Reelin Promoter Hypermethylation in Schizophrenia
Reelin mRNA and protein levels are reduced by ≈50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar illness with psychosis. In addition, the mRNA encoding the methylating enzyme, DNA methyltransferase 1, is up-regulated in the same neurons that...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 102; no. 26; pp. 9341 - 9346 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
28.06.2005
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reelin mRNA and protein levels are reduced by ≈50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar illness with psychosis. In addition, the mRNA encoding the methylating enzyme, DNA methyltransferase 1, is up-regulated in the same neurons that coexpress reelin and glutamic acid decarboxylase 67. We have analyzed the extent and pattern of methylation within the CpG island of the reelin promoter in genomic DNA isolated from cortices of schizophrenia patients and nonpsychiatric subjects. Ten (The Stanley Foundation Neuropathology Consortium) and five (Harvard Brain Collection) schizophrenia patients and an equal number of nonpsychiatric subjects were selected from each brain collection. Genomic DNA was isolated, amplified (from base pair -527 to base pair +322) after bisulphite treatment, and sequenced. The results show that within the promoter region there were interesting regional variations. There was increased methylation at positions -134 and -139, which is particularly important for regulation, because this portion of the promoter is functionally competent based on transient transfection assays. This promoter region binds a protein present in neuronal precursor nuclear extracts that express very low levels of reelin mRNA; i.e., an oligonucleotide corresponding to this region and that contains methylated cytosines binds more tightly to extracts from nonexpressing cells than the nonmethylated counterpart. Collectively, the data show that this promoter region has positive and negative properties and that the function of this complex cis element relates to its methylation status. |
---|---|
AbstractList | Reelin mRNA and protein levels are reduced by ≈50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar illness with psychosis. In addition, the mRNA encoding the methylating enzyme, DNA methyltransferase 1, is up-regulated in the same neurons that coexpress reelin and glutamic acid decarboxylase 67. We have analyzed the extent and pattern of methylation within the CpG island of the reelin promoter in genomic DNA isolated from cortices of schizophrenia patients and nonpsychiatric subjects. Ten (The Stanley Foundation Neuropathology Consortium) and five (Harvard Brain Collection) schizophrenia patients and an equal number of nonpsychiatric subjects were selected from each brain collection. Genomic DNA was isolated, amplified (from base pair -527 to base pair +322) after bisulphite treatment, and sequenced. The results show that within the promoter region there were interesting regional variations. There was increased methylation at positions -134 and 139, which is particularly important for regulation, because this portion of the promoter is functionally competent based on transient transfection assays. This promoter region binds a protein present in neuronal precursor nuclear extracts that express very low levels of reelin mRNA; i.e., an oligonucleotide corresponding to this region and that contains methylated cytosines binds more tightly to extracts from nonexpressing cells than the nonmethylated counterpart. Collectively, the data show that this promoter region has positive and negative properties and that the function of this complex cis element relates to its methylation status. DNA methyltransferase epigenetics gene regulation methylation psychiatric disorder Reelin mRNA and protein levels are reduced by ≈50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar illness with psychosis. In addition, the mRNA encoding the methylating enzyme, DNA methyltransferase 1, is up-regulated in the same neurons that coexpress reelin and glutamic acid decarboxylase 67. We have analyzed the extent and pattern of methylation within the CpG island of the reelin promoter in genomic DNA isolated from cortices of schizophrenia patients and nonpsychiatric subjects. Ten (The Stanley Foundation Neuropathology Consortium) and five (Harvard Brain Collection) schizophrenia patients and an equal number of nonpsychiatric subjects were selected from each brain collection. Genomic DNA was isolated, amplified (from base pair -527 to base pair +322) after bisulphite treatment, and sequenced. The results show that within the promoter region there were interesting regional variations. There was increased methylation at positions -134 and 139, which is particularly important for regulation, because this portion of the promoter is functionally competent based on transient transfection assays. This promoter region binds a protein present in neuronal precursor nuclear extracts that express very low levels of reelin