Prevalence of Colistin-Resistant Bacteria among Retail Meats in Japan
Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mcr-1 gene has been reported in Enterobacteriaceae isolated from food, animals, and humans in China, the prevalence of CST-resistant bacteria has been of great concern...
Saved in:
Published in | Food Safety Vol. 9; no. 2; pp. 48 - 56 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Food Safety Commission, Cabinet Office, Government of Japan
2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mcr-1 gene has been reported in Enterobacteriaceae isolated from food, animals, and humans in China, the prevalence of CST-resistant bacteria has been of great concern. Here, we investigated the prevalence of CST resistance and plasmid-mediated colistin-resistance genes (mcr) in gram-negative bacteria isolated among retail meats in Japan. CST-resistant bacteria were isolated from 310 domestic retail meats (103 chicken meat, 103 pork, and 104 beef) purchased between May 2017 and July 2018 from retail shops in Japan using CST-containing media and antimicrobial susceptibility testing. The mcr gene was investigated in isolates with a CST minimum inhibitory concentration of ≥1 μg/mL. Excluding the intrinsically CST-resistant isolates, CST-resistant bacteria were isolated from 39 of the total chicken meats (37.9%), 19 of the pork samples (18.4%), and 18 of the beef samples (17.3%). A total of 459 isolates were identified, out of which 99 were CST-resistant. CST resistance (resistance breakpoints: Aeromonas, >4 μg/mL; others, >2 μg/mL) was found in Aeromonas spp. (48/206, 23.3%), Yersinia spp. (5/112, 4.5%), Escherichia coli (23/39, 59%), Citrobacter spp. (4/26, 15.4%), Klebsiella spp. (2/23, 8.7%), Raoultella spp. (2/16, 12.5%), Enterobacter spp. (7/14, 50%), Pseudomonas spp. (1/8, 12.5%), Pantoea spp. (5/7, 71.4%), Ewingella spp. (1/4, 25%), and Kluyvera spp. (1/2, 50%). The mcr gene was detected in 16 isolates: mcr-1 in 14 isolates of E. coli from 10 chicken samples (9.7%), and mcr-3 in two isolates of Aeromonas sobria from pork and chicken samples (each 1.0%). The findings of this study highlight the necessity of surveillance of CST resistance and resistance genes in bacteria that contaminate retail meats. |
---|---|
AbstractList | Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mcr-1 gene has been reported in Enterobacteriaceae isolated from food, animals, and humans in China, the prevalence of CST-resistant bacteria has been of great concern. Here, we investigated the prevalence of CST resistance and plasmid-mediated colistin-resistance genes (mcr) in gram-negative bacteria isolated among retail meats in Japan. CST-resistant bacteria were isolated from 310 domestic retail meats (103 chicken meat, 103 pork, and 104 beef) purchased between May 2017 and July 2018 from retail shops in Japan using CST-containing media and antimicrobial susceptibility testing. The mcr gene was investigated in isolates with a CST minimum inhibitory concentration of ≥1 μg/mL. Excluding the intrinsically CST-resistant isolates, CST-resistant bacteria were isolated from 39 of the total chicken meats (37.9%), 19 of the pork samples (18.4%), and 18 of the beef samples (17.3%). A total of 459 isolates were identified, out of which 99 were CST-resistant. CST resistance (resistance breakpoints: Aeromonas, >4 μg/mL; others, >2 μg/mL) was found in Aeromonas spp. (48/206, 23.3%), Yersinia spp. (5/112, 4.5%), Escherichia coli (23/39, 59%), Citrobacter spp. (4/26, 15.4%), Klebsiella spp. (2/23, 8.7%), Raoultella spp. (2/16, 12.5%), Enterobacter spp. (7/14, 50%), Pseudomonas spp. (1/8, 12.5%), Pantoea spp. (5/7, 71.4%), Ewingella spp. (1/4, 25%), and Kluyvera spp. (1/2, 50%). The mcr gene was detected in 16 isolates: mcr-1 in 14 isolates of E. coli from 10 chicken samples (9.7%), and mcr-3 in two isolates of Aeromonas sobria from pork and chicken samples (each 1.0%). The findings of this study highlight the necessity of surveillance of CST resistance and resistance genes in bacteria that contaminate retail meats. Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mc r-1 gene has been reported in Enterobacteriaceae isolated from food, animals, and humans in China, the prevalence of CST-resistant bacteria has been of great concern. Here, we investigated the prevalence of CST resistance and plasmid-mediated colistin-resistance genes ( mcr ) in gram-negative bacteria isolated among retail meats in Japan. CST-resistant bacteria were isolated from 310 domestic retail meats (103 chicken meat, 103 pork, and 104 beef) purchased between May 2017 and July 2018 from retail shops in Japan using CST-containing media and antimicrobial susceptibility testing. The mcr gene was investigated in isolates with a CST minimum inhibitory concentration of ≥1 μg/mL. Excluding the intrinsically CST-resistant isolates, CST-resistant bacteria were isolated from 39 of the total chicken meats (37.9%), 19 of the pork samples (18.4%), and 18 of the beef samples (17.3%). A total of 459 isolates were identified, out of which 99 were CST-resistant. CST resistance (resistance breakpoints: Aeromonas , >4 μg/mL; others, >2 μg/mL) was found in Aeromonas spp. (48/206, 23.3%), Yersinia spp. (5/112, 4.5%), Escherichia coli (23/39, 59%), Citrobacter spp. (4/26, 15.4%), Klebsiella spp. (2/23, 8.7%), Raoultella spp. (2/16, 12.5%), Enterobacter spp. (7/14, 50%), Pseudomonas spp. (1/8, 12.5%), Pantoea spp. (5/7, 71.4%), Ewingella spp. (1/4, 25%), and Kluyvera spp. (1/2, 50%). The mcr gene was detected in 16 isolates: mcr -1 in 14 isolates of E. coli from 10 chicken samples (9.7%), and mcr -3 in two isolates of Aeromonas sobria from pork and chicken samples (each 1.0%). The findings of this study highlight the necessity of surveillance of CST resistance and resistance genes in bacteria that contaminate retail meats. |
Author | Odoi, Justice O. Takayanagi, Sayo Usui, Masaru Asai, Tetsuo Sugiyama, Michiyo Tamura, Yutaka |
Author_xml | – sequence: 1 fullname: Odoi, Justice O. organization: Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan – sequence: 2 fullname: Takayanagi, Sayo organization: Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan – sequence: 3 fullname: Sugiyama, Michiyo organization: Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan – sequence: 4 fullname: Usui, Masaru organization: Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu 069-8501, Japan – sequence: 5 fullname: Tamura, Yutaka organization: Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu 069-8501, Japan – sequence: 6 fullname: Asai, Tetsuo organization: Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan |
BookMark | eNpdkV9LIzEUxYMo_ql-h8EnX0aTTNLJ-CBoq7suyorsPofbzE1NmSY1SQW_vWNb6rqBkAs5v3Mv9xyRXR88EnLK6DkTXPILG0KbwGJ-t8nMzsclZyXtD98hh5ypulSCit1_6gNyktKsV7C6lg2t98lBJbhopGoOye1TxDfo0Bssgi1GoXMpO18-Y-oL8Lm4AZMxOihgHvy0eMYMriseEXIqnC9-wQL8Mdmz0CU82bwD8vfu9s_oZ_nw-8f96PqhNFJWvOTIgJlq2IChkrYtDimnAlvLJ5NaoLKVqORk2IpaKUZt-zmwQslV0xorG1YNyNXad7GczLE16HOETi-im0N81wGc_v7j3YuehjetuBRKqN7gbGMQw-sSU9Zzlwx2HXgMy6S5lHRYibofd0Au11ITQ0oR7bYNo3oVhf4ehR5rzvQqih5-XMOzfolT3KIQszMd_k82mvf3i9_qzAtEjb76AK_4nrc |
CitedBy_id | crossref_primary_10_3390_antibiotics10121437 crossref_primary_10_1292_jvms_22_0253 crossref_primary_10_4102_ojvr_v89i1_2006 crossref_primary_10_1292_jvms_23_0069 crossref_primary_10_1002_vms3_1007 crossref_primary_10_1128_spectrum_01063_23 crossref_primary_10_7717_peerj_11606 crossref_primary_10_1292_jvms_22_0415 crossref_primary_10_1007_s00203_023_03476_1 |
Cites_doi | 10.1128/AAC.02057-16 10.1093/jac/dky272 10.3201/eid2312.170883 10.1128/AAC.02106-17 10.3389/fmicb.2014.00643 10.1093/jac/dky111 10.1111/j.1469-0691.2011.03570.x 10.3201/eid2207.160234 10.3389/fmicb.2019.00080 10.1128/jcm.30.9.2484-2486.1992 10.1590/0037-8682-0237-2019 10.1128/JCM.01963-14 10.1128/AAC.00404-18 10.1592/phco.30.12.1279 10.3390/microorganisms5030050 10.1128/mBio.00853-19 10.1371/journal.pone.0159863 10.7883/yoken.JJID.2016.572 10.2807/1560-7917.ES.2015.20.49.30085 10.1093/jac/dkw181 10.1038/s41598-020-75608-2 10.2807/1560-7917.ES.2016.21.27.30280 10.1111/1348-0421.12549 10.1128/mBio.00543-17 10.1038/s41426-018-0124-z 10.3389/fmicb.2018.01010 10.1016/S1473-3099(15)00424-7 10.1093/jac/dkx327 10.1016/j.ijantimicag.2017.11.010 10.1186/s13756-017-0242-8 10.1080/22221751.2020.1732231 10.1128/CMR.00064-16 10.1016/j.jgar.2018.02.010 10.2807/1560-7917.ES.2017.22.31.30589 10.4081/ijfs.2015.4579 10.14252/foodsafetyfscj.2016033s |
ContentType | Journal Article |
Copyright | 2021 Food Safety Commission, Cabinet Office, Government of Japan 2021 Food Safety Commission, Cabinet Office, Government of Japan 2021 |
Copyright_xml | – notice: 2021 Food Safety Commission, Cabinet Office, Government of Japan – notice: 2021 Food Safety Commission, Cabinet Office, Government of Japan 2021 |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.14252/foodsafetyfscj.D-21-00002 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2187-8404 |
EndPage | 56 |
ExternalDocumentID | 10_14252_foodsafetyfscj_D_21_00002 article_foodsafetyfscj_9_2_9_D_21_00002_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF JSH KQ8 OK1 RJT RPM RZJ AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c5532-2e1a1c369ac050dde60204edf2bb74e8f3435b6d478810fd17758e5289dcf5913 |
IEDL.DBID | RPM |
ISSN | 2187-8404 |
IngestDate | Fri Sep 01 02:37:14 EDT 2023 Fri Apr 12 10:04:12 EDT 2024 Fri Aug 23 04:13:51 EDT 2024 Wed Apr 05 07:03:45 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY) 4.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5532-2e1a1c369ac050dde60204edf2bb74e8f3435b6d478810fd17758e5289dcf5913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The contents of this article reflect solely the view of the author(s). |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8254848/ |
PMID | 34249589 |
PQID | 2550634755 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8254848 proquest_miscellaneous_2550634755 crossref_primary_10_14252_foodsafetyfscj_D_21_00002 jstage_primary_article_foodsafetyfscj_9_2_9_D_21_00002_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | Food Safety |
PublicationTitleAlternate | Food Safety |
PublicationYear | 2021 |
Publisher | Food Safety Commission, Cabinet Office, Government of Japan |
Publisher_xml | – name: Food Safety Commission, Cabinet Office, Government of Japan |
References | 22. Sato T, Fukuda A, Usui M, et al. Isolation of a mcr-1-harbouring Escherichia coli isolate from a human clinical setting in Sapporo, Japan. J Glob Antimicrob Resist. 2018; 13: 20–21. PMID:29476984, DOI:10.1016/j.jgar.2018.02.010 30. Veldman K, van Essen-Zandbergen A, Rapallini M, et al. Location of colistin resistance gene mcr-1 in Enterobacteriaceae from livestock and meat: Table 1. J Antimicrob Chemother. 2016; 71(8): 2340–2342. PMID:27246233, DOI:10.1093/jac/dkw181 4. Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016; 16(2): 161–168. PMID:26603172, DOI:10.1016/S1473-3099(15)00424-7 5. Hasman H, Hammerum AM, Hansen F, et al. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill. 2015; 20(49). PMID:26676364, DOI:10.2807/1560-7917.ES.2015.20.49.30085 3. Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014; 5: 643. PMID:25505462, DOI:10.3389/fmicb.2014.00643 8. Carattoli A, Villa L, Feudi C, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017; 22(31): 30589. PMID:28797329, DOI:10.2807/1560-7917.ES.2017.22.31.30589 39. Nakajima H, Inoue M, Mori T, Itoh K, Arakawa E, Watanabe H. Detection and identification of Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica by an improved polymerase chain reaction method. J Clin Microbiol. 1992; 30(9): 2484–2486. PMID:1401022, DOI:10.1128/JCM.30.9.2484-2486.1992 12. Wang X, Wang Y, Zhou Y, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect. 2018; 7(1): 1–9. PMID:29970891, DOI:10.1038/s41426-018-0124-z 38. Mazzette R, Fois F, Consolati SG, et al. Detection of pathogenic Yersinia enterocolitica in slaughtered pigs by cultural methods and real-time polymerase chain reaction. Ital J Food Saf. 2015; 4(2): 4579–4579. PMID:27800392, DOI:10.4081/ijfs.2015.4579 32. Ahmed S, Das T, Islam MZ, Herrero-Fresno A, Biswas PK, Olsen JE. High prevalence of mcr-1-encoded colistin resistance in commensal Escherichia coli from broiler chicken in Bangladesh. Sci Rep. 2020; 10(1): 18637. PMID:33122817, DOI:10.1038/s41598-020-75608-2 31. Kudirkiene E, Andoh LA, Ahmed S, et al. The use of a combined bioinformatics approach to locate antibiotic resistance genes on plasmids from whole genome sequences of Salmonella enterica Serovars from humans in Ghana. Front Microbiol. 2018; 9: 1010. PMID:29867897, DOI:10.3389/fmicb.2018.01010 18. Shen Y, Xu C, Sun Q, et al. Prevalence and genetic analysis of mcr-3-positive Aeromonas species from humans, retail meat, and environmental water samples. Antimicrob Agents Chemother. 2018; 62(9): e00404-18. PMID:29967026, DOI:10.1128/AAC.00404-18 9. Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica. enterica serovar Paratyphi B. J Antimicrob Chemother. 2017; 72(12): 3317–3324. PMID:28962028, DOI:10.1093/jac/dkx327 24. Nishino Y, Shimojima Y, Suzuki Y, et al. Detection of the mcr-1 gene in colistin-resistant Escherichia coli from retail meat in Japan. Microbiol Immunol. 2017; 61(12): 554–557. PMID:29052266, DOI:10.1111/1348-0421.12549 27. Clinical and Laboratory Standards Institute (2016). Performance standards for antimicrobial susceptibility testing; 26th informational supplement. CLSI document M100-S26. Clinical and Laboratory Standards Institute. 28. EUCAST (The European Committee on Antimicrobial Susceptibility Testing) 2017. Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST. Version 7.0. http://www.eucast.org. Accessed on June 15, 2021. 34. Ohsaki Y, Hayashi W, Saito S, et al. First detection of an Escherichia coli strain harboring the mcr-1 gene in retail domestic chicken meat in Japan. Jpn J Infect Dis. 2017; 70(5): 590–592. PMID:28674313, DOI:10.7883/yoken.JJID.2016.572 29. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18(3): 268–281. PMID:21793988, DOI:10.1111/j.1469-0691.2011.03570.x 6. Xavier BB, Lammens C, Ruhal R, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016; 21(27). PMID:27416987, DOI:10.2807/1560-7917.ES.2016.21.27.30280 16. Kieffer N, Aires-de-Sousa M, Nordmann P, Poirel L. High rate of mcr-1-producing Escherichia coli and Klebsiella pneumoniae among pigs, Portugal. Emerg Infect Dis. 2017; 23(12): 2023–2029. PMID:29148380, DOI:10.3201/eid2312.170883 13. Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug- resistant, colistin-susceptible Salmonella enterica Serotype Typhimurium isolate. mBio. 2019; 10(3): e00853-19. PMID:31064835, DOI:10.1128/mBio.00853-19 14. Wang C, Feng Y, Liu L, Wei L, Kang M, Zong Z. Identification of novel mobile colistin resistance gene mcr-10. Emerg Microbes Infect. 2020; 9(1): 508–516. PMID:32116151, DOI:10.1080/22221751.2020.1732231 1. Lim LM, Ly N, Anderson D, et al. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy. 2010; 30(12): 1279–1291. PMID:21114395, DOI:10.1592/phco.30.12.1279 26. Persson S, Al-Shuweli S, Yapici S, Jensen JN, Olsen KEP. Identification of clinical aeromonas species by rpoB and gyrB sequencing and development of a multiplex PCR method for detection of Aeromonas hydrophila, A. caviae, A. veronii, and A. media. J Clin Microbiol. 2015; 53(2): 653–656. PMID:25411168, DOI:10.1128/JCM.01963-14 37. Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front Microbiol. 2019; 10: 80. PMID:30761114, DOI:10.3389/fmicb.2019.00080 19. Hameed F, Khan MA, Muhammad H, Sarwar T, Bilal H, Rehman TU. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan. Rev Soc Bras Med Trop. 2019; 52: e20190237. PMID:31508785, DOI:10.1590/0037-8682-0237-2019 7. Yin W, Li H, Shen Y, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio. 2017; 8(3): 00543-17. PMID:28655818, DOI:10.1128/mBio.00543-17 2. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017; 30(2): 557–596. PMID:28275006, DOI:10.1128/CMR.00064-16 17. Irrgang A, Roschanski N, Tenhagen BA, et al. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010–2015. PLoS ONE. 2016; 11(7): e0159863. PMID:27454527, DOI:10.1371/journal.pone.0159863 23. Fukuda A, Sato T, Shinagawa M, et al. High prevalence of mcr-1, mcr-3 and mcr-5 in Escherichia coli derived from diseased pigs in Japan. J Glob Antimicrob Resist. 2018; 51(1): 163–164. PMID:29180277, DOI:10.1016/j.ijantimicag.2017.11.010 36. Tanaka K, Yamamoto M, Matsumoto M, Saito M, Funabashi M, Yoshimatsu S. An outbreak of food poisoning suspected due to Aeromonas and characteristics of the isolated strains [in Japanese]. Nihon Koshu Eisei Zasshi. 1992; 39(9): 707–713. PMID:1292745 25. Food Safety Commission of Japan. Antimicrobial-resistant bacteria arising from the use of colistin sulfate in the livestock (antimicrobial-resistant bacteria). Food Saf (Tokyo). 2017; 5(1): 24–28. PMID:32231925, DOI:10.14252/foodsafetyfscj.2016033s 33. Wang X, Zhai W, Li J, et al. Presence of an mcr-3 variant in Aeromonas caviae, Proteus mirabilis, and Escherichia coli from one domestic duck. Antimicrob Agents Chemother. 2018; 62(2): e02106–e02117. PMID:29203482 10. AbuOun M, Stubberfield EJ, Duggett NA, et al. mcr-1 and mcr-2 (mcr-6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother. 2018; 73(10): 2904. PMID:30053008, DOI:10.1093/jac/dky272 20. Kawanishi M, Abo H, Ozawa M, et al. Prevalence of colistin resistance gene mcr-1 and absence of mcr-2 in Escherichia coli isolated from healthy food-producing animals in Japan. Antimicrob Agents Chemother. 2016; 61(1): e02057–e16. PMID:27855068 35. Rouger A, Tresse O, Zagorec M. Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms. 2017; 5(3): 50. PMID:28841156, DOI:10.3390/microorganisms5030050 15. Schrauwen EJA, Huizinga P, van Spreuwel N, Verhulst C, Kluytmans-van den Bergh MFQ, Kluytmans JAJW. High prevalence of the mcr-1 gene in retail chicken meat in the Netherlands in 2015. Antimicrob Resist Infect Control. 2017; 6(1): 83. PMID:28828173, DOI:10.1186/s13756-017-0242-8 11. Yang YQ, Li YX, Lei CW, Zhang AY, Wang HN. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J Antimicrob Chemother. 2018; 73(7): 1791–1795. PMID:29912417, DOI:10.1093/jac/dky111 21. Kusumoto M, Ogura Y, Gotoh Y, Iwata T, Hayashi T, Akiba M. Colistin-resistant mcr-1-positive pathogenic Escherichia coli in swine, Japan, 2007–2014. Emerg Infect Dis. 2016; 22(7): 1315–1317. PMID:27314277, DOI:10.3201/eid2207.160234 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 20 doi: 10.1128/AAC.02057-16 – ident: 10 doi: 10.1093/jac/dky272 – ident: 16 doi: 10.3201/eid2312.170883 – ident: 33 doi: 10.1128/AAC.02106-17 – ident: 3 doi: 10.3389/fmicb.2014.00643 – ident: 11 doi: 10.1093/jac/dky111 – ident: 29 doi: 10.1111/j.1469-0691.2011.03570.x – ident: 21 doi: 10.3201/eid2207.160234 – ident: 37 doi: 10.3389/fmicb.2019.00080 – ident: 28 – ident: 39 doi: 10.1128/jcm.30.9.2484-2486.1992 – ident: 19 doi: 10.1590/0037-8682-0237-2019 – ident: 26 doi: 10.1128/JCM.01963-14 – ident: 18 doi: 10.1128/AAC.00404-18 – ident: 1 doi: 10.1592/phco.30.12.1279 – ident: 35 doi: 10.3390/microorganisms5030050 – ident: 13 doi: 10.1128/mBio.00853-19 – ident: 17 doi: 10.1371/journal.pone.0159863 – ident: 34 doi: 10.7883/yoken.JJID.2016.572 – ident: 5 doi: 10.2807/1560-7917.ES.2015.20.49.30085 – ident: 30 doi: 10.1093/jac/dkw181 – ident: 32 doi: 10.1038/s41598-020-75608-2 – ident: 36 – ident: 6 doi: 10.2807/1560-7917.ES.2016.21.27.30280 – ident: 24 doi: 10.1111/1348-0421.12549 – ident: 7 doi: 10.1128/mBio.00543-17 – ident: 12 doi: 10.1038/s41426-018-0124-z – ident: 31 doi: 10.3389/fmicb.2018.01010 – ident: 4 doi: 10.1016/S1473-3099(15)00424-7 – ident: 9 doi: 10.1093/jac/dkx327 – ident: 23 doi: 10.1016/j.ijantimicag.2017.11.010 – ident: 15 doi: 10.1186/s13756-017-0242-8 – ident: 14 doi: 10.1080/22221751.2020.1732231 – ident: 2 doi: 10.1128/CMR.00064-16 – ident: 22 doi: 10.1016/j.jgar.2018.02.010 – ident: 8 doi: 10.2807/1560-7917.ES.2017.22.31.30589 – ident: 38 doi: 10.4081/ijfs.2015.4579 – ident: 27 – ident: 25 doi: 10.14252/foodsafetyfscj.2016033s |
SSID | ssj0001775907 |
Score | 1.790182 |
Snippet | Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mcr-1 gene has been... Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mc r-1 gene has been... |
SourceID | pubmedcentral proquest crossref jstage |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 48 |
SubjectTerms | colistin gram-negative bacteria Original plasmid-mediated colistin-resistance gene retail meat |
Title | Prevalence of Colistin-Resistant Bacteria among Retail Meats in Japan |
URI | https://www.jstage.jst.go.jp/article/foodsafetyfscj/9/2/9_D-21-00002/_article/-char/en https://search.proquest.com/docview/2550634755 https://pubmed.ncbi.nlm.nih.gov/PMC8254848 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Food Safety, 2021, Vol.9(2), pp.48-56 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4AceCCQIAYLwWJa7c2Tfo4wtiEJg0hBBK3KGkSGIIUsXHg32Nn3Vg5cuiptVrZTvw5tT8TcuFgV7RWJFEW51XEIfmCJeWKyNmANkSpAjv_-Da7eeSjJ_G0RsSiFyYU7Vd60vVv710_eQm1lR_vVW9RJ9a7G_cxqyl40Vsn6-CgKyl6OFjJcwEZX0MwCi7Jeq6uzVQ5O_uGuPLavY5Ygt3UMY6ySTlOX8Yp7ytxafMVoNmzbaHOds3kShAa7pDtBj3Sy_lX7pI16_fIAGmYVGgeorWj_foN162P7u0UwaGf0as5JbOiYbQQvQ9lo3QM2_CUTjwdQcD0--RxOHjo30TNdISoEiJlEbOJSqo0K1UVixh2qQz7XK1xTOuc28KlgIR0ZpAfP4mdQb0UVkCCZSonyiQ9IBu-9vaQUJ04p3ipLNeaBw7BwrjKamN0zFRpOiRd6EZ-zEkwJCYPqFzZVq68liyRQbkdMpyrcSnT2PCvSCkZXL-Cy-ew8QxWb4ecL8wgwfnxj4bytv6aSsiHAGLxXIgOyVv2Wb4T6bPbd8CrAo1240VH_5Y8JlsMK1zCgcwJ2Zh9ftlTgCgzfRZc8geBHuw4 |
link.rule.ids | 230,315,730,783,787,888,4033,27937,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYILDwFiSylG4pps4th5HOm2q6V0K1S1qDfLz7Kldapu9gC_nrGTbDe9wSEnZxTZnz0PZ-YbhD5b0IrGsDTKk0JFFIIvOFK2jKwJ3garRGDnn5_ks3N6dMEuthDra2FC0r6Si9hd38Ru8TPkVt7eqHGfJzb-Pp_4qKak5fgRegznNck3gvRwtVIUDGK-jmIUNiUZ27rWS2FN8xssy1V8EJHU11MnvplNRn3_Zd_nfcMyPbkC5-zSDPzOYdbkhhmavkA_-gm02Se_4lUjY_XnAbfjP8_wJXreOab4Szv8Cm0Z9xodeoYnEeqScG3xpL72KsFFp2bp_U7X4P2W7Vng0LUIn4aMVDwHDb_EC4ePwBa7N-h8eng2mUVd44VIMZaRiJhUpCrLK6ESloACzH0JrdGWSFlQU9oMnCyZa0-9nyZW-wUvDYPYTSvLqjR7i7Zd7cw7hGVqraCVMFRKGugJS22VkVrLhIhKj1DWLzq_bfk1uI9LPGp8iBo_4CTlAbURmrb4rGW6xXsoUnECz73g-j1f0waKYYQ-9fhyOFf-Z4lwpl4tOYRa4L3RgrERKgbAr7_pmbmHIwBnYOju4Nv5b8mP6OnsbH7Mj7-efHuPnhGfSBPufXbRdnO3Mh_AE2rkXtj3fwEjCA5G |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIMSFhwCxpRQjcc3LsfM40t2uSmGrqqJSxcXys2xpnVU3e4Bfz9jJbjc99pBTPIrsz56HM_MNQl8saEVjWBYVaakiCsEXHClbRdYEb4PVIrDzz06Ko3N6fMEutlp9haR9Jeexu76J3fx3yK1c3KhknSeWnM7GPqqpaJUstE0eoydwZtNqK1AP1ytlySDu62lGYWOSxDaNXgpr2r9gXa7iSUQyX1Od-oY2OfU9mH2v9y3r9PQKHLRLM_A9h5mTW6Zo-hL9Wk-iy0D5E69aGat_9_gdHzTLV-hF76Dir92Q1-iRcW_QoWd6EqE-CTcWj5trrxpcdGaW3v90LT7oWJ8FDt2L8FnITMUz0PRLPHf4GGyye4vOp4c_x0dR34AhUozlJCImE5nKi1qolKWgCAtfSmu0JVKW1FQ2B2dLFtpT8Gep1X7RK8MghtPKsjrL36Ed1zjzHmGZWStoLQyVkgaawkpbZaTWMiWi1iOUrxeeLzqeDe7jE48cHyLHJ5xkPCA3QtMOo41Mv4D3RWpO4LkT3IzztW2gIEbo8xpjDufL_zQRzjSrJYeQC7w4WjI2QuUA_M03PUP38A1AGpi6ewh3Hyz5CT07nUz5j28n3z-g58Tn04Trnz20096uzEdwiFq5H7b-f25SEMY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prevalence+of+Colistin-Resistant+Bacteria+among+Retail+Meats+in+Japan&rft.jtitle=Food+safety+%28Tokyo%2C+Japan%29&rft.au=Odoi%2C+Justice+O.&rft.au=Takayanagi%2C+Sayo&rft.au=Sugiyama%2C+Michiyo&rft.au=Usui%2C+Masaru&rft.date=2021&rft.issn=2187-8404&rft.eissn=2187-8404&rft.volume=9&rft.issue=2&rft.spage=48&rft.epage=56&rft_id=info:doi/10.14252%2Ffoodsafetyfscj.D-21-00002&rft.externalDBID=n%2Fa&rft.externalDocID=10_14252_foodsafetyfscj_D_21_00002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2187-8404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2187-8404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2187-8404&client=summon |