Examining students’ course trajectories using data mining and visualization approaches

The heterogeneous data acquired by educational institutes about students’ careers (e.g., performance scores, course preferences, attendance record, demographics, etc.) has been a source of investigation for Educational Data Mining (EDM) researchers for over two decades. EDM researchers have primaril...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Educational Technology in Higher Education Vol. 20; no. 1; pp. 55 - 18
Main Authors Maqsood, Rabia, Ceravolo, Paolo, Ahmad, Muhammad, Sarfraz, Muhammad Shahzad
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2023
BioMed Central, Ltd
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2365-9440
2365-9440
DOI10.1186/s41239-023-00423-4

Cover

Abstract The heterogeneous data acquired by educational institutes about students’ careers (e.g., performance scores, course preferences, attendance record, demographics, etc.) has been a source of investigation for Educational Data Mining (EDM) researchers for over two decades. EDM researchers have primarily focused on course-specific data analyses of students’ performances, and rare attempts are made at the domain level that may benefit the educational institutes at large to gauge and improve their institutional effectiveness. Our work aims to fill this gap by examining students’ transcripts data for identifying similar groups of students and patterns that might associate with these different cohorts of students based on: (a) difficulty level of a course category, (b) formation of course trajectories, and, (c) transitioning of students between different performance groups. We have exploited descriptive data mining and visualization methods to analyze transcript data of 1398 undergraduate Computer Science students of a private university in Pakistan. The dataset includes students’ transcript data of 124 courses from nine distinct course categories. In the end, we have discussed our findings in detail, challenges, and, future work directions.
AbstractList Abstract The heterogeneous data acquired by educational institutes about students’ careers (e.g., performance scores, course preferences, attendance record, demographics, etc.) has been a source of investigation for Educational Data Mining (EDM) researchers for over two decades. EDM researchers have primarily focused on course-specific data analyses of students’ performances, and rare attempts are made at the domain level that may benefit the educational institutes at large to gauge and improve their institutional effectiveness. Our work aims to fill this gap by examining students’ transcripts data for identifying similar groups of students and patterns that might associate with these different cohorts of students based on: (a) difficulty level of a course category, (b) formation of course trajectories, and, (c) transitioning of students between different performance groups. We have exploited descriptive data mining and visualization methods to analyze transcript data of 1398 undergraduate Computer Science students of a private university in Pakistan. The dataset includes students’ transcript data of 124 courses from nine distinct course categories. In the end, we have discussed our findings in detail, challenges, and, future work directions.
The heterogeneous data acquired by educational institutes about students' careers (e.g., performance scores, course preferences, attendance record, demographics, etc.) has been a source of investigation for Educational Data Mining (EDM) researchers for over two decades. EDM researchers have primarily focused on course-specific data analyses of students' performances, and rare attempts are made at the domain level that may benefit the educational institutes at large to gauge and improve their institutional effectiveness. Our work aims to fill this gap by examining students' transcripts data for identifying similar groups of students and patterns that might associate with these different cohorts of students based on: (a) difficulty level of a course category, (b) formation of course trajectories, and, (c) transitioning of students between different performance groups. We have exploited descriptive data mining and visualization methods to analyze transcript data of 1398 undergraduate Computer Science students of a private university in Pakistan. The dataset includes students' transcript data of 124 courses from nine distinct course categories. In the end, we have discussed our findings in detail, challenges, and, future work directions.
ArticleNumber 55
Audience Higher Education
Postsecondary Education
Author Maqsood, Rabia
Sarfraz, Muhammad Shahzad
Ahmad, Muhammad
Ceravolo, Paolo
Author_xml – sequence: 1
  givenname: Rabia
  orcidid: 0000-0002-4620-4362
  surname: Maqsood
  fullname: Maqsood, Rabia
  email: rabia.maqsood@nu.edu.pk
  organization: National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus
– sequence: 2
  givenname: Paolo
  surname: Ceravolo
  fullname: Ceravolo, Paolo
  organization: Universita` degli Studi di Milano
– sequence: 3
  givenname: Muhammad
  surname: Ahmad
  fullname: Ahmad, Muhammad
  organization: National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus
– sequence: 4
  givenname: Muhammad Shahzad
  surname: Sarfraz
  fullname: Sarfraz, Muhammad Shahzad
  organization: National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1396025$$DView record in ERIC
BookMark eNp9kd9qFDEUxoNUaF37AgVhwOux-T_JpZS1Vgq9UfAunGQya5ZtsiYZUa_6Gr6eT2K6U6p40ZsknPP9zjk53wt0FFP0CJ0R_IYQJc8LJ5TpHlPWY8zbyZ-hE8qk6DXn-Oif9zE6LWWLMSaaUqboCfq8_g63IYa46UqdRx9r-X33q3NpzsV3NcPWu5py8KWby71qhArdAwFx7L6FMsMu_IQaUuxgv88J3BdfXqLnE-yKP324V-jTu_XHi_f99c3l1cXb694JQWs_WQWC8UkSyYQSarJ8gNFqUNy70VE_Mimp1gKElUpgyTEob91k2eDcqNkKXS11xwRbs8_hFvIPkyCYQyDljYFcg9t5YyfgyjKhpdWcAgYNg2eOu0l5oVpmhV4vtdonvs6-VLNte4htfEPVMFCGmSZN9WpR-RzcY8f1B8K0xFS0PF3yLqdSsp8eNQSbe8PMYphphpmDYYY3SP0HuVAPO20ehN3TKFvQ0vrEjc9_p36C-gNNpa1j
CitedBy_id crossref_primary_10_1186_s41239_024_00441_w
crossref_primary_10_1080_10401334_2024_2331649
Cites_doi 10.3390/info13020094
10.1109/ACCESS.2017.2654247
10.1016/j.procs.2017.12.155
10.1109/EDUCON.2016.7474663
10.1109/ITI.2008.4588429
10.1109/ICBK.2017.55
10.5171/2012.622480
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
0-V
3V.
7XB
88B
89V
8BY
8FE
8FG
8FK
8G5
ABUWG
AFKRA
AHOVV
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJNVE
CLZPN
DPSOV
DWQXO
GNUQQ
GUQSH
HCIFZ
KC-
M0P
M2L
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
Q9U
DOA
DOI 10.1186/s41239-023-00423-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Education Database (Alumni Edition)
PRISMA Database
PRISMA Database with HAPI Index
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Education Research Index
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Education Collection
Latin America & Iberia Database
Politics Collection
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Politics Collection
Education Database
Political Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ERIC
Publicly Available Content Database
ProQuest One Education
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
PRISMA (without HAPI)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Politics Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Political Science
Education Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Education Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Latin America & Iberian Database
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
PRISMA (with HAPI)
ProQuest Politics Collection
ProQuest One Academic
ProQuest Education Journals (Alumni Edition)
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
ERIC
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
Law
Computer Science
EISSN 2365-9440
ERIC EJ1396025
EndPage 18
ExternalDocumentID oai_doaj_org_article_bfa48b3596b942a0a9a7e3c4cf8e588b
EJ1396025
10_1186_s41239_023_00423_4
GeographicLocations Pakistan
GeographicLocations_xml – name: Pakistan
GrantInformation_xml – fundername: National University of Computer and Emerging Sciences
  grantid: 11-71-11/NU-R/21
  funderid: http://dx.doi.org/10.13039/501100022070
GroupedDBID -W8
0R~
5VS
89V
8BY
8G5
AAFWJ
AAHSB
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADUOI
AFGXO
AFKRA
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARAPS
ASPBG
AZQEC
B14
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CJNVE
CLZPN
DPSOV
DWQXO
EBS
EDJ
EJD
FAEIB
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HISYW
IAO
IER
INF
ITC
KC-
KPI
M0P
M2L
M2O
M~E
OK1
PIMPY
PQEDU
PQQKQ
PROAC
RHO
RSV
SOJ
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
0-V
3V.
7XB
8FE
8FG
8FK
AHOVV
MBDVC
P62
PKEHL
PQEST
PQGLB
PQUKI
PRQQA
Q9U
PUEGO
ID FETCH-LOGICAL-c552t-fb8a534f61635858fb47adb9a84ecdc2ed3662995a5b6850640a8ebcfb37ccd93
IEDL.DBID DOA
ISSN 2365-9440
IngestDate Wed Aug 27 01:24:08 EDT 2025
Sat Aug 23 13:06:28 EDT 2025
Tue Sep 02 19:40:05 EDT 2025
Tue Jul 01 04:32:47 EDT 2025
Thu Apr 24 23:12:26 EDT 2025
Fri Feb 21 02:44:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Markov chain
Educational data mining
Hierarchical clustering
Course trajectories
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-fb8a534f61635858fb47adb9a84ecdc2ed3662995a5b6850640a8ebcfb37ccd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4620-4362
OpenAccessLink https://doaj.org/article/bfa48b3596b942a0a9a7e3c4cf8e588b
PQID 2877230391
PQPubID 396499
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_bfa48b3596b942a0a9a7e3c4cf8e588b
proquest_journals_2877230391
eric_primary_EJ1396025
crossref_primary_10_1186_s41239_023_00423_4
crossref_citationtrail_10_1186_s41239_023_00423_4
springer_journals_10_1186_s41239_023_00423_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle International Journal of Educational Technology in Higher Education
PublicationTitleAbbrev Int J Educ Technol High Educ
PublicationYear 2023
Publisher Springer International Publishing
BioMed Central, Ltd
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: BioMed Central, Ltd
– name: Springer Nature B.V
– name: SpringerOpen
References Sya’iyahKYuliansyahHArfianiIClustering student data based on k-means algorithmsInt J Sci Technol. Res20198810141018
Bresfelean, V. P., Bresfelean, M., Ghisoiu, N., & Comes, C.-A. (2008). Determining students’ academic failure profile founded on data mining methods. In: ITI 2008-30th International Conference on Information Technology Interfaces, pp. 317–322 . IEEE
RomeroCVenturaSData mining in educationWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery2013311227
DuttAIsmailMAHerawanTA systematic review on educational data miningIEEE Access20175159911600510.1109/ACCESS.2017.2654247
Tan, P.-N., Steinbach, M., & Kumar, V. (2016). Introduction to data mining.
KaradagNSahinMDAnalysis of the difficulty and discrimination indices of multiple-choice questions according to cognitive levels in an open and distance learning contextTurkish Online Journal of Educational Technology-TOJET20161541624
Almatrafi, O., Johri, A., Rangwala, H., & Lester, J. (2016). Identifying course trajectories of high achieving engineering students through data analytics. In: 2016 ASEE Annual Conference & Exposition.
BakerRSYacefKThe state of educational data mining in 2009: A review and future visionsJournal of Educational Data Mining200911317
DarcanONBadurBYStudent profiling on academic performance using cluster analysisJournal of E-learning & Higher Education201220121810.5171/2012.622480
TuyishimireEMabutoWGatabaziPBayisingizeSDetecting learning patterns in tertiary education using k-means clusteringInformation20221329410.3390/info13020094
Azzini, A., Ceravolo, P., Scarabottolo, N., & Damiani, E. (2016). On the predictive power of university curricula. In: 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 929–932 . https://doi.org/10.1109/EDUCON.2016.7474663
PriyambadaSAMahendrawathiEYahyaBNCurriculum assessment of higher educational institution using aggregate profile clusteringProcedia Computer Science201712426427310.1016/j.procs.2017.12.155
Yoo, J.S., Woo, Y.-S., & Park, S.J. (2017). Mining course trajectories of successful and failure students: a case study. In: 2017 IEEE International Conference on Big Knowledge (ICBK), pp. 270–275 . IEEE
Ferral, H. (2005). Clustering students by their subject choices in the learning curves project. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.
C Romero (423_CR10) 2013; 3
423_CR2
423_CR1
423_CR4
423_CR14
423_CR12
423_CR7
K Sya’iyah (423_CR11) 2019; 8
ON Darcan (423_CR5) 2012; 2012
SA Priyambada (423_CR9) 2017; 124
E Tuyishimire (423_CR13) 2022; 13
N Karadag (423_CR8) 2016; 15
A Dutt (423_CR6) 2017; 5
RS Baker (423_CR3) 2009; 1
References_xml – reference: Ferral, H. (2005). Clustering students by their subject choices in the learning curves project. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.
– reference: Almatrafi, O., Johri, A., Rangwala, H., & Lester, J. (2016). Identifying course trajectories of high achieving engineering students through data analytics. In: 2016 ASEE Annual Conference & Exposition.
– reference: KaradagNSahinMDAnalysis of the difficulty and discrimination indices of multiple-choice questions according to cognitive levels in an open and distance learning contextTurkish Online Journal of Educational Technology-TOJET20161541624
– reference: Tan, P.-N., Steinbach, M., & Kumar, V. (2016). Introduction to data mining.
– reference: PriyambadaSAMahendrawathiEYahyaBNCurriculum assessment of higher educational institution using aggregate profile clusteringProcedia Computer Science201712426427310.1016/j.procs.2017.12.155
– reference: Azzini, A., Ceravolo, P., Scarabottolo, N., & Damiani, E. (2016). On the predictive power of university curricula. In: 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 929–932 . https://doi.org/10.1109/EDUCON.2016.7474663
– reference: RomeroCVenturaSData mining in educationWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery2013311227
– reference: Yoo, J.S., Woo, Y.-S., & Park, S.J. (2017). Mining course trajectories of successful and failure students: a case study. In: 2017 IEEE International Conference on Big Knowledge (ICBK), pp. 270–275 . IEEE
– reference: BakerRSYacefKThe state of educational data mining in 2009: A review and future visionsJournal of Educational Data Mining200911317
– reference: TuyishimireEMabutoWGatabaziPBayisingizeSDetecting learning patterns in tertiary education using k-means clusteringInformation20221329410.3390/info13020094
– reference: DuttAIsmailMAHerawanTA systematic review on educational data miningIEEE Access20175159911600510.1109/ACCESS.2017.2654247
– reference: Sya’iyahKYuliansyahHArfianiIClustering student data based on k-means algorithmsInt J Sci Technol. Res20198810141018
– reference: Bresfelean, V. P., Bresfelean, M., Ghisoiu, N., & Comes, C.-A. (2008). Determining students’ academic failure profile founded on data mining methods. In: ITI 2008-30th International Conference on Information Technology Interfaces, pp. 317–322 . IEEE
– reference: DarcanONBadurBYStudent profiling on academic performance using cluster analysisJournal of E-learning & Higher Education201220121810.5171/2012.622480
– volume: 13
  start-page: 94
  issue: 2
  year: 2022
  ident: 423_CR13
  publication-title: Information
  doi: 10.3390/info13020094
– volume: 5
  start-page: 15991
  year: 2017
  ident: 423_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2654247
– volume: 124
  start-page: 264
  year: 2017
  ident: 423_CR9
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.12.155
– volume: 15
  start-page: 16
  issue: 4
  year: 2016
  ident: 423_CR8
  publication-title: Turkish Online Journal of Educational Technology-TOJET
– volume: 8
  start-page: 1014
  issue: 8
  year: 2019
  ident: 423_CR11
  publication-title: Int J Sci Technol. Res
– ident: 423_CR2
  doi: 10.1109/EDUCON.2016.7474663
– ident: 423_CR4
  doi: 10.1109/ITI.2008.4588429
– ident: 423_CR12
– ident: 423_CR1
– ident: 423_CR14
  doi: 10.1109/ICBK.2017.55
– volume: 2012
  start-page: 1
  year: 2012
  ident: 423_CR5
  publication-title: Journal of E-learning & Higher Education
  doi: 10.5171/2012.622480
– volume: 1
  start-page: 3
  issue: 1
  year: 2009
  ident: 423_CR3
  publication-title: Journal of Educational Data Mining
– volume: 3
  start-page: 12
  issue: 1
  year: 2013
  ident: 423_CR10
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– ident: 423_CR7
SSID ssj0001922382
Score 2.2745523
Snippet The heterogeneous data acquired by educational institutes about students’ careers (e.g., performance scores, course preferences, attendance record,...
The heterogeneous data acquired by educational institutes about students' careers (e.g., performance scores, course preferences, attendance record,...
Abstract The heterogeneous data acquired by educational institutes about students’ careers (e.g., performance scores, course preferences, attendance record,...
SourceID doaj
proquest
eric
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55
SubjectTerms Colleges & universities
Computer Appl. in Social and Behavioral Sciences
Computer Science
Computers and Education
Course trajectories
Data acquisition
Data Analysis
Data mining
Education
Educational data mining
Educational Technology
Foreign Countries
Hierarchical clustering
Higher Education
Humanities
hybrid and online higher education: supporting students’ complex trajectories
In person
Information Retrieval
Information Systems Applications (incl.Internet)
Institutional Evaluation
Law
Learning Trajectories
Markov chain
Pattern Recognition
Private Colleges
Research Article
Statistics for Social Sciences
Students
Transcripts (Written Records)
Undergraduate Students
Visualization
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe-GCCqVqaEE-cAOr2fiZEwK0S1UJTq20N8uvVFSwWzYL4sjf4O_xS5hxnF21UntNYiuaGc98M54HIa-5iLqLMrIkucOm2jXzjY4gy9p5nWqZBNY7f_6izi7F-VzOS8CtL2mVo07MijouA8bITwHZa4DLvJ28u_nBcGoU3q6WERqPyN4ELA3KuZl92sZYWjB-phlrZYw67QVo6paBoWI5I4SJW_Yot-2_m_mMkPPOLWk2PrN98qSgRvp-YPNTspMWz3DgcknOOCDz6W_3Pc96oP3QrbL_9-cvDUvM0aDrlbvO0Xlwiylmul9RzAylZYVbRPrra4_llUNRJh07jaf-ObmcTS8-nrEyNIEFKZs167xxkotOAdACV8B0XmgXfeuMSCGGJkWuFNgg6aRXuV1d7UzyofNchxBbfkh2F8tFOiJUKoEF3B0gPHCanAKHU0sPClEE08SaV2Qyks6G0lEcB1t8s9mzMMoO5LZAbpvJbUVF3mzW3Az9NB78-gNyZPMl9sLOD5arK1uOlvWdE8Zz2SrfisbVrnU68SBCZ5I0xlfkEPm52WR6DqhXAdaryMnIYVtObm-3claRtyPXt6_v_9cXD-92TB7jpPohE-aE7K5XP9NLwDNr_yoL7X8LAvGt
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R5cKlLQurpg_kAzeIyMbPHKHaqloBJyrtzfIriKrsVpstcORv8Pf4JR07zhYqQOKa2FGUb-z5Jp75BuA5ZV62nvsycGqiqHZV2lp6tGVprAwVDyzWO797L84v2HzBF1kmJ9bC_Hp-P1XiVcdwa21K9CxlSuEo2Q485FMq0sGsOL37n9Kgo1P1UBfzx6m_-Z4k0X8_yznSy3snosnRnO3DbmaI5HUP6WN4EJZj2Bu6L5C8GMex33LOzRjDzlvz9QksZt_M59TwgXS9ZGX38_sP4lYxUYNs1uYy_aLH2JjEdPePJKaHkjzDLD358qmLNZZ9ZSYZ5MZD9xQuzmYfTs_L3DmhdJzXm7K1ynDKWoFsC-MB1VomjbeNUSw47-rgqRDoiLjhViTNusqoYF1rqXTON3QCo-VqGQ6AcMFiFXeLNA8jJyMw6pTc4q7InKp9RQuYDt9UuywrHrtbXOkUXiihexw04qATDpoV8GI757oX1fjn6DcRqu3IKIidLqCd6Ly-tG0NU5byRtiG1aYyjZGBOuZaFbhStoBJBHr7kNkcqa9AwlfA8QC9zsu30xhGSozNaDMt4OVgDne3__6uh_83_Agexfb1fXrMMYw265twgiRnY58l674FonPyAQ
  priority: 102
  providerName: Springer Nature
Title Examining students’ course trajectories using data mining and visualization approaches
URI https://link.springer.com/article/10.1186/s41239-023-00423-4
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1396025
https://www.proquest.com/docview/2877230391
https://doaj.org/article/bfa48b3596b942a0a9a7e3c4cf8e588b
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADLagXLggXhWBspoDN4iaZp450tUuVSUqhKi0t9G8gqhgWzUL4sjf4O_xS7BnkqVUAi5cIiWZiUa2M_aX2J8BnnERdR9lrJPkjki1m9q3OqIta-d1amQSVO_8-kQdnYrjlVxdafVFOWGFHrgIbt_3ThjPZad8J1rXuM7pxIMIvUnSGE-7b9M1V8DUWYlb0Be1U5WMUfuDwD26q9FF1TkXpBa_eaJM2H8955mCzWv_R7PbWd6FO2O8yF6Wdd6DG2l9n1otj2kZD2C1-Oo-5S4PbCg8lcOPb99ZOKfsDLa5dGf5uzwCYkY57u8Z5YSycYZbR_blw0CFlaUck00c42l4CKfLxbv5UT22S6iDlO2m7r1xkoteYYiFIMD0XmgXfeeMSCGGNkWuFHof6aRXmaiucSb50HuuQ4gd34Wd9fk6PQImlaDS7R5jO4RLTiHU1NLjViiCaWPDKziYRGfDyCVOLS0-2owpjLJF3BbFbbO4rajg-XbORWHS-OvoQ9LIdiSxYOcLaBt2tA37L9uoYJf0uX3I4hjjXYVRXgV7k4bt-M4OFrGjRkDGu4MKXkxa_3X7z2t9_D_W-gRuUyf7kimzBzuby8_pKcY7Gz-Dm2b5aga3Dhcnb97i2bwVdFTzWTb6Wcb8PwHUVgBY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLaq7QEuiFdFSoE5wAmipsnMZHJAiMJW29cKoVba2zCvVCDYLZvldeNv8Cf4UfwS7EmyKyrRW6_JZBTZjv0589kGeFxwX9Ze-DSIwlBT7Sy1eenRlktjy5CJwKne-XgsR6f8YCIma_C7r4UhWmXvE6Oj9jNH_8i3EdmXCJeLaufF-eeUpkbR6Wo_QqM1i8Pw4xumbM3z_deo3yd5vjc8eTVKu6kCqRMiX6S1VUYUvJaIRBArq9ry0nhbGcWD8y4PvpASnbQwwsrYzy0zKlhX26J0zlPzJXT565wqWgewvjscv3m7-qtTYbhVeV-do-R2wzE2VCmGxjRyUFL-TwSMgwIucq0J5F44l43hbu8m3OhwKnvZGtYtWAvT2zTiuaOD3IHJ8Lv5FKdLsKbtj9n8-fmLuRmxQthibj7E8wBMxBlx688YcVFZ94SZevb1fUMFnW0ZKOt7m4fmLpxeiUA3YDCdTcM9YEJyKhmvEVNimmYkprilsOiCuVO5z4oEdnrRadf1MKdRGh91zGWU1K24NYpbR3FrnsDT5TPnbQePS1fvkkaWK6n7drwwm5_p7mPWtjZcWTQAaSuem8xUpgyF465WQShlE9ggfS43GR4gzpaILhPY6jWsO1_R6JVlJ_Cs1_rq9v_fdfPy3R7BtdHJ8ZE-2h8f3ofrOZlg5OFswWAx_xIeIJpa2IedCTN4d9VfzV-aBTEj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADB5VRUJcEK-KlAJzgBNEm2aeOSAEdJc-oOJApb0N80oFanfLZmnhxt_gr_Tn9JdgT5JdUYneek0yUWR77M-ZzzYhzxgPqg4i5FEwi021i9yVKoAtK-tULETkWO_8cV9uH_DdsRivkPO-FgZplb1PTI46TD3-Ix8AslcAl1m1Oag7WsSnrdHrk-85TpDCk9Z-nEZrInvx1xmkb82rnS3Q9fOyHA0_v9vOuwkDuReinOe101YwXktAJYCbde24ssFVVvPogy9jYFKCwxZWOJl6uxVWR-drx5T3ARsxgfu_oZiqMPHTo_fL_zsVBF5d9nU6Wg4aDlGiyiFI5omNkvN_YmEaGXCZdY1w99IJbQp8ozvkdodY6ZvWxO6SlTi5h8OeO2LIfTIe_rTHac4EbdpOmc3F7z_UT5EfQucz-y2dDEBKTpFlf0iRlUq7FXYS6OnXBks724JQ2nc5j80DcnAt4lwjq5PpJD4kVEiOxeM1oEtI2KyEZFcJB86Ye12GgmVksxed8V03cxyqcWRSVqOlacVtQNwmidvwjLxYrDlpe3lc-fRb1MjiSezDnS5MZ4em29bG1ZZrx0QlXcVLW9jKqsg897WOQmuXkTXU5-Ilw11A3BJwZkY2eg2bzms0ZmnjGXnZa315-__fun71256Sm7BXzIed_b1H5FaJFpgIORtkdT77ER8DrJq7J8l-Kfly3RvmL4iOM_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examining+students%E2%80%99+course+trajectories+using+data+mining+and+visualization+approaches&rft.jtitle=International+Journal+of+Educational+Technology+in+Higher+Education&rft.au=Maqsood%2C+Rabia&rft.au=Ceravolo%2C+Paolo&rft.au=Ahmad%2C+Muhammad&rft.au=Sarfraz%2C+Muhammad+Shahzad&rft.date=2023-12-01&rft.issn=2365-9440&rft.eissn=2365-9440&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs41239-023-00423-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s41239_023_00423_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-9440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-9440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-9440&client=summon