mRNA; i.e., an oligonucleotide corresponding to this region and that contains methylated cytosines binds more tightly to extracts from nonexpressing cells than the nonmethylated counterpart. Collectively, the data show that this promoter region has positive and negative properties and that the function of this complex cis element relates to its methylation status. Reelin mRNA and protein levels are reduced by approximately 50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar illness with psychosis. In addition, the mRNA encoding the methylating enzyme, DNA methyltransferase 1, is up-regulated in the same neurons that coexpress reelin and glutamic acid decarboxylase 67. We have analyzed the extent and pattern of methylation within the CpG island of the reelin promoter in genomic DNA isolated from cortices of schizophrenia patients and nonpsychiatric subjects. Ten (The Stanley Foundation Neuropathology Consortium) and five (Harvard Brain Collection) schizophrenia patients and an equal number of nonpsychiatric subjects were selected from each brain collection. Genomic DNA was isolated, amplified (from base pair -527 to base pair +322) after bisulphite treatment, and sequenced. The results show that within the promoter region there were interesting regional variations. There was increased methylation at positions -134 and 139, which is particularly important for regulation, because this portion of the promoter is functionally competent based on transient transfection assays. This promoter region binds a protein present in neuronal precursor nuclear extracts that express very low levels of reelin mRNA; i.e., an oligonucleotide corresponding to this region and that contains methylated cytosines binds more tightly to extracts from nonexpressing cells than the nonmethylated counterpart. Collectively, the data show that this promoter region has positive and negative properties and that the function of this complex cis element relates to its methylation status. Reelin mRNA and protein levels are reduced by {approx}50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar illness with psychosis. In addition, the mRNA encoding the methylating enzyme, DNA methyltransferase 1, is up-regulated in the same neurons that coexpress reelin and glutamic acid decarboxylase 67. We have analyzed the extent and pattern of methylation within the CpG island of the reelin promoter in genomic DNA isolated from cortices of schizophrenia patients and nonpsychiatric subjects. Ten (The Stanley Foundation Neuropathology Consortium) and five (Harvard Brain Collection) schizophrenia patients and an equal number of nonpsychiatric subjects were selected from each brain collection. Genomic DNA was isolated, amplified (from base pair -527 to base pair +322) after bisulphite treatment, and sequenced. The results show that within the promoter region there were interesting regional variations. There was increased methylation at positions -134 and 139, which is particularly important for regulation, because this portion of the promoter is functionally competent based on transient transfection assays. This promoter region binds a protein present in neuronal precursor nuclear extracts that express very low levels of reelin mRNA; i.e., an oligonucleotide corresponding to this region and that contains methylated cytosines binds more tightly to extracts from nonexpressing cells than the nonmethylated counterpart. Collectively, the data show that this promoter region has positive and negative properties and that the function of this complex cis element relates to its methylation status. [PUBLICATION ABSTRACT] Reelin mRNA and protein levels are reduced by approximately 50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar illness with psychosis. In addition, the mRNA encoding the methylating enzyme, DNA methyltransferase 1, is up-regulated in the same neurons that coexpress reelin and glutamic acid decarboxylase 67. We have analyzed the extent and pattern of methylation within the CpG island of the reelin promoter in genomic DNA isolated from cortices of schizophrenia patients and nonpsychiatric subjects. Ten (The Stanley Foundation Neuropathology Consortium) and five (Harvard Brain Collection) schizophrenia patients and an equal number of nonpsychiatric subjects were selected from each brain collection. Genomic DNA was isolated, amplified (from base pair -527 to base pair +322) after bisulphite treatment, and sequenced. The results show that within the promoter region there were interesting regional variations. There was increased methylation at positions -134 and 139, which is particularly important for regulation, because this portion of the promoter is functionally competent based on transient transfection assays. This promoter region binds a protein present in neuronal precursor nuclear extracts that express very low levels of reelin mRNA; i.e., an oligonucleotide corresponding to this region and that contains methylated cytosines binds more tightly to extracts from nonexpressing cells than the nonmethylated counterpart. Collectively, the data show that this promoter region has positive and negative properties and that the function of this complex cis element relates to its methylation status.Reelin mRNA and protein levels are reduced by approximately 50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar illness with psychosis. In addition, the mRNA encoding the methylating enzyme, DNA methyltransferase 1, is up-regulated in the same neurons that coexpress reelin and glutamic acid decarboxylase 67. We have analyzed the extent and pattern of methylation within the CpG island of the reelin promoter in genomic DNA isolated from cortices of schizophrenia patients and nonpsychiatric subjects. Ten (The Stanley Foundation Neuropathology Consortium) and five (Harvard Brain Collection) schizophrenia patients and an equal number of nonpsychiatric subjects were selected from each brain collection. Genomic DNA was isolated, amplified (from base pair -527 to base pair +322) after bisulphite treatment, and sequenced. The results show that within the promoter region there were interesting regional variations. There was increased methylation at positions -134 and 139, which is particularly important for regulation, because this portion of the promoter is functionally competent based on transient transfection assays. This promoter region binds a protein present in neuronal precursor nuclear extracts that express very low levels of reelin mRNA; i.e., an oligonucleotide corresponding to this region and that contains methylated cytosines binds more tightly to extracts from nonexpressing cells than the nonmethylated counterpart. Collectively, the data show that this promoter region has positive and negative properties and that the function of this complex cis element relates to its methylation status. |
Author | Sharma, Rajiv P. Jia, Xiaomei Grayson, Dennis R. Chen, Ying Mitchell, Colin P. Guidotti, Alessandro Costa, Erminio |
AuthorAffiliation | Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612 |
AuthorAffiliation_xml | – name: Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612 |
Author_xml | – sequence: 1 givenname: Dennis R. surname: Grayson fullname: Grayson, Dennis R. – sequence: 2 givenname: Xiaomei surname: Jia fullname: Jia, Xiaomei – sequence: 3 givenname: Ying surname: Chen fullname: Chen, Ying – sequence: 4 givenname: Rajiv P. surname: Sharma fullname: Sharma, Rajiv P. – sequence: 5 givenname: Colin P. surname: Mitchell fullname: Mitchell, Colin P. – sequence: 6 givenname: Alessandro surname: Guidotti fullname: Guidotti, Alessandro – sequence: 7 givenname: Erminio surname: Costa fullname: Costa, Erminio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15961543$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS1URLeFMxcEKw6IS9oZO7bjCxKqgCJVAvFxtrKJw3qV2MF2EMtfj9NdtlAJOFg-vN88vXlzQo6cd4aQhwhnCJKdj66OZ8CBSSYQ6B2yQFBYiFLBEVkAUFlUJS2PyUmMGwBQvIJ75Bi5EshLtiD4wZjeuuX74AefTFhebkcTBpPW275O1rtlFj82a_vDj-tgnK3vk7td3UfzYP-fks-vX326uCyu3r15e_Hyqmg4p6kwQrY5E6saBa1RSDuQXd2IqmtRVZ1UTJSrVTs_USHrOqRtU-XgrVLSgGGn5MXOd5xWg2kb41Koez0GO9Rhq31t9Z-Ks2v9xX_TiEIIKrLBs71B8F8nE5MebGxM39fO-ClqIZWCsvw_iJLzSsgZfHoL3PgpuNyCpoAlcrh2e_x77kPgX51ngO-AJvgYg-l0Y9N113kN22sEPd9Wz7fVN7fNc-e35g7Wf514vo8yCzc01VRoxUrU3dT3yXxPGX3ybzQTj3bEJiYfDghjkldKsp_Y2Mfm |
CitedBy_id | crossref_primary_10_1016_j_schres_2011_04_007 crossref_primary_10_1016_j_febslet_2015_05_022 crossref_primary_10_1093_hmg_ddv411 crossref_primary_10_1111_j_1467_8624_2009_01381_x crossref_primary_10_1007_s40473_014_0007_0 crossref_primary_10_1038_tp_2013_8 crossref_primary_10_1097_WNR_0b013e328334b343 crossref_primary_10_1016_j_bbagen_2009_06_009 crossref_primary_10_1111_j_1420_9101_2006_01091_x crossref_primary_10_1038_mp_2012_37 crossref_primary_10_1017_S146114571200020X crossref_primary_10_1196_annals_1438_006 crossref_primary_10_1155_2015_286369 crossref_primary_10_1002_mc_22527 crossref_primary_10_1038_s41537_022_00278_0 crossref_primary_10_1016_j_gene_2020_144934 crossref_primary_10_1007_s10309_011_0171_0 crossref_primary_10_1016_j_schres_2009_03_022 crossref_primary_10_1073_pnas_0601279103 crossref_primary_10_1073_pnas_2120079119 crossref_primary_10_1124_mol_106_030635 crossref_primary_10_3390_cells11040748 crossref_primary_10_1016_j_vascn_2012_08_169 crossref_primary_10_1038_nn_2270 crossref_primary_10_1038_sj_mp_4001965 crossref_primary_10_2217_epi_13_22 crossref_primary_10_3389_fnmol_2023_1275697 crossref_primary_10_1016_S1734_1140_13_71469_5 crossref_primary_10_1016_j_biopsych_2013_03_020 crossref_primary_10_1007_s12640_010_9169_z crossref_primary_10_1016_j_jhep_2010_05_012 crossref_primary_10_1371_journal_pone_0002085 crossref_primary_10_1016_j_neubiorev_2014_11_013 crossref_primary_10_1016_j_schres_2008_01_009 crossref_primary_10_1016_j_pnpbp_2012_02_005 crossref_primary_10_1038_npp_2014_95 crossref_primary_10_1002_jcp_25914 crossref_primary_10_1080_13811118_2010_524025 crossref_primary_10_1177_1745691610383494 crossref_primary_10_3390_cells9051252 crossref_primary_10_1111_bdi_12255 crossref_primary_10_3892_mmr_2015_4249 crossref_primary_10_1016_j_ijdevneu_2010_07_236 crossref_primary_10_1038_sj_mp_4001954 crossref_primary_10_1016_j_biocel_2012_06_002 crossref_primary_10_1007_s13311_017_0593_0 crossref_primary_10_1177_1073858417707457 crossref_primary_10_1016_j_neuropharm_2010_10_021 crossref_primary_10_35430_nab_2020_e10 crossref_primary_10_1007_s10803_008_0646_7 crossref_primary_10_1134_S2079086415040015 crossref_primary_10_1038_s41380_023_02235_4 crossref_primary_10_31887_DCNS_2010_12_1_cptak crossref_primary_10_1111_j_2042_7158_2012_01475_x crossref_primary_10_1016_j_neubiorev_2021_03_019 crossref_primary_10_1007_s00406_007_0733_3 crossref_primary_10_2478_s13380_012_0024_y crossref_primary_10_1096_fj_201700736RR crossref_primary_10_1523_JNEUROSCI_3652_05_2005 crossref_primary_10_1007_s13311_013_0228_z crossref_primary_10_1016_j_molmed_2014_03_004 crossref_primary_10_1016_j_neubiorev_2008_09_006 crossref_primary_10_1073_pnas_0700529104 crossref_primary_10_1038_jhg_2012_140 crossref_primary_10_1177_03000605221100345 crossref_primary_10_1016_j_jmb_2014_03_016 crossref_primary_10_1038_npp_2008_77 crossref_primary_10_1002_glia_20497 crossref_primary_10_1523_JNEUROSCI_3272_07_2007 crossref_primary_10_1016_j_biopsych_2009_09_026 crossref_primary_10_1111_j_1526_4637_2012_01488_x crossref_primary_10_2217_epi_11_94 crossref_primary_10_1093_ijnp_pyaa020 crossref_primary_10_2217_epi_12_60 crossref_primary_10_1186_gm325 crossref_primary_10_1007_s11033_019_04803_w crossref_primary_10_17116_jnevro201811809171 crossref_primary_10_1002_2211_5463_12064 crossref_primary_10_1186_s13148_017_0365_z crossref_primary_10_1002_cne_23020 crossref_primary_10_1016_j_bbagrm_2008_01_001 crossref_primary_10_1002_ajmg_b_30726 crossref_primary_10_1007_s12017_012_8198_6 crossref_primary_10_1016_j_mehy_2011_06_034 crossref_primary_10_1371_journal_pone_0000895 crossref_primary_10_1007_s13311_013_0213_6 crossref_primary_10_31887_DCNS_2014_16_3_rbagot crossref_primary_10_1007_s11055_019_00838_5 crossref_primary_10_1097_HRP_0000000000000048 crossref_primary_10_1002_ajmg_b_31018 crossref_primary_10_3389_fncel_2016_00089 crossref_primary_10_1016_j_neuropharm_2012_11_015 crossref_primary_10_1371_journal_pone_0019955 crossref_primary_10_1016_j_schres_2014_10_030 crossref_primary_10_1016_j_neuropharm_2013_07_036 crossref_primary_10_1016_j_biopsych_2020_03_008 crossref_primary_10_1074_jbc_M702300200 crossref_primary_10_1038_npp_2010_85 crossref_primary_10_1523_JNEUROSCI_1786_08_2008 crossref_primary_10_3390_genes11111322 crossref_primary_10_1111_j_1476_5381_2009_00526_x crossref_primary_10_1177_0271678X16646386 crossref_primary_10_1016_j_neuroscience_2009_12_045 crossref_primary_10_1155_2015_201587 crossref_primary_10_1002_gps_4182 crossref_primary_10_1097_NEN_0b013e31819ba737 crossref_primary_10_1263_jbb_105_470 crossref_primary_10_1016_j_phrs_2011_05_026 crossref_primary_10_1016_j_jad_2009_01_031 crossref_primary_10_1016_j_neuroscience_2006_01_054 crossref_primary_10_1093_schbul_sbp104 crossref_primary_10_1177_1933719117741372 crossref_primary_10_1016_j_bbr_2015_03_002 crossref_primary_10_1096_fj_201901093RRR crossref_primary_10_1586_14737175_9_1_87 crossref_primary_10_1017_S1092852900000055 crossref_primary_10_1016_j_schres_2006_07_015 crossref_primary_10_1016_j_schres_2007_09_029 crossref_primary_10_1093_schbul_sbn054 crossref_primary_10_3934_Neuroscience_2015_4_294 crossref_primary_10_3389_fncel_2014_00217 crossref_primary_10_1038_tp_2013_111 crossref_primary_10_1038_tp_2012_86 crossref_primary_10_1111_gbb_12150 crossref_primary_10_1016_j_schres_2007_09_020 crossref_primary_10_1080_09540260701486738 crossref_primary_10_1016_j_bcp_2006_12_032 crossref_primary_10_1002_ajmg_a_34298 crossref_primary_10_1016_j_biopsych_2010_10_022 crossref_primary_10_1016_j_gene_2013_06_066 crossref_primary_10_4161_epi_24621 crossref_primary_10_9758_cpn_2014_12_2_94 crossref_primary_10_1007_s12031_016_0735_6 crossref_primary_10_1093_nar_gkr1193 crossref_primary_10_3389_fnins_2016_00202 crossref_primary_10_3390_cells10112890 crossref_primary_10_1186_s12920_014_0071_z crossref_primary_10_1002_ajmg_b_32566 crossref_primary_10_3390_ijms18040790 crossref_primary_10_1038_nrneurol_2017_68 crossref_primary_10_1007_s10709_007_9192_z crossref_primary_10_1016_j_nbd_2009_12_026 crossref_primary_10_3109_15622975_2011_587891 crossref_primary_10_1007_s12640_013_9378_3 crossref_primary_10_1093_ajcn_87_3_517 crossref_primary_10_2217_pme_14_21 crossref_primary_10_1016_j_ejmg_2014_12_001 crossref_primary_10_1016_j_jpsychires_2020_03_013 crossref_primary_10_2217_epi_12_37 crossref_primary_10_1016_j_pharmthera_2022_108279 crossref_primary_10_1371_journal_pone_0095875 crossref_primary_10_2217_epi_12_35 crossref_primary_10_1134_S0026893318050023 crossref_primary_10_1016_j_nlm_2016_08_012 crossref_primary_10_1073_pnas_0505394102 crossref_primary_10_1177_2041731416671926 crossref_primary_10_1093_toxsci_kfr024 crossref_primary_10_1007_s12199_007_0002_0 crossref_primary_10_1016_j_jpsychires_2016_12_020 crossref_primary_10_2217_epi_09_2 crossref_primary_10_1007_s13353_012_0113_1 crossref_primary_10_3389_fpsyt_2016_00026 crossref_primary_10_1016_j_brainresrev_2006_04_001 crossref_primary_10_1017_S0954579415000206 crossref_primary_10_1007_s00702_006_0441_6 crossref_primary_10_1080_00048670802534416 crossref_primary_10_1126_scisignal_aaa6674 crossref_primary_10_1016_j_pneurobio_2009_09_001 crossref_primary_10_1016_j_cbi_2024_111145 crossref_primary_10_2217_epi_12_20 crossref_primary_10_1007_s11011_023_01271_x crossref_primary_10_1016_j_jpsychires_2011_06_013 crossref_primary_10_1016_j_yhbeh_2010_05_005 crossref_primary_10_4236_ojpsych_2012_224053 crossref_primary_10_1002_dvdy_21626 crossref_primary_10_3233_JHD_160222 crossref_primary_10_1038_npp_2012_10 crossref_primary_10_2177_jsci_34_131 crossref_primary_10_2217_epi_2021_0074 crossref_primary_10_1016_j_jpsychires_2013_05_013 crossref_primary_10_4161_epi_6_1_13405 crossref_primary_10_1016_j_lfs_2012_10_002 crossref_primary_10_1016_j_neuropharm_2012_04_013 crossref_primary_10_1111_cpr_13500 crossref_primary_10_1016_j_psychres_2011_09_004 crossref_primary_10_1038_srep03654 crossref_primary_10_1038_npp_2012_149 crossref_primary_10_1158_1940_6207_CAPR_11_0357 crossref_primary_10_1080_15592294_2017_1285986 crossref_primary_10_1186_s11689_016_9151_z crossref_primary_10_1016_j_schres_2016_01_039 crossref_primary_10_1016_j_bbamcr_2025_119899 crossref_primary_10_1016_j_nlm_2010_08_002 crossref_primary_10_1017_S1092852900029229 crossref_primary_10_1097_WNR_0b013e32800fefd7 crossref_primary_10_2217_14622416_9_12_1809 crossref_primary_10_1245_s10434_010_1273_z crossref_primary_10_1016_j_neulet_2010_03_082 crossref_primary_10_1002_dvdy_21176 crossref_primary_10_1007_s00406_013_0395_2 crossref_primary_10_1111_j_1469_185X_2008_00050_x crossref_primary_10_1159_000362762 crossref_primary_10_1016_j_biopsych_2010_03_029 crossref_primary_10_1016_j_schres_2006_11_029 crossref_primary_10_1038_nrd4580 crossref_primary_10_2217_epi_2017_0159 crossref_primary_10_22625_2072_6732_2022_14_3_105_111 crossref_primary_10_1093_schbul_sbs139 crossref_primary_10_1152_ajpcell_00188_2017 crossref_primary_10_1016_j_psychres_2018_04_036 crossref_primary_10_1002_ajmg_b_32258 crossref_primary_10_1007_s00221_020_06021_4 crossref_primary_10_1016_j_neuroimage_2006_09_053 crossref_primary_10_1016_j_neuropharm_2015_09_013 crossref_primary_10_1016_j_socscimed_2011_09_036 crossref_primary_10_1038_npp_2012_78 crossref_primary_10_1254_fpj_147_219 crossref_primary_10_1016_j_neubiorev_2009_10_010 crossref_primary_10_1038_nrn2009 crossref_primary_10_1016_j_pneurobio_2009_04_002 crossref_primary_10_31887_DCNS_2016_18_3_dsweatt crossref_primary_10_3390_cells9081837 crossref_primary_10_1139_G08_095 crossref_primary_10_2217_epi_14_66 crossref_primary_10_1016_j_psychres_2007_08_011 crossref_primary_10_31887_DCNS_2019_21_4_sakbarian crossref_primary_10_1186_1745_6150_8_5 crossref_primary_10_1016_j_febslet_2011_03_032 crossref_primary_10_1038_npp_2012_125 crossref_primary_10_1111_j_1471_4159_2007_04797_x crossref_primary_10_1016_j_psyneuen_2010_06_005 crossref_primary_10_1016_j_biopsych_2007_07_003 crossref_primary_10_1016_j_pneurobio_2015_10_002 crossref_primary_10_1186_gm397 crossref_primary_10_1016_j_bbi_2015_02_018 crossref_primary_10_1007_s12640_010_9163_5 crossref_primary_10_1093_hmg_ddl253 crossref_primary_10_1016_j_jnutbio_2006_02_001 crossref_primary_10_1016_j_nlm_2010_12_008 crossref_primary_10_1016_j_brainres_2016_04_031 crossref_primary_10_1016_j_gene_2012_01_096 crossref_primary_10_1016_j_neubiorev_2017_06_010 crossref_primary_10_1186_s40659_016_0076_5 crossref_primary_10_1523_JNEUROSCI_0072_24_2024 crossref_primary_10_1016_j_biochi_2012_07_014 crossref_primary_10_2217_epi_2016_0106 crossref_primary_10_3390_genes15030272 crossref_primary_10_1016_j_bbr_2010_04_040 crossref_primary_10_1002_jnr_22143 crossref_primary_10_1016_j_bbagrm_2010_09_002 crossref_primary_10_1053_j_gastro_2005_11_008 crossref_primary_10_1016_j_gene_2013_08_024 crossref_primary_10_31887_DCNS_2014_16_3_jday crossref_primary_10_1111_j_1528_1167_2011_03145_x crossref_primary_10_1016_j_mppsy_2008_10_006 crossref_primary_10_31887_DCNS_2014_16_3_aguidotti crossref_primary_10_1038_npp_2011_221 crossref_primary_10_1093_nar_gkaf130 crossref_primary_10_2217_bmm_14_44 crossref_primary_10_2217_epi_14_85 crossref_primary_10_3109_09540261_2013_816659 crossref_primary_10_3390_genes14020243 crossref_primary_10_1016_j_schres_2019_03_010 crossref_primary_10_1002_ajmg_b_32361 crossref_primary_10_1007_s11434_014_0690_y crossref_primary_10_1093_bfgp_elu040 crossref_primary_10_1146_annurev_pharmtox_061008_103102 crossref_primary_10_1038_s41380_021_01308_6 crossref_primary_10_3390_genes5030821 crossref_primary_10_1093_schbul_sbv074 crossref_primary_10_1042_bse0480275 crossref_primary_10_1038_npp_2011_85 crossref_primary_10_1016_j_neurobiolaging_2007_07_020 crossref_primary_10_1038_s41380_019_0601_3 crossref_primary_10_1124_mol_108_051763 crossref_primary_10_1002_ajmg_b_32506 crossref_primary_10_1111_epi_12031 crossref_primary_10_1136_bmjos_2021_100264 crossref_primary_10_1038_srep28636 crossref_primary_10_1073_pnas_0510341103 crossref_primary_10_31887_DCNS_2006_8_3_broth crossref_primary_10_1016_j_biopsych_2010_02_023 crossref_primary_10_1093_ijnp_pyy006 crossref_primary_10_1016_j_jaac_2010_06_001 crossref_primary_10_1517_17460441_2015_976552 crossref_primary_10_1111_j_1758_5872_2012_00205_x crossref_primary_10_1017_S095457941600081X crossref_primary_10_3389_fnmol_2025_1546083 crossref_primary_10_1038_sj_npp_1301638 crossref_primary_10_1093_cercor_bhp242 crossref_primary_10_2217_epi_2018_0014 crossref_primary_10_1016_j_neuron_2005_08_001 crossref_primary_10_1371_journal_pone_0000809 crossref_primary_10_1016_j_nlm_2011_02_015 crossref_primary_10_1016_j_euroneuro_2011_08_001 crossref_primary_10_1080_10177833_2010_11790643 crossref_primary_10_1111_j_1582_4934_2006_tb00526_x crossref_primary_10_1016_j_nbd_2015_11_010 crossref_primary_10_1016_j_brainres_2008_07_077 crossref_primary_10_1016_j_pnpbp_2020_110081 crossref_primary_10_1016_j_euroneuro_2014_01_009 crossref_primary_10_1002_hon_2311 crossref_primary_10_1016_j_ajhg_2008_01_008 crossref_primary_10_1016_j_brainres_2008_07_074 crossref_primary_10_1146_annurev_psych_60_110707_163625 crossref_primary_10_2353_ajpath_2010_100209 crossref_primary_10_1139_cjpp_2022_0270 crossref_primary_10_1016_j_amepre_2014_06_011 crossref_primary_10_3390_biom11010002 crossref_primary_10_3389_fncel_2016_00229 crossref_primary_10_1016_j_nutres_2011_09_015 crossref_primary_10_1016_j_neubiorev_2020_03_005 crossref_primary_10_1016_j_tig_2012_04_002 crossref_primary_10_31887_DCNS_2014_16_3_mmorris crossref_primary_10_1017_S0954579413000618 crossref_primary_10_1016_j_biopsych_2008_08_015 crossref_primary_10_1038_sj_mp_4002047 crossref_primary_10_1038_mp_2009_84 crossref_primary_10_1002_em_20357 crossref_primary_10_1007_s12031_011_9602_7 crossref_primary_10_1007_s00018_009_0015_5 crossref_primary_10_1146_annurev_pharmtox_010814_124527 crossref_primary_10_3923_tmr_2010_1_15 crossref_primary_10_1080_00048670701787495 crossref_primary_10_1523_JNEUROSCI_3984_10_2011 crossref_primary_10_1016_j_pnpbp_2017_12_016 crossref_primary_10_1016_j_schres_2011_11_029 crossref_primary_10_1007_s12031_011_9663_7 crossref_primary_10_1523_JNEUROSCI_1917_08_2008 crossref_primary_10_1002_bies_201000015 crossref_primary_10_1038_npp_2008_108 crossref_primary_10_1016_j_nbd_2011_12_008 crossref_primary_10_1038_tp_2011_61 crossref_primary_10_3389_fncel_2023_1143319 crossref_primary_10_1093_schbul_sbt080 crossref_primary_10_1016_j_neubiorev_2007_10_009 crossref_primary_10_1016_j_jpsychires_2017_05_009 crossref_primary_10_1385_JMN_31_03_221 crossref_primary_10_1016_j_schres_2017_05_002 crossref_primary_10_1177_1073858415608147 crossref_primary_10_2217_epi_09_21 crossref_primary_10_1111_cns_12059 crossref_primary_10_3390_biom10060964 crossref_primary_10_1002_ajmg_b_31192 crossref_primary_10_1177_1533317515603688 crossref_primary_10_1186_s43045_023_00389_z crossref_primary_10_3389_fgene_2014_00280 crossref_primary_10_1186_gb_2013_14_8_r94 crossref_primary_10_1007_s00101_013_2274_7 crossref_primary_10_1016_j_neuropharm_2012_08_015 crossref_primary_10_1016_j_pbiomolbio_2015_04_008 crossref_primary_10_1016_j_gene_2012_01_049 crossref_primary_10_31887_DCNS_2014_16_3_sakbarian crossref_primary_10_1016_j_pharmthera_2005_01_007 crossref_primary_10_1038_mp_2011_108 crossref_primary_10_1016_j_brainresbull_2009_08_018 |
Cites_doi | 10.1074/jbc.M101287200 10.1073/pnas.162161499 10.1038/sj.mp.4000783 10.1073/pnas.95.26.15718 10.1016/j.biopsych.2004.11.046 10.1001/archpsyc.57.11.1061 10.1016/S0168-9525(00)02213-7 10.1016/j.gene.2004.12.044 10.1073/pnas.97.10.5237 10.1001/archpsyc.1995.03950160008002 10.1038/13810 10.1016/j.biopsych.2004.10.019 10.1007/s00702-003-0826-8 10.1111/j.1471-4159.2005.03040.x 10.1038/sj.mp.4001371 10.1038/ng0395-316 10.3390/i3030220 10.1016/S0031-9384(02)00936-8 10.1073/pnas.0409648102 10.1073/pnas.2637013100 10.1093/oxfordjournals.schbul.a006988 10.1016/0022-3956(71)90009-4 10.1111/j.1365-313X.2004.02048.x 10.1016/S0920-9964(99)00192-9 10.1001/archpsyc.59.6.521 10.1073/pnas.97.7.3556 10.1038/nrn1648 |
ContentType | Journal Article |
Copyright | Copyright 1993/2005 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jun 28, 2005 Copyright © 2005, The National Academy of Sciences 2005 |
Copyright_xml | – notice: Copyright 1993/2005 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jun 28, 2005 – notice: Copyright © 2005, The National Academy of Sciences 2005 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.0503736102 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts Neurosciences Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 9346 |
ExternalDocumentID | PMC1166626 863317791 15961543 10_1073_pnas_0503736102 102_26_9341 3375897 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH062682 – fundername: NIMH NIH HHS grantid: MH062090 – fundername: NIMH NIH HHS grantid: MH62682 – fundername: NIMH NIH HHS grantid: MH062188 – fundername: NIMH NIH HHS grantid: R01 MH062188 – fundername: NIMH NIH HHS grantid: R01 MH062090 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM OHM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c552t-e67d36138c90de912f07fac68fd198f79364bbd4bbd6813ff12dc8649d997e0e3 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 13:55:43 EDT 2025 Fri Jul 11 09:42:44 EDT 2025 Fri Jul 11 00:03:49 EDT 2025 Mon Jun 30 08:27:53 EDT 2025 Fri Jun 20 17:43:03 EDT 2025 Thu Apr 24 22:55:11 EDT 2025 Tue Jul 01 04:00:11 EDT 2025 Wed Nov 11 00:29:20 EST 2020 Thu May 30 08:51:46 EDT 2019 Thu May 29 08:42:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c552t-e67d36138c90de912f07fac68fd198f79364bbd4bbd6813ff12dc8649d997e0e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Abbreviations: Dnmt, DNA methyl transferase; GAD, glutamic acid decarboxylase; NPS, nonpsychiatric subject(s); NT2, Ntera 2; RA, retinoic acid; SZP, schizophrenia patient(s). Author contributions: D.R.G., A.G., and E.C. designed research; D.R.G., X.J., Y.C., R.P.S., and C.P.M. performed research; D.R.G. contributed new reagents/analytic tools; D.R.G., X.J., and Y.C. analyzed data; and D.R.G. wrote the paper. Contributed by Erminio Costa, May 10, 2005 To whom correspondence should be addressed. E-mail: dgrayson@psych.uic.edu. |
PMID | 15961543 |
PQID | 201415046 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1166626 pnas_primary_102_26_9341_fulltext proquest_miscellaneous_17558676 proquest_journals_201415046 crossref_primary_10_1073_pnas_0503736102 pubmed_primary_15961543 proquest_miscellaneous_67990446 jstor_primary_3375897 crossref_citationtrail_10_1073_pnas_0503736102 pnas_primary_102_26_9341 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-06-28 |
PublicationDateYYYYMMDD | 2005-06-28 |
PublicationDate_xml | – month: 06 year: 2005 text: 2005-06-28 day: 28 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2005 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 (e_1_3_2_19_2) 2003; 18 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 (e_1_3_2_17_2) 2002; 3 (e_1_3_2_9_2) 2005; 134 (e_1_3_2_5_2) 2004; 15 11473107 - J Biol Chem. 2001 Sep 28;276(39):36734-41 12526990 - Physiol Behav. 2002 Dec;77(4-5):501-5 14684836 - Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):348-53 10508514 - Nat Genet. 1999 Oct;23(2):185-8 11074872 - Arch Gen Psychiatry. 2000 Nov;57(11):1061-9 7702443 - Arch Gen Psychiatry. 1995 Apr;52(4):258-66 12044194 - Arch Gen Psychiatry. 2002 Jun;59(6):521-9 15078330 - Plant J. 2004 Apr;38(2):276-84 15803162 - Nat Rev Neurosci. 2005 Apr;6(4):312-24 9861036 - Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15718-23 11226607 - Trends Genet. 2001 Mar;17(3):142-6 12811640 - J Neural Transm (Vienna). 2003 Jul;110(7):803-12 12908672 - Schizophr Bull. 2003;29(1):169-78 15777718 - Gene. 2005 Mar 28;348:123-34 7773296 - Nat Genet. 1995 Mar;9(3):316-20 10805783 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5237-42 15671176 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1749-54 10725375 - Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3556-61 4932991 - J Psychiatr Res. 1971 Jun;8(2):63-71 15691526 - Biol Psychiatry. 2005 Feb 1;57(3):252-60 15717292 - Am J Med Genet B Neuropsychiatr Genet. 2005 Apr 5;134B(1):60-6 11126396 - Mol Psychiatry. 2000 Nov;5(6):654-63, 571 12481028 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17095-100 15737665 - Biol Psychiatry. 2005 Mar 1;57(5):500-9 12931209 - Mol Psychiatry. 2003 Sep;8(9):769, 821-31 10913747 - Schizophr Res. 2000 Aug 3;44(2):151-5 15816871 - J Neurochem. 2005 Apr;93(2):483-92 12087179 - Nucleic Acids Res. 2002 Jul 1;30(13):2930-9 |
References_xml | – ident: e_1_3_2_28_2 doi: 10.1074/jbc.M101287200 – ident: e_1_3_2_15_2 – ident: e_1_3_2_22_2 doi: 10.1073/pnas.162161499 – ident: e_1_3_2_7_2 doi: 10.1038/sj.mp.4000783 – ident: e_1_3_2_4_2 doi: 10.1073/pnas.95.26.15718 – ident: e_1_3_2_30_2 doi: 10.1016/j.biopsych.2004.11.046 – ident: e_1_3_2_3_2 doi: 10.1001/archpsyc.57.11.1061 – ident: e_1_3_2_1_2 doi: 10.1016/S0168-9525(00)02213-7 – ident: e_1_3_2_27_2 doi: 10.1016/j.gene.2004.12.044 – ident: e_1_3_2_31_2 doi: 10.1073/pnas.97.10.5237 – volume: 18 start-page: 235 year: 2003 ident: e_1_3_2_19_2 publication-title: Proc. Natl. Acad. Sci. USA – ident: e_1_3_2_10_2 doi: 10.1001/archpsyc.1995.03950160008002 – ident: e_1_3_2_32_2 doi: 10.1038/13810 – ident: e_1_3_2_6_2 doi: 10.1016/j.biopsych.2004.10.019 – ident: e_1_3_2_12_2 doi: 10.1007/s00702-003-0826-8 – ident: e_1_3_2_29_2 doi: 10.1111/j.1471-4159.2005.03040.x – ident: e_1_3_2_8_2 doi: 10.1038/sj.mp.4001371 – ident: e_1_3_2_25_2 doi: 10.1038/ng0395-316 – volume: 134 start-page: 60 year: 2005 ident: e_1_3_2_9_2 publication-title: Am. J. Med. Genet. B – volume: 3 start-page: 2930 year: 2002 ident: e_1_3_2_17_2 publication-title: Nucl. Acids Res. – ident: e_1_3_2_20_2 doi: 10.3390/i3030220 – ident: e_1_3_2_13_2 doi: 10.1016/S0031-9384(02)00936-8 – ident: e_1_3_2_23_2 doi: 10.1073/pnas.0409648102 – volume: 15 start-page: 121 year: 2004 ident: e_1_3_2_5_2 publication-title: Crit. Rev. Neurobiol. – ident: e_1_3_2_11_2 doi: 10.1073/pnas.2637013100 – ident: e_1_3_2_2_2 doi: 10.1093/oxfordjournals.schbul.a006988 – ident: e_1_3_2_21_2 doi: 10.1016/0022-3956(71)90009-4 – ident: e_1_3_2_26_2 doi: 10.1111/j.1365-313X.2004.02048.x – ident: e_1_3_2_24_2 doi: 10.1016/S0920-9964(99)00192-9 – ident: e_1_3_2_14_2 doi: 10.1001/archpsyc.59.6.521 – ident: e_1_3_2_18_2 doi: 10.1073/pnas.97.7.3556 – ident: e_1_3_2_16_2 doi: 10.1038/nrn1648 – reference: 15691526 - Biol Psychiatry. 2005 Feb 1;57(3):252-60 – reference: 15816871 - J Neurochem. 2005 Apr;93(2):483-92 – reference: 7773296 - Nat Genet. 1995 Mar;9(3):316-20 – reference: 11226607 - Trends Genet. 2001 Mar;17(3):142-6 – reference: 12526990 - Physiol Behav. 2002 Dec;77(4-5):501-5 – reference: 12908672 - Schizophr Bull. 2003;29(1):169-78 – reference: 12481028 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17095-100 – reference: 14684836 - Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):348-53 – reference: 12044194 - Arch Gen Psychiatry. 2002 Jun;59(6):521-9 – reference: 10508514 - Nat Genet. 1999 Oct;23(2):185-8 – reference: 12811640 - J Neural Transm (Vienna). 2003 Jul;110(7):803-12 – reference: 12931209 - Mol Psychiatry. 2003 Sep;8(9):769, 821-31 – reference: 15717292 - Am J Med Genet B Neuropsychiatr Genet. 2005 Apr 5;134B(1):60-6 – reference: 11074872 - Arch Gen Psychiatry. 2000 Nov;57(11):1061-9 – reference: 7702443 - Arch Gen Psychiatry. 1995 Apr;52(4):258-66 – reference: 15671176 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1749-54 – reference: 15803162 - Nat Rev Neurosci. 2005 Apr;6(4):312-24 – reference: 15737665 - Biol Psychiatry. 2005 Mar 1;57(5):500-9 – reference: 4932991 - J Psychiatr Res. 1971 Jun;8(2):63-71 – reference: 9861036 - Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15718-23 – reference: 10725375 - Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3556-61 – reference: 11126396 - Mol Psychiatry. 2000 Nov;5(6):654-63, 571 – reference: 12087179 - Nucleic Acids Res. 2002 Jul 1;30(13):2930-9 – reference: 10805783 - Proc Natl Acad Sci U S A. 2000 May 9;97(10):5237-42 – reference: 10913747 - Schizophr Res. 2000 Aug 3;44(2):151-5 – reference: 15777718 - Gene. 2005 Mar 28;348:123-34 – reference: 11473107 - J Biol Chem. 2001 Sep 28;276(39):36734-41 – reference: 15078330 - Plant J. 2004 Apr;38(2):276-84 |
SSID | ssj0009580 |
Score | 2.389701 |
Snippet | Reelin mRNA and protein levels are reduced by ≈50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar... Reelin mRNA and protein levels are reduced by approximately 50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia... Reelin mRNA and protein levels are reduced by {approx}50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9341 |
SubjectTerms | Binding, Competitive Biological Sciences Brain Cell Adhesion Molecules, Neuronal - genetics Cell extracts Cell lines CpG Islands Cytosine - chemistry Deoxyribonucleic acid DNA DNA - chemistry DNA Methylation Extracellular Matrix Proteins - genetics Gene Expression Regulation Genes, Reporter Genomics Humans Kinetics Mental disorders Messenger RNA Methylation Models, Genetic Nerve Tissue Proteins - genetics Neurons Oligonucleotides Oligonucleotides - chemistry Promoter regions Promoter Regions, Genetic Proteins Ribonucleic acid RNA RNA, Messenger - metabolism Schizophrenia Schizophrenia - genetics Sequence Analysis, DNA Serine Endopeptidases - genetics Sulfites - pharmacology Time Factors Transfection |
Title | Reelin Promoter Hypermethylation in Schizophrenia |
URI | https://www.jstor.org/stable/3375897 http://www.pnas.org/content/102/26/9341.abstract https://www.ncbi.nlm.nih.gov/pubmed/15961543 https://www.proquest.com/docview/201415046 https://www.proquest.com/docview/17558676 https://www.proquest.com/docview/67990446 https://pubmed.ncbi.nlm.nih.gov/PMC1166626 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgvPCCGAwWNiBIPAxVKYmT2PHjxK9pEtWENqk8RU5ia51YOjUd0vbXcxfbSVpWBDwkimLHTX3n853z3WdC3sYyowWTKoi4hgAFXHJMVhYoEJFJcNlZgQv6Xyfs6Cw5nqbTPvekzS5ZFuPy9s68kv-RKtwDuWKW7D9ItmsUbsA1yBfOIGE4_5WMvynMJkeMFXS4WozOIahc4J7QNwbhhosZzRBVN3RFT7qpq3FAgYlbGTzs80zs4G9Gwehk0u9a_GUhb2yy1kcEyDQ98vDY4G-nMzm_VLMeP2AM3Hc3V7a8kLig3kpZXsx-2lwztwaRIlaKZkO7SmGuS0w2dGdXQzpQIDo0kyI2bFe_2W8wOLjpcC2bMRLV8JjZVgbSvLpsxQl-GHhjhuNpjTLbFd0nDyhED9Qt4nRczJnJTLIv7RifePx-7ZfbTZtMWyt-i4GuIh8u1L8rNlmH2A58ltPH5JENNvxDoznb5J6qn5BtJ1H_wHKOv3tKIqNKvlMlf12VfChcUaUdcvb50-mHo8DuphGUaUqXgWK8gj8VZ6UIKyUiqkOuZckyXUUi02CnWVIUFR4si2KtI1qVGUtEJQRXoYqfka16Xqtd4oMLKwsOU4EsdFJAgF9ylWpRlBUEnxByeGTs-iovLdU87njyI28hDzzOsd_yvp89ctA9cGVYVjZX3Wk7v6sXxxDyCu6R3bZm_zjNKctR0zzyZlNRri3EyiN7Toi5HeFNThEFnYYJ88jrrhTML35Tk7WaXzc5eN9pxvgfajAODl-CbTw3KtG_h1Utj_AVZekqIPX7akk9O28p4CP82k_Zi41t7pGH_UDdJ1vLxbV6Ce7zsnjVDoZfJpfBPg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reelin+promoter+hypermethylation+in+schizophrenia&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Grayson%2C+Dennis+R&rft.au=Jia%2C+Xiaomei&rft.au=Chen%2C+Ying&rft.au=Sharma%2C+Rajiv+P&rft.date=2005-06-28&rft.issn=0027-8424&rft.volume=102&rft.issue=26&rft.spage=9341&rft_id=info:doi/10.1073%2Fpnas.0503736102&rft_id=info%3Apmid%2F15961543&rft.externalDocID=15961543 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F26.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F26.cover.gif |