effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling

Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 10; no. 11; pp. 3093 - 3105
Main Authors Nemergut, Diana R, Townsend, Alan R, Sattin, Sarah R, Freeman, Kristen R, Fierer, Noah, Neff, Jason C, Bowman, William D, Schadt, Christopher W, Weintraub, Michael N, Schmidt, Steven K
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.11.2008
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.
AbstractList Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.
Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0–5 cm) samples from five control and five long‐term N‐amended plots established and maintained at the Niwot Ridge Long‐term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes , and decreases in the relative abundance of the Verrucomicrobia . We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N‐amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N‐amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G‐lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.
Summary Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0–5 cm) samples from five control and five long‐term N‐amended plots established and maintained at the Niwot Ridge Long‐term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N‐amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N‐amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G‐lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.
Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.
Author Sattin, Sarah R.
Schadt, Christopher W.
Neff, Jason C.
Fierer, Noah
Bowman, William D.
Townsend, Alan R.
Schmidt, Steven K.
Nemergut, Diana R.
Freeman, Kristen R.
Weintraub, Michael N.
Author_xml – sequence: 1
  fullname: Nemergut, Diana R
– sequence: 2
  fullname: Townsend, Alan R
– sequence: 3
  fullname: Sattin, Sarah R
– sequence: 4
  fullname: Freeman, Kristen R
– sequence: 5
  fullname: Fierer, Noah
– sequence: 6
  fullname: Neff, Jason C
– sequence: 7
  fullname: Bowman, William D
– sequence: 8
  fullname: Schadt, Christopher W
– sequence: 9
  fullname: Weintraub, Michael N
– sequence: 10
  fullname: Schmidt, Steven K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18764871$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1003770$$D View this record in Osti.gov
BookMark eNqNkktv1DAUhSNURB_wF8BiwW6CX7ETJBaoakul4SFB6dJyPNdTD4k92Bkx0y1_HKcZTZcQWcqV_J1z7Xt8Whz54KEoEMElyd_bVUm4oDPaUFxSjOsSE8mqcvukODlsHB1qQo-L05RWeKQkflYck1oKXktyUvwBa8EMCQWLzF0M3hnk3RDDEjyyEAfXuXs9uOBRXrpbOw9o2PhF1CgF16HemRhapztkQt9vstZBeodcv-6ceRAmZENERsd2dPCLR3-zM53zy-fFU6u7BC_2_7Pi5vLi-_nH2fzL1fX5h_nMVBWrZrSuLWDStJDvxWSuJSeCiUYLUXHJGysbSigzwK20piUtGMCcWY0J4aRlZ8XryTekwalk3ADmzgTv8wAUwZhJiTP0ZoLWMfzaQBpU75KBrtMewiYp0eSulNf_BEkjiJC0ymA9gXlQKUWwah1dr-Mu91RjnGqlxqTUmJoa41QPcaptlr7c99i0PSwehfv8MvB-An67Dnb_bawuPl2PVdbPJr1LA2wPeh1_KpHfSqVuP1-pr-IH47dkrsbpvJp4q4PSy-iSuvlGMWGYVFzkA7G_Ha7JhQ
CitedBy_id crossref_primary_10_1002_eap_1783
crossref_primary_10_1016_j_apsoil_2024_105486
crossref_primary_10_3390_su15010625
crossref_primary_10_1186_s40168_022_01309_9
crossref_primary_10_36906_2311_4444_22_4_12
crossref_primary_10_1007_s00374_015_1013_4
crossref_primary_10_1007_s11104_023_06281_3
crossref_primary_10_1038_s41467_019_10390_y
crossref_primary_10_1128_AEM_01224_14
crossref_primary_10_1128_spectrum_02540_23
crossref_primary_10_1016_j_funeco_2014_12_001
crossref_primary_10_1016_j_catena_2020_105110
crossref_primary_10_1016_j_jhazmat_2023_132646
crossref_primary_10_1016_j_envres_2024_118518
crossref_primary_10_1016_j_envres_2022_113989
crossref_primary_10_1111_1758_2229_12049
crossref_primary_10_1007_s11104_014_2181_y
crossref_primary_10_1890_10_0426_1
crossref_primary_10_7868_S0016752517100028
crossref_primary_10_1007_s11104_023_06172_7
crossref_primary_10_1038_ismej_2013_35
crossref_primary_10_1016_j_apsoil_2016_04_010
crossref_primary_10_1016_j_soilbio_2015_06_004
crossref_primary_10_2139_ssrn_3990653
crossref_primary_10_1016_j_funeco_2011_10_005
crossref_primary_10_1111_gcb_14304
crossref_primary_10_3389_fmicb_2015_00582
crossref_primary_10_1007_s10533_019_00624_y
crossref_primary_10_3390_microorganisms12061074
crossref_primary_10_1371_journal_pone_0175715
crossref_primary_10_1016_j_geoderma_2015_03_018
crossref_primary_10_1016_j_pedobi_2017_05_006
crossref_primary_10_1007_s00374_017_1197_x
crossref_primary_10_1016_j_coal_2011_09_009
crossref_primary_10_1017_S002185962000012X
crossref_primary_10_1007_s00374_010_0535_z
crossref_primary_10_1016_j_apsoil_2019_103378
crossref_primary_10_1111_mec_12858
crossref_primary_10_1890_14_1761_1
crossref_primary_10_1111_1758_2229_12027
crossref_primary_10_1111_j_1574_6941_2011_01173_x
crossref_primary_10_1002_ecy_3554
crossref_primary_10_1007_s13225_010_0059_8
crossref_primary_10_1016_j_soilbio_2013_07_010
crossref_primary_10_1111_sum_12671
crossref_primary_10_3389_fmicb_2023_1132016
crossref_primary_10_1080_17550874_2014_917737
crossref_primary_10_1007_s11104_020_04570_9
crossref_primary_10_1016_j_envres_2020_109261
crossref_primary_10_1111_j_1574_6941_2011_01271_x
crossref_primary_10_3389_fpls_2019_01018
crossref_primary_10_1007_s11104_016_3117_5
crossref_primary_10_1016_j_rsma_2020_101395
crossref_primary_10_1016_j_soilbio_2015_12_012
crossref_primary_10_1111_mec_13010
crossref_primary_10_1007_s11368_021_03005_x
crossref_primary_10_1016_j_agee_2016_06_039
crossref_primary_10_1139_w2012_042
crossref_primary_10_1038_s41598_020_73184_z
crossref_primary_10_1002_ecs2_2775
crossref_primary_10_1016_j_geoderma_2017_01_006
crossref_primary_10_1016_j_soilbio_2010_06_013
crossref_primary_10_3390_agronomy9100574
crossref_primary_10_1128_mSystems_00075_16
crossref_primary_10_1016_j_geoderma_2019_113894
crossref_primary_10_1016_j_geoderma_2020_114263
crossref_primary_10_1016_j_scitotenv_2018_03_217
crossref_primary_10_1016_j_soilbio_2020_108041
crossref_primary_10_1371_journal_pone_0085990
crossref_primary_10_1007_s11356_019_06750_2
crossref_primary_10_1016_j_envpol_2022_119397
crossref_primary_10_1016_j_soilbio_2013_02_019
crossref_primary_10_1016_j_wasman_2021_05_025
crossref_primary_10_1038_nrmicro2367
crossref_primary_10_1371_journal_pone_0077212
crossref_primary_10_1186_2049_2618_2_7
crossref_primary_10_1016_j_soilbio_2018_05_003
crossref_primary_10_3390_agronomy12061437
crossref_primary_10_3390_agronomy9120808
crossref_primary_10_1007_s00374_016_1142_4
crossref_primary_10_1016_j_soilbio_2018_05_006
crossref_primary_10_1016_j_catena_2018_06_004
crossref_primary_10_1016_j_jenvman_2021_112163
crossref_primary_10_1080_03650340_2018_1563685
crossref_primary_10_1016_j_apsoil_2018_12_017
crossref_primary_10_1080_03650340_2018_1555707
crossref_primary_10_1007_s00248_021_01943_0
crossref_primary_10_3390_su132111967
crossref_primary_10_1016_j_soilbio_2021_108234
crossref_primary_10_1111_j_1365_2486_2012_02639_x
crossref_primary_10_1007_s11104_019_04250_3
crossref_primary_10_1016_j_apsoil_2011_03_010
crossref_primary_10_1093_femsec_fiae057
crossref_primary_10_1111_j_1365_2486_2011_02548_x
crossref_primary_10_3390_agronomy10081175
crossref_primary_10_3390_f9100657
crossref_primary_10_1111_gcb_12435
crossref_primary_10_1007_s12275_012_2409_6
crossref_primary_10_1007_s11356_023_28062_2
crossref_primary_10_1016_j_apsoil_2010_06_003
crossref_primary_10_1016_j_apsoil_2020_103709
crossref_primary_10_1111_jam_12549
crossref_primary_10_1371_journal_pone_0067884
crossref_primary_10_1007_s00374_019_01404_4
crossref_primary_10_1007_s10533_018_0510_6
crossref_primary_10_1038_srep10197
crossref_primary_10_1016_j_ecoleng_2015_09_046
crossref_primary_10_1016_j_soilbio_2017_10_020
crossref_primary_10_1016_j_soilbio_2016_02_012
crossref_primary_10_1002_ecs2_3030
crossref_primary_10_1007_s00248_010_9750_2
crossref_primary_10_1007_s00248_010_9675_9
crossref_primary_10_1016_j_soilbio_2016_03_012
crossref_primary_10_1128_AEM_05005_11
crossref_primary_10_1007_s13225_010_0053_1
crossref_primary_10_1007_s00300_014_1613_8
crossref_primary_10_1126_sciadv_aaq1689
crossref_primary_10_1007_s11368_023_03495_x
crossref_primary_10_1111_1574_6941_12009
crossref_primary_10_1007_s11557_023_01901_9
crossref_primary_10_1016_j_soilbio_2021_108495
crossref_primary_10_1080_13416979_2018_1530082
crossref_primary_10_1016_j_apsoil_2016_02_015
crossref_primary_10_1111_j_1461_0248_2009_01360_x
crossref_primary_10_1038_s41598_018_26181_2
crossref_primary_10_1016_j_gecco_2020_e00962
crossref_primary_10_1371_journal_pone_0166062
crossref_primary_10_1016_j_pedobi_2021_150731
crossref_primary_10_1371_journal_pone_0099949
crossref_primary_10_1016_j_scitotenv_2018_09_038
crossref_primary_10_1038_s41467_017_00262_8
crossref_primary_10_1016_j_sjbs_2021_08_091
crossref_primary_10_1002_mbo3_236
crossref_primary_10_1002_mbo3_597
crossref_primary_10_1038_ismej_2014_256
crossref_primary_10_3390_agronomy11071428
crossref_primary_10_1016_j_geoderma_2023_116336
crossref_primary_10_3389_ffgc_2023_1154934
crossref_primary_10_1007_s10310_011_0266_5
crossref_primary_10_1111_j_1574_6941_2011_01192_x
crossref_primary_10_1007_s11104_013_1840_8
crossref_primary_10_1128_AEM_06102_11
crossref_primary_10_1016_j_scitotenv_2019_07_354
crossref_primary_10_3390_nitrogen4040023
crossref_primary_10_1007_s42832_020_0022_x
crossref_primary_10_1371_journal_pone_0130201
crossref_primary_10_1016_j_soilbio_2012_07_003
crossref_primary_10_1371_journal_pone_0245626
crossref_primary_10_1007_s00203_021_02535_9
crossref_primary_10_1007_s10533_016_0193_9
crossref_primary_10_1007_s00374_016_1171_z
crossref_primary_10_1080_17550874_2012_738714
crossref_primary_10_3389_fmicb_2015_01149
crossref_primary_10_1128_AEM_08018_11
crossref_primary_10_3389_fmicb_2021_633535
crossref_primary_10_1038_ncomms1055
crossref_primary_10_1016_j_soilbio_2019_107539
crossref_primary_10_1016_j_soilbio_2021_108168
crossref_primary_10_3136_fstr_20_915
crossref_primary_10_3389_fmicb_2018_01620
crossref_primary_10_1016_j_scitotenv_2021_150388
crossref_primary_10_1007_s10533_012_9787_z
crossref_primary_10_1007_s11368_020_02586_3
crossref_primary_10_1111_1758_2229_12194
crossref_primary_10_3390_d11040061
crossref_primary_10_3390_genes12040535
crossref_primary_10_1007_s00792_009_0268_9
crossref_primary_10_1016_j_agee_2023_108462
crossref_primary_10_1080_17550874_2014_984786
crossref_primary_10_1371_journal_pone_0164531
crossref_primary_10_1111_1462_2920_13512
crossref_primary_10_1016_j_pedobi_2018_10_001
crossref_primary_10_1111_j_1365_2486_2011_02545_x
crossref_primary_10_3390_su11123251
crossref_primary_10_1071_CP23149
crossref_primary_10_1134_S0016702917100020
crossref_primary_10_1007_s00248_014_0415_4
crossref_primary_10_1016_j_apsoil_2022_104529
crossref_primary_10_1371_journal_pone_0102609
crossref_primary_10_1111_gcbb_12860
crossref_primary_10_1007_s12275_009_0194_7
crossref_primary_10_3390_agriculture11080716
crossref_primary_10_1186_s13568_020_01018_2
crossref_primary_10_1111_mec_12541
crossref_primary_10_3390_agronomy14030635
crossref_primary_10_1111_gcb_16765
crossref_primary_10_1016_j_scitotenv_2017_12_142
crossref_primary_10_1111_gcb_12609
crossref_primary_10_1016_j_soilbio_2013_10_026
crossref_primary_10_3390_soilsystems2030052
crossref_primary_10_1016_j_soilbio_2010_03_026
crossref_primary_10_1042_BST0390309
crossref_primary_10_1016_j_soilbio_2015_07_005
crossref_primary_10_1080_17550874_2015_1010189
crossref_primary_10_1016_j_geoderma_2020_114876
crossref_primary_10_1007_s11368_018_1991_6
crossref_primary_10_1038_ismej_2014_36
crossref_primary_10_1890_10_0459_1
crossref_primary_10_1093_jpe_rtr046
crossref_primary_10_1007_s11104_017_3313_y
crossref_primary_10_1073_pnas_0907303106
crossref_primary_10_1890_15_1160_1
crossref_primary_10_3389_fmicb_2018_01776
crossref_primary_10_1007_s11104_020_04424_4
crossref_primary_10_1016_j_soilbio_2019_05_018
crossref_primary_10_1016_j_apsoil_2022_104420
crossref_primary_10_1007_s11368_021_03100_z
crossref_primary_10_1016_j_soilbio_2014_01_014
crossref_primary_10_1016_j_syapm_2009_12_005
crossref_primary_10_1007_s10533_013_9886_5
crossref_primary_10_1016_j_soilbio_2013_04_022
crossref_primary_10_1016_S1002_0160_15_60068_6
crossref_primary_10_3390_f14061154
crossref_primary_10_1016_j_apsoil_2014_06_003
crossref_primary_10_1657_AAAR0016_050
crossref_primary_10_1016_j_apsoil_2020_103543
crossref_primary_10_1016_j_envpol_2013_03_060
crossref_primary_10_1016_j_ejsobi_2015_06_003
crossref_primary_10_1016_j_ejsobi_2015_06_002
Cites_doi 10.1007/s10533-004-7112-1
10.1111/j.1365-2389.2007.00925.x
10.1038/18205
10.1016/0165-2370(89)80003-8
10.1016/j.soilbio.2007.06.021
10.1038/nature01136
10.1128/AEM.63.4.1382-1388.1997
10.1007/s003740050335
10.1111/j.1462-2920.2006.01041.x
10.1016/S0038-0717(02)00074-3
10.1016/S0958-1669(02)00314-2
10.2136/sssaj2004.1320
10.1111/j.1574-6941.1996.tb00347.x
10.1126/science.1094678
10.1890/06-1847.1
10.1146/annurev.mi.41.100187.002341
10.1016/j.soilbio.2007.05.008
10.1890/02-0433
10.1128/AEM.71.12.8335-8343.2005
10.1111/j.1462-2920.2007.01358.x
10.1093/bioinformatics/bth226
10.1016/j.jaap.2005.03.009
10.2136/sssaj2002.1290
10.1111/j.1365-2486.2007.01405.x
10.1023/B:BIOG.0000031028.53116.9b
10.1007/s10533-004-0370-0
10.1111/j.1461-0248.2007.01053.x
10.1128/AEM.70.5.2867-2879.2004
10.1007/s00442-007-0804-1
10.1890/06-0219
10.1073/pnas.0408648102
10.2136/sssaj1993.03615995005700010034x
10.1111/j.1095-8312.2004.00368.x
10.1046/j.1462-2920.2003.00491.x
10.1128/aem.63.12.4993-4995.1997
10.1111/j.1461-0248.2008.01219.x
10.2307/2269486
10.1007/BF00002569
10.1099/ijs.0.02520-0
10.1046/j.1365-2745.1998.8650717.x
10.1046/j.1365-2389.1998.00164.x
10.1029/2006GL028222
10.1002/(SICI)1097-0231(19990715)13:13<1278::AID-RCM649>3.0.CO;2-N
10.1128/AEM.03006-05
10.1128/AEM.71.12.8228-8235.2005
10.1890/06-0164
10.1016/j.tim.2006.03.004
10.1016/S0038-0717(00)00102-4
10.1016/j.soilbio.2004.04.023
10.1890/03-5120
10.1111/j.1462-2920.2006.01036.x
10.1016/j.resmic.2005.03.004
10.1007/BF00002772
10.1016/0038-0717(96)00007-7
10.1016/S0022-2836(05)80360-2
10.1073/pnas.0506625102
10.1128/AEM.60.5.1572-1580.1994
10.1128/AEM.71.7.4117-4120.2005
10.1016/S0038-0717(99)00016-4
10.1016/S0723-2020(87)80011-5
10.1007/s00248-007-9320-4
10.1128/AEM.71.3.1501-1506.2005
10.1038/35102500
10.1038/nature05847
10.1038/nature03911
10.1126/science.1086940
10.1111/j.1469-8137.2004.01159.x
10.1111/j.1462-2920.2006.01181.x
10.1038/nature04983
10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.CO;2
10.2307/1940854
10.1128/AEM.68.8.3673-3682.2002
10.1007/s00248-006-9144-7
10.1186/1471-2105-7-371
10.1111/j.1469-185X.1988.tb00725.x
10.1073/pnas.94.1.277
10.1093/oso/9780195117288.001.0001
10.1016/j.soilbio.2004.04.026
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DBID FBQ
BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7SN
7T7
8FD
C1K
FR3
M7N
P64
7X8
OTOTI
DOI 10.1111/j.1462-2920.2008.01735.x
DatabaseName AGRIS
Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Technology Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Chemistry
Environmental Sciences
EISSN 1462-2920
EndPage 3105
ExternalDocumentID 1003770
10_1111_j_1462_2920_2008_01735_x
18764871
EMI1735
ark_67375_WNG_P6V34W1L_0
US201301546713
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XFK
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7QL
7SN
7T7
8FD
C1K
FR3
M7N
P64
7X8
AAPBV
OTOTI
UMP
ID FETCH-LOGICAL-c5535-288fe019be14637fe07416369a6654749f792123ce4f7fcb1bece043fa01141b3
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Fri May 19 00:38:55 EDT 2023
Tue Dec 03 22:49:52 EST 2024
Wed Dec 04 05:24:20 EST 2024
Fri Dec 06 02:48:52 EST 2024
Sat Sep 28 07:45:20 EDT 2024
Sat Aug 24 01:12:31 EDT 2024
Wed Oct 30 10:01:46 EDT 2024
Wed Dec 27 19:16:54 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5535-288fe019be14637fe07416369a6654749f792123ce4f7fcb1bece043fa01141b3
Notes http://dx.doi.org/10.1111/j.1462-2920.2008.01735.x
istex:D8CF2B407F91D665867FC312B69ED6714A16EEB7
ark:/67375/WNG-P6V34W1L-0
ArticleID:EMI1735
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
DE-AC05-00OR22725
USDOE Office of Science (SC)
PMID 18764871
PQID 19616725
PQPubID 23462
PageCount 13
ParticipantIDs osti_scitechconnect_1003770
proquest_miscellaneous_69741248
proquest_miscellaneous_19616725
crossref_primary_10_1111_j_1462_2920_2008_01735_x
pubmed_primary_18764871
wiley_primary_10_1111_j_1462_2920_2008_01735_x_EMI1735
istex_primary_ark_67375_WNG_P6V34W1L_0
fao_agris_US201301546713
PublicationCentury 2000
PublicationDate November 2008
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: November 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: United States
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2008
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Enwall, K., Philippot, L., and Hallin, S. (2005) Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl Environ Microbiol 71: 8335-8343.
Sinsabaugh, R.L., Zak, D.R., Gallo, M., Lauber, C., and Amonette, R. (2004) Nitrogen deposition and dissolved organic carbon production in northern temperate forests. Soil Biol Biochem 36: 1509-1515.
Eswaran, H., Vandenberg, E., and Reich, P. (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57: 192-194.
Kirk, T.K., and Farrell, R.L. (1987) Enzymatic combustion - the microbial degradation of lignin. Ann Rev Microbiol 41: 465-505.
Lozupone, C., and Knight, R. (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71: 8228-8235.
Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., et al. (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447: 848-850.
Weintraub, M.N., Scott-Denton, L.E., Schmidt, S.K., and Monson, R.K. (2007) The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154: 327-338.
Bardgett, R.D., Lovell, R.D., Hobbs, P.J., and Jarvis, S.C. (1999) Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol Biochem 31: 1021-1030.
Fog, K. (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev Camb Philos Soc 63: 433-462.
Janssen, P.H., Yates, P.S., Grinton, B.E., Taylor, P.M., and Sait, M. (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68: 2391-2396.
Zak, D.R., Holmes, W.E., White, D.C., Peacock, A.D., and Tilman, D. (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84: 2042-2050.
Zhang, H., Sekiguchi, Y., Hanada, S., Hugenholtz, P., Kim, H., Kamagata, Y., and Nakamura, K. (2003) Gemmatimonas aurantiaca gen. nov., sp nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53: 1155-1163.
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806-809.
Townsend, A.R., Howarth, R.W., Bazzaz, F.A., Booth, M.S., Cleveland, C.C., Collinge, S.K., et al. (2003) Human health effects of a changing global nitrogen cycle. Front Ecol Environ 1: 240-246.
Knops, J.M.H., Naeemw, S., and Reich, P.B. (2007) The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Glob Change Biol 13: 1960-1971.
Könneke, M., Bernhard, A.E., De La Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546.
Neff, J.C., Finlay, J.C., Zimov, S.A., Davydov, S.P., Carrasco, J.J., Schuur, E.A.G., and Davydova, A.I. (2006) Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophys Res Lett 33: L23401.
Waldrop, M.P., Zak, D.R., and Sinsabaugh, R.L. (2004a) Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem 36: 1443-1451.
Waldrop, M.P., Zak, D.R., Sinsabaugh, R.L., Gallo, M., and Lauber, C. (2004b) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14: 1172-1177.
DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069-5072.
Costello, E.K., and Schmidt, S.K. (2006) Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ Microbiol 8: 1471-1486.
Dijkstra, E.F., Boon, J.J., and Van Mourik, J.M. (1998) Analytical pyrolysis of a soil profile under Scots pine. Eur J Soil Sci 49: 295-304.
Lipson, D.A., and Schmidt, S.K. (2004) Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Appl Environ Microbiol 70: 2867-2879.
NRC (2000) Clean Coastal Waters: Understanding and Reducing the Problems of Nutrient Pollution. Washington, DC, USA: National Academy Press.
Paul, E.A., and Clark, F.E. (1997) Soil Microbiology and Biochemistry. San Diego, CA, USA: Academic Press.
Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., et al. (2004) Nitrogen cycles: past, present, and future. Biogeochemisty 70: 153-226.
Nicol, G.W., and Schleper, C. (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14: 207-212.
Tan, X.Y., Hurek, T., and Reinhold-Hurek, B. (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5: 1009-1015.
Moré, M.I., Herrick, J.B., Silva, M.C., Ghiorse, W.C., and Madsen, E.L. (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60: 1572-1580.
He, J., Shen, J., Zhang, L., Zhu, Y., Zheng, Y., Xu, M., and Di, H.J. (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9: 2364-2374.
Janssen, P.H., Schuhmann, A., Morschel, E., and Rainey, F.A. (1997) Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63: 1382-1388.
Lucas, R.W., Casper, B.B., Jackson, J.K., and Balser, T.C. (2007) Soil microbial communities and extracellular enzyme activity in the New Jersey Pinelands. Soil Biol Biochem 39: 2508-2519.
Schulten, H.R., and Schnitzer, M. (1997) The chemistry of soil organic nitrogen: a review. Biol Fert Soil 26: 1-15.
Schmidt, S.K., Costello, E.K., Nemergut, D.R., Cleveland, C.C., Reed, S.C., Weintraub, M.N., et al. (2007) Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88: 1379-1385.
Sinsabaugh, R.L., Reynolds, H., and Long, T.M. (2000) Rapid assay for amidohydrolase (urease) activity in environmental samples. Soil Biol Biochem 32: 2095-2097.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403-410.
Bobbink, R., Hornung, M., and Roelofs, J.G.M. (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86: 717-738.
Martin, A.P. (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68: 3673-3682.
Treseder, K.K. (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164: 347-355.
Davidson, E.A., and Janssens, I.A. (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165-173.
Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., and Oakley, B.B. (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102: 14683-14688.
Schimel, D.S., House, J.I., Hibbard, K.A., Bousquet, P., Ciais, P., Peylin, P., et al. (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414: 169-172.
Fisk, M.C., and Schmidt, S.K. (1996) Microbial responses to nitrogen additions in alpine tundra soil. Soil Biol Biochem 28: 751-755.
Albrecht, W., Fischer, A., Smida, J., and Stackebrandt, E. (1987) Verrucomicrobium spinosum, a eubacterium representing an ancient line of descent. System Appl Microbiol 10: 57-62.
Clark, C.M., Cleland, E.E., Collins, S.L., Fargione, J.E., Gough, L., Gross, K.L., et al. (2007) Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol Lett 10: 596-607.
Sinsabaugh, R.L., Gallo, M.E., Lauber, C., Waldrop, M.P., and Zak, D.R. (2005) Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75: 201-215.
Posada, D., and Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818.
Pouwels, A.D., Eijkel, G.B., and Boon, J.J. (1989) Curie-Point pyrolysis capillary gas-chromatography high-resolution mass-spectrometry of microcrystalline cellulose. J Anal Appl Pyrolysis 14: 237-280.
Vitousek, P.M., and Howarth, R.W. (1991) Nitrogen limitation on land and in the sea - how can it occur? Biogeochemistry 13: 87-115.
Fierer, N., Jackson, J.A., Vilgalys, R., and Jackson, R.B. (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71: 4117-4120.
Nemergut, D.R., Anderson, S.P., Cleveland, C.C., Martin, A.P., Miller, A.E., Seimon, A., and Schmidt, S.K. (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53: 110-122.
Saiya-Cork, K.R., Sinsabaugh, R.L., and Zak, D.R. (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34: 1309-1315.
Schmidt, S.K., Lipson, D.A., Ley, R.E., Fisk, M.C., and West, A.E. (2004) Impacts of chronic nitrogen additions vary seasonally and by microbial functional group in tundra soils. Biogeochemistry 69: 1-17.
Schadt, C.W., Martin, A.P., Lipson, D.A., and Schmidt, S.K. (2003) Seasonal dynamics of previously unknown fungal lineages
1998; 49
2007; 39
2004; 20
2004; 164
2006; 75
2006; 72
1991; 13
2006; 33
2004; 69
2002; 13
2004; 68
1994; 27
1998; 86
1994; 60
2003; 53
1997; 7
2004; 32
1990; 215
1997; 94
1996; 28
2004; 70
1987; 41
2001
2004a; 36
2000
2005; 102
2004; 36
1993; 74
2007; 450
1999; 13
2007; 9
2006; 440
2005; 75
2003; 5
2005; 71
2003; 1
2003; 84
2006; 442
1998; 14
2001; 414
1996; 6
2004; 303
1987; 10
2007; 447
2005; 156
1997; 63
2002; 34
1997; 26
2006; 14
2005; 437
2006; 7
2006; 8
1997
2002; 419
1991
2007; 53
2007; 10
2007; 13
2007; 58
1993; 57
2000; 32
2007; 154
2002; 68
2002; 66
2000; 81
1999; 31
2004b; 14
1988; 63
1999; 398
2008; 40
2003; 301
2007; 88
1989; 14
e_1_2_7_5_1
Vitousek P.M. (e_1_2_7_80_1) 1997; 7
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
Jackson C.R. (e_1_2_7_34_1) 1997; 63
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
NRC (e_1_2_7_58_1) 2000
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
Hammel K.E. (e_1_2_7_31_1) 1997
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_78_1
e_1_2_7_38_1
Paul E.A. (e_1_2_7_59_1) 1997
References_xml – volume: 88
  start-page: 2105
  year: 2007
  end-page: 2113
  article-title: Microbial nitrogen limitation increases decomposition
  publication-title: Ecology
– volume: 75
  start-page: 201
  year: 2005
  end-page: 215
  article-title: Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition
  publication-title: Biogeochemistry
– volume: 75
  start-page: 19
  year: 2006
  end-page: 26
  article-title: delta C‐13 values of pyrolysis products from cellulose and lignin represent the isotope content of their precursors
  publication-title: J Anal Appl Pyrolysis
– volume: 8
  start-page: 1428
  year: 2006
  end-page: 1440
  article-title: Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA
  publication-title: Environ Microbiol
– volume: 20
  start-page: 2317
  year: 2004
  end-page: 2319
  article-title: Bellerophon: a program to detect chimeric sequences in multiple sequence alignments
  publication-title: Bioinformatics
– volume: 7
  start-page: 737
  year: 1997
  end-page: 750
  article-title: Human alteration of the global nitrogen cycle: source and consequences
  publication-title: Ecol Appl
– volume: 5
  start-page: 1009
  year: 2003
  end-page: 1015
  article-title: Effect of N‐fertilization, plant genotype and environmental conditions on gene pools in roots of rice
  publication-title: Environ Microbiol
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 81
  start-page: 2359
  year: 2000
  end-page: 2365
  article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition
  publication-title: Ecology
– volume: 447
  start-page: 848
  year: 2007
  end-page: 850
  article-title: The human footprint in the carbon cycle of temperate and boreal forests
  publication-title: Nature
– year: 2001
– volume: 71
  start-page: 1501
  year: 2005
  end-page: 1506
  article-title: Introducing dotur, a computer program for defining operational taxonomic units and estimating species richness
  publication-title: Appl Environ Microbiol
– volume: 58
  start-page: 1330
  year: 2007
  end-page: 1347
  article-title: Soil organic matter chemistry in allophanic soils: a pyrolysis‐GC/MS study of a Costa Rican Andosol catena
  publication-title: Eur J Soil Sci
– volume: 70
  start-page: 2867
  year: 2004
  end-page: 2879
  article-title: Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains
  publication-title: Appl Environ Microbiol
– volume: 32
  start-page: 1363
  year: 2004
  end-page: 1371
  article-title: ARB: a software environment for sequence data
  publication-title: Nucleic Acids Res
– volume: 14
  start-page: 817
  year: 1998
  end-page: 818
  article-title: MODELTEST: testing the model of DNA substitution
  publication-title: Bioinformatics
– volume: 94
  start-page: 277
  year: 1997
  end-page: 282
  article-title: Molecular phylogeny of archaea from soil
  publication-title: Proc Natl Acad Sci USA
– volume: 154
  start-page: 327
  year: 2007
  end-page: 338
  article-title: The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem
  publication-title: Oecologia
– volume: 57
  start-page: 192
  year: 1993
  end-page: 194
  article-title: Organic carbon in soils of the world
  publication-title: Soil Sci Soc Am J
– volume: 156
  start-page: 775
  year: 2005
  end-page: 784
  article-title: Structure and function of alpine and arctic soil microbial communities
  publication-title: Res Microbiol
– volume: 102
  start-page: 4387
  year: 2005
  end-page: 4392
  article-title: Functional‐ and abundance‐based mechanisms explain diversity loss due to N fertilization
  publication-title: Proc Natl Acad Sci USA
– volume: 72
  start-page: 5069
  year: 2006
  end-page: 5072
  article-title: Greengenes, a chimera‐checked 16S rRNA gene database and workbench compatible with ARB
  publication-title: Appl Environ Microbiol
– volume: 74
  start-page: 2085
  year: 1993
  end-page: 2097
  article-title: Constraints of nutrient availability on primary production in two alpine tundra communities
  publication-title: Ecology
– volume: 71
  start-page: 8228
  year: 2005
  end-page: 8235
  article-title: UniFrac: a new phylogenetic method for comparing microbial communities
  publication-title: Appl Environ Microbiol
– volume: 13
  start-page: 1278
  year: 1999
  end-page: 1283
  article-title: Molecular insight into soil carbon turnover
  publication-title: Rapid Commun Mass Spectrom
– volume: 437
  start-page: 543
  year: 2005
  end-page: 546
  article-title: Isolation of an autotrophic ammonia‐oxidizing marine archaeon
  publication-title: Nature
– volume: 41
  start-page: 465
  year: 1987
  end-page: 505
  article-title: Enzymatic combustion – the microbial degradation of lignin
  publication-title: Ann Rev Microbiol
– volume: 303
  start-page: 1876
  year: 2004
  end-page: 1879
  article-title: Impact of nitrogen deposition on the species richness of grasslands
  publication-title: Science
– volume: 10
  start-page: 596
  year: 2007
  end-page: 607
  article-title: Environmental and plant community determinants of species loss following nitrogen enrichment
  publication-title: Ecol Lett
– year: 1997
– volume: 442
  start-page: 806
  year: 2006
  end-page: 809
  article-title: Archaea predominate among ammonia‐oxidizing prokaryotes in soils
  publication-title: Nature
– volume: 86
  start-page: 717
  year: 1998
  end-page: 738
  article-title: The effects of air‐borne nitrogen pollutants on species diversity in natural and semi‐natural European vegetation
  publication-title: J Ecol
– volume: 68
  start-page: 2391
  year: 2002
  end-page: 2396
  article-title: Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions , , , and
  publication-title: Appl Environ Microbiol
– volume: 33
  year: 2006
  article-title: Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams
  publication-title: Geophys Res Lett
– volume: 102
  start-page: 14683
  year: 2005
  end-page: 14688
  article-title: Ubiquity and diversity of ammonia‐oxidizing archaea in water columns and sediments of the ocean
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: 213
  year: 2002
  end-page: 217
  article-title: Molecular community analysis of microbial diversity
  publication-title: Curr Opin Biotechnol
– volume: 71
  start-page: 4117
  year: 2005
  end-page: 4120
  article-title: Assessment of soil microbial community structure by use of taxon‐specific quantitative PCR assays
  publication-title: Appl Environ Microbiol
– volume: 301
  start-page: 1359
  year: 2003
  end-page: 1361
  article-title: Seasonal dynamics of previously unknown fungal lineages in tundra soils
  publication-title: Science
– volume: 1
  start-page: 240
  year: 2003
  end-page: 246
  article-title: Human health effects of a changing global nitrogen cycle
  publication-title: Front Ecol Environ
– volume: 215
  start-page: 403
  year: 1990
  end-page: 410
  article-title: Basic local alignment search tool
  publication-title: J Mol Biol
– volume: 66
  start-page: 129
  year: 2002
  end-page: 141
  article-title: Structural characterization of soil organic matter and humic acids in particle‐size fractions of an agricultural soil
  publication-title: Soil Sci Soc Am J
– volume: 40
  start-page: 61
  year: 2008
  end-page: 73
  article-title: Mineralization of native soil organic matter is not regulated by size, activity or composition of the soil microbial biomass – a new perspective
  publication-title: Soil Biol Biochem
– volume: 70
  start-page: 153
  year: 2004
  end-page: 226
  article-title: Nitrogen cycles: past, present, and future
  publication-title: Biogeochemisty
– start-page: 115
  year: 1991
  end-page: 175
– volume: 28
  start-page: 751
  year: 1996
  end-page: 755
  article-title: Microbial responses to nitrogen additions in alpine tundra soil
  publication-title: Soil Biol Biochem
– volume: 71
  start-page: 8335
  year: 2005
  end-page: 8343
  article-title: Activity and composition of the denitrifying bacterial community respond differently to long‐term fertilization
  publication-title: Appl Environ Microbiol
– volume: 63
  start-page: 4993
  year: 1997
  end-page: 4995
  article-title: A simple, efficient method for the separation of humic substances and DNA from environmental samples
  publication-title: Appl Environ Microbiol
– volume: 164
  start-page: 347
  year: 2004
  end-page: 355
  article-title: A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO in field studies
  publication-title: New Phytol
– volume: 14
  start-page: 1172
  year: 2004b
  end-page: 1177
  article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity
  publication-title: Ecol Appl
– volume: 53
  start-page: 110
  year: 2007
  end-page: 122
  article-title: Microbial community succession in an unvegetated, recently deglaciated soil
  publication-title: Microb Ecol
– volume: 7
  start-page: 371
  year: 2006
  article-title: UniFrac – an online tool for comparing microbial community diversity in a phylogenetic context
  publication-title: BMC Bioinformatics
– volume: 68
  start-page: 132
  year: 2004
  end-page: 138
  article-title: Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests
  publication-title: Soil Sci Soc Am J
– volume: 9
  start-page: 2364
  year: 2007
  end-page: 2374
  article-title: Quantitative analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices
  publication-title: Environ Microbiol
– volume: 60
  start-page: 1572
  year: 1994
  end-page: 1580
  article-title: Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment
  publication-title: Appl Environ Microbiol
– volume: 88
  start-page: 1379
  year: 2007
  end-page: 1385
  article-title: Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil
  publication-title: Ecology
– volume: 36
  start-page: 1443
  year: 2004a
  end-page: 1451
  article-title: Microbial community response to nitrogen deposition in northern forest ecosystems
  publication-title: Soil Biol Biochem
– volume: 63
  start-page: 433
  year: 1988
  end-page: 462
  article-title: The effect of added nitrogen on the rate of decomposition of organic matter
  publication-title: Biol Rev Camb Philos Soc
– volume: 6
  start-page: 806
  year: 1996
  end-page: 814
  article-title: Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen
  publication-title: Ecol Appl
– volume: 13
  start-page: 87
  year: 1991
  end-page: 115
  article-title: Nitrogen limitation on land and in the sea – how can it occur?
  publication-title: Biogeochemistry
– year: 2000
– volume: 31
  start-page: 1021
  year: 1999
  end-page: 1030
  article-title: Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands
  publication-title: Soil Biol Biochem
– volume: 63
  start-page: 1382
  year: 1997
  end-page: 1388
  article-title: Novel anaerobic ultramicrobacteria belonging to the lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil
  publication-title: Appl Environ Microbiol
– volume: 32
  start-page: 2095
  year: 2000
  end-page: 2097
  article-title: Rapid assay for amidohydrolase (urease) activity in environmental samples
  publication-title: Soil Biol Biochem
– volume: 84
  start-page: 2042
  year: 2003
  end-page: 2050
  article-title: Plant diversity, soil microbial communities, and ecosystem function: are there any links?
  publication-title: Ecology
– volume: 8
  start-page: 1471
  year: 2006
  end-page: 1486
  article-title: Microbial diversity in alpine tundra wet meadow soil: novel from a cold, water‐saturated environment
  publication-title: Environ Microbiol
– volume: 9
  start-page: 612
  year: 2007
  end-page: 624
  article-title: Traditional cattle manure application determines abundance, diversity and activity of methanogenic Archaea in arable European soil
  publication-title: Environ Microbiol
– volume: 14
  start-page: 207
  year: 2006
  end-page: 212
  article-title: Ammonia‐oxidising : important players in the nitrogen cycle?
  publication-title: Trends Microbiol
– volume: 450
  start-page: 879
  year: 2007
  end-page: 882
  article-title: Methane oxidation by an extremely acidophilic bacterium of the phylum
  publication-title: Nature
– volume: 13
  start-page: 1960
  year: 2007
  end-page: 1971
  article-title: The impact of elevated CO , increased nitrogen availability and biodiversity on plant tissue quality and decomposition
  publication-title: Glob Change Biol
– volume: 53
  start-page: 1155
  year: 2003
  end-page: 1163
  article-title: gen. nov., sp nov., a gram‐negative, aerobic, polyphosphate‐accumulating micro‐organism, the first cultured representative of the new bacterial phylum phyl. nov
  publication-title: Int J Syst Evol Microbiol
– volume: 419
  start-page: 915
  year: 2002
  end-page: 917
  article-title: Variable effects of nitrogen additions on the stability and turnover of soil carbon
  publication-title: Nature
– volume: 26
  start-page: 1
  year: 1997
  end-page: 15
  article-title: The chemistry of soil organic nitrogen: a review
  publication-title: Biol Fert Soil
– volume: 39
  start-page: 2508
  year: 2007
  end-page: 2519
  article-title: Soil microbial communities and extracellular enzyme activity in the New Jersey Pinelands
  publication-title: Soil Biol Biochem
– volume: 36
  start-page: 1509
  year: 2004
  end-page: 1515
  article-title: Nitrogen deposition and dissolved organic carbon production in northern temperate forests
  publication-title: Soil Biol Biochem
– start-page: 33
  year: 1997
  end-page: 45
– volume: 14
  start-page: 237
  year: 1989
  end-page: 280
  article-title: Curie‐Point pyrolysis capillary gas‐chromatography high‐resolution mass‐spectrometry of microcrystalline cellulose
  publication-title: J Anal Appl Pyrolysis
– volume: 69
  start-page: 1
  year: 2004
  end-page: 17
  article-title: Impacts of chronic nitrogen additions vary seasonally and by microbial functional group in tundra soils
  publication-title: Biogeochemistry
– volume: 10
  start-page: 57
  year: 1987
  end-page: 62
  article-title: , a eubacterium representing an ancient line of descent
  publication-title: System Appl Microbiol
– volume: 49
  start-page: 295
  year: 1998
  end-page: 304
  article-title: Analytical pyrolysis of a soil profile under Scots pine
  publication-title: Eur J Soil Sci
– volume: 68
  start-page: 3673
  year: 2002
  end-page: 3682
  article-title: Phylogenetic approaches for describing and comparing the diversity of microbial communities
  publication-title: Appl Environ Microbiol
– volume: 27
  start-page: 23
  year: 1994
  end-page: 33
  article-title: Fluxes of nitrous oxide and methane from nitrogen‐amended soils in a Colorado alpine ecosystem
  publication-title: Biogeochemistry
– volume: 34
  start-page: 1309
  year: 2002
  end-page: 1315
  article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an forest soil
  publication-title: Soil Biol Biochem
– volume: 398
  start-page: 145
  year: 1999
  end-page: 148
  article-title: Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests
  publication-title: Nature
– volume: 414
  start-page: 169
  year: 2001
  end-page: 172
  article-title: Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems
  publication-title: Nature
– ident: e_1_2_7_71_1
  doi: 10.1007/s10533-004-7112-1
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-2389.2007.00925.x
– ident: e_1_2_7_51_1
  doi: 10.1038/18205
– ident: e_1_2_7_61_1
  doi: 10.1016/0165-2370(89)80003-8
– ident: e_1_2_7_37_1
  doi: 10.1016/j.soilbio.2007.06.021
– ident: e_1_2_7_53_1
  doi: 10.1038/nature01136
– ident: e_1_2_7_35_1
  doi: 10.1128/AEM.63.4.1382-1388.1997
– ident: e_1_2_7_68_1
  doi: 10.1007/s003740050335
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1462-2920.2006.01041.x
– ident: e_1_2_7_62_1
  doi: 10.1016/S0038-0717(02)00074-3
– ident: e_1_2_7_16_1
  doi: 10.1016/S0958-1669(02)00314-2
– ident: e_1_2_7_18_1
  doi: 10.2136/sssaj2004.1320
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1574-6941.1996.tb00347.x
– ident: e_1_2_7_73_1
  doi: 10.1126/science.1094678
– ident: e_1_2_7_15_1
  doi: 10.1890/06-1847.1
– ident: e_1_2_7_38_1
  doi: 10.1146/annurev.mi.41.100187.002341
– ident: e_1_2_7_46_1
  doi: 10.1016/j.soilbio.2007.05.008
– ident: e_1_2_7_84_1
  doi: 10.1890/02-0433
– ident: e_1_2_7_22_1
  doi: 10.1128/AEM.71.12.8335-8343.2005
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1462-2920.2007.01358.x
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1462-2920.2006.01041.x
– ident: e_1_2_7_33_1
  doi: 10.1093/bioinformatics/bth226
– ident: e_1_2_7_72_1
  doi: 10.1016/j.jaap.2005.03.009
– ident: e_1_2_7_12_1
  doi: 10.2136/sssaj2002.1290
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1365-2486.2007.01405.x
– ident: e_1_2_7_66_1
  doi: 10.1023/B:BIOG.0000031028.53116.9b
– ident: e_1_2_7_28_1
  doi: 10.1007/s10533-004-0370-0
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1461-0248.2007.01053.x
– ident: e_1_2_7_43_1
  doi: 10.1128/AEM.70.5.2867-2879.2004
– ident: e_1_2_7_83_1
  doi: 10.1007/s00442-007-0804-1
– volume: 7
  start-page: 737
  year: 1997
  ident: e_1_2_7_80_1
  article-title: Human alteration of the global nitrogen cycle: source and consequences
  publication-title: Ecol Appl
  contributor:
    fullname: Vitousek P.M.
– ident: e_1_2_7_47_1
  doi: 10.1890/06-0219
– ident: e_1_2_7_74_1
  doi: 10.1073/pnas.0408648102
– ident: e_1_2_7_23_1
  doi: 10.2136/sssaj1993.03615995005700010034x
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1095-8312.2004.00368.x
– ident: e_1_2_7_75_1
  doi: 10.1046/j.1462-2920.2003.00491.x
– volume: 63
  start-page: 4993
  year: 1997
  ident: e_1_2_7_34_1
  article-title: A simple, efficient method for the separation of humic substances and DNA from environmental samples
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.63.12.4993-4995.1997
  contributor:
    fullname: Jackson C.R.
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_7_76_1
  doi: 10.2307/2269486
– ident: e_1_2_7_52_1
  doi: 10.1007/BF00002569
– ident: e_1_2_7_85_1
  doi: 10.1099/ijs.0.02520-0
– ident: e_1_2_7_6_1
  doi: 10.1046/j.1365-2745.1998.8650717.x
– ident: e_1_2_7_20_1
  doi: 10.1046/j.1365-2389.1998.00164.x
– ident: e_1_2_7_54_1
  doi: 10.1029/2006GL028222
– ident: e_1_2_7_30_1
  doi: 10.1002/(SICI)1097-0231(19990715)13:13<1278::AID-RCM649>3.0.CO;2-N
– ident: e_1_2_7_19_1
  doi: 10.1128/AEM.03006-05
– ident: e_1_2_7_44_1
  doi: 10.1128/AEM.71.12.8228-8235.2005
– ident: e_1_2_7_67_1
  doi: 10.1890/06-0164
– ident: e_1_2_7_57_1
  doi: 10.1016/j.tim.2006.03.004
– ident: e_1_2_7_69_1
  doi: 10.1016/S0038-0717(00)00102-4
– volume-title: Soil Microbiology and Biochemistry
  year: 1997
  ident: e_1_2_7_59_1
  contributor:
    fullname: Paul E.A.
– ident: e_1_2_7_81_1
  doi: 10.1016/j.soilbio.2004.04.023
– volume-title: Clean Coastal Waters: Understanding and Reducing the Problems of Nutrient Pollution
  year: 2000
  ident: e_1_2_7_58_1
  contributor:
    fullname: NRC
– ident: e_1_2_7_82_1
  doi: 10.1890/03-5120
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1462-2920.2006.01036.x
– ident: e_1_2_7_55_1
  doi: 10.1016/j.resmic.2005.03.004
– ident: e_1_2_7_79_1
  doi: 10.1007/BF00002772
– ident: e_1_2_7_25_1
  doi: 10.1016/0038-0717(96)00007-7
– ident: e_1_2_7_3_1
  doi: 10.1016/S0022-2836(05)80360-2
– ident: e_1_2_7_27_1
  doi: 10.1073/pnas.0506625102
– start-page: 33
  volume-title: Driven by Nature: Plant Litter Quality and Decomposition
  year: 1997
  ident: e_1_2_7_31_1
  contributor:
    fullname: Hammel K.E.
– ident: e_1_2_7_50_1
  doi: 10.1128/AEM.60.5.1572-1580.1994
– ident: e_1_2_7_24_1
  doi: 10.1128/AEM.71.7.4117-4120.2005
– ident: e_1_2_7_4_1
  doi: 10.1016/S0038-0717(99)00016-4
– ident: e_1_2_7_2_1
  doi: 10.1016/S0723-2020(87)80011-5
– ident: e_1_2_7_41_1
  doi: 10.1007/s00248-007-9320-4
– ident: e_1_2_7_65_1
  doi: 10.1128/AEM.71.3.1501-1506.2005
– ident: e_1_2_7_64_1
  doi: 10.1038/35102500
– ident: e_1_2_7_48_1
  doi: 10.1038/nature05847
– ident: e_1_2_7_40_1
  doi: 10.1038/nature03911
– ident: e_1_2_7_63_1
  doi: 10.1126/science.1086940
– ident: e_1_2_7_78_1
  doi: 10.1111/j.1469-8137.2004.01159.x
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1462-2920.2006.01181.x
– ident: e_1_2_7_42_1
  doi: 10.1038/nature04983
– ident: e_1_2_7_11_1
  doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
– ident: e_1_2_7_77_1
  doi: 10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.CO;2
– ident: e_1_2_7_8_1
  doi: 10.2307/1940854
– ident: e_1_2_7_49_1
  doi: 10.1128/AEM.68.8.3673-3682.2002
– ident: e_1_2_7_56_1
  doi: 10.1007/s00248-006-9144-7
– ident: e_1_2_7_45_1
  doi: 10.1186/1471-2105-7-371
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1469-185X.1988.tb00725.x
– ident: e_1_2_7_5_1
  doi: 10.1073/pnas.94.1.277
– ident: e_1_2_7_7_1
  doi: 10.1093/oso/9780195117288.001.0001
– ident: e_1_2_7_70_1
  doi: 10.1016/j.soilbio.2004.04.026
SSID ssj0017370
Score 2.445607
Snippet Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the...
Summary Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known...
SourceID osti
proquest
crossref
pubmed
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3093
SubjectTerms ABUNDANCE
Archaea
Archaea - classification
Archaea - isolation & purification
AROMATICS
AVAILABILITY
BACTERIA
Bacteria - classification
Bacteria - isolation & purification
BASIC BIOLOGICAL SCIENCES
Basidiomycetes
Biodiversity
CARBON
Carbon - metabolism
CARBON COMPOUNDS
CHEMISTRY
ENVIRONMENTAL SCIENCES
ENZYMES
FERTILIZATION
Fertilizers
FUNGI
Fungi - classification
Fungi - isolation & purification
Molecular Sequence Data
NITROGEN
Nitrogen - metabolism
Organic Chemicals - analysis
ORGANIC MATTER
Phylogeny
PRODUCTIVITY
PROTEINS
Sequence Analysis, DNA
Soil - analysis
Soil Microbiology
SOILS
TUNDRA
Verrucomicrobia
Title effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling
URI https://api.istex.fr/ark:/67375/WNG-P6V34W1L-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2008.01735.x
https://www.ncbi.nlm.nih.gov/pubmed/18764871
https://search.proquest.com/docview/19616725
https://search.proquest.com/docview/69741248
https://www.osti.gov/biblio/1003770
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagEhIX3rBhefiAuKWq7dhOuCFgWSFYIaDs3izHsVdVS7JKU4nlD_C3mXHSLq0WCSGkHiK5cTvuPL5pvpkh5Bkg8ABRmKeVEy7NrFBpIYsqtSqzrqgm0sXenR-O1OE0e3ciTwb-E9bC9P0hNn-4oWVEf40GbsvlrpHzFKctDZRIpoUcI55kQiO77_WnTScpWIpz44Zb2A6p59KNtiLV1WAbwK949LAwasD-LsOk2xA3xqiDm2S-lq6npszHq64cux87jR__j_i3yI0BytKXve7dJld8fYdc64dbnt8lP0ED6UAXoU2grm_DS8GHtA2oLQ1I6V4MdaAUXnZxBl-Ldqu6ai1dNrMF_TaLjaLgY1xfyYL9X1_Q2W88eAqwmzrblrhDXV3s786x7PP0HpkevPny6jAdxj6kTkohU57nwQPyLD1IKDRcR9SoChsnJWdF0AUGXOezoIMrGaihn2QiWEzuWCnuk1Hd1H6PUG5L8EnMTZSvACnq3MkgBOOOi1Dk0ieErX9ic9Z39zBbWRE3eMDDrE48YPM9IXugC8aeghM2088cH_0CDlWQ7SfkeVSQzV62nSNxTktzfPTWfFRfRXbM3ptJQvZRgwygHGzV65DT5DrsHy20htWna8UyYOz4BMfWvlktDbhLpjSXf36HgvwQIFuekAe9Rl7IBXEPslOWEBX16q8FNuAQ8Orhv964T65Hlk2s4HxERl278o8BynXlk2ikvwBe2zct
link.rule.ids 230,314,780,784,885,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5BEYKX8ZuFAfMD4i1VHcf5wRsCRoGuQrCyvVmOY0_VSjJ1qbTxD_Bvc-ekHa2GhBBSHiK5cWL3u_Pn5O47gBfIwB2uwlFYGmHCWIskzGVehjqJtcnLgTReu3N_nAwn8ccjedSVA6JcmFYfYvXCjSzD-2sycHohvWnlUUjllrqYSJ4K2UdCeQOtn1N819svKy0pbPOV47pr-EZYz5U9ra1V152ukcHS5GNDr0YLvIqVrpNcv0rt3YHZcnxtcMpJf9EUffNjQ_rxP03AXdjq2Cx73cLvHlyz1X242da3vHgAPxGErIsYYbVjplXiZehG5jUilzmK6p51qaAMDz07xedizaIq55qd1dMZ-z71WlF4G9Mms5AE7Cs2_S0UniHzZkbPC-qhKi_7NxeU-Xn8ECZ77w7eDMOu8kNopBQyjLLMWSSfhcURihTPPXFMcu2LJce5S3Nac42NXepMwRGJdhALp2l_xwvxCHpVXdltYJEu0C1xM0hsiWQxzYx0QvDIRMLlmbQB8OV_rE5bgQ-1tjGKFE1wV66TJlidB7CNYFD6GP2wmnyN6OsvUlEEnQjgpUfIqi89P6HYuVSqw_F79Tn5JuJDPlKDAHYIQgqJDqn1GgprMg1JSIs0xdbdJbIU2jt9xNGVrRdnCj0mT9JI_vkXCW4RkbVlATxuIXk5Llz6cIPKA0g8sP56wAp9Ap09-dcLd-HW8GB_pEYfxp924LYPuvEJnU-h18wX9hkyu6Z47i32F-YBO04
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELagCMQLv2Fhg_kB8ZaqjmMn4W1iKwNGNQFle7Mcx56qlqTKUonxD_Bv785JO1oNCSGkPkR14vScu_N3zd13hLwCBO5gF47CwnATxprLMBNZEWoZa5MVA2E8d-enkTwcxx9OxWmX_4S1MC0_xOoPN7QM76_RwOeF2zTyKMRuS11KJEu46AOevAXfZ8ijv_95RSUFY75xXHcN28jquXamta3qptMVAFhcexjoVWCA14HSdYzrN6nhfTJditfmpkz7iybvm58bzI__R_4H5F6HZeleq3wPyQ1bPiK32-6WF4_JL1BB2uWL0MpR0_LwUnAidQV6Sx3mdM-6QlAKHz2bw8-izaIsak3Pq8mMfp94pii4jWlLWZAA9g2d_JYITwF3U6PrHGcoi6v5zQXWfZ49IePhwde3h2HX9yE0QnARRmnqLEDP3IKEPIFjDxtlpn2r5DhzSYY7rrGxS5zJGeihHcTcaYzuWM6fkl5ZlXaL0Ejn4JSYGUhbAFRMUiMc5ywyEXdZKmxA2PIRq3lL76HWwqJI4QJ3zTpxgdWPgGyBLih9Bl5Yjb9E-O4XgKiEcD8gr72CrObS9RQz5xKhTkbv1LH8xuMTdqQGAdlGDVIAc5Cr12BSk2mQQJonCYzuLhVLgbXjKxxd2mpxrsBfMplE4s9nSAgQAbOlAXnWauSVXLDxQXjKAiK9Xv21wAo8Ah49_9cLd8md4_2hOno_-rhN7vqMG1_NuUN6Tb2wLwDWNflLb6-X7cM5_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=effects+of+chronic+nitrogen+fertilization+on+alpine+tundra+soil+microbial+communities%3A+implications+for+carbon+and+nitrogen+cycling&rft.jtitle=Environmental+microbiology&rft.au=Nemergut%2C+Diana+R&rft.au=Townsend%2C+Alan+R&rft.au=Sattin%2C+Sarah+R&rft.au=Freeman%2C+Kristen+R&rft.date=2008-11-01&rft.pub=Oxford%2C+UK+%3A+Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=10&rft.issue=11&rft.spage=3093&rft.epage=3105&rft_id=info:doi/10.1111%2Fj.1462-2920.2008.01735.x&rft.externalDocID=US201301546713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon