effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling
Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic...
Saved in:
Published in | Environmental microbiology Vol. 10; no. 11; pp. 3093 - 3105 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.11.2008
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function. |
---|---|
AbstractList | Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function. Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0–5 cm) samples from five control and five long‐term N‐amended plots established and maintained at the Niwot Ridge Long‐term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes , and decreases in the relative abundance of the Verrucomicrobia . We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N‐amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N‐amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G‐lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function. Summary Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0–5 cm) samples from five control and five long‐term N‐amended plots established and maintained at the Niwot Ridge Long‐term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N‐amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N‐amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G‐lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function. Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function. |
Author | Sattin, Sarah R. Schadt, Christopher W. Neff, Jason C. Fierer, Noah Bowman, William D. Townsend, Alan R. Schmidt, Steven K. Nemergut, Diana R. Freeman, Kristen R. Weintraub, Michael N. |
Author_xml | – sequence: 1 fullname: Nemergut, Diana R – sequence: 2 fullname: Townsend, Alan R – sequence: 3 fullname: Sattin, Sarah R – sequence: 4 fullname: Freeman, Kristen R – sequence: 5 fullname: Fierer, Noah – sequence: 6 fullname: Neff, Jason C – sequence: 7 fullname: Bowman, William D – sequence: 8 fullname: Schadt, Christopher W – sequence: 9 fullname: Weintraub, Michael N – sequence: 10 fullname: Schmidt, Steven K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18764871$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1003770$$D View this record in Osti.gov |
BookMark | eNqNkktv1DAUhSNURB_wF8BiwW6CX7ETJBaoakul4SFB6dJyPNdTD4k92Bkx0y1_HKcZTZcQWcqV_J1z7Xt8Whz54KEoEMElyd_bVUm4oDPaUFxSjOsSE8mqcvukODlsHB1qQo-L05RWeKQkflYck1oKXktyUvwBa8EMCQWLzF0M3hnk3RDDEjyyEAfXuXs9uOBRXrpbOw9o2PhF1CgF16HemRhapztkQt9vstZBeodcv-6ceRAmZENERsd2dPCLR3-zM53zy-fFU6u7BC_2_7Pi5vLi-_nH2fzL1fX5h_nMVBWrZrSuLWDStJDvxWSuJSeCiUYLUXHJGysbSigzwK20piUtGMCcWY0J4aRlZ8XryTekwalk3ADmzgTv8wAUwZhJiTP0ZoLWMfzaQBpU75KBrtMewiYp0eSulNf_BEkjiJC0ymA9gXlQKUWwah1dr-Mu91RjnGqlxqTUmJoa41QPcaptlr7c99i0PSwehfv8MvB-An67Dnb_bawuPl2PVdbPJr1LA2wPeh1_KpHfSqVuP1-pr-IH47dkrsbpvJp4q4PSy-iSuvlGMWGYVFzkA7G_Ha7JhQ |
CitedBy_id | crossref_primary_10_1002_eap_1783 crossref_primary_10_1016_j_apsoil_2024_105486 crossref_primary_10_3390_su15010625 crossref_primary_10_1186_s40168_022_01309_9 crossref_primary_10_36906_2311_4444_22_4_12 crossref_primary_10_1007_s00374_015_1013_4 crossref_primary_10_1007_s11104_023_06281_3 crossref_primary_10_1038_s41467_019_10390_y crossref_primary_10_1128_AEM_01224_14 crossref_primary_10_1128_spectrum_02540_23 crossref_primary_10_1016_j_funeco_2014_12_001 crossref_primary_10_1016_j_catena_2020_105110 crossref_primary_10_1016_j_jhazmat_2023_132646 crossref_primary_10_1016_j_envres_2024_118518 crossref_primary_10_1016_j_envres_2022_113989 crossref_primary_10_1111_1758_2229_12049 crossref_primary_10_1007_s11104_014_2181_y crossref_primary_10_1890_10_0426_1 crossref_primary_10_7868_S0016752517100028 crossref_primary_10_1007_s11104_023_06172_7 crossref_primary_10_1038_ismej_2013_35 crossref_primary_10_1016_j_apsoil_2016_04_010 crossref_primary_10_1016_j_soilbio_2015_06_004 crossref_primary_10_2139_ssrn_3990653 crossref_primary_10_1016_j_funeco_2011_10_005 crossref_primary_10_1111_gcb_14304 crossref_primary_10_3389_fmicb_2015_00582 crossref_primary_10_1007_s10533_019_00624_y crossref_primary_10_3390_microorganisms12061074 crossref_primary_10_1371_journal_pone_0175715 crossref_primary_10_1016_j_geoderma_2015_03_018 crossref_primary_10_1016_j_pedobi_2017_05_006 crossref_primary_10_1007_s00374_017_1197_x crossref_primary_10_1016_j_coal_2011_09_009 crossref_primary_10_1017_S002185962000012X crossref_primary_10_1007_s00374_010_0535_z crossref_primary_10_1016_j_apsoil_2019_103378 crossref_primary_10_1111_mec_12858 crossref_primary_10_1890_14_1761_1 crossref_primary_10_1111_1758_2229_12027 crossref_primary_10_1111_j_1574_6941_2011_01173_x crossref_primary_10_1002_ecy_3554 crossref_primary_10_1007_s13225_010_0059_8 crossref_primary_10_1016_j_soilbio_2013_07_010 crossref_primary_10_1111_sum_12671 crossref_primary_10_3389_fmicb_2023_1132016 crossref_primary_10_1080_17550874_2014_917737 crossref_primary_10_1007_s11104_020_04570_9 crossref_primary_10_1016_j_envres_2020_109261 crossref_primary_10_1111_j_1574_6941_2011_01271_x crossref_primary_10_3389_fpls_2019_01018 crossref_primary_10_1007_s11104_016_3117_5 crossref_primary_10_1016_j_rsma_2020_101395 crossref_primary_10_1016_j_soilbio_2015_12_012 crossref_primary_10_1111_mec_13010 crossref_primary_10_1007_s11368_021_03005_x crossref_primary_10_1016_j_agee_2016_06_039 crossref_primary_10_1139_w2012_042 crossref_primary_10_1038_s41598_020_73184_z crossref_primary_10_1002_ecs2_2775 crossref_primary_10_1016_j_geoderma_2017_01_006 crossref_primary_10_1016_j_soilbio_2010_06_013 crossref_primary_10_3390_agronomy9100574 crossref_primary_10_1128_mSystems_00075_16 crossref_primary_10_1016_j_geoderma_2019_113894 crossref_primary_10_1016_j_geoderma_2020_114263 crossref_primary_10_1016_j_scitotenv_2018_03_217 crossref_primary_10_1016_j_soilbio_2020_108041 crossref_primary_10_1371_journal_pone_0085990 crossref_primary_10_1007_s11356_019_06750_2 crossref_primary_10_1016_j_envpol_2022_119397 crossref_primary_10_1016_j_soilbio_2013_02_019 crossref_primary_10_1016_j_wasman_2021_05_025 crossref_primary_10_1038_nrmicro2367 crossref_primary_10_1371_journal_pone_0077212 crossref_primary_10_1186_2049_2618_2_7 crossref_primary_10_1016_j_soilbio_2018_05_003 crossref_primary_10_3390_agronomy12061437 crossref_primary_10_3390_agronomy9120808 crossref_primary_10_1007_s00374_016_1142_4 crossref_primary_10_1016_j_soilbio_2018_05_006 crossref_primary_10_1016_j_catena_2018_06_004 crossref_primary_10_1016_j_jenvman_2021_112163 crossref_primary_10_1080_03650340_2018_1563685 crossref_primary_10_1016_j_apsoil_2018_12_017 crossref_primary_10_1080_03650340_2018_1555707 crossref_primary_10_1007_s00248_021_01943_0 crossref_primary_10_3390_su132111967 crossref_primary_10_1016_j_soilbio_2021_108234 crossref_primary_10_1111_j_1365_2486_2012_02639_x crossref_primary_10_1007_s11104_019_04250_3 crossref_primary_10_1016_j_apsoil_2011_03_010 crossref_primary_10_1093_femsec_fiae057 crossref_primary_10_1111_j_1365_2486_2011_02548_x crossref_primary_10_3390_agronomy10081175 crossref_primary_10_3390_f9100657 crossref_primary_10_1111_gcb_12435 crossref_primary_10_1007_s12275_012_2409_6 crossref_primary_10_1007_s11356_023_28062_2 crossref_primary_10_1016_j_apsoil_2010_06_003 crossref_primary_10_1016_j_apsoil_2020_103709 crossref_primary_10_1111_jam_12549 crossref_primary_10_1371_journal_pone_0067884 crossref_primary_10_1007_s00374_019_01404_4 crossref_primary_10_1007_s10533_018_0510_6 crossref_primary_10_1038_srep10197 crossref_primary_10_1016_j_ecoleng_2015_09_046 crossref_primary_10_1016_j_soilbio_2017_10_020 crossref_primary_10_1016_j_soilbio_2016_02_012 crossref_primary_10_1002_ecs2_3030 crossref_primary_10_1007_s00248_010_9750_2 crossref_primary_10_1007_s00248_010_9675_9 crossref_primary_10_1016_j_soilbio_2016_03_012 crossref_primary_10_1128_AEM_05005_11 crossref_primary_10_1007_s13225_010_0053_1 crossref_primary_10_1007_s00300_014_1613_8 crossref_primary_10_1126_sciadv_aaq1689 crossref_primary_10_1007_s11368_023_03495_x crossref_primary_10_1111_1574_6941_12009 crossref_primary_10_1007_s11557_023_01901_9 crossref_primary_10_1016_j_soilbio_2021_108495 crossref_primary_10_1080_13416979_2018_1530082 crossref_primary_10_1016_j_apsoil_2016_02_015 crossref_primary_10_1111_j_1461_0248_2009_01360_x crossref_primary_10_1038_s41598_018_26181_2 crossref_primary_10_1016_j_gecco_2020_e00962 crossref_primary_10_1371_journal_pone_0166062 crossref_primary_10_1016_j_pedobi_2021_150731 crossref_primary_10_1371_journal_pone_0099949 crossref_primary_10_1016_j_scitotenv_2018_09_038 crossref_primary_10_1038_s41467_017_00262_8 crossref_primary_10_1016_j_sjbs_2021_08_091 crossref_primary_10_1002_mbo3_236 crossref_primary_10_1002_mbo3_597 crossref_primary_10_1038_ismej_2014_256 crossref_primary_10_3390_agronomy11071428 crossref_primary_10_1016_j_geoderma_2023_116336 crossref_primary_10_3389_ffgc_2023_1154934 crossref_primary_10_1007_s10310_011_0266_5 crossref_primary_10_1111_j_1574_6941_2011_01192_x crossref_primary_10_1007_s11104_013_1840_8 crossref_primary_10_1128_AEM_06102_11 crossref_primary_10_1016_j_scitotenv_2019_07_354 crossref_primary_10_3390_nitrogen4040023 crossref_primary_10_1007_s42832_020_0022_x crossref_primary_10_1371_journal_pone_0130201 crossref_primary_10_1016_j_soilbio_2012_07_003 crossref_primary_10_1371_journal_pone_0245626 crossref_primary_10_1007_s00203_021_02535_9 crossref_primary_10_1007_s10533_016_0193_9 crossref_primary_10_1007_s00374_016_1171_z crossref_primary_10_1080_17550874_2012_738714 crossref_primary_10_3389_fmicb_2015_01149 crossref_primary_10_1128_AEM_08018_11 crossref_primary_10_3389_fmicb_2021_633535 crossref_primary_10_1038_ncomms1055 crossref_primary_10_1016_j_soilbio_2019_107539 crossref_primary_10_1016_j_soilbio_2021_108168 crossref_primary_10_3136_fstr_20_915 crossref_primary_10_3389_fmicb_2018_01620 crossref_primary_10_1016_j_scitotenv_2021_150388 crossref_primary_10_1007_s10533_012_9787_z crossref_primary_10_1007_s11368_020_02586_3 crossref_primary_10_1111_1758_2229_12194 crossref_primary_10_3390_d11040061 crossref_primary_10_3390_genes12040535 crossref_primary_10_1007_s00792_009_0268_9 crossref_primary_10_1016_j_agee_2023_108462 crossref_primary_10_1080_17550874_2014_984786 crossref_primary_10_1371_journal_pone_0164531 crossref_primary_10_1111_1462_2920_13512 crossref_primary_10_1016_j_pedobi_2018_10_001 crossref_primary_10_1111_j_1365_2486_2011_02545_x crossref_primary_10_3390_su11123251 crossref_primary_10_1071_CP23149 crossref_primary_10_1134_S0016702917100020 crossref_primary_10_1007_s00248_014_0415_4 crossref_primary_10_1016_j_apsoil_2022_104529 crossref_primary_10_1371_journal_pone_0102609 crossref_primary_10_1111_gcbb_12860 crossref_primary_10_1007_s12275_009_0194_7 crossref_primary_10_3390_agriculture11080716 crossref_primary_10_1186_s13568_020_01018_2 crossref_primary_10_1111_mec_12541 crossref_primary_10_3390_agronomy14030635 crossref_primary_10_1111_gcb_16765 crossref_primary_10_1016_j_scitotenv_2017_12_142 crossref_primary_10_1111_gcb_12609 crossref_primary_10_1016_j_soilbio_2013_10_026 crossref_primary_10_3390_soilsystems2030052 crossref_primary_10_1016_j_soilbio_2010_03_026 crossref_primary_10_1042_BST0390309 crossref_primary_10_1016_j_soilbio_2015_07_005 crossref_primary_10_1080_17550874_2015_1010189 crossref_primary_10_1016_j_geoderma_2020_114876 crossref_primary_10_1007_s11368_018_1991_6 crossref_primary_10_1038_ismej_2014_36 crossref_primary_10_1890_10_0459_1 crossref_primary_10_1093_jpe_rtr046 crossref_primary_10_1007_s11104_017_3313_y crossref_primary_10_1073_pnas_0907303106 crossref_primary_10_1890_15_1160_1 crossref_primary_10_3389_fmicb_2018_01776 crossref_primary_10_1007_s11104_020_04424_4 crossref_primary_10_1016_j_soilbio_2019_05_018 crossref_primary_10_1016_j_apsoil_2022_104420 crossref_primary_10_1007_s11368_021_03100_z crossref_primary_10_1016_j_soilbio_2014_01_014 crossref_primary_10_1016_j_syapm_2009_12_005 crossref_primary_10_1007_s10533_013_9886_5 crossref_primary_10_1016_j_soilbio_2013_04_022 crossref_primary_10_1016_S1002_0160_15_60068_6 crossref_primary_10_3390_f14061154 crossref_primary_10_1016_j_apsoil_2014_06_003 crossref_primary_10_1657_AAAR0016_050 crossref_primary_10_1016_j_apsoil_2020_103543 crossref_primary_10_1016_j_envpol_2013_03_060 crossref_primary_10_1016_j_ejsobi_2015_06_003 crossref_primary_10_1016_j_ejsobi_2015_06_002 |
Cites_doi | 10.1007/s10533-004-7112-1 10.1111/j.1365-2389.2007.00925.x 10.1038/18205 10.1016/0165-2370(89)80003-8 10.1016/j.soilbio.2007.06.021 10.1038/nature01136 10.1128/AEM.63.4.1382-1388.1997 10.1007/s003740050335 10.1111/j.1462-2920.2006.01041.x 10.1016/S0038-0717(02)00074-3 10.1016/S0958-1669(02)00314-2 10.2136/sssaj2004.1320 10.1111/j.1574-6941.1996.tb00347.x 10.1126/science.1094678 10.1890/06-1847.1 10.1146/annurev.mi.41.100187.002341 10.1016/j.soilbio.2007.05.008 10.1890/02-0433 10.1128/AEM.71.12.8335-8343.2005 10.1111/j.1462-2920.2007.01358.x 10.1093/bioinformatics/bth226 10.1016/j.jaap.2005.03.009 10.2136/sssaj2002.1290 10.1111/j.1365-2486.2007.01405.x 10.1023/B:BIOG.0000031028.53116.9b 10.1007/s10533-004-0370-0 10.1111/j.1461-0248.2007.01053.x 10.1128/AEM.70.5.2867-2879.2004 10.1007/s00442-007-0804-1 10.1890/06-0219 10.1073/pnas.0408648102 10.2136/sssaj1993.03615995005700010034x 10.1111/j.1095-8312.2004.00368.x 10.1046/j.1462-2920.2003.00491.x 10.1128/aem.63.12.4993-4995.1997 10.1111/j.1461-0248.2008.01219.x 10.2307/2269486 10.1007/BF00002569 10.1099/ijs.0.02520-0 10.1046/j.1365-2745.1998.8650717.x 10.1046/j.1365-2389.1998.00164.x 10.1029/2006GL028222 10.1002/(SICI)1097-0231(19990715)13:13<1278::AID-RCM649>3.0.CO;2-N 10.1128/AEM.03006-05 10.1128/AEM.71.12.8228-8235.2005 10.1890/06-0164 10.1016/j.tim.2006.03.004 10.1016/S0038-0717(00)00102-4 10.1016/j.soilbio.2004.04.023 10.1890/03-5120 10.1111/j.1462-2920.2006.01036.x 10.1016/j.resmic.2005.03.004 10.1007/BF00002772 10.1016/0038-0717(96)00007-7 10.1016/S0022-2836(05)80360-2 10.1073/pnas.0506625102 10.1128/AEM.60.5.1572-1580.1994 10.1128/AEM.71.7.4117-4120.2005 10.1016/S0038-0717(99)00016-4 10.1016/S0723-2020(87)80011-5 10.1007/s00248-007-9320-4 10.1128/AEM.71.3.1501-1506.2005 10.1038/35102500 10.1038/nature05847 10.1038/nature03911 10.1126/science.1086940 10.1111/j.1469-8137.2004.01159.x 10.1111/j.1462-2920.2006.01181.x 10.1038/nature04983 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2 10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.CO;2 10.2307/1940854 10.1128/AEM.68.8.3673-3682.2002 10.1007/s00248-006-9144-7 10.1186/1471-2105-7-371 10.1111/j.1469-185X.1988.tb00725.x 10.1073/pnas.94.1.277 10.1093/oso/9780195117288.001.0001 10.1016/j.soilbio.2004.04.026 |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd |
Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
DBID | FBQ BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7SN 7T7 8FD C1K FR3 M7N P64 7X8 OTOTI |
DOI | 10.1111/j.1462-2920.2008.01735.x |
DatabaseName | AGRIS Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Chemistry Environmental Sciences |
EISSN | 1462-2920 |
EndPage | 3105 |
ExternalDocumentID | 1003770 10_1111_j_1462_2920_2008_01735_x 18764871 EMI1735 ark_67375_WNG_P6V34W1L_0 US201301546713 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XFK XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7QL 7SN 7T7 8FD C1K FR3 M7N P64 7X8 AAPBV OTOTI UMP |
ID | FETCH-LOGICAL-c5535-288fe019be14637fe07416369a6654749f792123ce4f7fcb1bece043fa01141b3 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 |
IngestDate | Fri May 19 00:38:55 EDT 2023 Tue Dec 03 22:49:52 EST 2024 Wed Dec 04 05:24:20 EST 2024 Fri Dec 06 02:48:52 EST 2024 Sat Sep 28 07:45:20 EDT 2024 Sat Aug 24 01:12:31 EDT 2024 Wed Oct 30 10:01:46 EDT 2024 Wed Dec 27 19:16:54 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5535-288fe019be14637fe07416369a6654749f792123ce4f7fcb1bece043fa01141b3 |
Notes | http://dx.doi.org/10.1111/j.1462-2920.2008.01735.x istex:D8CF2B407F91D665867FC312B69ED6714A16EEB7 ark:/67375/WNG-P6V34W1L-0 ArticleID:EMI1735 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 DE-AC05-00OR22725 USDOE Office of Science (SC) |
PMID | 18764871 |
PQID | 19616725 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | osti_scitechconnect_1003770 proquest_miscellaneous_69741248 proquest_miscellaneous_19616725 crossref_primary_10_1111_j_1462_2920_2008_01735_x pubmed_primary_18764871 wiley_primary_10_1111_j_1462_2920_2008_01735_x_EMI1735 istex_primary_ark_67375_WNG_P6V34W1L_0 fao_agris_US201301546713 |
PublicationCentury | 2000 |
PublicationDate | November 2008 |
PublicationDateYYYYMMDD | 2008-11-01 |
PublicationDate_xml | – month: 11 year: 2008 text: November 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: United States |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2008 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | Enwall, K., Philippot, L., and Hallin, S. (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71: 8335-8343. Sinsabaugh, R.L., Zak, D.R., Gallo, M., Lauber, C., and Amonette, R. (2004) Nitrogen deposition and dissolved organic carbon production in northern temperate forests. Soil Biol Biochem 36: 1509-1515. Eswaran, H., Vandenberg, E., and Reich, P. (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57: 192-194. Kirk, T.K., and Farrell, R.L. (1987) Enzymatic combustion - the microbial degradation of lignin. Ann Rev Microbiol 41: 465-505. Lozupone, C., and Knight, R. (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71: 8228-8235. Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., et al. (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447: 848-850. Weintraub, M.N., Scott-Denton, L.E., Schmidt, S.K., and Monson, R.K. (2007) The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154: 327-338. Bardgett, R.D., Lovell, R.D., Hobbs, P.J., and Jarvis, S.C. (1999) Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol Biochem 31: 1021-1030. Fog, K. (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev Camb Philos Soc 63: 433-462. Janssen, P.H., Yates, P.S., Grinton, B.E., Taylor, P.M., and Sait, M. (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68: 2391-2396. Zak, D.R., Holmes, W.E., White, D.C., Peacock, A.D., and Tilman, D. (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84: 2042-2050. Zhang, H., Sekiguchi, Y., Hanada, S., Hugenholtz, P., Kim, H., Kamagata, Y., and Nakamura, K. (2003) Gemmatimonas aurantiaca gen. nov., sp nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53: 1155-1163. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806-809. Townsend, A.R., Howarth, R.W., Bazzaz, F.A., Booth, M.S., Cleveland, C.C., Collinge, S.K., et al. (2003) Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1: 240-246. Knops, J.M.H., Naeemw, S., and Reich, P.B. (2007) The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Glob Change Biol 13: 1960-1971. Könneke, M., Bernhard, A.E., De La Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546. Neff, J.C., Finlay, J.C., Zimov, S.A., Davydov, S.P., Carrasco, J.J., Schuur, E.A.G., and Davydova, A.I. (2006) Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophys Res Lett 33: L23401. Waldrop, M.P., Zak, D.R., and Sinsabaugh, R.L. (2004a) Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem 36: 1443-1451. Waldrop, M.P., Zak, D.R., Sinsabaugh, R.L., Gallo, M., and Lauber, C. (2004b) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14: 1172-1177. DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069-5072. Costello, E.K., and Schmidt, S.K. (2006) Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ Microbiol 8: 1471-1486. Dijkstra, E.F., Boon, J.J., and Van Mourik, J.M. (1998) Analytical pyrolysis of a soil profile under Scots pine. Eur J Soil Sci 49: 295-304. Lipson, D.A., and Schmidt, S.K. (2004) Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Appl Environ Microbiol 70: 2867-2879. NRC (2000) Clean Coastal Waters: Understanding and Reducing the Problems of Nutrient Pollution. Washington, DC, USA: National Academy Press. Paul, E.A., and Clark, F.E. (1997) Soil Microbiology and Biochemistry. San Diego, CA, USA: Academic Press. Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., et al. (2004) Nitrogen cycles: past, present, and future. Biogeochemisty 70: 153-226. Nicol, G.W., and Schleper, C. (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14: 207-212. Tan, X.Y., Hurek, T., and Reinhold-Hurek, B. (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5: 1009-1015. Moré, M.I., Herrick, J.B., Silva, M.C., Ghiorse, W.C., and Madsen, E.L. (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60: 1572-1580. He, J., Shen, J., Zhang, L., Zhu, Y., Zheng, Y., Xu, M., and Di, H.J. (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9: 2364-2374. Janssen, P.H., Schuhmann, A., Morschel, E., and Rainey, F.A. (1997) Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63: 1382-1388. Lucas, R.W., Casper, B.B., Jackson, J.K., and Balser, T.C. (2007) Soil microbial communities and extracellular enzyme activity in the New Jersey Pinelands. Soil Biol Biochem 39: 2508-2519. Schulten, H.R., and Schnitzer, M. (1997) The chemistry of soil organic nitrogen: a review. Biol Fert Soil 26: 1-15. Schmidt, S.K., Costello, E.K., Nemergut, D.R., Cleveland, C.C., Reed, S.C., Weintraub, M.N., et al. (2007) Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88: 1379-1385. Sinsabaugh, R.L., Reynolds, H., and Long, T.M. (2000) Rapid assay for amidohydrolase (urease) activity in environmental samples. Soil Biol Biochem 32: 2095-2097. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403-410. Bobbink, R., Hornung, M., and Roelofs, J.G.M. (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86: 717-738. Martin, A.P. (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68: 3673-3682. Treseder, K.K. (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164: 347-355. Davidson, E.A., and Janssens, I.A. (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165-173. Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., and Oakley, B.B. (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 14683-14688. Schimel, D.S., House, J.I., Hibbard, K.A., Bousquet, P., Ciais, P., Peylin, P., et al. (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414: 169-172. Fisk, M.C., and Schmidt, S.K. (1996) Microbial responses to nitrogen additions in alpine tundra soil. Soil Biol Biochem 28: 751-755. Albrecht, W., Fischer, A., Smida, J., and Stackebrandt, E. (1987) Verrucomicrobium spinosum, a eubacterium representing an ancient line of descent. System Appl Microbiol 10: 57-62. Clark, C.M., Cleland, E.E., Collins, S.L., Fargione, J.E., Gough, L., Gross, K.L., et al. (2007) Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol Lett 10: 596-607. Sinsabaugh, R.L., Gallo, M.E., Lauber, C., Waldrop, M.P., and Zak, D.R. (2005) Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75: 201-215. Posada, D., and Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818. Pouwels, A.D., Eijkel, G.B., and Boon, J.J. (1989) Curie-Point pyrolysis capillary gas-chromatography high-resolution mass-spectrometry of microcrystalline cellulose. J Anal Appl Pyrolysis 14: 237-280. Vitousek, P.M., and Howarth, R.W. (1991) Nitrogen limitation on land and in the sea - how can it occur? Biogeochemistry 13: 87-115. Fierer, N., Jackson, J.A., Vilgalys, R., and Jackson, R.B. (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71: 4117-4120. Nemergut, D.R., Anderson, S.P., Cleveland, C.C., Martin, A.P., Miller, A.E., Seimon, A., and Schmidt, S.K. (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53: 110-122. Saiya-Cork, K.R., Sinsabaugh, R.L., and Zak, D.R. (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34: 1309-1315. Schmidt, S.K., Lipson, D.A., Ley, R.E., Fisk, M.C., and West, A.E. (2004) Impacts of chronic nitrogen additions vary seasonally and by microbial functional group in tundra soils. Biogeochemistry 69: 1-17. Schadt, C.W., Martin, A.P., Lipson, D.A., and Schmidt, S.K. (2003) Seasonal dynamics of previously unknown fungal lineages 1998; 49 2007; 39 2004; 20 2004; 164 2006; 75 2006; 72 1991; 13 2006; 33 2004; 69 2002; 13 2004; 68 1994; 27 1998; 86 1994; 60 2003; 53 1997; 7 2004; 32 1990; 215 1997; 94 1996; 28 2004; 70 1987; 41 2001 2004a; 36 2000 2005; 102 2004; 36 1993; 74 2007; 450 1999; 13 2007; 9 2006; 440 2005; 75 2003; 5 2005; 71 2003; 1 2003; 84 2006; 442 1998; 14 2001; 414 1996; 6 2004; 303 1987; 10 2007; 447 2005; 156 1997; 63 2002; 34 1997; 26 2006; 14 2005; 437 2006; 7 2006; 8 1997 2002; 419 1991 2007; 53 2007; 10 2007; 13 2007; 58 1993; 57 2000; 32 2007; 154 2002; 68 2002; 66 2000; 81 1999; 31 2004b; 14 1988; 63 1999; 398 2008; 40 2003; 301 2007; 88 1989; 14 e_1_2_7_5_1 Vitousek P.M. (e_1_2_7_80_1) 1997; 7 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 Jackson C.R. (e_1_2_7_34_1) 1997; 63 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 NRC (e_1_2_7_58_1) 2000 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 Hammel K.E. (e_1_2_7_31_1) 1997 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_78_1 e_1_2_7_38_1 Paul E.A. (e_1_2_7_59_1) 1997 |
References_xml | – volume: 88 start-page: 2105 year: 2007 end-page: 2113 article-title: Microbial nitrogen limitation increases decomposition publication-title: Ecology – volume: 75 start-page: 201 year: 2005 end-page: 215 article-title: Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition publication-title: Biogeochemistry – volume: 75 start-page: 19 year: 2006 end-page: 26 article-title: delta C‐13 values of pyrolysis products from cellulose and lignin represent the isotope content of their precursors publication-title: J Anal Appl Pyrolysis – volume: 8 start-page: 1428 year: 2006 end-page: 1440 article-title: Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA publication-title: Environ Microbiol – volume: 20 start-page: 2317 year: 2004 end-page: 2319 article-title: Bellerophon: a program to detect chimeric sequences in multiple sequence alignments publication-title: Bioinformatics – volume: 7 start-page: 737 year: 1997 end-page: 750 article-title: Human alteration of the global nitrogen cycle: source and consequences publication-title: Ecol Appl – volume: 5 start-page: 1009 year: 2003 end-page: 1015 article-title: Effect of N‐fertilization, plant genotype and environmental conditions on gene pools in roots of rice publication-title: Environ Microbiol – volume: 440 start-page: 165 year: 2006 end-page: 173 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 81 start-page: 2359 year: 2000 end-page: 2365 article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition publication-title: Ecology – volume: 447 start-page: 848 year: 2007 end-page: 850 article-title: The human footprint in the carbon cycle of temperate and boreal forests publication-title: Nature – year: 2001 – volume: 71 start-page: 1501 year: 2005 end-page: 1506 article-title: Introducing dotur, a computer program for defining operational taxonomic units and estimating species richness publication-title: Appl Environ Microbiol – volume: 58 start-page: 1330 year: 2007 end-page: 1347 article-title: Soil organic matter chemistry in allophanic soils: a pyrolysis‐GC/MS study of a Costa Rican Andosol catena publication-title: Eur J Soil Sci – volume: 70 start-page: 2867 year: 2004 end-page: 2879 article-title: Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains publication-title: Appl Environ Microbiol – volume: 32 start-page: 1363 year: 2004 end-page: 1371 article-title: ARB: a software environment for sequence data publication-title: Nucleic Acids Res – volume: 14 start-page: 817 year: 1998 end-page: 818 article-title: MODELTEST: testing the model of DNA substitution publication-title: Bioinformatics – volume: 94 start-page: 277 year: 1997 end-page: 282 article-title: Molecular phylogeny of archaea from soil publication-title: Proc Natl Acad Sci USA – volume: 154 start-page: 327 year: 2007 end-page: 338 article-title: The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem publication-title: Oecologia – volume: 57 start-page: 192 year: 1993 end-page: 194 article-title: Organic carbon in soils of the world publication-title: Soil Sci Soc Am J – volume: 156 start-page: 775 year: 2005 end-page: 784 article-title: Structure and function of alpine and arctic soil microbial communities publication-title: Res Microbiol – volume: 102 start-page: 4387 year: 2005 end-page: 4392 article-title: Functional‐ and abundance‐based mechanisms explain diversity loss due to N fertilization publication-title: Proc Natl Acad Sci USA – volume: 72 start-page: 5069 year: 2006 end-page: 5072 article-title: Greengenes, a chimera‐checked 16S rRNA gene database and workbench compatible with ARB publication-title: Appl Environ Microbiol – volume: 74 start-page: 2085 year: 1993 end-page: 2097 article-title: Constraints of nutrient availability on primary production in two alpine tundra communities publication-title: Ecology – volume: 71 start-page: 8228 year: 2005 end-page: 8235 article-title: UniFrac: a new phylogenetic method for comparing microbial communities publication-title: Appl Environ Microbiol – volume: 13 start-page: 1278 year: 1999 end-page: 1283 article-title: Molecular insight into soil carbon turnover publication-title: Rapid Commun Mass Spectrom – volume: 437 start-page: 543 year: 2005 end-page: 546 article-title: Isolation of an autotrophic ammonia‐oxidizing marine archaeon publication-title: Nature – volume: 41 start-page: 465 year: 1987 end-page: 505 article-title: Enzymatic combustion – the microbial degradation of lignin publication-title: Ann Rev Microbiol – volume: 303 start-page: 1876 year: 2004 end-page: 1879 article-title: Impact of nitrogen deposition on the species richness of grasslands publication-title: Science – volume: 10 start-page: 596 year: 2007 end-page: 607 article-title: Environmental and plant community determinants of species loss following nitrogen enrichment publication-title: Ecol Lett – year: 1997 – volume: 442 start-page: 806 year: 2006 end-page: 809 article-title: Archaea predominate among ammonia‐oxidizing prokaryotes in soils publication-title: Nature – volume: 86 start-page: 717 year: 1998 end-page: 738 article-title: The effects of air‐borne nitrogen pollutants on species diversity in natural and semi‐natural European vegetation publication-title: J Ecol – volume: 68 start-page: 2391 year: 2002 end-page: 2396 article-title: Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions , , , and publication-title: Appl Environ Microbiol – volume: 33 year: 2006 article-title: Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams publication-title: Geophys Res Lett – volume: 102 start-page: 14683 year: 2005 end-page: 14688 article-title: Ubiquity and diversity of ammonia‐oxidizing archaea in water columns and sediments of the ocean publication-title: Proc Natl Acad Sci USA – volume: 13 start-page: 213 year: 2002 end-page: 217 article-title: Molecular community analysis of microbial diversity publication-title: Curr Opin Biotechnol – volume: 71 start-page: 4117 year: 2005 end-page: 4120 article-title: Assessment of soil microbial community structure by use of taxon‐specific quantitative PCR assays publication-title: Appl Environ Microbiol – volume: 301 start-page: 1359 year: 2003 end-page: 1361 article-title: Seasonal dynamics of previously unknown fungal lineages in tundra soils publication-title: Science – volume: 1 start-page: 240 year: 2003 end-page: 246 article-title: Human health effects of a changing global nitrogen cycle publication-title: Front Ecol Environ – volume: 215 start-page: 403 year: 1990 end-page: 410 article-title: Basic local alignment search tool publication-title: J Mol Biol – volume: 66 start-page: 129 year: 2002 end-page: 141 article-title: Structural characterization of soil organic matter and humic acids in particle‐size fractions of an agricultural soil publication-title: Soil Sci Soc Am J – volume: 40 start-page: 61 year: 2008 end-page: 73 article-title: Mineralization of native soil organic matter is not regulated by size, activity or composition of the soil microbial biomass – a new perspective publication-title: Soil Biol Biochem – volume: 70 start-page: 153 year: 2004 end-page: 226 article-title: Nitrogen cycles: past, present, and future publication-title: Biogeochemisty – start-page: 115 year: 1991 end-page: 175 – volume: 28 start-page: 751 year: 1996 end-page: 755 article-title: Microbial responses to nitrogen additions in alpine tundra soil publication-title: Soil Biol Biochem – volume: 71 start-page: 8335 year: 2005 end-page: 8343 article-title: Activity and composition of the denitrifying bacterial community respond differently to long‐term fertilization publication-title: Appl Environ Microbiol – volume: 63 start-page: 4993 year: 1997 end-page: 4995 article-title: A simple, efficient method for the separation of humic substances and DNA from environmental samples publication-title: Appl Environ Microbiol – volume: 164 start-page: 347 year: 2004 end-page: 355 article-title: A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO in field studies publication-title: New Phytol – volume: 14 start-page: 1172 year: 2004b end-page: 1177 article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity publication-title: Ecol Appl – volume: 53 start-page: 110 year: 2007 end-page: 122 article-title: Microbial community succession in an unvegetated, recently deglaciated soil publication-title: Microb Ecol – volume: 7 start-page: 371 year: 2006 article-title: UniFrac – an online tool for comparing microbial community diversity in a phylogenetic context publication-title: BMC Bioinformatics – volume: 68 start-page: 132 year: 2004 end-page: 138 article-title: Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests publication-title: Soil Sci Soc Am J – volume: 9 start-page: 2364 year: 2007 end-page: 2374 article-title: Quantitative analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices publication-title: Environ Microbiol – volume: 60 start-page: 1572 year: 1994 end-page: 1580 article-title: Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment publication-title: Appl Environ Microbiol – volume: 88 start-page: 1379 year: 2007 end-page: 1385 article-title: Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil publication-title: Ecology – volume: 36 start-page: 1443 year: 2004a end-page: 1451 article-title: Microbial community response to nitrogen deposition in northern forest ecosystems publication-title: Soil Biol Biochem – volume: 63 start-page: 433 year: 1988 end-page: 462 article-title: The effect of added nitrogen on the rate of decomposition of organic matter publication-title: Biol Rev Camb Philos Soc – volume: 6 start-page: 806 year: 1996 end-page: 814 article-title: Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen publication-title: Ecol Appl – volume: 13 start-page: 87 year: 1991 end-page: 115 article-title: Nitrogen limitation on land and in the sea – how can it occur? publication-title: Biogeochemistry – year: 2000 – volume: 31 start-page: 1021 year: 1999 end-page: 1030 article-title: Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands publication-title: Soil Biol Biochem – volume: 63 start-page: 1382 year: 1997 end-page: 1388 article-title: Novel anaerobic ultramicrobacteria belonging to the lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil publication-title: Appl Environ Microbiol – volume: 32 start-page: 2095 year: 2000 end-page: 2097 article-title: Rapid assay for amidohydrolase (urease) activity in environmental samples publication-title: Soil Biol Biochem – volume: 84 start-page: 2042 year: 2003 end-page: 2050 article-title: Plant diversity, soil microbial communities, and ecosystem function: are there any links? publication-title: Ecology – volume: 8 start-page: 1471 year: 2006 end-page: 1486 article-title: Microbial diversity in alpine tundra wet meadow soil: novel from a cold, water‐saturated environment publication-title: Environ Microbiol – volume: 9 start-page: 612 year: 2007 end-page: 624 article-title: Traditional cattle manure application determines abundance, diversity and activity of methanogenic Archaea in arable European soil publication-title: Environ Microbiol – volume: 14 start-page: 207 year: 2006 end-page: 212 article-title: Ammonia‐oxidising : important players in the nitrogen cycle? publication-title: Trends Microbiol – volume: 450 start-page: 879 year: 2007 end-page: 882 article-title: Methane oxidation by an extremely acidophilic bacterium of the phylum publication-title: Nature – volume: 13 start-page: 1960 year: 2007 end-page: 1971 article-title: The impact of elevated CO , increased nitrogen availability and biodiversity on plant tissue quality and decomposition publication-title: Glob Change Biol – volume: 53 start-page: 1155 year: 2003 end-page: 1163 article-title: gen. nov., sp nov., a gram‐negative, aerobic, polyphosphate‐accumulating micro‐organism, the first cultured representative of the new bacterial phylum phyl. nov publication-title: Int J Syst Evol Microbiol – volume: 419 start-page: 915 year: 2002 end-page: 917 article-title: Variable effects of nitrogen additions on the stability and turnover of soil carbon publication-title: Nature – volume: 26 start-page: 1 year: 1997 end-page: 15 article-title: The chemistry of soil organic nitrogen: a review publication-title: Biol Fert Soil – volume: 39 start-page: 2508 year: 2007 end-page: 2519 article-title: Soil microbial communities and extracellular enzyme activity in the New Jersey Pinelands publication-title: Soil Biol Biochem – volume: 36 start-page: 1509 year: 2004 end-page: 1515 article-title: Nitrogen deposition and dissolved organic carbon production in northern temperate forests publication-title: Soil Biol Biochem – start-page: 33 year: 1997 end-page: 45 – volume: 14 start-page: 237 year: 1989 end-page: 280 article-title: Curie‐Point pyrolysis capillary gas‐chromatography high‐resolution mass‐spectrometry of microcrystalline cellulose publication-title: J Anal Appl Pyrolysis – volume: 69 start-page: 1 year: 2004 end-page: 17 article-title: Impacts of chronic nitrogen additions vary seasonally and by microbial functional group in tundra soils publication-title: Biogeochemistry – volume: 10 start-page: 57 year: 1987 end-page: 62 article-title: , a eubacterium representing an ancient line of descent publication-title: System Appl Microbiol – volume: 49 start-page: 295 year: 1998 end-page: 304 article-title: Analytical pyrolysis of a soil profile under Scots pine publication-title: Eur J Soil Sci – volume: 68 start-page: 3673 year: 2002 end-page: 3682 article-title: Phylogenetic approaches for describing and comparing the diversity of microbial communities publication-title: Appl Environ Microbiol – volume: 27 start-page: 23 year: 1994 end-page: 33 article-title: Fluxes of nitrous oxide and methane from nitrogen‐amended soils in a Colorado alpine ecosystem publication-title: Biogeochemistry – volume: 34 start-page: 1309 year: 2002 end-page: 1315 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an forest soil publication-title: Soil Biol Biochem – volume: 398 start-page: 145 year: 1999 end-page: 148 article-title: Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests publication-title: Nature – volume: 414 start-page: 169 year: 2001 end-page: 172 article-title: Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems publication-title: Nature – ident: e_1_2_7_71_1 doi: 10.1007/s10533-004-7112-1 – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-2389.2007.00925.x – ident: e_1_2_7_51_1 doi: 10.1038/18205 – ident: e_1_2_7_61_1 doi: 10.1016/0165-2370(89)80003-8 – ident: e_1_2_7_37_1 doi: 10.1016/j.soilbio.2007.06.021 – ident: e_1_2_7_53_1 doi: 10.1038/nature01136 – ident: e_1_2_7_35_1 doi: 10.1128/AEM.63.4.1382-1388.1997 – ident: e_1_2_7_68_1 doi: 10.1007/s003740050335 – ident: e_1_2_7_14_1 doi: 10.1111/j.1462-2920.2006.01041.x – ident: e_1_2_7_62_1 doi: 10.1016/S0038-0717(02)00074-3 – ident: e_1_2_7_16_1 doi: 10.1016/S0958-1669(02)00314-2 – ident: e_1_2_7_18_1 doi: 10.2136/sssaj2004.1320 – ident: e_1_2_7_21_1 doi: 10.1111/j.1574-6941.1996.tb00347.x – ident: e_1_2_7_73_1 doi: 10.1126/science.1094678 – ident: e_1_2_7_15_1 doi: 10.1890/06-1847.1 – ident: e_1_2_7_38_1 doi: 10.1146/annurev.mi.41.100187.002341 – ident: e_1_2_7_46_1 doi: 10.1016/j.soilbio.2007.05.008 – ident: e_1_2_7_84_1 doi: 10.1890/02-0433 – ident: e_1_2_7_22_1 doi: 10.1128/AEM.71.12.8335-8343.2005 – ident: e_1_2_7_32_1 doi: 10.1111/j.1462-2920.2007.01358.x – ident: e_1_2_7_36_1 doi: 10.1111/j.1462-2920.2006.01041.x – ident: e_1_2_7_33_1 doi: 10.1093/bioinformatics/bth226 – ident: e_1_2_7_72_1 doi: 10.1016/j.jaap.2005.03.009 – ident: e_1_2_7_12_1 doi: 10.2136/sssaj2002.1290 – ident: e_1_2_7_39_1 doi: 10.1111/j.1365-2486.2007.01405.x – ident: e_1_2_7_66_1 doi: 10.1023/B:BIOG.0000031028.53116.9b – ident: e_1_2_7_28_1 doi: 10.1007/s10533-004-0370-0 – ident: e_1_2_7_13_1 doi: 10.1111/j.1461-0248.2007.01053.x – ident: e_1_2_7_43_1 doi: 10.1128/AEM.70.5.2867-2879.2004 – ident: e_1_2_7_83_1 doi: 10.1007/s00442-007-0804-1 – volume: 7 start-page: 737 year: 1997 ident: e_1_2_7_80_1 article-title: Human alteration of the global nitrogen cycle: source and consequences publication-title: Ecol Appl contributor: fullname: Vitousek P.M. – ident: e_1_2_7_47_1 doi: 10.1890/06-0219 – ident: e_1_2_7_74_1 doi: 10.1073/pnas.0408648102 – ident: e_1_2_7_23_1 doi: 10.2136/sssaj1993.03615995005700010034x – ident: e_1_2_7_60_1 doi: 10.1111/j.1095-8312.2004.00368.x – ident: e_1_2_7_75_1 doi: 10.1046/j.1462-2920.2003.00491.x – volume: 63 start-page: 4993 year: 1997 ident: e_1_2_7_34_1 article-title: A simple, efficient method for the separation of humic substances and DNA from environmental samples publication-title: Appl Environ Microbiol doi: 10.1128/aem.63.12.4993-4995.1997 contributor: fullname: Jackson C.R. – ident: e_1_2_7_17_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_7_76_1 doi: 10.2307/2269486 – ident: e_1_2_7_52_1 doi: 10.1007/BF00002569 – ident: e_1_2_7_85_1 doi: 10.1099/ijs.0.02520-0 – ident: e_1_2_7_6_1 doi: 10.1046/j.1365-2745.1998.8650717.x – ident: e_1_2_7_20_1 doi: 10.1046/j.1365-2389.1998.00164.x – ident: e_1_2_7_54_1 doi: 10.1029/2006GL028222 – ident: e_1_2_7_30_1 doi: 10.1002/(SICI)1097-0231(19990715)13:13<1278::AID-RCM649>3.0.CO;2-N – ident: e_1_2_7_19_1 doi: 10.1128/AEM.03006-05 – ident: e_1_2_7_44_1 doi: 10.1128/AEM.71.12.8228-8235.2005 – ident: e_1_2_7_67_1 doi: 10.1890/06-0164 – ident: e_1_2_7_57_1 doi: 10.1016/j.tim.2006.03.004 – ident: e_1_2_7_69_1 doi: 10.1016/S0038-0717(00)00102-4 – volume-title: Soil Microbiology and Biochemistry year: 1997 ident: e_1_2_7_59_1 contributor: fullname: Paul E.A. – ident: e_1_2_7_81_1 doi: 10.1016/j.soilbio.2004.04.023 – volume-title: Clean Coastal Waters: Understanding and Reducing the Problems of Nutrient Pollution year: 2000 ident: e_1_2_7_58_1 contributor: fullname: NRC – ident: e_1_2_7_82_1 doi: 10.1890/03-5120 – ident: e_1_2_7_10_1 doi: 10.1111/j.1462-2920.2006.01036.x – ident: e_1_2_7_55_1 doi: 10.1016/j.resmic.2005.03.004 – ident: e_1_2_7_79_1 doi: 10.1007/BF00002772 – ident: e_1_2_7_25_1 doi: 10.1016/0038-0717(96)00007-7 – ident: e_1_2_7_3_1 doi: 10.1016/S0022-2836(05)80360-2 – ident: e_1_2_7_27_1 doi: 10.1073/pnas.0506625102 – start-page: 33 volume-title: Driven by Nature: Plant Litter Quality and Decomposition year: 1997 ident: e_1_2_7_31_1 contributor: fullname: Hammel K.E. – ident: e_1_2_7_50_1 doi: 10.1128/AEM.60.5.1572-1580.1994 – ident: e_1_2_7_24_1 doi: 10.1128/AEM.71.7.4117-4120.2005 – ident: e_1_2_7_4_1 doi: 10.1016/S0038-0717(99)00016-4 – ident: e_1_2_7_2_1 doi: 10.1016/S0723-2020(87)80011-5 – ident: e_1_2_7_41_1 doi: 10.1007/s00248-007-9320-4 – ident: e_1_2_7_65_1 doi: 10.1128/AEM.71.3.1501-1506.2005 – ident: e_1_2_7_64_1 doi: 10.1038/35102500 – ident: e_1_2_7_48_1 doi: 10.1038/nature05847 – ident: e_1_2_7_40_1 doi: 10.1038/nature03911 – ident: e_1_2_7_63_1 doi: 10.1126/science.1086940 – ident: e_1_2_7_78_1 doi: 10.1111/j.1469-8137.2004.01159.x – ident: e_1_2_7_29_1 doi: 10.1111/j.1462-2920.2006.01181.x – ident: e_1_2_7_42_1 doi: 10.1038/nature04983 – ident: e_1_2_7_11_1 doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2 – ident: e_1_2_7_77_1 doi: 10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.CO;2 – ident: e_1_2_7_8_1 doi: 10.2307/1940854 – ident: e_1_2_7_49_1 doi: 10.1128/AEM.68.8.3673-3682.2002 – ident: e_1_2_7_56_1 doi: 10.1007/s00248-006-9144-7 – ident: e_1_2_7_45_1 doi: 10.1186/1471-2105-7-371 – ident: e_1_2_7_26_1 doi: 10.1111/j.1469-185X.1988.tb00725.x – ident: e_1_2_7_5_1 doi: 10.1073/pnas.94.1.277 – ident: e_1_2_7_7_1 doi: 10.1093/oso/9780195117288.001.0001 – ident: e_1_2_7_70_1 doi: 10.1016/j.soilbio.2004.04.026 |
SSID | ssj0017370 |
Score | 2.445607 |
Snippet | Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the... Summary Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known... |
SourceID | osti proquest crossref pubmed wiley istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3093 |
SubjectTerms | ABUNDANCE Archaea Archaea - classification Archaea - isolation & purification AROMATICS AVAILABILITY BACTERIA Bacteria - classification Bacteria - isolation & purification BASIC BIOLOGICAL SCIENCES Basidiomycetes Biodiversity CARBON Carbon - metabolism CARBON COMPOUNDS CHEMISTRY ENVIRONMENTAL SCIENCES ENZYMES FERTILIZATION Fertilizers FUNGI Fungi - classification Fungi - isolation & purification Molecular Sequence Data NITROGEN Nitrogen - metabolism Organic Chemicals - analysis ORGANIC MATTER Phylogeny PRODUCTIVITY PROTEINS Sequence Analysis, DNA Soil - analysis Soil Microbiology SOILS TUNDRA Verrucomicrobia |
Title | effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling |
URI | https://api.istex.fr/ark:/67375/WNG-P6V34W1L-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2008.01735.x https://www.ncbi.nlm.nih.gov/pubmed/18764871 https://search.proquest.com/docview/19616725 https://search.proquest.com/docview/69741248 https://www.osti.gov/biblio/1003770 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagEhIX3rBhefiAuKWq7dhOuCFgWSFYIaDs3izHsVdVS7JKU4nlD_C3mXHSLq0WCSGkHiK5cTvuPL5pvpkh5Bkg8ABRmKeVEy7NrFBpIYsqtSqzrqgm0sXenR-O1OE0e3ciTwb-E9bC9P0hNn-4oWVEf40GbsvlrpHzFKctDZRIpoUcI55kQiO77_WnTScpWIpz44Zb2A6p59KNtiLV1WAbwK949LAwasD-LsOk2xA3xqiDm2S-lq6npszHq64cux87jR__j_i3yI0BytKXve7dJld8fYdc64dbnt8lP0ED6UAXoU2grm_DS8GHtA2oLQ1I6V4MdaAUXnZxBl-Ldqu6ai1dNrMF_TaLjaLgY1xfyYL9X1_Q2W88eAqwmzrblrhDXV3s786x7PP0HpkevPny6jAdxj6kTkohU57nwQPyLD1IKDRcR9SoChsnJWdF0AUGXOezoIMrGaihn2QiWEzuWCnuk1Hd1H6PUG5L8EnMTZSvACnq3MkgBOOOi1Dk0ieErX9ic9Z39zBbWRE3eMDDrE48YPM9IXugC8aeghM2088cH_0CDlWQ7SfkeVSQzV62nSNxTktzfPTWfFRfRXbM3ptJQvZRgwygHGzV65DT5DrsHy20htWna8UyYOz4BMfWvlktDbhLpjSXf36HgvwQIFuekAe9Rl7IBXEPslOWEBX16q8FNuAQ8Orhv964T65Hlk2s4HxERl278o8BynXlk2ikvwBe2zct |
link.rule.ids | 230,314,780,784,885,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5BEYKX8ZuFAfMD4i1VHcf5wRsCRoGuQrCyvVmOY0_VSjJ1qbTxD_Bvc-ekHa2GhBBSHiK5cWL3u_Pn5O47gBfIwB2uwlFYGmHCWIskzGVehjqJtcnLgTReu3N_nAwn8ccjedSVA6JcmFYfYvXCjSzD-2sycHohvWnlUUjllrqYSJ4K2UdCeQOtn1N819svKy0pbPOV47pr-EZYz5U9ra1V152ukcHS5GNDr0YLvIqVrpNcv0rt3YHZcnxtcMpJf9EUffNjQ_rxP03AXdjq2Cx73cLvHlyz1X242da3vHgAPxGErIsYYbVjplXiZehG5jUilzmK6p51qaAMDz07xedizaIq55qd1dMZ-z71WlF4G9Mms5AE7Cs2_S0UniHzZkbPC-qhKi_7NxeU-Xn8ECZ77w7eDMOu8kNopBQyjLLMWSSfhcURihTPPXFMcu2LJce5S3Nac42NXepMwRGJdhALp2l_xwvxCHpVXdltYJEu0C1xM0hsiWQxzYx0QvDIRMLlmbQB8OV_rE5bgQ-1tjGKFE1wV66TJlidB7CNYFD6GP2wmnyN6OsvUlEEnQjgpUfIqi89P6HYuVSqw_F79Tn5JuJDPlKDAHYIQgqJDqn1GgprMg1JSIs0xdbdJbIU2jt9xNGVrRdnCj0mT9JI_vkXCW4RkbVlATxuIXk5Llz6cIPKA0g8sP56wAp9Ap09-dcLd-HW8GB_pEYfxp924LYPuvEJnU-h18wX9hkyu6Z47i32F-YBO04 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELagCMQLv2Fhg_kB8ZaqjmMn4W1iKwNGNQFle7Mcx56qlqTKUonxD_Bv785JO1oNCSGkPkR14vScu_N3zd13hLwCBO5gF47CwnATxprLMBNZEWoZa5MVA2E8d-enkTwcxx9OxWmX_4S1MC0_xOoPN7QM76_RwOeF2zTyKMRuS11KJEu46AOevAXfZ8ijv_95RSUFY75xXHcN28jquXamta3qptMVAFhcexjoVWCA14HSdYzrN6nhfTJditfmpkz7iybvm58bzI__R_4H5F6HZeleq3wPyQ1bPiK32-6WF4_JL1BB2uWL0MpR0_LwUnAidQV6Sx3mdM-6QlAKHz2bw8-izaIsak3Pq8mMfp94pii4jWlLWZAA9g2d_JYITwF3U6PrHGcoi6v5zQXWfZ49IePhwde3h2HX9yE0QnARRmnqLEDP3IKEPIFjDxtlpn2r5DhzSYY7rrGxS5zJGeihHcTcaYzuWM6fkl5ZlXaL0Ejn4JSYGUhbAFRMUiMc5ywyEXdZKmxA2PIRq3lL76HWwqJI4QJ3zTpxgdWPgGyBLih9Bl5Yjb9E-O4XgKiEcD8gr72CrObS9RQz5xKhTkbv1LH8xuMTdqQGAdlGDVIAc5Cr12BSk2mQQJonCYzuLhVLgbXjKxxd2mpxrsBfMplE4s9nSAgQAbOlAXnWauSVXLDxQXjKAiK9Xv21wAo8Ah49_9cLd8md4_2hOno_-rhN7vqMG1_NuUN6Tb2wLwDWNflLb6-X7cM5_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=effects+of+chronic+nitrogen+fertilization+on+alpine+tundra+soil+microbial+communities%3A+implications+for+carbon+and+nitrogen+cycling&rft.jtitle=Environmental+microbiology&rft.au=Nemergut%2C+Diana+R&rft.au=Townsend%2C+Alan+R&rft.au=Sattin%2C+Sarah+R&rft.au=Freeman%2C+Kristen+R&rft.date=2008-11-01&rft.pub=Oxford%2C+UK+%3A+Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=10&rft.issue=11&rft.spage=3093&rft.epage=3105&rft_id=info:doi/10.1111%2Fj.1462-2920.2008.01735.x&rft.externalDocID=US201301546713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |