Potential pitfalls of CRISPR/Cas9‐mediated genome editing

Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correc...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 283; no. 7; pp. 1218 - 1231
Main Authors Peng, Rongxue, Lin, Guigao, Li, Jinming
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the ‘curious sequences of unknown biological function’ into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co‐expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off‐target effects and the incidence of homology‐directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012. Recently, a novel genome editing technique named CRISPR/Cas9 which can be applied in many fields has been rapidly developed. Albeit widely used, this technique has many potential pitfalls, including Cas9 activity, target sites selection and sgRNAs design, delivery methods, off‐target effects, and the incidence of HDR. Solving these problems helps with the utilization of CRISPR/Cas9 system.
AbstractList Recently, a novel technique named the clustered regularly interspaced short palindromic repeat ( CRISPR )/ CRISPR ‐associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA , Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the ‘curious sequences of unknown biological function’ into a promising genome editing tool. As a result of the incessant development in the CRISPR /Cas9 system, Cas9 co‐expressed with custom guide RNA s has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR /Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off‐target effects and the incidence of homology‐directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR /Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR /Cas system from the time of its initial discovery in 2012.
Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the 'curious sequences of unknown biological function' into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co-expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off-target effects and the incidence of homology-directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012.Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the 'curious sequences of unknown biological function' into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co-expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off-target effects and the incidence of homology-directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012.
Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the ‘curious sequences of unknown biological function’ into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co‐expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off‐target effects and the incidence of homology‐directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012.
Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the ‘curious sequences of unknown biological function’ into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co‐expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off‐target effects and the incidence of homology‐directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012. Recently, a novel genome editing technique named CRISPR/Cas9 which can be applied in many fields has been rapidly developed. Albeit widely used, this technique has many potential pitfalls, including Cas9 activity, target sites selection and sgRNAs design, delivery methods, off‐target effects, and the incidence of HDR. Solving these problems helps with the utilization of CRISPR/Cas9 system.
Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the 'curious sequences of unknown biological function' into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co-expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off-target effects and the incidence of homology-directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012. Recently, a novel genome editing technique named CRISPR/Cas9 which can be applied in many fields has been rapidly developed. Albeit widely used, this technique has many potential pitfalls, including Cas9 activity, target sites selection and sgRNAs design, delivery methods, off-target effects, and the incidence of HDR. Solving these problems helps with the utilization of CRISPR/Cas9 system.
Author Peng, Rongxue
Lin, Guigao
Li, Jinming
Author_xml – sequence: 1
  givenname: Rongxue
  surname: Peng
  fullname: Peng, Rongxue
  organization: Chinese Academy of Medical Sciences
– sequence: 2
  givenname: Guigao
  surname: Lin
  fullname: Lin, Guigao
  organization: Beijing Hospital
– sequence: 3
  givenname: Jinming
  surname: Li
  fullname: Li, Jinming
  organization: Beijing Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26535798$$D View this record in MEDLINE/PubMed
BookMark eNqNkctKAzEYhYNU1KobH0AG3IjQmkyugyst3kCweAF3IclkJDKd1EmKdOcj-Iw-iamjLkTUEMgf8p0DOacPeo1vLABbCA5RWvuV1WGIMBVsCawhTvIBYVT0vmZytwr6ITxAiCkpihWwmjOKKS_EGjgY-2ib6FSdTV2sVF2HzFfZ6Or8eny1P1KheH1-mdjSqWjL7N42fmKzdI2uud8Ay0kQ7ObHuQ5uT45vRmeDi8vT89HhxcBQitnAIE0g54YbIVBeaW5KwRShhGFqqvRAtNaWCaRLLEpYaqgtrAwUecVZWSq8DnY732nrH2c2RDlxwdi6Vo31syCRyCnJRY7RP1CYImAFp3-jPAUkkiBP6M439MHP2ib9WaICsrQRF79SyYtBigVM1PYHNdMpVzlt3US1c_lZSQJgB5jWh9DaShoXVXS-ia1ytURQLlqXi9ble-tJsvdN8un6I4w6-MnVdv4LKU-Oj647zRsj_Lof
CitedBy_id crossref_primary_10_3390_medicina57030225
crossref_primary_10_1089_ast_2019_2061
crossref_primary_10_1016_j_bcab_2025_103553
crossref_primary_10_3390_su141912285
crossref_primary_10_34133_2022_9810237
crossref_primary_10_1016_j_jconrel_2022_08_042
crossref_primary_10_1186_s13059_022_02779_8
crossref_primary_10_1016_j_omtn_2017_06_006
crossref_primary_10_1021_acs_biochem_0c00766
crossref_primary_10_1111_bjh_14297
crossref_primary_10_1186_s12951_022_01717_x
crossref_primary_10_1016_j_nrleng_2017_08_006
crossref_primary_10_1007_s13369_022_07266_7
crossref_primary_10_1016_j_micres_2021_126784
crossref_primary_10_1016_j_ymthe_2020_09_028
crossref_primary_10_1134_S1990750818040078
crossref_primary_10_3389_fmolb_2021_772788
crossref_primary_10_3390_v11010028
crossref_primary_10_1038_s41434_020_0166_4
crossref_primary_10_56735_saltjsrh_ms2101020512
crossref_primary_10_14336_AD_2019_0927
crossref_primary_10_1017_S001667231600001X
crossref_primary_10_1016_j_mattod_2018_12_003
crossref_primary_10_3389_fonc_2022_845636
crossref_primary_10_3390_v10010050
crossref_primary_10_1007_s11248_017_0008_3
crossref_primary_10_1002_ppp3_10107
crossref_primary_10_1146_annurev_biochem_060815_014607
crossref_primary_10_1371_journal_pone_0226107
crossref_primary_10_1155_2018_9601623
crossref_primary_10_33581_2957_5060_2022_2_19_26
crossref_primary_10_1111_pbi_12987
crossref_primary_10_1186_s40478_017_0468_y
crossref_primary_10_1038_s41559_017_0411_4
crossref_primary_10_1007_s11948_021_00320_x
crossref_primary_10_1016_j_jviromet_2018_06_004
crossref_primary_10_1093_bioinformatics_bty558
crossref_primary_10_1186_s12870_018_1496_x
crossref_primary_10_1093_bfgp_elz042
crossref_primary_10_1016_j_biotechadv_2018_01_006
crossref_primary_10_1089_scd_2018_0121
crossref_primary_10_1038_s41467_019_08329_4
crossref_primary_10_1186_s41038_017_0103_y
crossref_primary_10_1016_j_cois_2019_12_003
crossref_primary_10_1002_wrna_1731
crossref_primary_10_1038_s41581_018_0047_x
crossref_primary_10_1111_febs_13777
crossref_primary_10_1186_s12929_023_00943_1
crossref_primary_10_1186_s12896_017_0360_7
crossref_primary_10_4014_jmb_2305_05010
crossref_primary_10_1089_nat_2018_0758
crossref_primary_10_1186_s13036_018_0127_2
crossref_primary_10_1007_s40291_018_0377_1
crossref_primary_10_1016_j_omtn_2023_102032
crossref_primary_10_1038_s41417_024_00771_x
crossref_primary_10_1021_acs_biomac_0c00211
crossref_primary_10_1093_bioinformatics_bty748
crossref_primary_10_1007_s00018_021_03850_6
crossref_primary_10_1021_acssynbio_8b00273
crossref_primary_10_1126_sciadv_aax2941
crossref_primary_10_1007_s12033_020_00265_9
crossref_primary_10_1186_s13028_018_0414_4
crossref_primary_10_18097_PBMC20186404303
crossref_primary_10_12974_2311_8741_2023_11_05
crossref_primary_10_1002_jha2_323
crossref_primary_10_1007_s40135_017_0144_1
crossref_primary_10_1089_crispr_2021_0128
crossref_primary_10_1007_s12298_017_0502_3
crossref_primary_10_1016_j_heliyon_2021_e06860
crossref_primary_10_1038_s41598_018_36740_2
crossref_primary_10_3390_cancers13153783
crossref_primary_10_1016_j_arr_2023_102114
crossref_primary_10_1080_15476286_2018_1495492
crossref_primary_10_1093_nar_gkac255
crossref_primary_10_1007_s40259_021_00473_y
crossref_primary_10_1007_s10529_016_2195_z
crossref_primary_10_2144_btn_2022_0015
crossref_primary_10_5897_AJB2021_17344
crossref_primary_10_1093_jxb_erab093
crossref_primary_10_29296_24999490_2024_06_04
crossref_primary_10_5511_plantbiotechnology_21_0407a
crossref_primary_10_1038_cddiscovery_2016_64
crossref_primary_10_1371_journal_pone_0213376
crossref_primary_10_1007_s11033_023_08239_1
crossref_primary_10_1016_j_csbj_2016_12_006
crossref_primary_10_3390_cells10050969
crossref_primary_10_1038_s41598_018_32702_w
crossref_primary_10_1016_j_nrl_2017_08_009
crossref_primary_10_1016_j_drudis_2018_01_014
crossref_primary_10_3389_fpls_2024_1369416
crossref_primary_10_1093_ilar_ilx027
crossref_primary_10_1111_febs_14328
crossref_primary_10_3390_ijms23084430
crossref_primary_10_1038_srep42244
crossref_primary_10_1002_bit_27016
crossref_primary_10_1016_j_envres_2022_114199
crossref_primary_10_1038_s41598_023_28732_8
crossref_primary_10_1186_s13068_017_0957_z
crossref_primary_10_1093_bib_bbz109
crossref_primary_10_2144_btn_2019_0107
crossref_primary_10_2903_sp_efsa_2020_EN_1972
crossref_primary_10_1007_s10142_017_0572_x
crossref_primary_10_1007_s13311_020_00838_1
crossref_primary_10_1038_s41467_019_12891_2
crossref_primary_10_1094_PHYTO_12_17_0426_RVW
crossref_primary_10_1016_j_plipres_2020_101052
crossref_primary_10_3390_horticulturae9080884
crossref_primary_10_1186_s12943_021_01487_4
crossref_primary_10_1007_s11033_023_08986_1
crossref_primary_10_1053_j_gastro_2019_11_279
crossref_primary_10_3390_biomedicines6020045
crossref_primary_10_3390_ijms20092056
crossref_primary_10_1016_j_omtn_2022_03_003
crossref_primary_10_30901_2658_6266_2020_1_o2
crossref_primary_10_1007_s42994_019_00014_w
crossref_primary_10_1051_myolog_201613015
crossref_primary_10_1186_s12967_024_05570_4
crossref_primary_10_1007_s11103_018_0749_2
crossref_primary_10_1039_C6OB01043A
crossref_primary_10_1186_s13287_023_03327_2
crossref_primary_10_3389_fimmu_2020_01128
crossref_primary_10_1007_s11248_020_00232_9
crossref_primary_10_3389_fpls_2022_997888
crossref_primary_10_1186_s13229_018_0222_8
crossref_primary_10_1007_s11033_022_07147_0
crossref_primary_10_1016_j_jid_2016_06_007
crossref_primary_10_1002_dvg_23598
crossref_primary_10_1016_j_semcdb_2019_04_018
crossref_primary_10_1016_j_tplants_2021_06_015
crossref_primary_10_3390_plants7030051
crossref_primary_10_1007_s10495_022_01731_2
crossref_primary_10_3389_fbioe_2021_775309
crossref_primary_10_3389_fpls_2016_01813
crossref_primary_10_1186_s12867_018_0105_8
crossref_primary_10_3390_cells9071744
crossref_primary_10_3390_ijms20235926
crossref_primary_10_1017_pls_2018_21
crossref_primary_10_1002_btpr_3104
crossref_primary_10_2323_jgam_2018_06_001
crossref_primary_10_1016_j_jmoldx_2017_06_003
crossref_primary_10_1007_s11676_017_0588_z
crossref_primary_10_1016_j_npep_2016_11_003
crossref_primary_10_1128_AEM_01453_16
crossref_primary_10_3389_fimmu_2019_00456
crossref_primary_10_3389_fpls_2018_00424
crossref_primary_10_1074_jbc_M116_754887
crossref_primary_10_1007_s12291_018_0804_4
crossref_primary_10_3389_fbioe_2018_00176
crossref_primary_10_1007_s12038_018_9761_6
crossref_primary_10_1039_c6ib00140h
crossref_primary_10_1155_2018_5056279
crossref_primary_10_1111_bjh_17904
crossref_primary_10_1093_synbio_ysaa014
crossref_primary_10_1016_j_jmb_2018_05_044
crossref_primary_10_31083_j_fbl2708241
crossref_primary_10_1002_iub_2004
crossref_primary_10_1016_j_copbio_2018_08_007
crossref_primary_10_1111_febs_14527
crossref_primary_10_1186_s12711_018_0389_7
crossref_primary_10_1038_nrg_2016_118
crossref_primary_10_1111_febs_14365
crossref_primary_10_1186_s13036_021_00270_9
crossref_primary_10_1016_j_ijbiomac_2025_141142
crossref_primary_10_3389_fmolb_2023_1214489
crossref_primary_10_1152_ajpgi_00049_2017
Cites_doi 10.1126/science.1159689
10.1038/nbt.2800
10.1038/nbt.3081
10.1038/nmeth.3543
10.1016/S1074-7613(01)00144-3
10.1099/mic.0.28048-0
10.1126/science.1225829
10.1038/nbt.3127
10.4161/rna.24321
10.1126/science.2660260
10.1128/jb.169.12.5429-5433.1987
10.1126/science.1247997
10.1093/nar/gku410
10.1038/nbt.2884
10.1093/bioinformatics/btu743
10.1046/j.1365-2958.2002.02839.x
10.1038/nbt.2647
10.1038/nbt.2508
10.1038/nbt.3190
10.1002/anie.201506030
10.1038/nbt.2909
10.1038/nbt.3198
10.1038/nbt.3117
10.1016/j.cell.2015.06.059
10.1038/srep09592
10.1038/nmeth.2030
10.1186/s13073-015-0215-6
10.1111/febs.13110
10.7554/eLife.04766
10.1007/s13238-015-0153-5
10.1126/science.1232033
10.1073/pnas.1313587110
10.1038/srep11221
10.1016/j.cell.2012.11.054
10.1093/bioinformatics/btu048
10.1128/JCM.41.1.15-26.2003
10.1016/j.stem.2015.01.003
10.1038/nature14592
10.1056/NEJMoa1502214
10.1101/gr.163394.113
10.1038/nbt.3026
10.1038/nmeth.3075
10.1111/febs.13416
10.1101/gr.191452.115
10.1038/nbt.2808
10.1371/journal.pone.0119372
10.1007/s00239-004-0046-3
10.7554/eLife.00471
10.1126/science.1231143
10.1038/nbt.2673
10.1093/nar/gkm349
10.1038/nrmicro2577
10.1038/nbt.2623
10.1038/nbt.2908
10.1126/science.1138140
10.1093/nar/gku402
10.1038/nature14299
10.1126/science.1178817
10.1093/bioinformatics/btv423
10.1038/nbt.3055
10.1038/cr.2013.46
10.1038/nmeth.3284
10.1261/rna.051631.115
10.1186/s12977-015-0150-z
10.1093/genetics/161.3.1169
10.1093/femsyr/fov004
10.1038/nmeth.3580
10.1038/nmeth.3473
10.1073/pnas.1502370112
10.1126/science.1192272
10.1002/yea.1478
10.1126/science.1246981
10.1038/nature13011
10.1101/gr.171322.113
10.1073/pnas.1515692112
10.1038/nmeth.2812
10.1101/gr.171264.113
10.1038/nmeth.2857
10.1038/nature10402
ContentType Journal Article
Copyright 2015 FEBS
2015 FEBS.
Copyright © 2016 Federation of European Biochemical Societies
Copyright_xml – notice: 2015 FEBS
– notice: 2015 FEBS.
– notice: Copyright © 2016 Federation of European Biochemical Societies
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/febs.13586
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
AGRICOLA
Virology and AIDS Abstracts

MEDLINE
Virology and AIDS Abstracts
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1742-4658
EndPage 1231
ExternalDocumentID 4015451701
26535798
10_1111_febs_13586
FEBS13586
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Beijing Municipal Public Health Bureau
  funderid: 2011‐4011‐02
– fundername: National Population and Family Planning Commission of the People's Republic of China
  funderid: 201402018
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5536-c1b4077c7c8812fb7cd86a454635cf77c4bbbe681bd38d0db0be0fc082f76dda3
IEDL.DBID DR2
ISSN 1742-464X
1742-4658
IngestDate Fri Jul 11 18:31:02 EDT 2025
Fri Jul 11 16:24:48 EDT 2025
Fri Jul 11 08:07:34 EDT 2025
Fri Jul 25 19:47:56 EDT 2025
Fri Jul 25 19:42:55 EDT 2025
Mon Jul 21 05:33:48 EDT 2025
Tue Jul 01 03:06:44 EDT 2025
Thu Apr 24 23:10:49 EDT 2025
Wed Jan 22 16:27:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords target specificity
genome editing
potential pitfalls
sgRNA
gene targeting
DNA cleavage
Cas9
CRISPR/Cas systems
Language English
License 2015 FEBS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5536-c1b4077c7c8812fb7cd86a454635cf77c4bbbe681bd38d0db0be0fc082f76dda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://febs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.13586
PMID 26535798
PQID 1779605380
PQPubID 28478
PageCount 14
ParticipantIDs proquest_miscellaneous_1825428231
proquest_miscellaneous_1805496975
proquest_miscellaneous_1779881802
proquest_journals_1906906178
proquest_journals_1779605380
pubmed_primary_26535798
crossref_citationtrail_10_1111_febs_13586
crossref_primary_10_1111_febs_13586
wiley_primary_10_1111_febs_13586_FEBS13586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2011; 477
2013; 2
2013; 23
2015; 31
2015; 33
2014; 24
2005; 60
1979; 76
2007; 35
2014; 3
2013; 10
2002; 43
2015; 373
2013; 110
2014; 281
2003; 41
2012; 337
2001; 14
2014; 11
2009; 326
2015; 162
2015; 12
2015; 15
2015; 282
2015; 6
2005; 151
2015; 5
2015; 16
2010; 329
2015; 523
1987; 169
2015; 520
2015; 54
2015; 10
2008; 321
2015; 7
2011; 9
2014; 42
2012; 151
2015; 25
2014; 507
2002; 161
2007; 315
1989; 244
2013; 339
2015; 112
2013; 31
2015; 21
2014; 30
2014; 32
2014; 343
2012; 9
e_1_2_14_73_1
e_1_2_14_75_1
e_1_2_14_31_1
e_1_2_14_52_1
e_1_2_14_50_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_35_1
e_1_2_14_56_1
e_1_2_14_12_1
e_1_2_14_33_1
e_1_2_14_54_1
e_1_2_14_14_1
e_1_2_14_39_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_37_1
e_1_2_14_58_1
e_1_2_14_79_1
e_1_2_14_6_1
e_1_2_14_8_1
e_1_2_14_60_1
e_1_2_14_2_1
e_1_2_14_41_1
e_1_2_14_20_1
e_1_2_14_4_1
e_1_2_14_62_1
e_1_2_14_81_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_24_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_22_1
e_1_2_14_28_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_47_1
e_1_2_14_19_1
e_1_2_14_72_1
e_1_2_14_74_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_51_1
e_1_2_14_70_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_55_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_59_1
e_1_2_14_78_1
e_1_2_14_29_1
Tomkinson AE (e_1_2_14_64_1) 2013; 2
e_1_2_14_5_1
e_1_2_14_7_1
e_1_2_14_9_1
e_1_2_14_42_1
e_1_2_14_63_1
e_1_2_14_80_1
e_1_2_14_3_1
e_1_2_14_40_1
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_69_1
e_1_2_14_18_1
References_xml – volume: 32
  start-page: 267
  year: 2014
  end-page: 273
  article-title: Genome‐wide recessive genetic screening in mammalian cells with a lentiviral CRISPR‐guide RNA library
  publication-title: Nat Biotechnol
– volume: 7
  start-page: 93
  year: 2015
  article-title: Pharmacological inhibition of DNA‐PK stimulates Cas9‐mediated genome editing
  publication-title: Genome Med
– volume: 76
  start-page: 4951
  year: 1979
  end-page: 4955
  article-title: Replacement of chromosome segments with altered DNA sequences constructed in vitro
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: 399
  year: 2014
  end-page: 402
  article-title: Efficient genome modification by CRISPR‐Cas9 nickase with minimal off‐target effects
  publication-title: Nat Methods
– volume: 151
  start-page: 1474
  year: 2012
  end-page: 1487
  article-title: An inhibitor of nonhomologous end‐joining abrogates double‐strand break repair and impedes cancer progression
  publication-title: Cell
– volume: 24
  start-page: 125
  year: 2014
  end-page: 131
  article-title: Highly efficient gene knockout in mice and zebrafish with RNA‐guided endonucleases
  publication-title: Genome Res
– volume: 321
  start-page: 960
  year: 2008
  end-page: 964
  article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes
  publication-title: Science
– volume: 162
  start-page: 675
  year: 2015
  end-page: 686
  article-title: A Genome‐wide CRISPR screen in primary immune cells to dissect regulatory networks
  publication-title: Cell
– volume: 31
  start-page: 827
  year: 2013
  end-page: 832
  article-title: DNA targeting specificity of RNA‐guided Cas9 nucleases
  publication-title: Nat Biotechnol
– volume: 12
  start-page: 237
  year: 2015
  end-page: 243
  article-title: Digenome‐seq: genome‐wide profiling of CRISPR‐Cas9 off‐target effects in human cells
  publication-title: Nat Methods
– volume: 112
  start-page: 11870
  year: 2015
  end-page: 11875
  article-title: CASFISH: CRISPR/Cas9‐mediated in situ labeling of genomic loci in fixed cells
  publication-title: Proc Natl Acad Sci USA
– volume: 520
  start-page: 186
  year: 2015
  end-page: 191
  article-title: In vivo genome editing using Cas9
  publication-title: Nature
– volume: 523
  start-page: 481
  year: 2015
  end-page: 485
  article-title: Engineered CRISPR‐Cas9 nucleases with altered PAM specificities
  publication-title: Nature
– volume: 161
  start-page: 1169
  year: 2002
  end-page: 1175
  article-title: Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc‐finger nucleases
  publication-title: Genetics
– volume: 30
  start-page: 1473
  year: 2014
  end-page: 1475
  article-title: Cas‐OFFinder: a fast and versatile algorithm that searches for potential off‐target sites of Cas9 RNA‐guided endonucleases
  publication-title: Bioinformatics
– volume: 31
  start-page: 3676
  year: 2015
  end-page: 3678
  article-title: CRISPR‐ERA: a comprehensive design tool for CRISPR‐mediated gene editing, repression and activation
  publication-title: Bioinformatics
– volume: 15
  year: 2015
  article-title: CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
  publication-title: FEMS Yeast Res
– volume: 23
  start-page: 720
  year: 2013
  end-page: 723
  article-title: Generation of gene‐modified mice via Cas9/RNA‐mediated gene targeting
  publication-title: Cell Res
– volume: 12
  start-page: 823
  year: 2015
  end-page: 826
  article-title: Unraveling CRISPR‐Cas9 genome engineering parameters via a library‐on‐library approach
  publication-title: Nat Methods
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  article-title: A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
– volume: 11
  start-page: 122
  year: 2014
  end-page: 123
  article-title: E‐CRISP: fast CRISPR target site identification
  publication-title: Nat Methods
– volume: 12
  start-page: 982
  year: 2015
  end-page: 988
  article-title: CRISPRscan: designing highly efficient sgRNAs for CRISPR‐Cas9 targeting in vivo
  publication-title: Nat Methods
– volume: 33
  start-page: 543
  year: 2015
  end-page: 548
  article-title: Increasing the efficiency of homology‐directed repair for CRISPR‐Cas9‐induced precise gene editing in mammalian cells
  publication-title: Nat Biotechnol
– volume: 25
  start-page: 1147
  year: 2015
  end-page: 1157
  article-title: Sequence determinants of improved CRISPR sgRNA design
  publication-title: Genome Res
– volume: 33
  start-page: 73
  year: 2015
  end-page: 80
  article-title: Cationic lipid‐mediated delivery of proteins enables efficient protein‐based genome editing in vitro and in vivo
  publication-title: Nat Biotechnol
– volume: 60
  start-page: 174
  year: 2005
  end-page: 182
  article-title: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
  publication-title: J Mol Evol
– volume: 33
  start-page: 187
  year: 2015
  end-page: 197
  article-title: GUIDE‐seq enables genome‐wide profiling of off‐target cleavage by CRISPR‐Cas nucleases
  publication-title: Nat Biotechnol
– volume: 3
  start-page: e04766
  year: 2014
  article-title: Enhanced homology‐directed human genome engineering by controlled timing of CRISPR/Cas9 delivery
  publication-title: eLife
– volume: 329
  start-page: 1355
  year: 2010
  end-page: 1358
  article-title: Sequence‐ and structure‐specific RNA processing by a CRISPR endonuclease
  publication-title: Science
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 10
  start-page: e0119372
  year: 2015
  article-title: CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences
  publication-title: PLoS One
– volume: 32
  start-page: 1262
  year: 2014
  end-page: 1267
  article-title: Rational design of highly active sgRNAs for CRISPR‐Cas9‐mediated gene inactivation
  publication-title: Nat Biotechnol
– volume: 31
  start-page: 233
  year: 2013
  end-page: 239
  article-title: RNA‐guided editing of bacterial genomes using CRISPR‐Cas systems
  publication-title: Nat Biotechnol
– volume: 315
  start-page: 1709
  year: 2007
  end-page: 1712
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science
– volume: 32
  start-page: 577
  year: 2014
  end-page: 582
  article-title: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
  publication-title: Nat Biotechnol
– volume: 16
  start-page: 142
  year: 2015
  end-page: 147
  article-title: Small molecules enhance CRISPR genome editing in pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 32
  start-page: 279
  year: 2014
  end-page: 284
  article-title: Improving CRISPR‐Cas nuclease specificity using truncated guide RNAs
  publication-title: Nat Biotechnol
– volume: 343
  start-page: 80
  year: 2014
  end-page: 84
  article-title: Genetic screens in human cells using the CRISPR‐Cas9 system
  publication-title: Science
– volume: 54
  start-page: 12029
  year: 2015
  end-page: 12033
  article-title: Self‐Assembled DNA nanoclews for the efficient delivery of CRISPR‐Cas9 for genome editing
  publication-title: Angew Chem
– volume: 14
  start-page: 499
  year: 2001
  end-page: 502
  article-title: Toll meets bacterial CpG‐DNA
  publication-title: Immunity
– volume: 169
  start-page: 5429
  year: 1987
  end-page: 5433
  article-title: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in , and identification of the gene product
  publication-title: J Bacteriol
– volume: 31
  start-page: 822
  year: 2013
  end-page: 826
  article-title: High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells
  publication-title: Nat Biotechnol
– volume: 33
  start-page: 175
  year: 2015
  end-page: 178
  article-title: Unbiased detection of off‐target cleavage by CRISPR‐Cas9 and TALENs using integrase‐defective lentiviral vectors
  publication-title: Nat Biotechnol
– volume: 41
  start-page: 15
  year: 2003
  end-page: 26
  article-title: Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination
  publication-title: J Clin Microbiol
– volume: 5
  start-page: 11221
  year: 2015
  article-title: Generation of mutant mice via the CRISPR/Cas9 system using FokI‐dCas9
  publication-title: Sci Rep
– volume: 244
  start-page: 1288
  year: 1989
  end-page: 1292
  article-title: Altering the genome by homologous recombination
  publication-title: Science
– volume: 31
  start-page: 1120
  year: 2015
  end-page: 1123
  article-title: CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off‐target sites
  publication-title: Bioinformatics
– volume: 2
  start-page: e00471
  year: 2013
  article-title: RNA‐programmed genome editing in human cells
  publication-title: eLife
– volume: 151
  start-page: 2551
  year: 2005
  end-page: 2561
  article-title: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
  publication-title: Microbiology
– volume: 42
  start-page: 7473
  year: 2014
  end-page: 7485
  article-title: CRISPR/Cas9 systems have off‐target activity with insertions or deletions between target DNA and guide RNA sequences
  publication-title: Nucleic Acids Res
– volume: 282
  start-page: 4289
  year: 2015
  end-page: 4294
  article-title: Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing
  publication-title: FEBS J
– volume: 32
  start-page: 569
  year: 2014
  end-page: 576
  article-title: Dimeric CRISPR RNA‐guided FokI nucleases for highly specific genome editing
  publication-title: Nat Biotechnol
– volume: 33
  start-page: 538
  year: 2015
  end-page: 542
  article-title: Increasing the efficiency of precise genome editing with CRISPR‐Cas9 by inhibition of nonhomologous end joining
  publication-title: Nat Biotechnol
– volume: 10
  start-page: 726
  year: 2013
  end-page: 737
  article-title: The tracrRNA and Cas9 families of type II CRISPR‐Cas immunity systems
  publication-title: RNA Biol
– volume: 5
  start-page: 9592
  year: 2015
  article-title: CRISPR/Cas9‐mediated endogenous protein tagging for RESOLFT super‐resolution microscopy of living human cells
  publication-title: Sci Rep
– volume: 281
  start-page: 5186
  year: 2014
  end-page: 5193
  article-title: Genome modification by CRISPR/Cas9
  publication-title: FEBS J
– volume: 2
  year: 2013
  article-title: DNA ligases as therapeutic targets
  publication-title: Transl Cancer Res
– volume: 11
  start-page: 1051
  year: 2014
  end-page: 1057
  article-title: Adenoviral vector DNA for accurate genome editing with engineered nucleases
  publication-title: Nat Methods
– volume: 21
  start-page: 1683
  year: 2015
  end-page: 1689
  article-title: Expression of CRISPR/Cas single guide RNAs using small tRNA promoters
  publication-title: RNA
– volume: 6
  start-page: 363
  year: 2015
  end-page: 372
  article-title: CRISPR/Cas9‐mediated gene editing in human tripronuclear zygotes
  publication-title: Protein & Cell
– volume: 12
  start-page: 22
  year: 2015
  article-title: The CRISPR/Cas9 system inactivates latent HIV‐1 proviral DNA
  publication-title: Retrovirology
– volume: 9
  start-page: 805
  year: 2012
  end-page: 807
  article-title: Targeted gene knockout by direct delivery of zinc‐finger nuclease proteins
  publication-title: Nat Methods
– volume: 326
  start-page: 1501
  year: 2009
  article-title: A simple cipher governs DNA recognition by TAL effectors
  publication-title: Science
– volume: 32
  start-page: 551
  year: 2014
  end-page: 553
  article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
  publication-title: Nat Biotechnol
– volume: 24
  start-page: 1012
  year: 2014
  end-page: 1019
  article-title: Highly efficient RNA‐guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
  publication-title: Genome Res
– volume: 33
  start-page: 102
  year: 2015
  end-page: 106
  article-title: In vivo interrogation of gene function in the mammalian brain using CRISPR‐Cas9
  publication-title: Nat Biotechnol
– volume: 110
  start-page: 15644
  year: 2013
  end-page: 15649
  article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 839
  year: 2013
  end-page: 843
  article-title: High‐throughput profiling of off‐target DNA cleavage reveals RNA‐programmed Cas9 nuclease specificity
  publication-title: Nat Biotechnol
– volume: 112
  start-page: 4038
  year: 2015
  end-page: 4043
  article-title: Silencing of end‐joining repair for efficient site‐specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti
  publication-title: Proc Natl Acad Sci USA
– volume: 477
  start-page: 486
  year: 2011
  end-page: 489
  article-title: Structures of the RNA‐guided surveillance complex from a bacterial immune system
  publication-title: Nature
– volume: 24
  start-page: 1020
  year: 2014
  end-page: 1027
  article-title: Gene disruption by cell‐penetrating peptide‐mediated delivery of Cas9 protein and guide RNA
  publication-title: Genome Res
– volume: 507
  start-page: 62
  year: 2014
  end-page: 67
  article-title: DNA interrogation by the CRISPR RNA‐guided endonuclease Cas9
  publication-title: Nature
– volume: 9
  start-page: 467
  year: 2011
  end-page: 477
  article-title: Evolution and classification of the CRISPR‐Cas systems
  publication-title: Nat Rev Microbiol
– volume: 43
  start-page: 1565
  year: 2002
  end-page: 1575
  article-title: Identification of genes that are associated with DNA repeats in prokaryotes
  publication-title: Mol Microbiol
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  article-title: RNA‐guided human genome engineering via Cas9
  publication-title: Science
– volume: 12
  start-page: 1051
  year: 2015
  end-page: 1054
  article-title: Cas9 gRNA engineering for genome editing, activation and repression
  publication-title: Nat Methods
– volume: 373
  start-page: 895
  year: 2015
  end-page: 907
  article-title: FTO obesity variant circuitry and adipocyte browning in humans
  publication-title: N Engl J Med
– volume: 343
  start-page: 1247997
  year: 2014
  article-title: Structures of Cas9 endonucleases reveal RNA‐mediated conformational activation
  publication-title: Science
– volume: 35
  start-page: W599
  year: 2007
  end-page: W605
  article-title: Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool
  publication-title: Nucleic Acids Res
– volume: 42
  start-page: W401
  year: 2014
  end-page: W407
  article-title: CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing
  publication-title: Nucleic Acids Res
– ident: e_1_2_14_12_1
  doi: 10.1126/science.1159689
– ident: e_1_2_14_51_1
  doi: 10.1038/nbt.2800
– ident: e_1_2_14_46_1
  doi: 10.1038/nbt.3081
– ident: e_1_2_14_40_1
  doi: 10.1038/nmeth.3543
– ident: e_1_2_14_43_1
  doi: 10.1016/S1074-7613(01)00144-3
– ident: e_1_2_14_10_1
  doi: 10.1099/mic.0.28048-0
– ident: e_1_2_14_16_1
  doi: 10.1126/science.1225829
– ident: e_1_2_14_49_1
  doi: 10.1038/nbt.3127
– ident: e_1_2_14_17_1
  doi: 10.4161/rna.24321
– ident: e_1_2_14_3_1
  doi: 10.1126/science.2660260
– ident: e_1_2_14_6_1
  doi: 10.1128/jb.169.12.5429-5433.1987
– ident: e_1_2_14_27_1
  doi: 10.1126/science.1247997
– ident: e_1_2_14_78_1
  doi: 10.1093/nar/gku410
– ident: e_1_2_14_20_1
  doi: 10.1038/nbt.2884
– ident: e_1_2_14_76_1
  doi: 10.1093/bioinformatics/btu743
– ident: e_1_2_14_8_1
  doi: 10.1046/j.1365-2958.2002.02839.x
– ident: e_1_2_14_28_1
  doi: 10.1038/nbt.2647
– ident: e_1_2_14_55_1
  doi: 10.1038/nbt.2508
– ident: e_1_2_14_66_1
  doi: 10.1038/nbt.3190
– ident: e_1_2_14_47_1
  doi: 10.1002/anie.201506030
– ident: e_1_2_14_62_1
  doi: 10.1038/nbt.2909
– ident: e_1_2_14_21_1
  doi: 10.1038/nbt.3198
– ident: e_1_2_14_57_1
  doi: 10.1038/nbt.3117
– volume: 2
  year: 2013
  ident: e_1_2_14_64_1
  article-title: DNA ligases as therapeutic targets
  publication-title: Transl Cancer Res
– ident: e_1_2_14_73_1
  doi: 10.1016/j.cell.2015.06.059
– ident: e_1_2_14_24_1
  doi: 10.1038/srep09592
– ident: e_1_2_14_44_1
  doi: 10.1038/nmeth.2030
– ident: e_1_2_14_65_1
  doi: 10.1186/s13073-015-0215-6
– ident: e_1_2_14_54_1
  doi: 10.1111/febs.13110
– ident: e_1_2_14_42_1
  doi: 10.7554/eLife.04766
– ident: e_1_2_14_74_1
  doi: 10.1007/s13238-015-0153-5
– ident: e_1_2_14_22_1
  doi: 10.1126/science.1232033
– ident: e_1_2_14_34_1
  doi: 10.1073/pnas.1313587110
– ident: e_1_2_14_61_1
  doi: 10.1038/srep11221
– ident: e_1_2_14_70_1
  doi: 10.1016/j.cell.2012.11.054
– ident: e_1_2_14_77_1
  doi: 10.1093/bioinformatics/btu048
– ident: e_1_2_14_9_1
  doi: 10.1128/JCM.41.1.15-26.2003
– ident: e_1_2_14_68_1
  doi: 10.1016/j.stem.2015.01.003
– ident: e_1_2_14_35_1
  doi: 10.1038/nature14592
– ident: e_1_2_14_72_1
  doi: 10.1056/NEJMoa1502214
– ident: e_1_2_14_48_1
  doi: 10.1101/gr.163394.113
– ident: e_1_2_14_41_1
  doi: 10.1038/nbt.3026
– ident: e_1_2_14_50_1
  doi: 10.1038/nmeth.3075
– ident: e_1_2_14_69_1
  doi: 10.1111/febs.13416
– ident: e_1_2_14_39_1
  doi: 10.1101/gr.191452.115
– ident: e_1_2_14_60_1
  doi: 10.1038/nbt.2808
– ident: e_1_2_14_80_1
  doi: 10.1371/journal.pone.0119372
– ident: e_1_2_14_7_1
  doi: 10.1007/s00239-004-0046-3
– ident: e_1_2_14_30_1
  doi: 10.7554/eLife.00471
– ident: e_1_2_14_23_1
  doi: 10.1126/science.1231143
– ident: e_1_2_14_53_1
  doi: 10.1038/nbt.2673
– ident: e_1_2_14_75_1
  doi: 10.1093/nar/gkm349
– ident: e_1_2_14_14_1
  doi: 10.1038/nrmicro2577
– ident: e_1_2_14_31_1
  doi: 10.1038/nbt.2623
– ident: e_1_2_14_63_1
  doi: 10.1038/nbt.2908
– ident: e_1_2_14_11_1
  doi: 10.1126/science.1138140
– ident: e_1_2_14_56_1
  doi: 10.1093/nar/gku402
– ident: e_1_2_14_36_1
  doi: 10.1038/nature14299
– ident: e_1_2_14_5_1
  doi: 10.1126/science.1178817
– ident: e_1_2_14_81_1
  doi: 10.1093/bioinformatics/btv423
– ident: e_1_2_14_19_1
  doi: 10.1038/nbt.3055
– ident: e_1_2_14_33_1
  doi: 10.1038/cr.2013.46
– ident: e_1_2_14_58_1
  doi: 10.1038/nmeth.3284
– ident: e_1_2_14_52_1
  doi: 10.1261/rna.051631.115
– ident: e_1_2_14_25_1
  doi: 10.1186/s12977-015-0150-z
– ident: e_1_2_14_4_1
  doi: 10.1093/genetics/161.3.1169
– ident: e_1_2_14_26_1
  doi: 10.1093/femsyr/fov004
– ident: e_1_2_14_29_1
  doi: 10.1038/nmeth.3580
– ident: e_1_2_14_37_1
  doi: 10.1038/nmeth.3473
– ident: e_1_2_14_67_1
  doi: 10.1073/pnas.1502370112
– ident: e_1_2_14_13_1
  doi: 10.1126/science.1192272
– ident: e_1_2_14_2_1
  doi: 10.1002/yea.1478
– ident: e_1_2_14_38_1
  doi: 10.1126/science.1246981
– ident: e_1_2_14_18_1
  doi: 10.1038/nature13011
– ident: e_1_2_14_32_1
  doi: 10.1101/gr.171322.113
– ident: e_1_2_14_71_1
  doi: 10.1073/pnas.1515692112
– ident: e_1_2_14_79_1
  doi: 10.1038/nmeth.2812
– ident: e_1_2_14_45_1
  doi: 10.1101/gr.171264.113
– ident: e_1_2_14_59_1
  doi: 10.1038/nmeth.2857
– ident: e_1_2_14_15_1
  doi: 10.1038/nature10402
SSID ssj0035499
Score 2.5636613
SecondaryResourceType review_article
Snippet Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein (Cas)9 system has been...
Recently, a novel technique named the clustered regularly interspaced short palindromic repeat ( CRISPR )/ CRISPR ‐associated protein (Cas)9 system has been...
Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1218
SubjectTerms Binding Sites - genetics
Biological effects
Biological evolution
Biology
Cas9
CRISPR
CRISPR-Cas Systems
Deoxyribonucleic acid
Design
Design engineering
Diseases
DNA
DNA cleavage
DNA damage
Editing
Efficiency
Endonuclease
Functional anatomy
Gene sequencing
gene targeting
Gene Targeting - methods
Gene therapy
Genetic Engineering - methods
Genetic Therapy - methods
genome
genome editing
Genome, Human - genetics
Genomes
Homology
Humans
Incidence
Models, Genetic
Modulation
Molecular biology
Mutation
Pathogenesis
phenotype
potential pitfalls
Proteins
Repair
Reproducibility of Results
Reviews
Ribonucleic acid
RNA
RNA, Guide, CRISPR-Cas Systems - genetics
Screening
sgRNA
Strands
synthetic biology
target specificity
Technology
Transcription
transcription (genetics)
Title Potential pitfalls of CRISPR/Cas9‐mediated genome editing
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.13586
https://www.ncbi.nlm.nih.gov/pubmed/26535798
https://www.proquest.com/docview/1779605380
https://www.proquest.com/docview/1906906178
https://www.proquest.com/docview/1779881802
https://www.proquest.com/docview/1805496975
https://www.proquest.com/docview/1825428231
Volume 283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAXHi2PlFIFgZBASpuHEycql92lq4IEqrZU2guK_JQQ22zVzR7gxE_ob-wv6YzzgEK1EtwSeez4Nc439sxngJdKMWGZlkEobREwq6KgKJQJCiVCmxvNeEiBwh8_ZYcn7MM0na7B2y4WpuGH6DfcSDPcek0KLuTiNyW3Ri7o1oac-LbJWYsQ0aTnjkrI8GmiIeOAZWzacpOSG8-vrNf_Rn9BzOuI1f1yxvfgS1fZxtPk2-6ylrvqxx88jv_bmvtwt8Wi_qCZPA9gzVQbsDmo0A4__e6_8p13qNt234Dbo-5muE3YP5rX5GSEec--1lbMZgt_bv3R5P3x0WRvJBbF5c8LF5KCcNYnFthT4-MreVg_hJPxwefRYdBewhCoNE2yQEUSbT6uuMoRC1jJlc4zwYhFP1UWE5iU0mSIfnWS61DLUJrQKkQWlmdai-QRrFfzyjwBP9FCFDKOdCRytHqwQEQL1mqKZjUhSzx43Q1GqVqGcrooY1Z2lgr1Uul6yYMXvexZw8txo9R2N6Zlq5uYwjmabbjQhzcnF468OeK5B8_7ZOxhOkkRlZkvmyKo8mG8QiZHNFxkBU9XyaB9HtNJrAePmynXtybO0iTFz3jwxk2cFc0sxwfDY_e09S_CT-EOwr-s8UPahvX6fGmeIcSq5Q7cGgzfDcc7TqWuAKa0I3A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOZQLjxZKoEAQCAmkFCdxnEScyqqrLbRVtW2lvUV-SohttmKzBzjxE_iN_BJmnGygUK0Et0Qzedjx2N84M98AvNCaS8eNiphyZcSdjqOy1DYqtWSusIbnjBKFD4_E6Iy_n2STLjaHcmFafoh-w40sw8_XZOC0If2blTur5lS2oRDX4QaV9PYe1bhnj0rJ9WnzIZOICz7p2EkpkOfXtZfXo79A5mXM6hed4e22surccxVSrMmnnUWjdvTXP5gc_7s9d-BWB0fD3Xb83IVrtt6Azd0aXfHzL-HL0AeI-p33DVgfLIvDbcLb41lDcUZ47cXHxsnpdB7OXDgY758cj98M5Lz88e27z0pBRBsSEey5DfGUgqzvwdlw73Qwiro6DJHOslREOlbo9uU61wXCAadybQohORHpZ9qhgCulrEAAbNLCMKOYssxpBBcuF8bI9D6s1bPaPoAwNVKWKolNLAt0fPCGCBicM5TQahlPA3i1_BqV7kjKqVbGtFo6K9RLle-lAJ73uhctNceVWtvLj1p15omSPEfPDed6drW49PzNcV4E8KwXYw_TzxRZ29mivQW9PEtW6BQIiEtR5tkqHXTRE_oZG8BWO-b61iQiSzN8TACv_chZ0cxquPfuxB89_Bflp7A-Oj08qA72jz48gpuIBkUblrQNa83nhX2MiKtRT7xd_QSZqyYZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIgEvHC1HoEAQCAmkFCdxnFjwUrZdtRzVattK-4IinxJim12x2Qd44ifwG_kljJ0DCtVK8JbIY8fXON_YM58BnihFhaVaRkRaHlGr4ohzZSKuBLGF0TQnLlD4_SHbP6FvJtlkDV51sTANP0S_4eY0w6_XTsHn2v6m5NbIhbu1oWAX4CJlpHBzenfck0elzvJpwiGTiDI6aclJnR_Pr7xnf0d_YcyzkNX_c4bX4ENX28bV5NP2spbb6usfRI7_25zrcLUFo-FOM3tuwJqpNmBzp0JD_PRL-DT07qF-330DLg-6q-E24eVoVjsvI8w7_1hbMZ0uwpkNB-ODo9H4xUAs-I9v331MCuLZ0NHAnpoQX52L9U04Ge4dD_aj9haGSGVZyiIVSzT6cpWrAsGAlbnSBRPU0ehnymIClVIahvBXp4UmWhJpiFUILWzOtBbpLVivZpW5A2GqheAyiXUsCjR7sECEC9ZqF85qCE0DeNYNRqlainJ3U8a07EwV10ul76UAHvey84aY41yprW5My1Y5MSXP0W7DlZ6cn8w9e3OcFwE86pOxh91RiqjMbNkU4SpPkhUyBcJhznierZJBAz1xR7EB3G6mXN-ahGVphp8J4LmfOCuaWQ73Xh_5p7v_IvwQLo12h-W7g8O39-AKQkHW-CRtwXr9eWnuI9yq5QOvVT8BKGMk0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+pitfalls+of+CRISPR%2FCas9-mediated+genome+editing&rft.jtitle=The+FEBS+journal&rft.au=Peng%2C+Rongxue&rft.au=Lin%2C+Guigao&rft.au=Li%2C+Jinming&rft.date=2016-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=283&rft.issue=7&rft.spage=1218&rft_id=info:doi/10.1111%2Ffebs.13586&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon