Potential pitfalls of CRISPR/Cas9‐mediated genome editing
Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correc...
Saved in:
Published in | The FEBS journal Vol. 283; no. 7; pp. 1218 - 1231 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the ‘curious sequences of unknown biological function’ into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co‐expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off‐target effects and the incidence of homology‐directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012.
Recently, a novel genome editing technique named CRISPR/Cas9 which can be applied in many fields has been rapidly developed. Albeit widely used, this technique has many potential pitfalls, including Cas9 activity, target sites selection and sgRNAs design, delivery methods, off‐target effects, and the incidence of HDR. Solving these problems helps with the utilization of CRISPR/Cas9 system. |
---|---|
AbstractList | Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (
CRISPR
)/
CRISPR
‐associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide
RNA
, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in
DNA
double strands. Over the past 30 years,
CRISPR
has evolved from the ‘curious sequences of unknown biological function’ into a promising genome editing tool. As a result of the incessant development in the
CRISPR
/Cas9 system, Cas9 co‐expressed with custom guide
RNA
s has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although
CRISPR
/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide
RNA
design, delivery methods, off‐target effects and the incidence of homology‐directed repair. In the present review, we highlight the factors that affect the utilization of
CRISPR
/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the
CRISPR
/Cas system from the time of its initial discovery in 2012. Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the 'curious sequences of unknown biological function' into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co-expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off-target effects and the incidence of homology-directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012.Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the 'curious sequences of unknown biological function' into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co-expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off-target effects and the incidence of homology-directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012. Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the ‘curious sequences of unknown biological function’ into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co‐expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off‐target effects and the incidence of homology‐directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012. Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the ‘curious sequences of unknown biological function’ into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co‐expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off‐target effects and the incidence of homology‐directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012. Recently, a novel genome editing technique named CRISPR/Cas9 which can be applied in many fields has been rapidly developed. Albeit widely used, this technique has many potential pitfalls, including Cas9 activity, target sites selection and sgRNAs design, delivery methods, off‐target effects, and the incidence of HDR. Solving these problems helps with the utilization of CRISPR/Cas9 system. Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the 'curious sequences of unknown biological function' into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co-expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off-target effects and the incidence of homology-directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012. Recently, a novel genome editing technique named CRISPR/Cas9 which can be applied in many fields has been rapidly developed. Albeit widely used, this technique has many potential pitfalls, including Cas9 activity, target sites selection and sgRNAs design, delivery methods, off-target effects, and the incidence of HDR. Solving these problems helps with the utilization of CRISPR/Cas9 system. |
Author | Peng, Rongxue Lin, Guigao Li, Jinming |
Author_xml | – sequence: 1 givenname: Rongxue surname: Peng fullname: Peng, Rongxue organization: Chinese Academy of Medical Sciences – sequence: 2 givenname: Guigao surname: Lin fullname: Lin, Guigao organization: Beijing Hospital – sequence: 3 givenname: Jinming surname: Li fullname: Li, Jinming organization: Beijing Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26535798$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctKAzEYhYNU1KobH0AG3IjQmkyugyst3kCweAF3IclkJDKd1EmKdOcj-Iw-iamjLkTUEMgf8p0DOacPeo1vLABbCA5RWvuV1WGIMBVsCawhTvIBYVT0vmZytwr6ITxAiCkpihWwmjOKKS_EGjgY-2ib6FSdTV2sVF2HzFfZ6Or8eny1P1KheH1-mdjSqWjL7N42fmKzdI2uud8Ay0kQ7ObHuQ5uT45vRmeDi8vT89HhxcBQitnAIE0g54YbIVBeaW5KwRShhGFqqvRAtNaWCaRLLEpYaqgtrAwUecVZWSq8DnY732nrH2c2RDlxwdi6Vo31syCRyCnJRY7RP1CYImAFp3-jPAUkkiBP6M439MHP2ib9WaICsrQRF79SyYtBigVM1PYHNdMpVzlt3US1c_lZSQJgB5jWh9DaShoXVXS-ia1ytURQLlqXi9ble-tJsvdN8un6I4w6-MnVdv4LKU-Oj647zRsj_Lof |
CitedBy_id | crossref_primary_10_3390_medicina57030225 crossref_primary_10_1089_ast_2019_2061 crossref_primary_10_1016_j_bcab_2025_103553 crossref_primary_10_3390_su141912285 crossref_primary_10_34133_2022_9810237 crossref_primary_10_1016_j_jconrel_2022_08_042 crossref_primary_10_1186_s13059_022_02779_8 crossref_primary_10_1016_j_omtn_2017_06_006 crossref_primary_10_1021_acs_biochem_0c00766 crossref_primary_10_1111_bjh_14297 crossref_primary_10_1186_s12951_022_01717_x crossref_primary_10_1016_j_nrleng_2017_08_006 crossref_primary_10_1007_s13369_022_07266_7 crossref_primary_10_1016_j_micres_2021_126784 crossref_primary_10_1016_j_ymthe_2020_09_028 crossref_primary_10_1134_S1990750818040078 crossref_primary_10_3389_fmolb_2021_772788 crossref_primary_10_3390_v11010028 crossref_primary_10_1038_s41434_020_0166_4 crossref_primary_10_56735_saltjsrh_ms2101020512 crossref_primary_10_14336_AD_2019_0927 crossref_primary_10_1017_S001667231600001X crossref_primary_10_1016_j_mattod_2018_12_003 crossref_primary_10_3389_fonc_2022_845636 crossref_primary_10_3390_v10010050 crossref_primary_10_1007_s11248_017_0008_3 crossref_primary_10_1002_ppp3_10107 crossref_primary_10_1146_annurev_biochem_060815_014607 crossref_primary_10_1371_journal_pone_0226107 crossref_primary_10_1155_2018_9601623 crossref_primary_10_33581_2957_5060_2022_2_19_26 crossref_primary_10_1111_pbi_12987 crossref_primary_10_1186_s40478_017_0468_y crossref_primary_10_1038_s41559_017_0411_4 crossref_primary_10_1007_s11948_021_00320_x crossref_primary_10_1016_j_jviromet_2018_06_004 crossref_primary_10_1093_bioinformatics_bty558 crossref_primary_10_1186_s12870_018_1496_x crossref_primary_10_1093_bfgp_elz042 crossref_primary_10_1016_j_biotechadv_2018_01_006 crossref_primary_10_1089_scd_2018_0121 crossref_primary_10_1038_s41467_019_08329_4 crossref_primary_10_1186_s41038_017_0103_y crossref_primary_10_1016_j_cois_2019_12_003 crossref_primary_10_1002_wrna_1731 crossref_primary_10_1038_s41581_018_0047_x crossref_primary_10_1111_febs_13777 crossref_primary_10_1186_s12929_023_00943_1 crossref_primary_10_1186_s12896_017_0360_7 crossref_primary_10_4014_jmb_2305_05010 crossref_primary_10_1089_nat_2018_0758 crossref_primary_10_1186_s13036_018_0127_2 crossref_primary_10_1007_s40291_018_0377_1 crossref_primary_10_1016_j_omtn_2023_102032 crossref_primary_10_1038_s41417_024_00771_x crossref_primary_10_1021_acs_biomac_0c00211 crossref_primary_10_1093_bioinformatics_bty748 crossref_primary_10_1007_s00018_021_03850_6 crossref_primary_10_1021_acssynbio_8b00273 crossref_primary_10_1126_sciadv_aax2941 crossref_primary_10_1007_s12033_020_00265_9 crossref_primary_10_1186_s13028_018_0414_4 crossref_primary_10_18097_PBMC20186404303 crossref_primary_10_12974_2311_8741_2023_11_05 crossref_primary_10_1002_jha2_323 crossref_primary_10_1007_s40135_017_0144_1 crossref_primary_10_1089_crispr_2021_0128 crossref_primary_10_1007_s12298_017_0502_3 crossref_primary_10_1016_j_heliyon_2021_e06860 crossref_primary_10_1038_s41598_018_36740_2 crossref_primary_10_3390_cancers13153783 crossref_primary_10_1016_j_arr_2023_102114 crossref_primary_10_1080_15476286_2018_1495492 crossref_primary_10_1093_nar_gkac255 crossref_primary_10_1007_s40259_021_00473_y crossref_primary_10_1007_s10529_016_2195_z crossref_primary_10_2144_btn_2022_0015 crossref_primary_10_5897_AJB2021_17344 crossref_primary_10_1093_jxb_erab093 crossref_primary_10_29296_24999490_2024_06_04 crossref_primary_10_5511_plantbiotechnology_21_0407a crossref_primary_10_1038_cddiscovery_2016_64 crossref_primary_10_1371_journal_pone_0213376 crossref_primary_10_1007_s11033_023_08239_1 crossref_primary_10_1016_j_csbj_2016_12_006 crossref_primary_10_3390_cells10050969 crossref_primary_10_1038_s41598_018_32702_w crossref_primary_10_1016_j_nrl_2017_08_009 crossref_primary_10_1016_j_drudis_2018_01_014 crossref_primary_10_3389_fpls_2024_1369416 crossref_primary_10_1093_ilar_ilx027 crossref_primary_10_1111_febs_14328 crossref_primary_10_3390_ijms23084430 crossref_primary_10_1038_srep42244 crossref_primary_10_1002_bit_27016 crossref_primary_10_1016_j_envres_2022_114199 crossref_primary_10_1038_s41598_023_28732_8 crossref_primary_10_1186_s13068_017_0957_z crossref_primary_10_1093_bib_bbz109 crossref_primary_10_2144_btn_2019_0107 crossref_primary_10_2903_sp_efsa_2020_EN_1972 crossref_primary_10_1007_s10142_017_0572_x crossref_primary_10_1007_s13311_020_00838_1 crossref_primary_10_1038_s41467_019_12891_2 crossref_primary_10_1094_PHYTO_12_17_0426_RVW crossref_primary_10_1016_j_plipres_2020_101052 crossref_primary_10_3390_horticulturae9080884 crossref_primary_10_1186_s12943_021_01487_4 crossref_primary_10_1007_s11033_023_08986_1 crossref_primary_10_1053_j_gastro_2019_11_279 crossref_primary_10_3390_biomedicines6020045 crossref_primary_10_3390_ijms20092056 crossref_primary_10_1016_j_omtn_2022_03_003 crossref_primary_10_30901_2658_6266_2020_1_o2 crossref_primary_10_1007_s42994_019_00014_w crossref_primary_10_1051_myolog_201613015 crossref_primary_10_1186_s12967_024_05570_4 crossref_primary_10_1007_s11103_018_0749_2 crossref_primary_10_1039_C6OB01043A crossref_primary_10_1186_s13287_023_03327_2 crossref_primary_10_3389_fimmu_2020_01128 crossref_primary_10_1007_s11248_020_00232_9 crossref_primary_10_3389_fpls_2022_997888 crossref_primary_10_1186_s13229_018_0222_8 crossref_primary_10_1007_s11033_022_07147_0 crossref_primary_10_1016_j_jid_2016_06_007 crossref_primary_10_1002_dvg_23598 crossref_primary_10_1016_j_semcdb_2019_04_018 crossref_primary_10_1016_j_tplants_2021_06_015 crossref_primary_10_3390_plants7030051 crossref_primary_10_1007_s10495_022_01731_2 crossref_primary_10_3389_fbioe_2021_775309 crossref_primary_10_3389_fpls_2016_01813 crossref_primary_10_1186_s12867_018_0105_8 crossref_primary_10_3390_cells9071744 crossref_primary_10_3390_ijms20235926 crossref_primary_10_1017_pls_2018_21 crossref_primary_10_1002_btpr_3104 crossref_primary_10_2323_jgam_2018_06_001 crossref_primary_10_1016_j_jmoldx_2017_06_003 crossref_primary_10_1007_s11676_017_0588_z crossref_primary_10_1016_j_npep_2016_11_003 crossref_primary_10_1128_AEM_01453_16 crossref_primary_10_3389_fimmu_2019_00456 crossref_primary_10_3389_fpls_2018_00424 crossref_primary_10_1074_jbc_M116_754887 crossref_primary_10_1007_s12291_018_0804_4 crossref_primary_10_3389_fbioe_2018_00176 crossref_primary_10_1007_s12038_018_9761_6 crossref_primary_10_1039_c6ib00140h crossref_primary_10_1155_2018_5056279 crossref_primary_10_1111_bjh_17904 crossref_primary_10_1093_synbio_ysaa014 crossref_primary_10_1016_j_jmb_2018_05_044 crossref_primary_10_31083_j_fbl2708241 crossref_primary_10_1002_iub_2004 crossref_primary_10_1016_j_copbio_2018_08_007 crossref_primary_10_1111_febs_14527 crossref_primary_10_1186_s12711_018_0389_7 crossref_primary_10_1038_nrg_2016_118 crossref_primary_10_1111_febs_14365 crossref_primary_10_1186_s13036_021_00270_9 crossref_primary_10_1016_j_ijbiomac_2025_141142 crossref_primary_10_3389_fmolb_2023_1214489 crossref_primary_10_1152_ajpgi_00049_2017 |
Cites_doi | 10.1126/science.1159689 10.1038/nbt.2800 10.1038/nbt.3081 10.1038/nmeth.3543 10.1016/S1074-7613(01)00144-3 10.1099/mic.0.28048-0 10.1126/science.1225829 10.1038/nbt.3127 10.4161/rna.24321 10.1126/science.2660260 10.1128/jb.169.12.5429-5433.1987 10.1126/science.1247997 10.1093/nar/gku410 10.1038/nbt.2884 10.1093/bioinformatics/btu743 10.1046/j.1365-2958.2002.02839.x 10.1038/nbt.2647 10.1038/nbt.2508 10.1038/nbt.3190 10.1002/anie.201506030 10.1038/nbt.2909 10.1038/nbt.3198 10.1038/nbt.3117 10.1016/j.cell.2015.06.059 10.1038/srep09592 10.1038/nmeth.2030 10.1186/s13073-015-0215-6 10.1111/febs.13110 10.7554/eLife.04766 10.1007/s13238-015-0153-5 10.1126/science.1232033 10.1073/pnas.1313587110 10.1038/srep11221 10.1016/j.cell.2012.11.054 10.1093/bioinformatics/btu048 10.1128/JCM.41.1.15-26.2003 10.1016/j.stem.2015.01.003 10.1038/nature14592 10.1056/NEJMoa1502214 10.1101/gr.163394.113 10.1038/nbt.3026 10.1038/nmeth.3075 10.1111/febs.13416 10.1101/gr.191452.115 10.1038/nbt.2808 10.1371/journal.pone.0119372 10.1007/s00239-004-0046-3 10.7554/eLife.00471 10.1126/science.1231143 10.1038/nbt.2673 10.1093/nar/gkm349 10.1038/nrmicro2577 10.1038/nbt.2623 10.1038/nbt.2908 10.1126/science.1138140 10.1093/nar/gku402 10.1038/nature14299 10.1126/science.1178817 10.1093/bioinformatics/btv423 10.1038/nbt.3055 10.1038/cr.2013.46 10.1038/nmeth.3284 10.1261/rna.051631.115 10.1186/s12977-015-0150-z 10.1093/genetics/161.3.1169 10.1093/femsyr/fov004 10.1038/nmeth.3580 10.1038/nmeth.3473 10.1073/pnas.1502370112 10.1126/science.1192272 10.1002/yea.1478 10.1126/science.1246981 10.1038/nature13011 10.1101/gr.171322.113 10.1073/pnas.1515692112 10.1038/nmeth.2812 10.1101/gr.171264.113 10.1038/nmeth.2857 10.1038/nature10402 |
ContentType | Journal Article |
Copyright | 2015 FEBS 2015 FEBS. Copyright © 2016 Federation of European Biochemical Societies |
Copyright_xml | – notice: 2015 FEBS – notice: 2015 FEBS. – notice: Copyright © 2016 Federation of European Biochemical Societies |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/febs.13586 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA Virology and AIDS Abstracts MEDLINE Virology and AIDS Abstracts Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1742-4658 |
EndPage | 1231 |
ExternalDocumentID | 4015451701 26535798 10_1111_febs_13586 FEBS13586 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Beijing Municipal Public Health Bureau funderid: 2011‐4011‐02 – fundername: National Population and Family Planning Commission of the People's Republic of China funderid: 201402018 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HH5 HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OK1 OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBFHL WBKPD WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 Y6R ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5536-c1b4077c7c8812fb7cd86a454635cf77c4bbbe681bd38d0db0be0fc082f76dda3 |
IEDL.DBID | DR2 |
ISSN | 1742-464X 1742-4658 |
IngestDate | Fri Jul 11 18:31:02 EDT 2025 Fri Jul 11 16:24:48 EDT 2025 Fri Jul 11 08:07:34 EDT 2025 Fri Jul 25 19:47:56 EDT 2025 Fri Jul 25 19:42:55 EDT 2025 Mon Jul 21 05:33:48 EDT 2025 Tue Jul 01 03:06:44 EDT 2025 Thu Apr 24 23:10:49 EDT 2025 Wed Jan 22 16:27:57 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | target specificity genome editing potential pitfalls sgRNA gene targeting DNA cleavage Cas9 CRISPR/Cas systems |
Language | English |
License | 2015 FEBS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5536-c1b4077c7c8812fb7cd86a454635cf77c4bbbe681bd38d0db0be0fc082f76dda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://febs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.13586 |
PMID | 26535798 |
PQID | 1779605380 |
PQPubID | 28478 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1825428231 proquest_miscellaneous_1805496975 proquest_miscellaneous_1779881802 proquest_journals_1906906178 proquest_journals_1779605380 pubmed_primary_26535798 crossref_citationtrail_10_1111_febs_13586 crossref_primary_10_1111_febs_13586 wiley_primary_10_1111_febs_13586_FEBS13586 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2016 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The FEBS journal |
PublicationTitleAlternate | FEBS J |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2011; 477 2013; 2 2013; 23 2015; 31 2015; 33 2014; 24 2005; 60 1979; 76 2007; 35 2014; 3 2013; 10 2002; 43 2015; 373 2013; 110 2014; 281 2003; 41 2012; 337 2001; 14 2014; 11 2009; 326 2015; 162 2015; 12 2015; 15 2015; 282 2015; 6 2005; 151 2015; 5 2015; 16 2010; 329 2015; 523 1987; 169 2015; 520 2015; 54 2015; 10 2008; 321 2015; 7 2011; 9 2014; 42 2012; 151 2015; 25 2014; 507 2002; 161 2007; 315 1989; 244 2013; 339 2015; 112 2013; 31 2015; 21 2014; 30 2014; 32 2014; 343 2012; 9 e_1_2_14_73_1 e_1_2_14_75_1 e_1_2_14_31_1 e_1_2_14_52_1 e_1_2_14_50_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_35_1 e_1_2_14_56_1 e_1_2_14_12_1 e_1_2_14_33_1 e_1_2_14_54_1 e_1_2_14_14_1 e_1_2_14_39_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_37_1 e_1_2_14_58_1 e_1_2_14_79_1 e_1_2_14_6_1 e_1_2_14_8_1 e_1_2_14_60_1 e_1_2_14_2_1 e_1_2_14_41_1 e_1_2_14_20_1 e_1_2_14_4_1 e_1_2_14_62_1 e_1_2_14_81_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_24_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_22_1 e_1_2_14_28_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_47_1 e_1_2_14_19_1 e_1_2_14_72_1 e_1_2_14_74_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_55_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_78_1 e_1_2_14_29_1 Tomkinson AE (e_1_2_14_64_1) 2013; 2 e_1_2_14_5_1 e_1_2_14_7_1 e_1_2_14_9_1 e_1_2_14_42_1 e_1_2_14_63_1 e_1_2_14_80_1 e_1_2_14_3_1 e_1_2_14_40_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_69_1 e_1_2_14_18_1 |
References_xml | – volume: 32 start-page: 267 year: 2014 end-page: 273 article-title: Genome‐wide recessive genetic screening in mammalian cells with a lentiviral CRISPR‐guide RNA library publication-title: Nat Biotechnol – volume: 7 start-page: 93 year: 2015 article-title: Pharmacological inhibition of DNA‐PK stimulates Cas9‐mediated genome editing publication-title: Genome Med – volume: 76 start-page: 4951 year: 1979 end-page: 4955 article-title: Replacement of chromosome segments with altered DNA sequences constructed in vitro publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 399 year: 2014 end-page: 402 article-title: Efficient genome modification by CRISPR‐Cas9 nickase with minimal off‐target effects publication-title: Nat Methods – volume: 151 start-page: 1474 year: 2012 end-page: 1487 article-title: An inhibitor of nonhomologous end‐joining abrogates double‐strand break repair and impedes cancer progression publication-title: Cell – volume: 24 start-page: 125 year: 2014 end-page: 131 article-title: Highly efficient gene knockout in mice and zebrafish with RNA‐guided endonucleases publication-title: Genome Res – volume: 321 start-page: 960 year: 2008 end-page: 964 article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes publication-title: Science – volume: 162 start-page: 675 year: 2015 end-page: 686 article-title: A Genome‐wide CRISPR screen in primary immune cells to dissect regulatory networks publication-title: Cell – volume: 31 start-page: 827 year: 2013 end-page: 832 article-title: DNA targeting specificity of RNA‐guided Cas9 nucleases publication-title: Nat Biotechnol – volume: 12 start-page: 237 year: 2015 end-page: 243 article-title: Digenome‐seq: genome‐wide profiling of CRISPR‐Cas9 off‐target effects in human cells publication-title: Nat Methods – volume: 112 start-page: 11870 year: 2015 end-page: 11875 article-title: CASFISH: CRISPR/Cas9‐mediated in situ labeling of genomic loci in fixed cells publication-title: Proc Natl Acad Sci USA – volume: 520 start-page: 186 year: 2015 end-page: 191 article-title: In vivo genome editing using Cas9 publication-title: Nature – volume: 523 start-page: 481 year: 2015 end-page: 485 article-title: Engineered CRISPR‐Cas9 nucleases with altered PAM specificities publication-title: Nature – volume: 161 start-page: 1169 year: 2002 end-page: 1175 article-title: Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc‐finger nucleases publication-title: Genetics – volume: 30 start-page: 1473 year: 2014 end-page: 1475 article-title: Cas‐OFFinder: a fast and versatile algorithm that searches for potential off‐target sites of Cas9 RNA‐guided endonucleases publication-title: Bioinformatics – volume: 31 start-page: 3676 year: 2015 end-page: 3678 article-title: CRISPR‐ERA: a comprehensive design tool for CRISPR‐mediated gene editing, repression and activation publication-title: Bioinformatics – volume: 15 year: 2015 article-title: CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae publication-title: FEMS Yeast Res – volume: 23 start-page: 720 year: 2013 end-page: 723 article-title: Generation of gene‐modified mice via Cas9/RNA‐mediated gene targeting publication-title: Cell Res – volume: 12 start-page: 823 year: 2015 end-page: 826 article-title: Unraveling CRISPR‐Cas9 genome engineering parameters via a library‐on‐library approach publication-title: Nat Methods – volume: 337 start-page: 816 year: 2012 end-page: 821 article-title: A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 11 start-page: 122 year: 2014 end-page: 123 article-title: E‐CRISP: fast CRISPR target site identification publication-title: Nat Methods – volume: 12 start-page: 982 year: 2015 end-page: 988 article-title: CRISPRscan: designing highly efficient sgRNAs for CRISPR‐Cas9 targeting in vivo publication-title: Nat Methods – volume: 33 start-page: 543 year: 2015 end-page: 548 article-title: Increasing the efficiency of homology‐directed repair for CRISPR‐Cas9‐induced precise gene editing in mammalian cells publication-title: Nat Biotechnol – volume: 25 start-page: 1147 year: 2015 end-page: 1157 article-title: Sequence determinants of improved CRISPR sgRNA design publication-title: Genome Res – volume: 33 start-page: 73 year: 2015 end-page: 80 article-title: Cationic lipid‐mediated delivery of proteins enables efficient protein‐based genome editing in vitro and in vivo publication-title: Nat Biotechnol – volume: 60 start-page: 174 year: 2005 end-page: 182 article-title: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements publication-title: J Mol Evol – volume: 33 start-page: 187 year: 2015 end-page: 197 article-title: GUIDE‐seq enables genome‐wide profiling of off‐target cleavage by CRISPR‐Cas nucleases publication-title: Nat Biotechnol – volume: 3 start-page: e04766 year: 2014 article-title: Enhanced homology‐directed human genome engineering by controlled timing of CRISPR/Cas9 delivery publication-title: eLife – volume: 329 start-page: 1355 year: 2010 end-page: 1358 article-title: Sequence‐ and structure‐specific RNA processing by a CRISPR endonuclease publication-title: Science – volume: 339 start-page: 819 year: 2013 end-page: 823 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science – volume: 10 start-page: e0119372 year: 2015 article-title: CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences publication-title: PLoS One – volume: 32 start-page: 1262 year: 2014 end-page: 1267 article-title: Rational design of highly active sgRNAs for CRISPR‐Cas9‐mediated gene inactivation publication-title: Nat Biotechnol – volume: 31 start-page: 233 year: 2013 end-page: 239 article-title: RNA‐guided editing of bacterial genomes using CRISPR‐Cas systems publication-title: Nat Biotechnol – volume: 315 start-page: 1709 year: 2007 end-page: 1712 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science – volume: 32 start-page: 577 year: 2014 end-page: 582 article-title: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification publication-title: Nat Biotechnol – volume: 16 start-page: 142 year: 2015 end-page: 147 article-title: Small molecules enhance CRISPR genome editing in pluripotent stem cells publication-title: Cell Stem Cell – volume: 32 start-page: 279 year: 2014 end-page: 284 article-title: Improving CRISPR‐Cas nuclease specificity using truncated guide RNAs publication-title: Nat Biotechnol – volume: 343 start-page: 80 year: 2014 end-page: 84 article-title: Genetic screens in human cells using the CRISPR‐Cas9 system publication-title: Science – volume: 54 start-page: 12029 year: 2015 end-page: 12033 article-title: Self‐Assembled DNA nanoclews for the efficient delivery of CRISPR‐Cas9 for genome editing publication-title: Angew Chem – volume: 14 start-page: 499 year: 2001 end-page: 502 article-title: Toll meets bacterial CpG‐DNA publication-title: Immunity – volume: 169 start-page: 5429 year: 1987 end-page: 5433 article-title: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in , and identification of the gene product publication-title: J Bacteriol – volume: 31 start-page: 822 year: 2013 end-page: 826 article-title: High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells publication-title: Nat Biotechnol – volume: 33 start-page: 175 year: 2015 end-page: 178 article-title: Unbiased detection of off‐target cleavage by CRISPR‐Cas9 and TALENs using integrase‐defective lentiviral vectors publication-title: Nat Biotechnol – volume: 41 start-page: 15 year: 2003 end-page: 26 article-title: Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination publication-title: J Clin Microbiol – volume: 5 start-page: 11221 year: 2015 article-title: Generation of mutant mice via the CRISPR/Cas9 system using FokI‐dCas9 publication-title: Sci Rep – volume: 244 start-page: 1288 year: 1989 end-page: 1292 article-title: Altering the genome by homologous recombination publication-title: Science – volume: 31 start-page: 1120 year: 2015 end-page: 1123 article-title: CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off‐target sites publication-title: Bioinformatics – volume: 2 start-page: e00471 year: 2013 article-title: RNA‐programmed genome editing in human cells publication-title: eLife – volume: 151 start-page: 2551 year: 2005 end-page: 2561 article-title: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin publication-title: Microbiology – volume: 42 start-page: 7473 year: 2014 end-page: 7485 article-title: CRISPR/Cas9 systems have off‐target activity with insertions or deletions between target DNA and guide RNA sequences publication-title: Nucleic Acids Res – volume: 282 start-page: 4289 year: 2015 end-page: 4294 article-title: Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing publication-title: FEBS J – volume: 32 start-page: 569 year: 2014 end-page: 576 article-title: Dimeric CRISPR RNA‐guided FokI nucleases for highly specific genome editing publication-title: Nat Biotechnol – volume: 33 start-page: 538 year: 2015 end-page: 542 article-title: Increasing the efficiency of precise genome editing with CRISPR‐Cas9 by inhibition of nonhomologous end joining publication-title: Nat Biotechnol – volume: 10 start-page: 726 year: 2013 end-page: 737 article-title: The tracrRNA and Cas9 families of type II CRISPR‐Cas immunity systems publication-title: RNA Biol – volume: 5 start-page: 9592 year: 2015 article-title: CRISPR/Cas9‐mediated endogenous protein tagging for RESOLFT super‐resolution microscopy of living human cells publication-title: Sci Rep – volume: 281 start-page: 5186 year: 2014 end-page: 5193 article-title: Genome modification by CRISPR/Cas9 publication-title: FEBS J – volume: 2 year: 2013 article-title: DNA ligases as therapeutic targets publication-title: Transl Cancer Res – volume: 11 start-page: 1051 year: 2014 end-page: 1057 article-title: Adenoviral vector DNA for accurate genome editing with engineered nucleases publication-title: Nat Methods – volume: 21 start-page: 1683 year: 2015 end-page: 1689 article-title: Expression of CRISPR/Cas single guide RNAs using small tRNA promoters publication-title: RNA – volume: 6 start-page: 363 year: 2015 end-page: 372 article-title: CRISPR/Cas9‐mediated gene editing in human tripronuclear zygotes publication-title: Protein & Cell – volume: 12 start-page: 22 year: 2015 article-title: The CRISPR/Cas9 system inactivates latent HIV‐1 proviral DNA publication-title: Retrovirology – volume: 9 start-page: 805 year: 2012 end-page: 807 article-title: Targeted gene knockout by direct delivery of zinc‐finger nuclease proteins publication-title: Nat Methods – volume: 326 start-page: 1501 year: 2009 article-title: A simple cipher governs DNA recognition by TAL effectors publication-title: Science – volume: 32 start-page: 551 year: 2014 end-page: 553 article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype publication-title: Nat Biotechnol – volume: 24 start-page: 1012 year: 2014 end-page: 1019 article-title: Highly efficient RNA‐guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins publication-title: Genome Res – volume: 33 start-page: 102 year: 2015 end-page: 106 article-title: In vivo interrogation of gene function in the mammalian brain using CRISPR‐Cas9 publication-title: Nat Biotechnol – volume: 110 start-page: 15644 year: 2013 end-page: 15649 article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 839 year: 2013 end-page: 843 article-title: High‐throughput profiling of off‐target DNA cleavage reveals RNA‐programmed Cas9 nuclease specificity publication-title: Nat Biotechnol – volume: 112 start-page: 4038 year: 2015 end-page: 4043 article-title: Silencing of end‐joining repair for efficient site‐specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti publication-title: Proc Natl Acad Sci USA – volume: 477 start-page: 486 year: 2011 end-page: 489 article-title: Structures of the RNA‐guided surveillance complex from a bacterial immune system publication-title: Nature – volume: 24 start-page: 1020 year: 2014 end-page: 1027 article-title: Gene disruption by cell‐penetrating peptide‐mediated delivery of Cas9 protein and guide RNA publication-title: Genome Res – volume: 507 start-page: 62 year: 2014 end-page: 67 article-title: DNA interrogation by the CRISPR RNA‐guided endonuclease Cas9 publication-title: Nature – volume: 9 start-page: 467 year: 2011 end-page: 477 article-title: Evolution and classification of the CRISPR‐Cas systems publication-title: Nat Rev Microbiol – volume: 43 start-page: 1565 year: 2002 end-page: 1575 article-title: Identification of genes that are associated with DNA repeats in prokaryotes publication-title: Mol Microbiol – volume: 339 start-page: 823 year: 2013 end-page: 826 article-title: RNA‐guided human genome engineering via Cas9 publication-title: Science – volume: 12 start-page: 1051 year: 2015 end-page: 1054 article-title: Cas9 gRNA engineering for genome editing, activation and repression publication-title: Nat Methods – volume: 373 start-page: 895 year: 2015 end-page: 907 article-title: FTO obesity variant circuitry and adipocyte browning in humans publication-title: N Engl J Med – volume: 343 start-page: 1247997 year: 2014 article-title: Structures of Cas9 endonucleases reveal RNA‐mediated conformational activation publication-title: Science – volume: 35 start-page: W599 year: 2007 end-page: W605 article-title: Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool publication-title: Nucleic Acids Res – volume: 42 start-page: W401 year: 2014 end-page: W407 article-title: CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing publication-title: Nucleic Acids Res – ident: e_1_2_14_12_1 doi: 10.1126/science.1159689 – ident: e_1_2_14_51_1 doi: 10.1038/nbt.2800 – ident: e_1_2_14_46_1 doi: 10.1038/nbt.3081 – ident: e_1_2_14_40_1 doi: 10.1038/nmeth.3543 – ident: e_1_2_14_43_1 doi: 10.1016/S1074-7613(01)00144-3 – ident: e_1_2_14_10_1 doi: 10.1099/mic.0.28048-0 – ident: e_1_2_14_16_1 doi: 10.1126/science.1225829 – ident: e_1_2_14_49_1 doi: 10.1038/nbt.3127 – ident: e_1_2_14_17_1 doi: 10.4161/rna.24321 – ident: e_1_2_14_3_1 doi: 10.1126/science.2660260 – ident: e_1_2_14_6_1 doi: 10.1128/jb.169.12.5429-5433.1987 – ident: e_1_2_14_27_1 doi: 10.1126/science.1247997 – ident: e_1_2_14_78_1 doi: 10.1093/nar/gku410 – ident: e_1_2_14_20_1 doi: 10.1038/nbt.2884 – ident: e_1_2_14_76_1 doi: 10.1093/bioinformatics/btu743 – ident: e_1_2_14_8_1 doi: 10.1046/j.1365-2958.2002.02839.x – ident: e_1_2_14_28_1 doi: 10.1038/nbt.2647 – ident: e_1_2_14_55_1 doi: 10.1038/nbt.2508 – ident: e_1_2_14_66_1 doi: 10.1038/nbt.3190 – ident: e_1_2_14_47_1 doi: 10.1002/anie.201506030 – ident: e_1_2_14_62_1 doi: 10.1038/nbt.2909 – ident: e_1_2_14_21_1 doi: 10.1038/nbt.3198 – ident: e_1_2_14_57_1 doi: 10.1038/nbt.3117 – volume: 2 year: 2013 ident: e_1_2_14_64_1 article-title: DNA ligases as therapeutic targets publication-title: Transl Cancer Res – ident: e_1_2_14_73_1 doi: 10.1016/j.cell.2015.06.059 – ident: e_1_2_14_24_1 doi: 10.1038/srep09592 – ident: e_1_2_14_44_1 doi: 10.1038/nmeth.2030 – ident: e_1_2_14_65_1 doi: 10.1186/s13073-015-0215-6 – ident: e_1_2_14_54_1 doi: 10.1111/febs.13110 – ident: e_1_2_14_42_1 doi: 10.7554/eLife.04766 – ident: e_1_2_14_74_1 doi: 10.1007/s13238-015-0153-5 – ident: e_1_2_14_22_1 doi: 10.1126/science.1232033 – ident: e_1_2_14_34_1 doi: 10.1073/pnas.1313587110 – ident: e_1_2_14_61_1 doi: 10.1038/srep11221 – ident: e_1_2_14_70_1 doi: 10.1016/j.cell.2012.11.054 – ident: e_1_2_14_77_1 doi: 10.1093/bioinformatics/btu048 – ident: e_1_2_14_9_1 doi: 10.1128/JCM.41.1.15-26.2003 – ident: e_1_2_14_68_1 doi: 10.1016/j.stem.2015.01.003 – ident: e_1_2_14_35_1 doi: 10.1038/nature14592 – ident: e_1_2_14_72_1 doi: 10.1056/NEJMoa1502214 – ident: e_1_2_14_48_1 doi: 10.1101/gr.163394.113 – ident: e_1_2_14_41_1 doi: 10.1038/nbt.3026 – ident: e_1_2_14_50_1 doi: 10.1038/nmeth.3075 – ident: e_1_2_14_69_1 doi: 10.1111/febs.13416 – ident: e_1_2_14_39_1 doi: 10.1101/gr.191452.115 – ident: e_1_2_14_60_1 doi: 10.1038/nbt.2808 – ident: e_1_2_14_80_1 doi: 10.1371/journal.pone.0119372 – ident: e_1_2_14_7_1 doi: 10.1007/s00239-004-0046-3 – ident: e_1_2_14_30_1 doi: 10.7554/eLife.00471 – ident: e_1_2_14_23_1 doi: 10.1126/science.1231143 – ident: e_1_2_14_53_1 doi: 10.1038/nbt.2673 – ident: e_1_2_14_75_1 doi: 10.1093/nar/gkm349 – ident: e_1_2_14_14_1 doi: 10.1038/nrmicro2577 – ident: e_1_2_14_31_1 doi: 10.1038/nbt.2623 – ident: e_1_2_14_63_1 doi: 10.1038/nbt.2908 – ident: e_1_2_14_11_1 doi: 10.1126/science.1138140 – ident: e_1_2_14_56_1 doi: 10.1093/nar/gku402 – ident: e_1_2_14_36_1 doi: 10.1038/nature14299 – ident: e_1_2_14_5_1 doi: 10.1126/science.1178817 – ident: e_1_2_14_81_1 doi: 10.1093/bioinformatics/btv423 – ident: e_1_2_14_19_1 doi: 10.1038/nbt.3055 – ident: e_1_2_14_33_1 doi: 10.1038/cr.2013.46 – ident: e_1_2_14_58_1 doi: 10.1038/nmeth.3284 – ident: e_1_2_14_52_1 doi: 10.1261/rna.051631.115 – ident: e_1_2_14_25_1 doi: 10.1186/s12977-015-0150-z – ident: e_1_2_14_4_1 doi: 10.1093/genetics/161.3.1169 – ident: e_1_2_14_26_1 doi: 10.1093/femsyr/fov004 – ident: e_1_2_14_29_1 doi: 10.1038/nmeth.3580 – ident: e_1_2_14_37_1 doi: 10.1038/nmeth.3473 – ident: e_1_2_14_67_1 doi: 10.1073/pnas.1502370112 – ident: e_1_2_14_13_1 doi: 10.1126/science.1192272 – ident: e_1_2_14_2_1 doi: 10.1002/yea.1478 – ident: e_1_2_14_38_1 doi: 10.1126/science.1246981 – ident: e_1_2_14_18_1 doi: 10.1038/nature13011 – ident: e_1_2_14_32_1 doi: 10.1101/gr.171322.113 – ident: e_1_2_14_71_1 doi: 10.1073/pnas.1515692112 – ident: e_1_2_14_79_1 doi: 10.1038/nmeth.2812 – ident: e_1_2_14_45_1 doi: 10.1101/gr.171264.113 – ident: e_1_2_14_59_1 doi: 10.1038/nmeth.2857 – ident: e_1_2_14_15_1 doi: 10.1038/nature10402 |
SSID | ssj0035499 |
Score | 2.5636613 |
SecondaryResourceType | review_article |
Snippet | Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein (Cas)9 system has been... Recently, a novel technique named the clustered regularly interspaced short palindromic repeat ( CRISPR )/ CRISPR ‐associated protein (Cas)9 system has been... Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1218 |
SubjectTerms | Binding Sites - genetics Biological effects Biological evolution Biology Cas9 CRISPR CRISPR-Cas Systems Deoxyribonucleic acid Design Design engineering Diseases DNA DNA cleavage DNA damage Editing Efficiency Endonuclease Functional anatomy Gene sequencing gene targeting Gene Targeting - methods Gene therapy Genetic Engineering - methods Genetic Therapy - methods genome genome editing Genome, Human - genetics Genomes Homology Humans Incidence Models, Genetic Modulation Molecular biology Mutation Pathogenesis phenotype potential pitfalls Proteins Repair Reproducibility of Results Reviews Ribonucleic acid RNA RNA, Guide, CRISPR-Cas Systems - genetics Screening sgRNA Strands synthetic biology target specificity Technology Transcription transcription (genetics) |
Title | Potential pitfalls of CRISPR/Cas9‐mediated genome editing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.13586 https://www.ncbi.nlm.nih.gov/pubmed/26535798 https://www.proquest.com/docview/1779605380 https://www.proquest.com/docview/1906906178 https://www.proquest.com/docview/1779881802 https://www.proquest.com/docview/1805496975 https://www.proquest.com/docview/1825428231 |
Volume | 283 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAXHi2PlFIFgZBASpuHEycql92lq4IEqrZU2guK_JQQ22zVzR7gxE_ob-wv6YzzgEK1EtwSeez4Nc439sxngJdKMWGZlkEobREwq6KgKJQJCiVCmxvNeEiBwh8_ZYcn7MM0na7B2y4WpuGH6DfcSDPcek0KLuTiNyW3Ri7o1oac-LbJWYsQ0aTnjkrI8GmiIeOAZWzacpOSG8-vrNf_Rn9BzOuI1f1yxvfgS1fZxtPk2-6ylrvqxx88jv_bmvtwt8Wi_qCZPA9gzVQbsDmo0A4__e6_8p13qNt234Dbo-5muE3YP5rX5GSEec--1lbMZgt_bv3R5P3x0WRvJBbF5c8LF5KCcNYnFthT4-MreVg_hJPxwefRYdBewhCoNE2yQEUSbT6uuMoRC1jJlc4zwYhFP1UWE5iU0mSIfnWS61DLUJrQKkQWlmdai-QRrFfzyjwBP9FCFDKOdCRytHqwQEQL1mqKZjUhSzx43Q1GqVqGcrooY1Z2lgr1Uul6yYMXvexZw8txo9R2N6Zlq5uYwjmabbjQhzcnF468OeK5B8_7ZOxhOkkRlZkvmyKo8mG8QiZHNFxkBU9XyaB9HtNJrAePmynXtybO0iTFz3jwxk2cFc0sxwfDY_e09S_CT-EOwr-s8UPahvX6fGmeIcSq5Q7cGgzfDcc7TqWuAKa0I3A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOZQLjxZKoEAQCAmkFCdxnEScyqqrLbRVtW2lvUV-SohttmKzBzjxE_iN_BJmnGygUK0Et0Qzedjx2N84M98AvNCaS8eNiphyZcSdjqOy1DYqtWSusIbnjBKFD4_E6Iy_n2STLjaHcmFafoh-w40sw8_XZOC0If2blTur5lS2oRDX4QaV9PYe1bhnj0rJ9WnzIZOICz7p2EkpkOfXtZfXo79A5mXM6hed4e22surccxVSrMmnnUWjdvTXP5gc_7s9d-BWB0fD3Xb83IVrtt6Azd0aXfHzL-HL0AeI-p33DVgfLIvDbcLb41lDcUZ47cXHxsnpdB7OXDgY758cj98M5Lz88e27z0pBRBsSEey5DfGUgqzvwdlw73Qwiro6DJHOslREOlbo9uU61wXCAadybQohORHpZ9qhgCulrEAAbNLCMKOYssxpBBcuF8bI9D6s1bPaPoAwNVKWKolNLAt0fPCGCBicM5TQahlPA3i1_BqV7kjKqVbGtFo6K9RLle-lAJ73uhctNceVWtvLj1p15omSPEfPDed6drW49PzNcV4E8KwXYw_TzxRZ29mivQW9PEtW6BQIiEtR5tkqHXTRE_oZG8BWO-b61iQiSzN8TACv_chZ0cxquPfuxB89_Bflp7A-Oj08qA72jz48gpuIBkUblrQNa83nhX2MiKtRT7xd_QSZqyYZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIgEvHC1HoEAQCAmkFCdxnFjwUrZdtRzVattK-4IinxJim12x2Qd44ifwG_kljJ0DCtVK8JbIY8fXON_YM58BnihFhaVaRkRaHlGr4ohzZSKuBLGF0TQnLlD4_SHbP6FvJtlkDV51sTANP0S_4eY0w6_XTsHn2v6m5NbIhbu1oWAX4CJlpHBzenfck0elzvJpwiGTiDI6aclJnR_Pr7xnf0d_YcyzkNX_c4bX4ENX28bV5NP2spbb6usfRI7_25zrcLUFo-FOM3tuwJqpNmBzp0JD_PRL-DT07qF-330DLg-6q-E24eVoVjsvI8w7_1hbMZ0uwpkNB-ODo9H4xUAs-I9v331MCuLZ0NHAnpoQX52L9U04Ge4dD_aj9haGSGVZyiIVSzT6cpWrAsGAlbnSBRPU0ehnymIClVIahvBXp4UmWhJpiFUILWzOtBbpLVivZpW5A2GqheAyiXUsCjR7sECEC9ZqF85qCE0DeNYNRqlainJ3U8a07EwV10ul76UAHvey84aY41yprW5My1Y5MSXP0W7DlZ6cn8w9e3OcFwE86pOxh91RiqjMbNkU4SpPkhUyBcJhznierZJBAz1xR7EB3G6mXN-ahGVphp8J4LmfOCuaWQ73Xh_5p7v_IvwQLo12h-W7g8O39-AKQkHW-CRtwXr9eWnuI9yq5QOvVT8BKGMk0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+pitfalls+of+CRISPR%2FCas9-mediated+genome+editing&rft.jtitle=The+FEBS+journal&rft.au=Peng%2C+Rongxue&rft.au=Lin%2C+Guigao&rft.au=Li%2C+Jinming&rft.date=2016-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=283&rft.issue=7&rft.spage=1218&rft_id=info:doi/10.1111%2Ffebs.13586&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon |