016 end-page: 328 article-title: Nicotinic acetylcholine receptor‐mediated GABAergic inputs to cholinergic interneurons in the striosomes and the matrix compartments of the mouse striatum publication-title: Neuropharmacology – volume: 5 start-page: 318 year: 2014 end-page: 324 article-title: M4 mAChR‐mediated modulation of glutamatergic transmission at corticostriatal synapses publication-title: ACS Chem. Neurosci. – volume: 31 start-page: 1 year: 1999 end-page: 5 article-title: Permissive role of interneurons in corticostriatal synaptic plasticity publication-title: Brain Res. Brain Res. Rev. – volume: 200 start-page: 151 year: 1981 end-page: 201 article-title: The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat publication-title: J. Comp. Neurol. – volume: 82 start-page: 672 year: 1990 end-page: 676 article-title: Physiological properties of projection neurons in the monkey striatum to the globus pallidus publication-title: Exp. Brain Res. – volume: 22 start-page: 6347 year: 2002b end-page: 6352 article-title: Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1‐M5 muscarinic receptor knock‐out mice publication-title: J. Neurosci. – volume: 37 start-page: 663 year: 2014 end-page: 673 article-title: Presynaptic long‐term depression mediated by G‐coupled receptors publication-title: Trends Neurosci. – volume: 19 start-page: 5586 year: 1999 end-page: 5596 article-title: Spontaneous activity of neostriatal cholinergic interneurons in vitro publication-title: J. Neurosci. – volume: 22 start-page: 1709 year: 2002a end-page: 1717 article-title: Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock‐out mice publication-title: J. Neurosci. – year: 2018 article-title: Acute and chronic modulation of striatal endocannabinoid‐mediated plasticity by nicotine publication-title: Addict. Biol. – volume: 7 start-page: 106 year: 2007 end-page: 111 article-title: Plastic abnormalities in experimental Huntington's disease publication-title: Curr. Opin. Pharmacol. – volume: 79 start-page: 153 year: 2013 end-page: 166 article-title: The thalamostriatal pathway and cholinergic control of goal‐directed action: interlacing new with existing learning in the striatum publication-title: Neuron – volume: 27 start-page: 1164 year: 2017 end-page: 1181 article-title: Quantitative analyses of the projection of individual neurons from the midline thalamic nuclei to the striosome and matrix compartments of the rat striatum publication-title: Cereb. Cortex – ident: e_1_2_23_6_1 doi: 10.1038/344240a0 – ident: e_1_2_23_64_1 doi: 10.1016/j.celrep.2012.05.011 – ident: e_1_2_23_20_1 doi: 10.1016/j.neuroscience.2017.07.060 – ident: e_1_2_23_187_1 doi: 10.1073/pnas.81.15.4998 – ident: e_1_2_23_113_1 doi: 10.1523/JNEUROSCI.4627-13.2014 – ident: e_1_2_23_329_1 doi: 10.1002/mds.26304 – ident: e_1_2_23_80_1 doi: 10.1016/S0165-0173(99)00018-1 – ident: e_1_2_23_29_1 doi: 10.1016/S0361-9230(99)00061-1 – start-page: 137 volume-title: Handbook of Basal Ganglia Structure and Function year: 2017 ident: e_1_2_23_142_1 – ident: e_1_2_23_258_1 doi: 10.1016/j.neuropharm.2013.07.006 – ident: e_1_2_23_305_1 doi: 10.1016/j.neuron.2012.04.038 – ident: e_1_2_23_16_1 doi: 10.1523/JNEUROSCI.16-16-05141.1996 – start-page: 223 volume-title: Handbook of Experimental Pharmacology year: 2012 ident: e_1_2_23_143_1 – ident: e_1_2_23_266_1 doi: 10.1016/j.brainresrev.2008.02.004 – ident: e_1_2_23_265_1 doi: 10.1016/j.phrs.2016.11.013 – ident: e_1_2_23_281_1 doi: 10.1523/JNEUROSCI.0658-17.2017 – ident: e_1_2_23_96_1 doi: 10.1523/JNEUROSCI.5071-13.2014 – ident: e_1_2_23_183_1 doi: 10.1016/0166-2236(95)98374-8 – ident: e_1_2_23_276_1 doi: 10.1146/annurev.neuro.28.061604.135722 – ident: e_1_2_23_297_1 doi: 10.1523/JNEUROSCI.2411-08.2008 – ident: e_1_2_23_131_1 doi: 10.1016/j.neuroscience.2009.03.015 – ident: e_1_2_23_159_1 doi: 10.1016/0024-3205(95)00030-A – ident: e_1_2_23_240_1 doi: 10.3389/fncel.2015.00116 – ident: e_1_2_23_293_1 doi: 10.1523/JNEUROSCI.0589-14.2014 – ident: e_1_2_23_90_1 doi: 10.1016/0306-4522(95)00421-1 – ident: e_1_2_23_22_1 doi: 10.1038/ncomms15860 – ident: e_1_2_23_30_1 doi: 10.1152/jn.00283.2012 – ident: e_1_2_23_310_1 doi: 10.1093/brain/121.12.2335 – ident: e_1_2_23_179_1 doi: 10.1016/S0300-9084(00)01176-7 – ident: e_1_2_23_208_1 doi: 10.3389/fnsyn.2014.00022 – ident: e_1_2_23_313_1 doi: 10.1046/j.1460-9568.2000.00175.x – ident: e_1_2_23_275_1 doi: 10.1016/j.expneurol.2017.06.005 – ident: e_1_2_23_94_1 doi: 10.3389/fnana.2017.00020 – ident: e_1_2_23_141_1 doi: 10.1016/j.neuroscience.2011.08.067 – ident: e_1_2_23_84_1 doi: 10.1046/j.0953-816x.2001.01783.x – ident: e_1_2_23_88_1 doi: 10.1016/j.neuron.2013.12.027 – start-page: 157 volume-title: Handbook of Basal Ganglia Structure and Function year: 2017 ident: e_1_2_23_302_1 – ident: e_1_2_23_101_1 doi: 10.1002/cne.24013 – ident: e_1_2_23_92_1 doi: 10.1016/j.jphysparis.2016.08.001 – ident: e_1_2_23_171_1 doi: 10.1002/cne.902690207 – ident: e_1_2_23_44_1 doi: 10.1523/JNEUROSCI.18-23-10207.1998 – ident: e_1_2_23_74_1 doi: 10.1016/j.neuint.2010.03.010 – ident: e_1_2_23_277_1 doi: 10.1016/j.tins.2012.09.006 – ident: e_1_2_23_173_1 doi: 10.1111/jnc.14105 – ident: e_1_2_23_263_1 doi: 10.1523/JNEUROSCI.3225-04.2004 – ident: e_1_2_23_286_1 doi: 10.1038/nrn3469 – ident: e_1_2_23_26_1 doi: 10.1002/cne.10660 – ident: e_1_2_23_37_1 doi: 10.1523/JNEUROSCI.18-20-08539.1998 – ident: e_1_2_23_83_1 doi: 10.1523/JNEUROSCI.23-15-06245.2003 – ident: e_1_2_23_236_1 doi: 10.1073/pnas.97.12.6245 – ident: e_1_2_23_151_1 doi: 10.1007/s00018-016-2359-y – ident: e_1_2_23_118_1 doi: 10.1111/j.1474-8673.2006.00368.x – ident: e_1_2_23_145_1 doi: 10.1111/nyas.12762 – ident: e_1_2_23_209_1 doi: 10.1016/j.neuroscience.2017.12.002 – ident: e_1_2_23_87_1 doi: 10.1523/JNEUROSCI.3833-10.2011 – ident: e_1_2_23_232_1 doi: 10.1007/978-1-4757-3538-3_44 – ident: e_1_2_23_335_1 doi: 10.1038/nrn3962 – ident: e_1_2_23_176_1 doi: 10.1016/j.neuropharm.2017.01.038 – ident: e_1_2_23_235_1 doi: 10.1523/JNEUROSCI.4644-06.2007 – ident: e_1_2_23_97_1 doi: 10.1002/mds.26300 – ident: e_1_2_23_296_1 doi: 10.1073/pnas.88.6.2608 – ident: e_1_2_23_190_1 doi: 10.1016/S0079-6123(08)61338-2 – ident: e_1_2_23_261_1 doi: 10.1038/sj.bjp.0703366 – ident: e_1_2_23_136_1 doi: 10.1523/JNEUROSCI.19-09-03629.1999 – ident: e_1_2_23_300_1 doi: 10.1111/ejn.13638 – ident: e_1_2_23_85_1 doi: 10.1073/pnas.95.11.6480 – ident: e_1_2_23_49_1 doi: 10.1016/0306-4522(84)90164-7 – ident: e_1_2_23_27_1 doi: 10.1016/j.tins.2015.11.001 – ident: e_1_2_23_230_1 doi: 10.3389/fncir.2014.00021 – ident: e_1_2_23_172_1 doi: 10.1111/j.1460-9568.2005.04154.x – ident: e_1_2_23_50_1 doi: 10.1016/0306-4522(84)90165-9 – ident: e_1_2_23_98_1 doi: 10.1021/cn200110q – ident: e_1_2_23_111_1 doi: 10.1073/pnas.1006511108 – ident: e_1_2_23_146_1 doi: 10.1016/j.bcp.2009.05.024 – ident: e_1_2_23_144_1 doi: 10.1002/cne.23295 – ident: e_1_2_23_256_1 doi: 10.3389/fphar.2016.00295 – ident: e_1_2_23_60_1 doi: 10.1126/science.aam9080 – ident: e_1_2_23_110_1 doi: 10.1016/j.neuron.2010.06.017 – ident: e_1_2_23_163_1 doi: 10.1016/j.neuint.2016.08.009 – ident: e_1_2_23_321_1 doi: 10.1002/cne.901940308 – ident: e_1_2_23_152_1 doi: 10.1371/journal.pone.0123381 – ident: e_1_2_23_35_1 doi: 10.1212/WNL.0000000000002599 – ident: e_1_2_23_215_1 doi: 10.1016/0006-8993(72)90494-5 – ident: e_1_2_23_278_1 doi: 10.1371/journal.pone.0024261 – ident: e_1_2_23_322_1 doi: 10.1016/0006-8993(81)90211-0 – ident: e_1_2_23_189_1 doi: 10.1152/jn.1996.76.6.3771 – ident: e_1_2_23_284_1 doi: 10.1126/science.1160575 – ident: e_1_2_23_246_1 doi: 10.1212/WNL.32.12.1391 – ident: e_1_2_23_15_1 doi: 10.1007/s12013-009-9052-9 – ident: e_1_2_23_331_1 doi: 10.1016/S0896-6273(00)80402-X – ident: e_1_2_23_32_1 doi: 10.1016/S0306-4522(98)00187-0 – ident: e_1_2_23_161_1 doi: 10.1371/journal.pone.0019155 – ident: e_1_2_23_238_1 doi: 10.1016/j.neuron.2016.03.016 – ident: e_1_2_23_282_1 doi: 10.1523/JNEUROSCI.1381-05.2005 – ident: e_1_2_23_250_1 doi: 10.1016/j.nbd.2009.12.003 – ident: e_1_2_23_72_1 doi: 10.1523/JNEUROSCI.19-14-06102.1999 – ident: e_1_2_23_168_1 doi: 10.1016/0014-2999(86)90629-1 – ident: e_1_2_23_25_1 doi: 10.1016/S0306-4522(03)00220-3 – ident: e_1_2_23_66_1 doi: 10.1111/j.1476-5381.1989.tb16873.x – ident: e_1_2_23_169_1 doi: 10.1016/j.neuroscience.2010.03.062 – ident: e_1_2_23_255_1 doi: 10.1016/j.tins.2007.07.008 – ident: e_1_2_23_56_1 doi: 10.1021/acschemneuro.6b00333 – ident: e_1_2_23_114_1 doi: 10.1002/cne.902670402 – ident: e_1_2_23_225_1 doi: 10.1523/JNEUROSCI.4029-08.2009 – ident: e_1_2_23_262_1 doi: 10.1073/pnas.85.15.5733 – ident: e_1_2_23_55_1 doi: 10.1016/j.tins.2013.06.003 – ident: e_1_2_23_223_1 doi: 10.1523/JNEUROSCI.4646-13.2014 – ident: e_1_2_23_228_1 doi: 10.1016/0006-8993(71)90625-1 – ident: e_1_2_23_91_1 doi: 10.1016/0306-4522(95)00507-2 – ident: e_1_2_23_248_1 doi: 10.1155/2015/472676 – ident: e_1_2_23_227_1 doi: 10.1093/brain/awp142 – ident: e_1_2_23_45_1 doi: 10.1523/JNEUROSCI.18-22-09438.1998 – ident: e_1_2_23_46_1 doi: 10.1113/jphysiol.2005.098269 – ident: e_1_2_23_287_1 doi: 10.1523/JNEUROSCI.3206-11.2011 – ident: e_1_2_23_139_1 doi: 10.1523/JNEUROSCI.4870-09.2010 – ident: e_1_2_23_206_1 doi: 10.1111/j.1469-7793.1998.441bk.x – ident: e_1_2_23_125_1 doi: 10.1523/JNEUROSCI.0466-16.2016 – ident: e_1_2_23_140_1 doi: 10.1523/JNEUROSCI.2734-05.2005 – ident: e_1_2_23_271_1 doi: 10.1186/s12877-015-0029-9 – ident: e_1_2_23_185_1 doi: 10.1038/nature12983 – ident: e_1_2_23_194_1 doi: 10.1073/pnas.1605658113 – ident: e_1_2_23_108_1 doi: 10.1039/c002938f – ident: e_1_2_23_243_1 doi: 10.1021/cn500003z – ident: e_1_2_23_126_1 doi: 10.1073/pnas.1517629112 – ident: e_1_2_23_89_1 doi: 10.1038/nrn1763 – ident: e_1_2_23_105_1 doi: 10.1016/S0079-6123(00)25005-X – ident: e_1_2_23_292_1 doi: 10.1016/j.expneurol.2008.01.023 – ident: e_1_2_23_294_1 doi: 10.1016/j.neuron.2016.09.007 – ident: e_1_2_23_57_1 doi: 10.1016/j.neuroimage.2013.05.084 – ident: e_1_2_23_135_1 doi: 10.1007/s11655-013-1455-1 – ident: e_1_2_23_334_1 doi: 10.1016/j.brainresbull.2011.09.016 – ident: e_1_2_23_147_1 doi: 10.1016/j.neuropharm.2009.09.011 – ident: e_1_2_23_212_1 doi: 10.1152/jn.1993.70.5.1937 – ident: e_1_2_23_279_1 doi: 10.1016/j.nbd.2012.04.015 – ident: e_1_2_23_325_1 doi: 10.1152/jn.00630.2005 – ident: e_1_2_23_52_1 doi: 10.1101/lm.82104 – ident: e_1_2_23_157_1 doi: 10.1007/s11302-013-9386-z – ident: e_1_2_23_13_1 doi: 10.3389/fnsys.2017.00053 – ident: e_1_2_23_34_1 doi: 10.1046/j.1471-4159.2002.00815.x – ident: e_1_2_23_107_1 doi: 10.1016/j.coph.2006.08.010 – ident: e_1_2_23_120_1 doi: 10.1038/nn.2984 – ident: e_1_2_23_180_1 doi: 10.1002/cne.22206 – ident: e_1_2_23_338_1 doi: 10.3389/fnsys.2017.00080 – ident: e_1_2_23_207_1 doi: 10.1016/0306-4522(79)90084-8 – ident: e_1_2_23_48_1 doi: 10.1016/j.neuropharm.2015.08.013 – ident: e_1_2_23_71_1 doi: 10.1016/S0028-3908(98)00199-3 – ident: e_1_2_23_99_1 doi: 10.1016/j.jchemneu.2004.02.005 – ident: e_1_2_23_299_1 doi: 10.1523/JNEUROSCI.3572-12.2013 – ident: e_1_2_23_112_1 doi: 10.1523/JNEUROSCI.1623-10.2010 – ident: e_1_2_23_318_1 doi: 10.1073/pnas.87.18.7050 – ident: e_1_2_23_11_1 doi: 10.1016/j.nbd.2017.10.010 – ident: e_1_2_23_17_1 doi: 10.1152/jn.1995.73.3.1234 – ident: e_1_2_23_324_1 doi: 10.1016/j.neuron.2004.12.053 – ident: e_1_2_23_109_1 doi: 10.1038/nn1700 – ident: e_1_2_23_253_1 doi: 10.1016/0014-2999(95)00263-K – ident: e_1_2_23_291_1 doi: 10.1152/jn.2000.83.1.322 – ident: e_1_2_23_14_1 doi: 10.1523/JNEUROSCI.5196-09.2010 – ident: e_1_2_23_104_1 doi: 10.1016/S0301-0082(97)00050-6 – ident: e_1_2_23_315_1 doi: 10.1038/nrn.2017.30 – ident: e_1_2_23_117_1 doi: 10.1002/ana.410300607 – ident: e_1_2_23_67_1 doi: 10.1523/JNEUROSCI.12-11-04224.1992 – ident: e_1_2_23_130_1 doi: 10.1113/jphysiol.2007.144501 – ident: e_1_2_23_336_1 doi: 10.1523/JNEUROSCI.22-05-01709.2002 – ident: e_1_2_23_170_1 doi: 10.1016/j.neuropharm.2016.01.029 – ident: e_1_2_23_10_1 doi: 10.1016/S0006-8993(03)03165-2 – ident: e_1_2_23_166_1 doi: 10.1523/JNEUROSCI.2628-11.2011 – ident: e_1_2_23_280_1 doi: 10.1016/j.toxicon.2011.08.004 – ident: e_1_2_23_285_1 doi: 10.1016/j.neuron.2015.10.039 – ident: e_1_2_23_153_1 doi: 10.1371/journal.pbio.1001194 – ident: e_1_2_23_3_1 doi: 10.1523/JNEUROSCI.0280-07.2007 – ident: e_1_2_23_115_1 doi: 10.3390/molecules22081300 – ident: e_1_2_23_216_1 doi: 10.1523/JNEUROSCI.5027-04.2005 – ident: e_1_2_23_47_1 doi: 10.1016/j.neuropharm.2017.09.024 – ident: e_1_2_23_121_1 doi: 10.1016/j.pneurobio.2015.02.002 – ident: e_1_2_23_62_1 doi: 10.1016/j.neuron.2017.09.019 – ident: e_1_2_23_290_1 doi: 10.1523/JNEUROSCI.20-13-05102.2000 – ident: e_1_2_23_79_1 doi: 10.1016/0163-7258(93)90027-B – ident: e_1_2_23_224_1 doi: 10.1371/journal.pone.0157682 – ident: e_1_2_23_311_1 doi: 10.1016/j.neuroscience.2018.01.027 – ident: e_1_2_23_31_1 doi: 10.1152/jn.00827.2014 – ident: e_1_2_23_303_1 doi: 10.1523/JNEUROSCI.14-05-03005.1994 – ident: e_1_2_23_231_1 doi: 10.1002/cne.21214 – ident: e_1_2_23_181_1 doi: 10.1152/jn.1992.67.6.1669 – ident: e_1_2_23_134_1 doi: 10.3389/fphys.2012.00136 – ident: e_1_2_23_330_1 doi: 10.1523/JNEUROSCI.16-08-02592.1996 – ident: e_1_2_23_200_1 doi: 10.1002/cne.903320409 – ident: e_1_2_23_312_1 doi: 10.1016/j.neubiorev.2015.01.014 – ident: e_1_2_23_205_1 doi: 10.1097/00004583-198907000-00015 – ident: e_1_2_23_222_1 doi: 10.1016/0006-8993(92)91132-X – ident: e_1_2_23_241_1 doi: 10.1177/1073858415588264 – ident: e_1_2_23_239_1 doi: 10.1016/j.conb.2011.04.004 – ident: e_1_2_23_270_1 doi: 10.1002/cne.903150203 – ident: e_1_2_23_36_1 doi: 10.1016/0306-4522(94)90471-5 – ident: e_1_2_23_86_1 doi: 10.1016/0006-8993(92)90830-3 – ident: e_1_2_23_78_1 doi: 10.1146/annurev-biophys-070816-033647 – ident: e_1_2_23_148_1 doi: 10.1523/JNEUROSCI.22-13-05442.2002 – ident: e_1_2_23_2_1 doi: 10.1523/JNEUROSCI.4662-14.2015 – ident: e_1_2_23_174_1 doi: 10.1111/ejn.13287 – ident: e_1_2_23_249_1 doi: 10.1152/jn.00853.2004 – ident: e_1_2_23_137_1 doi: 10.1016/j.neulet.2014.02.018 – ident: e_1_2_23_333_1 doi: 10.1016/S0306-4522(01)00039-2 – ident: e_1_2_23_203_1 doi: 10.1016/0306-4522(92)90293-B – ident: e_1_2_23_81_1 doi: 10.1046/j.0953-816x.2001.01485.x – ident: e_1_2_23_220_1 doi: 10.3389/fnsyn.2011.00004 – ident: e_1_2_23_93_1 doi: 10.3389/fnana.2011.00059 – ident: e_1_2_23_165_1 doi: 10.1523/JNEUROSCI.5996-09.2010 – ident: e_1_2_23_193_1 doi: 10.1111/jnc.14003 – ident: e_1_2_23_129_1 doi: 10.1016/j.neuropharm.2011.01.023 – volume: 60 start-page: 40 year: 1993 ident: e_1_2_23_191_1 article-title: Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons publication-title: Adv. Neurol. – ident: e_1_2_23_61_1 doi: 10.1212/WNL.36.2.160 – ident: e_1_2_23_186_1 doi: 10.1002/cne.902000202 – ident: e_1_2_23_323_1 doi: 10.1523/JNEUROSCI.10-02-00508.1990 – ident: e_1_2_23_217_1 doi: 10.1523/JNEUROSCI.4199-08.2008 – ident: e_1_2_23_5_1 doi: 10.1111/j.1748-1716.1986.tb07967.x – ident: e_1_2_23_133_1 doi: 10.1016/0306-4522(84)90294-X – ident: e_1_2_23_4_1 doi: 10.1111/adb.12598 – ident: e_1_2_23_158_1 doi: 10.1523/JNEUROSCI.14-05-03351.1994 – ident: e_1_2_23_204_1 doi: 10.1016/0306-4522(94)90464-2 – ident: e_1_2_23_38_1 doi: 10.1523/JNEUROSCI.19-13-05586.1999 – ident: e_1_2_23_233_1 doi: 10.1038/308278a0 – ident: e_1_2_23_326_1 doi: 10.1002/cne.23031 – ident: e_1_2_23_122_1 doi: 10.1038/sj.bjp.0707510 – ident: e_1_2_23_320_1 doi: 10.1016/0306-4522(95)00436-M – volume: 4 start-page: 325 year: 2005 ident: e_1_2_23_264_1 article-title: What can adenosine neuromodulation do for neuroprotection? publication-title: Curr. Drug Targets – ident: e_1_2_23_39_1 doi: 10.1523/JNEUROSCI.20-22-08493.2000 – ident: e_1_2_23_308_1 doi: 10.1016/j.celrep.2016.08.016 – ident: e_1_2_23_8_1 doi: 10.1172/JCI90132 – ident: e_1_2_23_75_1 doi: 10.1152/jn.01131.2007 – ident: e_1_2_23_124_1 doi: 10.1111/ejn.12915 – ident: e_1_2_23_77_1 doi: 10.1523/JNEUROSCI.3226-11.2011 – ident: e_1_2_23_164_1 doi: 10.1007/s00429-013-0601-z – ident: e_1_2_23_247_1 doi: 10.1111/j.1471-4159.2007.04944.x – ident: e_1_2_23_273_1 doi: 10.1523/JNEUROSCI.6345-10.2011 – ident: e_1_2_23_132_1 doi: 10.1523/JNEUROSCI.4896-13.2014 – ident: e_1_2_23_244_1 doi: 10.1038/ncomms2144 – ident: e_1_2_23_162_1 doi: 10.1146/annurev-physiol-020911-153315 – ident: e_1_2_23_237_1 doi: 10.1523/JNEUROSCI.0901-14.2014 – ident: e_1_2_23_9_1 doi: 10.1002/cne.1186 – ident: e_1_2_23_24_1 doi: 10.1016/j.tins.2014.07.010 – ident: e_1_2_23_69_1 doi: 10.1111/j.1460-9568.1998.00294.x – ident: e_1_2_23_138_1 doi: 10.1002/mds.26340 – ident: e_1_2_23_257_1 doi: 10.3389/fnsys.2013.00078 – ident: e_1_2_23_214_1 doi: 10.1016/j.neuropharm.2017.03.017 – ident: e_1_2_23_149_1 doi: 10.1073/pnas.75.11.5723 – ident: e_1_2_23_341_1 doi: 10.1002/neu.10150 – ident: e_1_2_23_202_1 doi: 10.1523/JNEUROSCI.15-07-05297.1995 – ident: e_1_2_23_188_1 doi: 10.1007/BF00228811 – ident: e_1_2_23_234_1 doi: 10.1093/cercor/bhu179 – ident: e_1_2_23_53_1 doi: 10.1038/sj.npp.1301294 – ident: e_1_2_23_150_1 doi: 10.1016/0959-4388(95)80100-6 – ident: e_1_2_23_41_1 doi: 10.1523/JNEUROSCI.2192-08.2008 – ident: e_1_2_23_106_1 doi: 10.1016/0166-2236(94)90005-1 – ident: e_1_2_23_178_1 doi: 10.1002/mds.25273 – ident: e_1_2_23_63_1 doi: 10.1073/pnas.0407416101 – ident: e_1_2_23_65_1 doi: 10.3389/fnbeh.2014.00188 – ident: e_1_2_23_213_1 doi: 10.1113/jphysiol.2012.241786 – ident: e_1_2_23_192_1 doi: 10.1002/mds.25546 – ident: e_1_2_23_289_1 doi: 10.1002/cne.901950403 – ident: e_1_2_23_160_1 doi: 10.1038/nn.2368 – volume: 10 start-page: 294 year: 2016 ident: e_1_2_23_184_1 article-title: Cannabinoid receptors in the central nervous system: their signaling and roles in disease publication-title: Front. Cell Neurosci. – ident: e_1_2_23_218_1 doi: 10.1016/j.neuron.2012.04.027 – ident: e_1_2_23_119_1 doi: 10.3389/fncel.2016.00111 – ident: e_1_2_23_195_1 doi: 10.1038/8138 – ident: e_1_2_23_19_1 doi: 10.1046/j.1460-9568.2002.02262.x – ident: e_1_2_23_197_1 doi: 10.1093/cercor/bhw252 – ident: e_1_2_23_317_1 doi: 10.1113/jphysiol.2014.271825 – ident: e_1_2_23_43_1 doi: 10.1523/JNEUROSCI.12-09-03591.1992 – ident: e_1_2_23_245_1 doi: 10.1523/JNEUROSCI.4402-07.2008 – ident: e_1_2_23_254_1 doi: 10.1523/JNEUROSCI.22-14-06176.2002 – ident: e_1_2_23_298_1 doi: 10.1523/JNEUROSCI.21-17-06492.2001 – ident: e_1_2_23_76_1 doi: 10.1152/jn.00134.2009 – ident: e_1_2_23_259_1 doi: 10.1002/(SICI)1096-9861(19991101)413:4<603::AID-CNE9>3.0.CO;2-K – ident: e_1_2_23_319_1 doi: 10.1073/pnas.95.11.6486 – ident: e_1_2_23_167_1 doi: 10.1016/j.neuropharm.2015.03.036 – ident: e_1_2_23_301_1 doi: 10.1523/JNEUROSCI.5493-07.2008 – ident: e_1_2_23_229_1 doi: 10.1016/0306-4522(84)90163-5 – ident: e_1_2_23_23_1 doi: 10.1016/j.neuron.2014.04.021 – ident: e_1_2_23_51_1 doi: 10.1016/0006-8993(86)90629-3 – ident: e_1_2_23_211_1 doi: 10.1007/s00429-015-1000-4 – ident: e_1_2_23_210_1 doi: 10.1016/j.bcp.2009.06.004 – ident: e_1_2_23_102_1 doi: 10.1016/j.brainres.2010.05.003 – ident: e_1_2_23_304_1 doi: 10.3389/fnsys.2011.00011 – ident: e_1_2_23_73_1 doi: 10.1016/S0301-0082(99)00030-1 – ident: e_1_2_23_59_1 doi: 10.1016/j.neurol.2012.06.015 – ident: e_1_2_23_33_1 doi: 10.1038/sj.bjp.0703692 – ident: e_1_2_23_95_1 doi: 10.1016/j.clinthera.2008.01.010 – ident: e_1_2_23_127_1 doi: 10.1016/0006-8993(87)90694-9 – volume: 58 start-page: 689 year: 2011 ident: e_1_2_23_269_1 article-title: Snake toxins from mamba venoms: unique tools for the physiologist publication-title: Acta Chim. Slov. – ident: e_1_2_23_68_1 doi: 10.1111/j.1460-9568.1998.00348.x – ident: e_1_2_23_175_1 doi: 10.1016/S0041-0101(99)00196-8 – ident: e_1_2_23_199_1 doi: 10.1146/annurev.neuro.051508.135422 – ident: e_1_2_23_328_1 doi: 10.1073/pnas.1419533112 – ident: e_1_2_23_54_1 doi: 10.1016/j.neuron.2013.04.039 – ident: e_1_2_23_251_1 doi: 10.1002/cne.902380305 – ident: e_1_2_23_342_1 doi: 10.1523/JNEUROSCI.22-20-08785.2002 – ident: e_1_2_23_42_1 doi: 10.1371/journal.pone.0001174 – ident: e_1_2_23_327_1 doi: 10.1016/j.celrep.2014.12.005 – ident: e_1_2_23_283_1 doi: 10.1038/nn1972 – ident: e_1_2_23_242_1 doi: 10.1523/JNEUROSCI.3709-06.2007 – ident: e_1_2_23_272_1 doi: 10.1124/mol.65.6.1526 – ident: e_1_2_23_123_1 doi: 10.1002/mds.26102 – ident: e_1_2_23_340_1 doi: 10.1038/nn769 – ident: e_1_2_23_306_1 doi: 10.1523/JNEUROSCI.4082-10.2011 – volume: 27 start-page: 1164 year: 2017 ident: e_1_2_23_309_1 article-title: Quantitative analyses of the projection of individual neurons from the midline thalamic nuclei to the striosome and matrix compartments of the rat striatum publication-title: Cereb. Cortex – volume: 87 start-page: 802 year: 1962 ident: e_1_2_23_28_1 article-title: The pathogenesis of Parkinson's disease: a new hypothesis publication-title: Can. Med. Assoc. J. – ident: e_1_2_23_314_1 doi: 10.1016/0306-4522(92)90057-9 – ident: e_1_2_23_82_1 doi: 10.1523/JNEUROSCI.23-24-08506.2003 – ident: e_1_2_23_201_1 doi: 10.1113/JP270045 – ident: e_1_2_23_18_1 doi: 10.1523/JNEUROSCI.18-14-05180.1998 – ident: e_1_2_23_295_1 doi: 10.1523/JNEUROSCI.1754-10.2010 – ident: e_1_2_23_7_1 doi: 10.1523/ENEURO.0178-17.2017 – ident: e_1_2_23_332_1 doi: 10.1152/jn.1997.77.2.1003 – ident: e_1_2_23_58_1 doi: 10.3389/fnsys.2013.00050 – ident: e_1_2_23_339_1 doi: 10.1152/jn.00519.2001 – ident: e_1_2_23_128_1 doi: 10.1002/syn.10114 – ident: e_1_2_23_288_1 doi: 10.1093/hmg/ddl252 – ident: e_1_2_23_177_1 doi: 10.1002/cne.1345 – ident: e_1_2_23_267_1 doi: 10.1016/j.neuroscience.2011.08.066 – ident: e_1_2_23_103_1 doi: 10.1016/j.nbd.2013.08.009 – ident: e_1_2_23_226_1 doi: 10.1523/JNEUROSCI.2155-04.2004 – ident: e_1_2_23_40_1 doi: 10.1523/JNEUROSCI.15-12-07821.1995 – ident: e_1_2_23_343_1 doi: 10.1523/JNEUROSCI.0873-16.2016 – ident: e_1_2_23_307_1 doi: 10.1016/j.neuron.2012.09.023 – ident: e_1_2_23_116_1 doi: 10.1146/annurev.neuro.24.1.31 – ident: e_1_2_23_182_1 doi: 10.1523/JNEUROSCI.13-11-04908.1993 – ident: e_1_2_23_274_1 doi: 10.1016/S0006-8993(00)03170-X – ident: e_1_2_23_219_1 doi: 10.1038/nm.3246 – ident: e_1_2_23_268_1 doi: 10.1016/0306-4522(89)90168-1 – ident: e_1_2_23_154_1 doi: 10.2183/pjab.89.226 – ident: e_1_2_23_252_1 doi: 10.1002/1096-9861(20000731)423:3<500::AID-CNE12>3.0.CO;2-9 – ident: e_1_2_23_221_1 doi: 10.1016/j.expneurol.2008.11.001 – ident: e_1_2_23_156_1 doi: 10.1016/j.neuropharm.2014.09.028 – ident: e_1_2_23_21_1 doi: 10.1016/j.tins.2006.12.003 – ident: e_1_2_23_70_1 doi: 10.1111/j.1469-7793.1998.421bk.x – ident: e_1_2_23_155_1 doi: 10.1016/S0028-3908(98)00131-2 – ident: e_1_2_23_100_1 doi: 10.1523/JNEUROSCI.5535-06.2007 – ident: e_1_2_23_260_1 doi: 10.1523/JNEUROSCI.21-18-07247.2001 – ident: e_1_2_23_316_1 doi: 10.1016/j.neuron.2006.04.010 – ident: e_1_2_23_196_1 doi: 10.1523/JNEUROSCI.22-02-00529.2002 – ident: e_1_2_23_198_1 doi: 10.1016/j.neuron.2008.11.005 – ident: e_1_2_23_337_1 doi: 10.1523/JNEUROSCI.22-15-06347.2002 – ident: e_1_2_23_12_1 doi: 10.1093/brain/awq285 |
SSID | ssj0008645 |
Score | 2.5541432 |
SecondaryResourceType | review_article |
Snippet | The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 604 |
SubjectTerms | acetylcholine Acetylcholine receptors (muscarinic) Acetylcholine receptors (nicotinic) cholinergic interneurons Dystonia Ibags Special Issue Innervation Interneurons Movement disorders Neostriatum Neurodegenerative diseases Neurological diseases Neuromodulation Parkinson's disease Special Issue Review Spiny neurons striatum Synaptic plasticity |
Title | Cholinergic modulation of striatal microcircuits |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13949 https://www.ncbi.nlm.nih.gov/pubmed/29797362 https://www.proquest.com/docview/2193929139 https://www.proquest.com/docview/2045269449 https://pubmed.ncbi.nlm.nih.gov/PMC6587740 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH6oF724L3UjioiXlDSZTDJ4ktIigkXEQg9CyEwmWLWpdDnor_e9yaJ1AfEWmJdlljfzvcmb7wM40aqhERc4dpIqZjMdO7ZQvmcL15Gu0Cr1jNbhdYdfdtlVz-_NwXl5Fibnh6g23MgzzHxNDh7L8Scn149ZHeELo8N7lKtFgOj2gzoq5EagmOjU7LDBewWrEGXxVHfOrkXfAOb3PMnP-NUsQO0VuC8_Pc87eapPJ7Ku3r6wOv6zbquwXABT6yIfSWswp7N12LjIMCgfvFqnlkkVNXvw67DYLGXiNsBpPpDujx7hFGoNhkkhB2YNU8tIgiC4twaU9af6IzXtT8ab0G237pqXdiHDYCvf94SNMY1Ope-nSgVJ0EgCLkOGU7wbqwbTGBAJj3TMwkC7HpNMKi_2lAp9BKKc2Pe9LVjIhpneAStMKeBhgodcsIQxyQPpJpoJxhOOwXINzsoOiVTBUU5SGc9RGatgy0SmZWpwXJm-5MQcPxntl70aFb45jnCOJlCIBjU4qoqx1ehXSZzp4RRtHCO9zugR2_kgqN7iikAEuO7XIJgZHpUBMXbPlmT9B8PcjXAP4baD1TS9__uHR62rjrnY_bvpHiwhmhN5gtw-LExGU32AiGkiD2HeZTeHxkHeAX5FEh0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFfSkUCAghLqnSxHFiiUtVgQq0PaBW6gVFteOoBZqiLgf4esbOAmWRELdIniTexn7jTN4DOJOiIhEXWGYYCWIS2bNMJlzHZLbFbSZF5Gitw2aL1jvktut2F-Ay-xcm4YfID9yUZ-j1Wjm4OpD-5OXyMS4jfiFsEZaUorcOqO4_yKN8qiWKFaGa6VdoN-UVUnk8-a3zu9E3iPk9U_IzgtVb0PUaPGSVTzJPnsqzKS-Lty-8jv9t3TqsptjUqCaTaQMWZLwJW9UY4_Lhq3Fu6GxRfQy_Ccu1TCluC6xaX0n_yDGuosZwFKaKYMYoMrQqCOJ7Y6gS_8RgLGaD6WQbOtdX7VrdTJUYTOG6DjMxrJERd91ICC_0KqFHuU9wlbd7okIkxkTMUVJmvidth3DChdNzhPBdxKJUEfA7O1CIR7HcA8OPVMxDGPUpIyEhnHrcDiVhhIYU4-UiXGQjEoiUplypZTwHWbiCPRPoninCaW76knBz_GRUyoY1SN1zEuAyrXAhGhThJC_GXlNfS3qxHM3QxtLq60Q9YjeZBflbbOYxD7f-Inhz8yM3UKTd8yXxoK_JuxHxIeK2sJl6-H-veHB129IX-383PYblervZCBo3rbsDWEFwx5J8uRIUpuOZPEQANeVH2k_eARXMFWE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH64gHpxaV3qGkXES0qaTCYZPEm1aNUiYqEHIXQmE6zatHQ56K_3zWTRuoB4C8xLMtub-d7k5fsADqWoSMQFlhlGgphEti2TCdcxmW1xm0kROVrr8KZBL5qk3nJbU3CS_QuT8EPkB27KM_R6rRy8H0afnFw-xWWEL4RNwyyhlq-m9NndB3eUT7VCseJTM_0KbaW0QiqNJ791cjP6hjC_J0p-BrB6B6otwUNW9yTx5Lk8HvGyePtC6_jPxi3DYopMjdNkKq3AlIwLUDyNMSrvvhpHhs4V1YfwBZivZjpxRbCqj0r4Rw5wDTW6vTDVAzN6kaE1QRDdG12V9ic6AzHujIar0Kyd31cvzFSHwRSu6zATgxoZcdeNhPBCrxJ6lPsE13i7LSpEYkTEHCVk5nvSdggnXDhtRwjfRSRKFf2-swYzcS-WG2D4kYp4CKM-ZSQkhFOP26EkjNCQYrRcguNsQAKRkpQrrYyXIAtWsGcC3TMlOMhN-wkzx09G29moBqlzDgNcpBUqRIMS7OfF2GvqW0k7lr0x2lhae52oR6wnkyB_i8085uHGXwJvYnrkBoqye7Ik7jxq6m7Ee4i3LWymHv3fKx6c1xv6YvPvpnswd3tWC64vG1dbsIDIjiXJctswMxqM5Q6ipxHf1V7yDuZWFBk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholinergic+modulation+of+striatal+microcircuits&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Abudukeyoumu%2C+Nilupaer&rft.au=Hernandez-Flores%2C+Teresa&rft.au=Garcia-Munoz%2C+Marianela&rft.au=Arbuthnott%2C+Gordon+W&rft.date=2019-03-01&rft.eissn=1460-9568&rft.volume=49&rft.issue=5&rft.spage=604&rft_id=info:doi/10.1111%2Fejn.13949&rft_id=info%3Apmid%2F29797362&rft.externalDocID=29797362 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |