Examining students’ course trajectories using data mining and visualization approaches
The heterogeneous data acquired by educational institutes about students’ careers (e.g., performance scores, course preferences, attendance record, demographics, etc.) has been a source of investigation for Educational Data Mining (EDM) researchers for over two decades. EDM researchers have primaril...
Saved in:
Published in | International Journal of Educational Technology in Higher Education Vol. 20; no. 1; pp. 55 - 18 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2023
BioMed Central, Ltd Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2365-9440 2365-9440 |
DOI | 10.1186/s41239-023-00423-4 |
Cover
Abstract | The heterogeneous data acquired by educational institutes about students’ careers (e.g., performance scores, course preferences, attendance record, demographics, etc.) has been a source of investigation for Educational Data Mining (EDM) researchers for over two decades. EDM researchers have primarily focused on course-specific data analyses of students’ performances, and rare attempts are made at the domain level that may benefit the educational institutes at large to gauge and improve their institutional effectiveness. Our work aims to fill this gap by examining students’ transcripts data for identifying similar groups of students and patterns that might associate with these different cohorts of students based on: (a) difficulty level of a course category, (b) formation of course trajectories, and, (c) transitioning of students between different performance groups. We have exploited descriptive data mining and visualization methods to analyze transcript data of 1398 undergraduate Computer Science students of a private university in Pakistan. The dataset includes students’ transcript data of 124 courses from nine distinct course categories. In the end, we have discussed our findings in detail, challenges, and, future work directions. |
---|---|
AbstractList | Abstract The heterogeneous data acquired by educational institutes about students’ careers (e.g., performance scores, course preferences, attendance record, demographics, etc.) has been a source of investigation for Educational Data Mining (EDM) researchers for over two decades. EDM researchers have primarily focused on course-specific data analyses of students’ performances, and rare attempts are made at the domain level that may benefit the educational institutes at large to gauge and improve their institutional effectiveness. Our work aims to fill this gap by examining students’ transcripts data for identifying similar groups of students and patterns that might associate with these different cohorts of students based on: (a) difficulty level of a course category, (b) formation of course trajectories, and, (c) transitioning of students between different performance groups. We have exploited descriptive data mining and visualization methods to analyze transcript data of 1398 undergraduate Computer Science students of a private university in Pakistan. The dataset includes students’ transcript data of 124 courses from nine distinct course categories. In the end, we have discussed our findings in detail, challenges, and, future work directions. The heterogeneous data acquired by educational institutes about students' careers (e.g., performance scores, course preferences, attendance record, demographics, etc.) has been a source of investigation for Educational Data Mining (EDM) researchers for over two decades. EDM researchers have primarily focused on course-specific data analyses of students' performances, and rare attempts are made at the domain level that may benefit the educational institutes at large to gauge and improve their institutional effectiveness. Our work aims to fill this gap by examining students' transcripts data for identifying similar groups of students and patterns that might associate with these different cohorts of students based on: (a) difficulty level of a course category, (b) formation of course trajectories, and, (c) transitioning of students between different performance groups. We have exploited descriptive data mining and visualization methods to analyze transcript data of 1398 undergraduate Computer Science students of a private university in Pakistan. The dataset includes students' transcript data of 124 courses from nine distinct course categories. In the end, we have discussed our findings in detail, challenges, and, future work directions. |
ArticleNumber | 55 |
Audience | Higher Education Postsecondary Education |
Author | Maqsood, Rabia Sarfraz, Muhammad Shahzad Ahmad, Muhammad Ceravolo, Paolo |
Author_xml | – sequence: 1 givenname: Rabia orcidid: 0000-0002-4620-4362 surname: Maqsood fullname: Maqsood, Rabia email: rabia.maqsood@nu.edu.pk organization: National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus – sequence: 2 givenname: Paolo surname: Ceravolo fullname: Ceravolo, Paolo organization: Universita` degli Studi di Milano – sequence: 3 givenname: Muhammad surname: Ahmad fullname: Ahmad, Muhammad organization: National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus – sequence: 4 givenname: Muhammad Shahzad surname: Sarfraz fullname: Sarfraz, Muhammad Shahzad organization: National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1396025$$DView record in ERIC |
BookMark | eNp9kd9qFDEUxoNUaF37AgVhwOux-T_JpZS1Vgq9UfAunGQya5ZtsiYZUa_6Gr6eT2K6U6p40ZsknPP9zjk53wt0FFP0CJ0R_IYQJc8LJ5TpHlPWY8zbyZ-hE8qk6DXn-Oif9zE6LWWLMSaaUqboCfq8_g63IYa46UqdRx9r-X33q3NpzsV3NcPWu5py8KWby71qhArdAwFx7L6FMsMu_IQaUuxgv88J3BdfXqLnE-yKP324V-jTu_XHi_f99c3l1cXb694JQWs_WQWC8UkSyYQSarJ8gNFqUNy70VE_Mimp1gKElUpgyTEob91k2eDcqNkKXS11xwRbs8_hFvIPkyCYQyDljYFcg9t5YyfgyjKhpdWcAgYNg2eOu0l5oVpmhV4vtdonvs6-VLNte4htfEPVMFCGmSZN9WpR-RzcY8f1B8K0xFS0PF3yLqdSsp8eNQSbe8PMYphphpmDYYY3SP0HuVAPO20ehN3TKFvQ0vrEjc9_p36C-gNNpa1j |
CitedBy_id | crossref_primary_10_1186_s41239_024_00441_w crossref_primary_10_1080_10401334_2024_2331649 |
Cites_doi | 10.3390/info13020094 10.1109/ACCESS.2017.2654247 10.1016/j.procs.2017.12.155 10.1109/EDUCON.2016.7474663 10.1109/ITI.2008.4588429 10.1109/ICBK.2017.55 10.5171/2012.622480 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN 0-V 3V. 7XB 88B 89V 8BY 8FE 8FG 8FK 8G5 ABUWG AFKRA AHOVV ALSLI ARAPS AZQEC BENPR BGLVJ CCPQU CJNVE CLZPN DPSOV DWQXO GNUQQ GUQSH HCIFZ KC- M0P M2L M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEDU PQEST PQGLB PQQKQ PQUKI PRQQA Q9U DOA |
DOI | 10.1186/s41239-023-00423-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Education Database (Alumni Edition) PRISMA Database PRISMA Database with HAPI Index ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Education Research Index Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Education Collection Latin America & Iberia Database Politics Collection ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Politics Collection Education Database Political Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Social Sciences ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef ERIC Publicly Available Content Database ProQuest One Education Research Library Prep ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials PRISMA (without HAPI) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Politics Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection Social Science Premium Collection ProQuest Political Science Education Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest Education Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database Latin America & Iberian Database ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition PRISMA (with HAPI) ProQuest Politics Collection ProQuest One Academic ProQuest Education Journals (Alumni Edition) ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | ERIC Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education Law Computer Science |
EISSN | 2365-9440 |
ERIC | EJ1396025 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_bfa48b3596b942a0a9a7e3c4cf8e588b EJ1396025 10_1186_s41239_023_00423_4 |
GeographicLocations | Pakistan |
GeographicLocations_xml | – name: Pakistan |
GrantInformation_xml | – fundername: National University of Computer and Emerging Sciences grantid: 11-71-11/NU-R/21 funderid: http://dx.doi.org/10.13039/501100022070 |
GroupedDBID | -W8 0R~ 5VS 89V 8BY 8G5 AAFWJ AAHSB AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADUOI AFGXO AFKRA AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARAPS ASPBG AZQEC B14 BCNDV BENPR BGLVJ C24 C6C CCPQU CJNVE CLZPN DPSOV DWQXO EBS EDJ EJD FAEIB GNUQQ GROUPED_DOAJ GUQSH HCIFZ HISYW IAO IER INF ITC KC- KPI M0P M2L M2O M~E OK1 PIMPY PQEDU PQQKQ PROAC RHO RSV SOJ AAYXX AFPKN CITATION PHGZM PHGZT 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN 0-V 3V. 7XB 8FE 8FG 8FK AHOVV MBDVC P62 PKEHL PQEST PQGLB PQUKI PRQQA Q9U PUEGO |
ID | FETCH-LOGICAL-c552t-fb8a534f61635858fb47adb9a84ecdc2ed3662995a5b6850640a8ebcfb37ccd93 |
IEDL.DBID | DOA |
ISSN | 2365-9440 |
IngestDate | Wed Aug 27 01:24:08 EDT 2025 Sat Aug 23 13:06:28 EDT 2025 Tue Sep 02 19:40:05 EDT 2025 Tue Jul 01 04:32:47 EDT 2025 Thu Apr 24 23:12:26 EDT 2025 Fri Feb 21 02:44:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Markov chain Educational data mining Hierarchical clustering Course trajectories |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-fb8a534f61635858fb47adb9a84ecdc2ed3662995a5b6850640a8ebcfb37ccd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4620-4362 |
OpenAccessLink | https://doaj.org/article/bfa48b3596b942a0a9a7e3c4cf8e588b |
PQID | 2877230391 |
PQPubID | 396499 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bfa48b3596b942a0a9a7e3c4cf8e588b proquest_journals_2877230391 eric_primary_EJ1396025 crossref_primary_10_1186_s41239_023_00423_4 crossref_citationtrail_10_1186_s41239_023_00423_4 springer_journals_10_1186_s41239_023_00423_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | International Journal of Educational Technology in Higher Education |
PublicationTitleAbbrev | Int J Educ Technol High Educ |
PublicationYear | 2023 |
Publisher | Springer International Publishing BioMed Central, Ltd Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: BioMed Central, Ltd – name: Springer Nature B.V – name: SpringerOpen |
References | Sya’iyahKYuliansyahHArfianiIClustering student data based on k-means algorithmsInt J Sci Technol. Res20198810141018 Bresfelean, V. P., Bresfelean, M., Ghisoiu, N., & Comes, C.-A. (2008). Determining students’ academic failure profile founded on data mining methods. In: ITI 2008-30th International Conference on Information Technology Interfaces, pp. 317–322 . IEEE RomeroCVenturaSData mining in educationWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery2013311227 DuttAIsmailMAHerawanTA systematic review on educational data miningIEEE Access20175159911600510.1109/ACCESS.2017.2654247 Tan, P.-N., Steinbach, M., & Kumar, V. (2016). Introduction to data mining. KaradagNSahinMDAnalysis of the difficulty and discrimination indices of multiple-choice questions according to cognitive levels in an open and distance learning contextTurkish Online Journal of Educational Technology-TOJET20161541624 Almatrafi, O., Johri, A., Rangwala, H., & Lester, J. (2016). Identifying course trajectories of high achieving engineering students through data analytics. In: 2016 ASEE Annual Conference & Exposition. BakerRSYacefKThe state of educational data mining in 2009: A review and future visionsJournal of Educational Data Mining200911317 DarcanONBadurBYStudent profiling on academic performance using cluster analysisJournal of E-learning & Higher Education201220121810.5171/2012.622480 TuyishimireEMabutoWGatabaziPBayisingizeSDetecting learning patterns in tertiary education using k-means clusteringInformation20221329410.3390/info13020094 Azzini, A., Ceravolo, P., Scarabottolo, N., & Damiani, E. (2016). On the predictive power of university curricula. In: 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 929–932 . https://doi.org/10.1109/EDUCON.2016.7474663 PriyambadaSAMahendrawathiEYahyaBNCurriculum assessment of higher educational institution using aggregate profile clusteringProcedia Computer Science201712426427310.1016/j.procs.2017.12.155 Yoo, J.S., Woo, Y.-S., & Park, S.J. (2017). Mining course trajectories of successful and failure students: a case study. In: 2017 IEEE International Conference on Big Knowledge (ICBK), pp. 270–275 . IEEE Ferral, H. (2005). Clustering students by their subject choices in the learning curves project. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. C Romero (423_CR10) 2013; 3 423_CR2 423_CR1 423_CR4 423_CR14 423_CR12 423_CR7 K Sya’iyah (423_CR11) 2019; 8 ON Darcan (423_CR5) 2012; 2012 SA Priyambada (423_CR9) 2017; 124 E Tuyishimire (423_CR13) 2022; 13 N Karadag (423_CR8) 2016; 15 A Dutt (423_CR6) 2017; 5 RS Baker (423_CR3) 2009; 1 |
References_xml | – reference: Ferral, H. (2005). Clustering students by their subject choices in the learning curves project. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. – reference: Almatrafi, O., Johri, A., Rangwala, H., & Lester, J. (2016). Identifying course trajectories of high achieving engineering students through data analytics. In: 2016 ASEE Annual Conference & Exposition. – reference: KaradagNSahinMDAnalysis of the difficulty and discrimination indices of multiple-choice questions according to cognitive levels in an open and distance learning contextTurkish Online Journal of Educational Technology-TOJET20161541624 – reference: Tan, P.-N., Steinbach, M., & Kumar, V. (2016). Introduction to data mining. – reference: PriyambadaSAMahendrawathiEYahyaBNCurriculum assessment of higher educational institution using aggregate profile clusteringProcedia Computer Science201712426427310.1016/j.procs.2017.12.155 – reference: Azzini, A., Ceravolo, P., Scarabottolo, N., & Damiani, E. (2016). On the predictive power of university curricula. In: 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 929–932 . https://doi.org/10.1109/EDUCON.2016.7474663 – reference: RomeroCVenturaSData mining in educationWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery2013311227 – reference: Yoo, J.S., Woo, Y.-S., & Park, S.J. (2017). Mining course trajectories of successful and failure students: a case study. In: 2017 IEEE International Conference on Big Knowledge (ICBK), pp. 270–275 . IEEE – reference: BakerRSYacefKThe state of educational data mining in 2009: A review and future visionsJournal of Educational Data Mining200911317 – reference: TuyishimireEMabutoWGatabaziPBayisingizeSDetecting learning patterns in tertiary education using k-means clusteringInformation20221329410.3390/info13020094 – reference: DuttAIsmailMAHerawanTA systematic review on educational data miningIEEE Access20175159911600510.1109/ACCESS.2017.2654247 – reference: Sya’iyahKYuliansyahHArfianiIClustering student data based on k-means algorithmsInt J Sci Technol. Res20198810141018 – reference: Bresfelean, V. P., Bresfelean, M., Ghisoiu, N., & Comes, C.-A. (2008). Determining students’ academic failure profile founded on data mining methods. In: ITI 2008-30th International Conference on Information Technology Interfaces, pp. 317–322 . IEEE – reference: DarcanONBadurBYStudent profiling on academic performance using cluster analysisJournal of E-learning & Higher Education201220121810.5171/2012.622480 – volume: 13 start-page: 94 issue: 2 year: 2022 ident: 423_CR13 publication-title: Information doi: 10.3390/info13020094 – volume: 5 start-page: 15991 year: 2017 ident: 423_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2654247 – volume: 124 start-page: 264 year: 2017 ident: 423_CR9 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2017.12.155 – volume: 15 start-page: 16 issue: 4 year: 2016 ident: 423_CR8 publication-title: Turkish Online Journal of Educational Technology-TOJET – volume: 8 start-page: 1014 issue: 8 year: 2019 ident: 423_CR11 publication-title: Int J Sci Technol. Res – ident: 423_CR2 doi: 10.1109/EDUCON.2016.7474663 – ident: 423_CR4 doi: 10.1109/ITI.2008.4588429 – ident: 423_CR12 – ident: 423_CR1 – ident: 423_CR14 doi: 10.1109/ICBK.2017.55 – volume: 2012 start-page: 1 year: 2012 ident: 423_CR5 publication-title: Journal of E-learning & Higher Education doi: 10.5171/2012.622480 – volume: 1 start-page: 3 issue: 1 year: 2009 ident: 423_CR3 publication-title: Journal of Educational Data Mining – volume: 3 start-page: 12 issue: 1 year: 2013 ident: 423_CR10 publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – ident: 423_CR7 |
SSID | ssj0001922382 |
Score | 2.2745523 |
Snippet | The heterogeneous data acquired by educational institutes about students’ careers (e.g., performance scores, course preferences, attendance record,... The heterogeneous data acquired by educational institutes about students' careers (e.g., performance scores, course preferences, attendance record,... Abstract The heterogeneous data acquired by educational institutes about students’ careers (e.g., performance scores, course preferences, attendance record,... |
SourceID | doaj proquest eric crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 55 |
SubjectTerms | Colleges & universities Computer Appl. in Social and Behavioral Sciences Computer Science Computers and Education Course trajectories Data acquisition Data Analysis Data mining Education Educational data mining Educational Technology Foreign Countries Hierarchical clustering Higher Education Humanities hybrid and online higher education: supporting students’ complex trajectories In person Information Retrieval Information Systems Applications (incl.Internet) Institutional Evaluation Law Learning Trajectories Markov chain Pattern Recognition Private Colleges Research Article Statistics for Social Sciences Students Transcripts (Written Records) Undergraduate Students Visualization |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe-GCCqVqaEE-cAOr2fiZEwK0S1UJTq20N8uvVFSwWzYL4sjf4O_xS5hxnF21UntNYiuaGc98M54HIa-5iLqLMrIkucOm2jXzjY4gy9p5nWqZBNY7f_6izi7F-VzOS8CtL2mVo07MijouA8bITwHZa4DLvJ28u_nBcGoU3q6WERqPyN4ELA3KuZl92sZYWjB-phlrZYw67QVo6paBoWI5I4SJW_Yot-2_m_mMkPPOLWk2PrN98qSgRvp-YPNTspMWz3DgcknOOCDz6W_3Pc96oP3QrbL_9-cvDUvM0aDrlbvO0Xlwiylmul9RzAylZYVbRPrra4_llUNRJh07jaf-ObmcTS8-nrEyNIEFKZs167xxkotOAdACV8B0XmgXfeuMSCGGJkWuFNgg6aRXuV1d7UzyofNchxBbfkh2F8tFOiJUKoEF3B0gPHCanAKHU0sPClEE08SaV2Qyks6G0lEcB1t8s9mzMMoO5LZAbpvJbUVF3mzW3Az9NB78-gNyZPMl9sLOD5arK1uOlvWdE8Zz2SrfisbVrnU68SBCZ5I0xlfkEPm52WR6DqhXAdaryMnIYVtObm-3claRtyPXt6_v_9cXD-92TB7jpPohE-aE7K5XP9NLwDNr_yoL7X8LAvGt priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R5cKlLQurpg_kAzeIyMbPHKHaqloBJyrtzfIriKrsVpstcORv8Pf4JR07zhYqQOKa2FGUb-z5Jp75BuA5ZV62nvsycGqiqHZV2lp6tGVprAwVDyzWO797L84v2HzBF1kmJ9bC_Hp-P1XiVcdwa21K9CxlSuEo2Q485FMq0sGsOL37n9Kgo1P1UBfzx6m_-Z4k0X8_yznSy3snosnRnO3DbmaI5HUP6WN4EJZj2Bu6L5C8GMex33LOzRjDzlvz9QksZt_M59TwgXS9ZGX38_sP4lYxUYNs1uYy_aLH2JjEdPePJKaHkjzDLD358qmLNZZ9ZSYZ5MZD9xQuzmYfTs_L3DmhdJzXm7K1ynDKWoFsC-MB1VomjbeNUSw47-rgqRDoiLjhViTNusqoYF1rqXTON3QCo-VqGQ6AcMFiFXeLNA8jJyMw6pTc4q7InKp9RQuYDt9UuywrHrtbXOkUXiihexw04qATDpoV8GI757oX1fjn6DcRqu3IKIidLqCd6Ly-tG0NU5byRtiG1aYyjZGBOuZaFbhStoBJBHr7kNkcqa9AwlfA8QC9zsu30xhGSozNaDMt4OVgDne3__6uh_83_Agexfb1fXrMMYw265twgiRnY58l674FonPyAQ priority: 102 providerName: Springer Nature |
Title | Examining students’ course trajectories using data mining and visualization approaches |
URI | https://link.springer.com/article/10.1186/s41239-023-00423-4 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1396025 https://www.proquest.com/docview/2877230391 https://doaj.org/article/bfa48b3596b942a0a9a7e3c4cf8e588b |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADLagXLggXhWBspoDN4iaZp450tUuVSUqhKi0t9G8gqhgWzUL4sjf4O_xS7BnkqVUAi5cIiWZiUa2M_aX2J8BnnERdR9lrJPkjki1m9q3OqIta-d1amQSVO_8-kQdnYrjlVxdafVFOWGFHrgIbt_3ThjPZad8J1rXuM7pxIMIvUnSGE-7b9M1V8DUWYlb0Be1U5WMUfuDwD26q9FF1TkXpBa_eaJM2H8955mCzWv_R7PbWd6FO2O8yF6Wdd6DG2l9n1otj2kZD2C1-Oo-5S4PbCg8lcOPb99ZOKfsDLa5dGf5uzwCYkY57u8Z5YSycYZbR_blw0CFlaUck00c42l4CKfLxbv5UT22S6iDlO2m7r1xkoteYYiFIMD0XmgXfeeMSCGGNkWuFHof6aRXmaiucSb50HuuQ4gd34Wd9fk6PQImlaDS7R5jO4RLTiHU1NLjViiCaWPDKziYRGfDyCVOLS0-2owpjLJF3BbFbbO4rajg-XbORWHS-OvoQ9LIdiSxYOcLaBt2tA37L9uoYJf0uX3I4hjjXYVRXgV7k4bt-M4OFrGjRkDGu4MKXkxa_3X7z2t9_D_W-gRuUyf7kimzBzuby8_pKcY7Gz-Dm2b5aga3Dhcnb97i2bwVdFTzWTb6Wcb8PwHUVgBY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLaq7QEuiFdFSoE5wAmipsnMZHJAiMJW29cKoVba2zCvVCDYLZvldeNv8Cf4UfwS7EmyKyrRW6_JZBTZjv0589kGeFxwX9Ze-DSIwlBT7Sy1eenRlktjy5CJwKne-XgsR6f8YCIma_C7r4UhWmXvE6Oj9jNH_8i3EdmXCJeLaufF-eeUpkbR6Wo_QqM1i8Pw4xumbM3z_deo3yd5vjc8eTVKu6kCqRMiX6S1VUYUvJaIRBArq9ry0nhbGcWD8y4PvpASnbQwwsrYzy0zKlhX26J0zlPzJXT565wqWgewvjscv3m7-qtTYbhVeV-do-R2wzE2VCmGxjRyUFL-TwSMgwIucq0J5F44l43hbu8m3OhwKnvZGtYtWAvT2zTiuaOD3IHJ8Lv5FKdLsKbtj9n8-fmLuRmxQthibj7E8wBMxBlx688YcVFZ94SZevb1fUMFnW0ZKOt7m4fmLpxeiUA3YDCdTcM9YEJyKhmvEVNimmYkprilsOiCuVO5z4oEdnrRadf1MKdRGh91zGWU1K24NYpbR3FrnsDT5TPnbQePS1fvkkaWK6n7drwwm5_p7mPWtjZcWTQAaSuem8xUpgyF465WQShlE9ggfS43GR4gzpaILhPY6jWsO1_R6JVlJ_Cs1_rq9v_fdfPy3R7BtdHJ8ZE-2h8f3ofrOZlg5OFswWAx_xIeIJpa2IedCTN4d9VfzV-aBTEj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADB5VRUJcEK-KlAJzgBNEm2aeOSAEdJc-oOJApb0N80oFanfLZmnhxt_gr_Tn9JdgT5JdUYneek0yUWR77M-ZzzYhzxgPqg4i5FEwi021i9yVKoAtK-tULETkWO_8cV9uH_DdsRivkPO-FgZplb1PTI46TD3-Ix8AslcAl1m1Oag7WsSnrdHrk-85TpDCk9Z-nEZrInvx1xmkb82rnS3Q9fOyHA0_v9vOuwkDuReinOe101YwXktAJYCbde24ssFVVvPogy9jYFKCwxZWOJl6uxVWR-drx5T3ARsxgfu_oZiqMPHTo_fL_zsVBF5d9nU6Wg4aDlGiyiFI5omNkvN_YmEaGXCZdY1w99IJbQp8ozvkdodY6ZvWxO6SlTi5h8OeO2LIfTIe_rTHac4EbdpOmc3F7z_UT5EfQucz-y2dDEBKTpFlf0iRlUq7FXYS6OnXBks724JQ2nc5j80DcnAt4lwjq5PpJD4kVEiOxeM1oEtI2KyEZFcJB86Ye12GgmVksxed8V03cxyqcWRSVqOlacVtQNwmidvwjLxYrDlpe3lc-fRb1MjiSezDnS5MZ4em29bG1ZZrx0QlXcVLW9jKqsg897WOQmuXkTXU5-Ilw11A3BJwZkY2eg2bzms0ZmnjGXnZa315-__fun71256Sm7BXzIed_b1H5FaJFpgIORtkdT77ER8DrJq7J8l-Kfly3RvmL4iOM_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examining+students%E2%80%99+course+trajectories+using+data+mining+and+visualization+approaches&rft.jtitle=International+Journal+of+Educational+Technology+in+Higher+Education&rft.au=Maqsood%2C+Rabia&rft.au=Ceravolo%2C+Paolo&rft.au=Ahmad%2C+Muhammad&rft.au=Sarfraz%2C+Muhammad+Shahzad&rft.date=2023-12-01&rft.issn=2365-9440&rft.eissn=2365-9440&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs41239-023-00423-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s41239_023_00423_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-9440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-9440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-9440&client=summon |