Prevalence of Colistin-Resistant Bacteria among Retail Meats in Japan

Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mcr-1 gene has been reported in Enterobacteriaceae isolated from food, animals, and humans in China, the prevalence of CST-resistant bacteria has been of great concern...

Full description

Saved in:
Bibliographic Details
Published inFood Safety Vol. 9; no. 2; pp. 48 - 56
Main Authors Odoi, Justice O., Takayanagi, Sayo, Sugiyama, Michiyo, Usui, Masaru, Tamura, Yutaka, Asai, Tetsuo
Format Journal Article
LanguageEnglish
Published Food Safety Commission, Cabinet Office, Government of Japan 2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mcr-1 gene has been reported in Enterobacteriaceae isolated from food, animals, and humans in China, the prevalence of CST-resistant bacteria has been of great concern. Here, we investigated the prevalence of CST resistance and plasmid-mediated colistin-resistance genes (mcr) in gram-negative bacteria isolated among retail meats in Japan. CST-resistant bacteria were isolated from 310 domestic retail meats (103 chicken meat, 103 pork, and 104 beef) purchased between May 2017 and July 2018 from retail shops in Japan using CST-containing media and antimicrobial susceptibility testing. The mcr gene was investigated in isolates with a CST minimum inhibitory concentration of ≥1 μg/mL. Excluding the intrinsically CST-resistant isolates, CST-resistant bacteria were isolated from 39 of the total chicken meats (37.9%), 19 of the pork samples (18.4%), and 18 of the beef samples (17.3%). A total of 459 isolates were identified, out of which 99 were CST-resistant. CST resistance (resistance breakpoints: Aeromonas, >4 μg/mL; others, >2 μg/mL) was found in Aeromonas spp. (48/206, 23.3%), Yersinia spp. (5/112, 4.5%), Escherichia coli (23/39, 59%), Citrobacter spp. (4/26, 15.4%), Klebsiella spp. (2/23, 8.7%), Raoultella spp. (2/16, 12.5%), Enterobacter spp. (7/14, 50%), Pseudomonas spp. (1/8, 12.5%), Pantoea spp. (5/7, 71.4%), Ewingella spp. (1/4, 25%), and Kluyvera spp. (1/2, 50%). The mcr gene was detected in 16 isolates: mcr-1 in 14 isolates of E. coli from 10 chicken samples (9.7%), and mcr-3 in two isolates of Aeromonas sobria from pork and chicken samples (each 1.0%). The findings of this study highlight the necessity of surveillance of CST resistance and resistance genes in bacteria that contaminate retail meats.
AbstractList Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mcr-1 gene has been reported in Enterobacteriaceae isolated from food, animals, and humans in China, the prevalence of CST-resistant bacteria has been of great concern. Here, we investigated the prevalence of CST resistance and plasmid-mediated colistin-resistance genes (mcr) in gram-negative bacteria isolated among retail meats in Japan. CST-resistant bacteria were isolated from 310 domestic retail meats (103 chicken meat, 103 pork, and 104 beef) purchased between May 2017 and July 2018 from retail shops in Japan using CST-containing media and antimicrobial susceptibility testing. The mcr gene was investigated in isolates with a CST minimum inhibitory concentration of ≥1 μg/mL. Excluding the intrinsically CST-resistant isolates, CST-resistant bacteria were isolated from 39 of the total chicken meats (37.9%), 19 of the pork samples (18.4%), and 18 of the beef samples (17.3%). A total of 459 isolates were identified, out of which 99 were CST-resistant. CST resistance (resistance breakpoints: Aeromonas, >4 μg/mL; others, >2 μg/mL) was found in Aeromonas spp. (48/206, 23.3%), Yersinia spp. (5/112, 4.5%), Escherichia coli (23/39, 59%), Citrobacter spp. (4/26, 15.4%), Klebsiella spp. (2/23, 8.7%), Raoultella spp. (2/16, 12.5%), Enterobacter spp. (7/14, 50%), Pseudomonas spp. (1/8, 12.5%), Pantoea spp. (5/7, 71.4%), Ewingella spp. (1/4, 25%), and Kluyvera spp. (1/2, 50%). The mcr gene was detected in 16 isolates: mcr-1 in 14 isolates of E. coli from 10 chicken samples (9.7%), and mcr-3 in two isolates of Aeromonas sobria from pork and chicken samples (each 1.0%). The findings of this study highlight the necessity of surveillance of CST resistance and resistance genes in bacteria that contaminate retail meats.
Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mc r-1 gene has been reported in Enterobacteriaceae isolated from food, animals, and humans in China, the prevalence of CST-resistant bacteria has been of great concern. Here, we investigated the prevalence of CST resistance and plasmid-mediated colistin-resistance genes ( mcr ) in gram-negative bacteria isolated among retail meats in Japan. CST-resistant bacteria were isolated from 310 domestic retail meats (103 chicken meat, 103 pork, and 104 beef) purchased between May 2017 and July 2018 from retail shops in Japan using CST-containing media and antimicrobial susceptibility testing. The mcr gene was investigated in isolates with a CST minimum inhibitory concentration of ≥1 μg/mL. Excluding the intrinsically CST-resistant isolates, CST-resistant bacteria were isolated from 39 of the total chicken meats (37.9%), 19 of the pork samples (18.4%), and 18 of the beef samples (17.3%). A total of 459 isolates were identified, out of which 99 were CST-resistant. CST resistance (resistance breakpoints: Aeromonas , >4 μg/mL; others, >2 μg/mL) was found in Aeromonas spp. (48/206, 23.3%), Yersinia spp. (5/112, 4.5%), Escherichia coli (23/39, 59%), Citrobacter spp. (4/26, 15.4%), Klebsiella spp. (2/23, 8.7%), Raoultella spp. (2/16, 12.5%), Enterobacter spp. (7/14, 50%), Pseudomonas spp. (1/8, 12.5%), Pantoea spp. (5/7, 71.4%), Ewingella spp. (1/4, 25%), and Kluyvera spp. (1/2, 50%). The mcr gene was detected in 16 isolates: mcr -1 in 14 isolates of E. coli from 10 chicken samples (9.7%), and mcr -3 in two isolates of Aeromonas sobria from pork and chicken samples (each 1.0%). The findings of this study highlight the necessity of surveillance of CST resistance and resistance genes in bacteria that contaminate retail meats.
Author Odoi, Justice O.
Takayanagi, Sayo
Usui, Masaru
Asai, Tetsuo
Sugiyama, Michiyo
Tamura, Yutaka
Author_xml – sequence: 1
  fullname: Odoi, Justice O.
  organization: Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
– sequence: 2
  fullname: Takayanagi, Sayo
  organization: Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
– sequence: 3
  fullname: Sugiyama, Michiyo
  organization: Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
– sequence: 4
  fullname: Usui, Masaru
  organization: Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu 069-8501, Japan
– sequence: 5
  fullname: Tamura, Yutaka
  organization: Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu 069-8501, Japan
– sequence: 6
  fullname: Asai, Tetsuo
  organization: Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
BookMark eNpdkV9LIzEUxYMo_ql-h8EnX0aTTNLJ-CBoq7suyorsPofbzE1NmSY1SQW_vWNb6rqBkAs5v3Mv9xyRXR88EnLK6DkTXPILG0KbwGJ-t8nMzsclZyXtD98hh5ypulSCit1_6gNyktKsV7C6lg2t98lBJbhopGoOye1TxDfo0Bssgi1GoXMpO18-Y-oL8Lm4AZMxOihgHvy0eMYMriseEXIqnC9-wQL8Mdmz0CU82bwD8vfu9s_oZ_nw-8f96PqhNFJWvOTIgJlq2IChkrYtDimnAlvLJ5NaoLKVqORk2IpaKUZt-zmwQslV0xorG1YNyNXad7GczLE16HOETi-im0N81wGc_v7j3YuehjetuBRKqN7gbGMQw-sSU9Zzlwx2HXgMy6S5lHRYibofd0Au11ITQ0oR7bYNo3oVhf4ehR5rzvQqih5-XMOzfolT3KIQszMd_k82mvf3i9_qzAtEjb76AK_4nrc
CitedBy_id crossref_primary_10_3390_antibiotics10121437
crossref_primary_10_1292_jvms_22_0253
crossref_primary_10_4102_ojvr_v89i1_2006
crossref_primary_10_1292_jvms_23_0069
crossref_primary_10_1002_vms3_1007
crossref_primary_10_1128_spectrum_01063_23
crossref_primary_10_7717_peerj_11606
crossref_primary_10_1292_jvms_22_0415
crossref_primary_10_1007_s00203_023_03476_1
Cites_doi 10.1128/AAC.02057-16
10.1093/jac/dky272
10.3201/eid2312.170883
10.1128/AAC.02106-17
10.3389/fmicb.2014.00643
10.1093/jac/dky111
10.1111/j.1469-0691.2011.03570.x
10.3201/eid2207.160234
10.3389/fmicb.2019.00080
10.1128/jcm.30.9.2484-2486.1992
10.1590/0037-8682-0237-2019
10.1128/JCM.01963-14
10.1128/AAC.00404-18
10.1592/phco.30.12.1279
10.3390/microorganisms5030050
10.1128/mBio.00853-19
10.1371/journal.pone.0159863
10.7883/yoken.JJID.2016.572
10.2807/1560-7917.ES.2015.20.49.30085
10.1093/jac/dkw181
10.1038/s41598-020-75608-2
10.2807/1560-7917.ES.2016.21.27.30280
10.1111/1348-0421.12549
10.1128/mBio.00543-17
10.1038/s41426-018-0124-z
10.3389/fmicb.2018.01010
10.1016/S1473-3099(15)00424-7
10.1093/jac/dkx327
10.1016/j.ijantimicag.2017.11.010
10.1186/s13756-017-0242-8
10.1080/22221751.2020.1732231
10.1128/CMR.00064-16
10.1016/j.jgar.2018.02.010
10.2807/1560-7917.ES.2017.22.31.30589
10.4081/ijfs.2015.4579
10.14252/foodsafetyfscj.2016033s
ContentType Journal Article
Copyright 2021 Food Safety Commission, Cabinet Office, Government of Japan
2021 Food Safety Commission, Cabinet Office, Government of Japan 2021
Copyright_xml – notice: 2021 Food Safety Commission, Cabinet Office, Government of Japan
– notice: 2021 Food Safety Commission, Cabinet Office, Government of Japan 2021
DBID AAYXX
CITATION
7X8
5PM
DOI 10.14252/foodsafetyfscj.D-21-00002
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
EISSN 2187-8404
EndPage 56
ExternalDocumentID 10_14252_foodsafetyfscj_D_21_00002
article_foodsafetyfscj_9_2_9_D_21_00002_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
JSH
KQ8
OK1
RJT
RPM
RZJ
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c5532-2e1a1c369ac050dde60204edf2bb74e8f3435b6d478810fd17758e5289dcf5913
IEDL.DBID RPM
ISSN 2187-8404
IngestDate Fri Sep 01 02:37:14 EDT 2023
Fri Apr 12 10:04:12 EDT 2024
Fri Aug 23 04:13:51 EDT 2024
Wed Apr 05 07:03:45 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY) 4.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5532-2e1a1c369ac050dde60204edf2bb74e8f3435b6d478810fd17758e5289dcf5913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The contents of this article reflect solely the view of the author(s).
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8254848/
PMID 34249589
PQID 2550634755
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8254848
proquest_miscellaneous_2550634755
crossref_primary_10_14252_foodsafetyfscj_D_21_00002
jstage_primary_article_foodsafetyfscj_9_2_9_D_21_00002_article_char_en
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Food Safety
PublicationTitleAlternate Food Safety
PublicationYear 2021
Publisher Food Safety Commission, Cabinet Office, Government of Japan
Publisher_xml – name: Food Safety Commission, Cabinet Office, Government of Japan
References 22. Sato T, Fukuda A, Usui M, et al. Isolation of a mcr-1-harbouring Escherichia coli isolate from a human clinical setting in Sapporo, Japan. J Glob Antimicrob Resist. 2018; 13: 20–21. PMID:29476984, DOI:10.1016/j.jgar.2018.02.010
30. Veldman K, van Essen-Zandbergen A, Rapallini M, et al. Location of colistin resistance gene mcr-1 in Enterobacteriaceae from livestock and meat: Table 1. J Antimicrob Chemother. 2016; 71(8): 2340–2342. PMID:27246233, DOI:10.1093/jac/dkw181
4. Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016; 16(2): 161–168. PMID:26603172, DOI:10.1016/S1473-3099(15)00424-7
5. Hasman H, Hammerum AM, Hansen F, et al. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill. 2015; 20(49). PMID:26676364, DOI:10.2807/1560-7917.ES.2015.20.49.30085
3. Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014; 5: 643. PMID:25505462, DOI:10.3389/fmicb.2014.00643
8. Carattoli A, Villa L, Feudi C, et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 2017; 22(31): 30589. PMID:28797329, DOI:10.2807/1560-7917.ES.2017.22.31.30589
39. Nakajima H, Inoue M, Mori T, Itoh K, Arakawa E, Watanabe H. Detection and identification of Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica by an improved polymerase chain reaction method. J Clin Microbiol. 1992; 30(9): 2484–2486. PMID:1401022, DOI:10.1128/JCM.30.9.2484-2486.1992
12. Wang X, Wang Y, Zhou Y, et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect. 2018; 7(1): 1–9. PMID:29970891, DOI:10.1038/s41426-018-0124-z
38. Mazzette R, Fois F, Consolati SG, et al. Detection of pathogenic Yersinia enterocolitica in slaughtered pigs by cultural methods and real-time polymerase chain reaction. Ital J Food Saf. 2015; 4(2): 4579–4579. PMID:27800392, DOI:10.4081/ijfs.2015.4579
32. Ahmed S, Das T, Islam MZ, Herrero-Fresno A, Biswas PK, Olsen JE. High prevalence of mcr-1-encoded colistin resistance in commensal Escherichia coli from broiler chicken in Bangladesh. Sci Rep. 2020; 10(1): 18637. PMID:33122817, DOI:10.1038/s41598-020-75608-2
31. Kudirkiene E, Andoh LA, Ahmed S, et al. The use of a combined bioinformatics approach to locate antibiotic resistance genes on plasmids from whole genome sequences of Salmonella enterica Serovars from humans in Ghana. Front Microbiol. 2018; 9: 1010. PMID:29867897, DOI:10.3389/fmicb.2018.01010
18. Shen Y, Xu C, Sun Q, et al. Prevalence and genetic analysis of mcr-3-positive Aeromonas species from humans, retail meat, and environmental water samples. Antimicrob Agents Chemother. 2018; 62(9): e00404-18. PMID:29967026, DOI:10.1128/AAC.00404-18
9. Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica. enterica serovar Paratyphi B. J Antimicrob Chemother. 2017; 72(12): 3317–3324. PMID:28962028, DOI:10.1093/jac/dkx327
24. Nishino Y, Shimojima Y, Suzuki Y, et al. Detection of the mcr-1 gene in colistin-resistant Escherichia coli from retail meat in Japan. Microbiol Immunol. 2017; 61(12): 554–557. PMID:29052266, DOI:10.1111/1348-0421.12549
27. Clinical and Laboratory Standards Institute (2016). Performance standards for antimicrobial susceptibility testing; 26th informational supplement. CLSI document M100-S26. Clinical and Laboratory Standards Institute.
28. EUCAST (The European Committee on Antimicrobial Susceptibility Testing) 2017. Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST. Version 7.0. http://www.eucast.org. Accessed on June 15, 2021.
34. Ohsaki Y, Hayashi W, Saito S, et al. First detection of an Escherichia coli strain harboring the mcr-1 gene in retail domestic chicken meat in Japan. Jpn J Infect Dis. 2017; 70(5): 590–592. PMID:28674313, DOI:10.7883/yoken.JJID.2016.572
29. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18(3): 268–281. PMID:21793988, DOI:10.1111/j.1469-0691.2011.03570.x
6. Xavier BB, Lammens C, Ruhal R, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016; 21(27). PMID:27416987, DOI:10.2807/1560-7917.ES.2016.21.27.30280
16. Kieffer N, Aires-de-Sousa M, Nordmann P, Poirel L. High rate of mcr-1-producing Escherichia coli and Klebsiella pneumoniae among pigs, Portugal. Emerg Infect Dis. 2017; 23(12): 2023–2029. PMID:29148380, DOI:10.3201/eid2312.170883
13. Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug- resistant, colistin-susceptible Salmonella enterica Serotype Typhimurium isolate. mBio. 2019; 10(3): e00853-19. PMID:31064835, DOI:10.1128/mBio.00853-19
14. Wang C, Feng Y, Liu L, Wei L, Kang M, Zong Z. Identification of novel mobile colistin resistance gene mcr-10. Emerg Microbes Infect. 2020; 9(1): 508–516. PMID:32116151, DOI:10.1080/22221751.2020.1732231
1. Lim LM, Ly N, Anderson D, et al. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy. 2010; 30(12): 1279–1291. PMID:21114395, DOI:10.1592/phco.30.12.1279
26. Persson S, Al-Shuweli S, Yapici S, Jensen JN, Olsen KEP. Identification of clinical aeromonas species by rpoB and gyrB sequencing and development of a multiplex PCR method for detection of Aeromonas hydrophila, A. caviae, A. veronii, and A. media. J Clin Microbiol. 2015; 53(2): 653–656. PMID:25411168, DOI:10.1128/JCM.01963-14
37. Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front Microbiol. 2019; 10: 80. PMID:30761114, DOI:10.3389/fmicb.2019.00080
19. Hameed F, Khan MA, Muhammad H, Sarwar T, Bilal H, Rehman TU. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan. Rev Soc Bras Med Trop. 2019; 52: e20190237. PMID:31508785, DOI:10.1590/0037-8682-0237-2019
7. Yin W, Li H, Shen Y, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio. 2017; 8(3): 00543-17. PMID:28655818, DOI:10.1128/mBio.00543-17
2. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017; 30(2): 557–596. PMID:28275006, DOI:10.1128/CMR.00064-16
17. Irrgang A, Roschanski N, Tenhagen BA, et al. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010–2015. PLoS ONE. 2016; 11(7): e0159863. PMID:27454527, DOI:10.1371/journal.pone.0159863
23. Fukuda A, Sato T, Shinagawa M, et al. High prevalence of mcr-1, mcr-3 and mcr-5 in Escherichia coli derived from diseased pigs in Japan. J Glob Antimicrob Resist. 2018; 51(1): 163–164. PMID:29180277, DOI:10.1016/j.ijantimicag.2017.11.010
36. Tanaka K, Yamamoto M, Matsumoto M, Saito M, Funabashi M, Yoshimatsu S. An outbreak of food poisoning suspected due to Aeromonas and characteristics of the isolated strains [in Japanese]. Nihon Koshu Eisei Zasshi. 1992; 39(9): 707–713. PMID:1292745
25. Food Safety Commission of Japan. Antimicrobial-resistant bacteria arising from the use of colistin sulfate in the livestock (antimicrobial-resistant bacteria). Food Saf (Tokyo). 2017; 5(1): 24–28. PMID:32231925, DOI:10.14252/foodsafetyfscj.2016033s
33. Wang X, Zhai W, Li J, et al. Presence of an mcr-3 variant in Aeromonas caviae, Proteus mirabilis, and Escherichia coli from one domestic duck. Antimicrob Agents Chemother. 2018; 62(2): e02106–e02117. PMID:29203482
10. AbuOun M, Stubberfield EJ, Duggett NA, et al. mcr-1 and mcr-2 (mcr-6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother. 2018; 73(10): 2904. PMID:30053008, DOI:10.1093/jac/dky272
20. Kawanishi M, Abo H, Ozawa M, et al. Prevalence of colistin resistance gene mcr-1 and absence of mcr-2 in Escherichia coli isolated from healthy food-producing animals in Japan. Antimicrob Agents Chemother. 2016; 61(1): e02057–e16. PMID:27855068
35. Rouger A, Tresse O, Zagorec M. Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms. 2017; 5(3): 50. PMID:28841156, DOI:10.3390/microorganisms5030050
15. Schrauwen EJA, Huizinga P, van Spreuwel N, Verhulst C, Kluytmans-van den Bergh MFQ, Kluytmans JAJW. High prevalence of the mcr-1 gene in retail chicken meat in the Netherlands in 2015. Antimicrob Resist Infect Control. 2017; 6(1): 83. PMID:28828173, DOI:10.1186/s13756-017-0242-8
11. Yang YQ, Li YX, Lei CW, Zhang AY, Wang HN. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J Antimicrob Chemother. 2018; 73(7): 1791–1795. PMID:29912417, DOI:10.1093/jac/dky111
21. Kusumoto M, Ogura Y, Gotoh Y, Iwata T, Hayashi T, Akiba M. Colistin-resistant mcr-1-positive pathogenic Escherichia coli in swine, Japan, 2007–2014. Emerg Infect Dis. 2016; 22(7): 1315–1317. PMID:27314277, DOI:10.3201/eid2207.160234
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 20
  doi: 10.1128/AAC.02057-16
– ident: 10
  doi: 10.1093/jac/dky272
– ident: 16
  doi: 10.3201/eid2312.170883
– ident: 33
  doi: 10.1128/AAC.02106-17
– ident: 3
  doi: 10.3389/fmicb.2014.00643
– ident: 11
  doi: 10.1093/jac/dky111
– ident: 29
  doi: 10.1111/j.1469-0691.2011.03570.x
– ident: 21
  doi: 10.3201/eid2207.160234
– ident: 37
  doi: 10.3389/fmicb.2019.00080
– ident: 28
– ident: 39
  doi: 10.1128/jcm.30.9.2484-2486.1992
– ident: 19
  doi: 10.1590/0037-8682-0237-2019
– ident: 26
  doi: 10.1128/JCM.01963-14
– ident: 18
  doi: 10.1128/AAC.00404-18
– ident: 1
  doi: 10.1592/phco.30.12.1279
– ident: 35
  doi: 10.3390/microorganisms5030050
– ident: 13
  doi: 10.1128/mBio.00853-19
– ident: 17
  doi: 10.1371/journal.pone.0159863
– ident: 34
  doi: 10.7883/yoken.JJID.2016.572
– ident: 5
  doi: 10.2807/1560-7917.ES.2015.20.49.30085
– ident: 30
  doi: 10.1093/jac/dkw181
– ident: 32
  doi: 10.1038/s41598-020-75608-2
– ident: 36
– ident: 6
  doi: 10.2807/1560-7917.ES.2016.21.27.30280
– ident: 24
  doi: 10.1111/1348-0421.12549
– ident: 7
  doi: 10.1128/mBio.00543-17
– ident: 12
  doi: 10.1038/s41426-018-0124-z
– ident: 31
  doi: 10.3389/fmicb.2018.01010
– ident: 4
  doi: 10.1016/S1473-3099(15)00424-7
– ident: 9
  doi: 10.1093/jac/dkx327
– ident: 23
  doi: 10.1016/j.ijantimicag.2017.11.010
– ident: 15
  doi: 10.1186/s13756-017-0242-8
– ident: 14
  doi: 10.1080/22221751.2020.1732231
– ident: 2
  doi: 10.1128/CMR.00064-16
– ident: 22
  doi: 10.1016/j.jgar.2018.02.010
– ident: 8
  doi: 10.2807/1560-7917.ES.2017.22.31.30589
– ident: 38
  doi: 10.4081/ijfs.2015.4579
– ident: 27
– ident: 25
  doi: 10.14252/foodsafetyfscj.2016033s
SSID ssj0001775907
Score 1.790182
Snippet Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mcr-1 gene has been...
Colistin (CST) is considered the last resort for the treatment of infectious diseases due to multidrug-resistant bacteria. Since the mc r-1 gene has been...
SourceID pubmedcentral
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 48
SubjectTerms colistin
gram-negative bacteria
Original
plasmid-mediated colistin-resistance gene
retail meat
Title Prevalence of Colistin-Resistant Bacteria among Retail Meats in Japan
URI https://www.jstage.jst.go.jp/article/foodsafetyfscj/9/2/9_D-21-00002/_article/-char/en
https://search.proquest.com/docview/2550634755
https://pubmed.ncbi.nlm.nih.gov/PMC8254848
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Food Safety, 2021, Vol.9(2), pp.48-56
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4AceCCQIAYLwWJa7c2Tfo4wtiEJg0hBBK3KGkSGIIUsXHg32Nn3Vg5cuiptVrZTvw5tT8TcuFgV7RWJFEW51XEIfmCJeWKyNmANkSpAjv_-Da7eeSjJ_G0RsSiFyYU7Vd60vVv710_eQm1lR_vVW9RJ9a7G_cxqyl40Vsn6-CgKyl6OFjJcwEZX0MwCi7Jeq6uzVQ5O_uGuPLavY5Ygt3UMY6ySTlOX8Yp7ytxafMVoNmzbaHOds3kShAa7pDtBj3Sy_lX7pI16_fIAGmYVGgeorWj_foN162P7u0UwaGf0as5JbOiYbQQvQ9lo3QM2_CUTjwdQcD0--RxOHjo30TNdISoEiJlEbOJSqo0K1UVixh2qQz7XK1xTOuc28KlgIR0ZpAfP4mdQb0UVkCCZSonyiQ9IBu-9vaQUJ04p3ipLNeaBw7BwrjKamN0zFRpOiRd6EZ-zEkwJCYPqFzZVq68liyRQbkdMpyrcSnT2PCvSCkZXL-Cy-ew8QxWb4ecL8wgwfnxj4bytv6aSsiHAGLxXIgOyVv2Wb4T6bPbd8CrAo1240VH_5Y8JlsMK1zCgcwJ2Zh9ftlTgCgzfRZc8geBHuw4
link.rule.ids 230,315,730,783,787,888,4033,27937,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYILDwFiSylG4pps4th5HOm2q6V0K1S1qDfLz7Kldapu9gC_nrGTbDe9wSEnZxTZnz0PZ-YbhD5b0IrGsDTKk0JFFIIvOFK2jKwJ3garRGDnn5_ks3N6dMEuthDra2FC0r6Si9hd38Ru8TPkVt7eqHGfJzb-Pp_4qKak5fgRegznNck3gvRwtVIUDGK-jmIUNiUZ27rWS2FN8xssy1V8EJHU11MnvplNRn3_Zd_nfcMyPbkC5-zSDPzOYdbkhhmavkA_-gm02Se_4lUjY_XnAbfjP8_wJXreOab4Szv8Cm0Z9xodeoYnEeqScG3xpL72KsFFp2bp_U7X4P2W7Vng0LUIn4aMVDwHDb_EC4ePwBa7N-h8eng2mUVd44VIMZaRiJhUpCrLK6ESloACzH0JrdGWSFlQU9oMnCyZa0-9nyZW-wUvDYPYTSvLqjR7i7Zd7cw7hGVqraCVMFRKGugJS22VkVrLhIhKj1DWLzq_bfk1uI9LPGp8iBo_4CTlAbURmrb4rGW6xXsoUnECz73g-j1f0waKYYQ-9fhyOFf-Z4lwpl4tOYRa4L3RgrERKgbAr7_pmbmHIwBnYOju4Nv5b8mP6OnsbH7Mj7-efHuPnhGfSBPufXbRdnO3Mh_AE2rkXtj3fwEjCA5G
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIMSFhwCxpRQjcc3LsfM40t2uSmGrqqJSxcXys2xpnVU3e4Bfz9jJbjc99pBTPIrsz56HM_MNQl8saEVjWBYVaakiCsEXHClbRdYEb4PVIrDzz06Ko3N6fMEutlp9haR9Jeexu76J3fx3yK1c3KhknSeWnM7GPqqpaJUstE0eoydwZtNqK1AP1ytlySDu62lGYWOSxDaNXgpr2r9gXa7iSUQyX1Od-oY2OfU9mH2v9y3r9PQKHLRLM_A9h5mTW6Zo-hL9Wk-iy0D5E69aGat_9_gdHzTLV-hF76Dir92Q1-iRcW_QoWd6EqE-CTcWj5trrxpcdGaW3v90LT7oWJ8FDt2L8FnITMUz0PRLPHf4GGyye4vOp4c_x0dR34AhUozlJCImE5nKi1qolKWgCAtfSmu0JVKW1FQ2B2dLFtpT8Gep1X7RK8MghtPKsjrL36Ed1zjzHmGZWStoLQyVkgaawkpbZaTWMiWi1iOUrxeeLzqeDe7jE48cHyLHJ5xkPCA3QtMOo41Mv4D3RWpO4LkT3IzztW2gIEbo8xpjDufL_zQRzjSrJYeQC7w4WjI2QuUA_M03PUP38A1AGpi6ewh3Hyz5CT07nUz5j28n3z-g58Tn04Trnz20096uzEdwiFq5H7b-f25SEMY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prevalence+of+Colistin-Resistant+Bacteria+among+Retail+Meats+in+Japan&rft.jtitle=Food+safety+%28Tokyo%2C+Japan%29&rft.au=Odoi%2C+Justice+O.&rft.au=Takayanagi%2C+Sayo&rft.au=Sugiyama%2C+Michiyo&rft.au=Usui%2C+Masaru&rft.date=2021&rft.issn=2187-8404&rft.eissn=2187-8404&rft.volume=9&rft.issue=2&rft.spage=48&rft.epage=56&rft_id=info:doi/10.14252%2Ffoodsafetyfscj.D-21-00002&rft.externalDBID=n%2Fa&rft.externalDocID=10_14252_foodsafetyfscj_D_21_00002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2187-8404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2187-8404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2187-8404&client=summon