Flavin Electron Shuttles Dominate Extracellular Electron Transfer by Shewanella oneidensis

Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneide...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 4; no. 1
Main Authors Kotloski, Nicholas J., Gralnick, Jeffrey A.
Format Journal Article
LanguageEnglish
Published United States American Society of Microbiology 01.03.2013
American Society for Microbiology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis . To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe ( b acterial f lavin adenine dinucleotide [FAD] e xporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δ bfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria. IMPORTANCE Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis . We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis . Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis . Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis . We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis . Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis .
AbstractList Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis . To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe (b acterial f lavin adenine dinucleotide [FAD] e xporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δ bfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria. IMPORTANCE Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis . We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis . Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis .
Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis . To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe ( b acterial f lavin adenine dinucleotide [FAD] e xporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δ bfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria. Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis . We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis . Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis .
Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis. To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe (bacterial flavin adenine dinucleotide [FAD] exporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δbfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria.UNLABELLEDShewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis. To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe (bacterial flavin adenine dinucleotide [FAD] exporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δbfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria.Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis. We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis. Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis.IMPORTANCEExtracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis. We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis. Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis.
Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis. To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe (bacterial flavin adenine dinucleotide [FAD] exporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δbfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria. Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis. We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis. Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis.
Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis . To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe ( b acterial f lavin adenine dinucleotide [FAD] e xporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δ bfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria. IMPORTANCE Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis . We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis . Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis . Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis . We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis . Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis .
ABSTRACT Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis. To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe (bacterial flavin adenine dinucleotide [FAD] exporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δbfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria. IMPORTANCE Extracellular electron transfer by microbes is critical for the geochemical cycling of metals, bioremediation, and biocatalysis using electrodes. A controversy in the field was addressed by demonstrating that flavin electron shuttling, not direct electron transfer or nanowires, is the primary mechanism of extracellular electron transfer employed by the bacterium Shewanella oneidensis. We have identified a flavin adenine dinucleotide transporter conserved in all sequenced Shewanella species that facilitates export of flavin electron shuttles in S. oneidensis. Analysis of a strain that is unable to secrete flavins demonstrated that electron shuttling accounts for ~75% of the insoluble extracellular electron transfer capacity in S. oneidensis.
Author Kotloski, Nicholas J.
Gralnick, Jeffrey A.
Author_xml – sequence: 1
  givenname: Nicholas J.
  surname: Kotloski
  fullname: Kotloski, Nicholas J.
  organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA, Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
– sequence: 2
  givenname: Jeffrey A.
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
  organization: BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA, Department of Microbiology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23322638$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vFSEUxYmpsbV26dbM0s1UPoaBtzHR-qpNmriwbtyQO8ylpeENFZjW_vcyfa1aYyIbCJz743A5z8nOFCck5CWjh4xx_Wbz3sdDSqUULeNPyB5nkrZKMrazrHvWcsZXu-Qg50tahxBMC_qM7HIhOO-F3iPfjgNc-6lZB7Qlxan5cjGXEjA3H-LGT1CwWf8oCSyGMAdIv4VnCabsMDXDbS3CG5iqBJpq0I84ZZ9fkKcOQsaD-3mffD1enx19ak8_fzw5enfaWil5aa1FZMC7UYqRSs5BdTD2DnTXW3SuRwnKCQQGdMBBO2URem11v2IaQFixT0623DHCpblKfgPp1kTw5m4jpnMDqXgb0PS0s6MVtOtRdSjdymmGA9NUUmXdiJX1dsu6mocNjhan-vbwCPr4ZPIX5jxeGyElk52ugNf3gBS_z5iL2fi8NK-2J87ZMNX1Xb1OqP9LuRJyRRVbpK_-tPXLz8M_VoHYCmyKOSd0xvoCxcfFpQ-GUbMExiyBMXeBqfha1f5V9QD-t_4ndbDEpg
CitedBy_id crossref_primary_10_1016_j_elecom_2024_107751
crossref_primary_10_1007_s00374_019_01370_x
crossref_primary_10_1186_s12900_015_0031_7
crossref_primary_10_1016_j_jpowsour_2019_05_009
crossref_primary_10_1016_j_jwpe_2024_105920
crossref_primary_10_1007_s41918_018_0020_1
crossref_primary_10_3389_fmicb_2019_00126
crossref_primary_10_3389_fmicb_2017_02481
crossref_primary_10_1002_bmb_21702
crossref_primary_10_1016_j_coelec_2017_08_013
crossref_primary_10_1002_ep_13436
crossref_primary_10_1021_acs_est_0c08355
crossref_primary_10_1007_s00253_013_5151_z
crossref_primary_10_1016_j_bios_2020_112312
crossref_primary_10_1021_acs_est_5b00006
crossref_primary_10_1021_acs_est_8b02822
crossref_primary_10_1021_acssynbio_1c00335
crossref_primary_10_1038_s41467_019_13219_w
crossref_primary_10_1038_srep11677
crossref_primary_10_1016_j_chemosphere_2024_143439
crossref_primary_10_1038_s41396_021_01047_0
crossref_primary_10_1021_acssynbio_8b00498
crossref_primary_10_3390_w10091128
crossref_primary_10_1016_j_xinn_2021_100104
crossref_primary_10_1038_s41579_023_00920_3
crossref_primary_10_1016_j_bioelechem_2019_04_022
crossref_primary_10_1016_j_jpowsour_2017_02_032
crossref_primary_10_1073_pnas_1305244110
crossref_primary_10_1128_JB_00700_19
crossref_primary_10_1016_j_cbpa_2018_06_007
crossref_primary_10_1128_jb_00391_22
crossref_primary_10_1088_1361_6528_ab6ab5
crossref_primary_10_1111_1751_7915_14170
crossref_primary_10_1007_s11431_019_9509_8
crossref_primary_10_1021_acs_est_5b04834
crossref_primary_10_1021_acsenergylett_7b00585
crossref_primary_10_1002_bit_25723
crossref_primary_10_1111_1751_7915_14175
crossref_primary_10_1080_02648725_2023_2197715
crossref_primary_10_1002_celc_201402128
crossref_primary_10_1038_srep14263
crossref_primary_10_1016_j_ibiod_2020_105111
crossref_primary_10_1021_acscatal_5b01733
crossref_primary_10_1039_C4CP03197K
crossref_primary_10_3389_fmicb_2022_834293
crossref_primary_10_1016_j_bios_2020_112323
crossref_primary_10_1039_D2EE03132A
crossref_primary_10_1016_j_scitotenv_2022_156501
crossref_primary_10_1080_01490451_2013_796189
crossref_primary_10_1128_spectrum_03922_22
crossref_primary_10_1016_j_chemgeo_2023_121443
crossref_primary_10_1016_j_scitotenv_2024_170451
crossref_primary_10_1016_j_scitotenv_2024_177649
crossref_primary_10_1073_pnas_2000802117
crossref_primary_10_1016_j_biortech_2014_04_098
crossref_primary_10_1016_j_envres_2024_118655
crossref_primary_10_1371_journal_pone_0169955
crossref_primary_10_3389_fmicb_2023_1070800
crossref_primary_10_1002_celc_201402036
crossref_primary_10_1016_j_scitotenv_2024_175222
crossref_primary_10_1016_j_seta_2021_101332
crossref_primary_10_1002_ange_202425220
crossref_primary_10_1016_j_jscs_2018_02_002
crossref_primary_10_1111_1751_7915_12400
crossref_primary_10_1371_journal_pone_0145871
crossref_primary_10_1002_advs_202000641
crossref_primary_10_1016_j_corsci_2023_111743
crossref_primary_10_3389_fmicb_2018_01478
crossref_primary_10_1128_AEM_00415_18
crossref_primary_10_1116_1_4984007
crossref_primary_10_1186_s12951_021_00868_7
crossref_primary_10_1007_s13205_021_02917_2
crossref_primary_10_1021_acssynbio_2c00417
crossref_primary_10_1016_j_jece_2023_109551
crossref_primary_10_1002_advs_202403067
crossref_primary_10_1002_pro_4106
crossref_primary_10_1021_acssuschemeng_2c06685
crossref_primary_10_1016_j_biortech_2013_02_072
crossref_primary_10_1016_j_bioelechem_2015_03_011
crossref_primary_10_1016_j_electacta_2023_142860
crossref_primary_10_1371_journal_pone_0104336
crossref_primary_10_1142_S2339547816400124
crossref_primary_10_1038_s41529_023_00416_8
crossref_primary_10_1002_celc_202100192
crossref_primary_10_1021_acs_est_9b06868
crossref_primary_10_1016_j_envpol_2018_07_024
crossref_primary_10_1016_j_electacta_2014_09_096
crossref_primary_10_1021_acs_chemrev_1c00487
crossref_primary_10_1038_s41598_018_33521_9
crossref_primary_10_1111_nph_13633
crossref_primary_10_1016_j_chemosphere_2021_133453
crossref_primary_10_1016_j_electacta_2021_139305
crossref_primary_10_1080_10643389_2024_2382498
crossref_primary_10_1016_j_jhazmat_2022_129703
crossref_primary_10_1016_j_jmrt_2023_08_237
crossref_primary_10_1016_j_jtice_2021_09_002
crossref_primary_10_1007_s10295_020_02309_0
crossref_primary_10_1080_1040841X_2016_1192578
crossref_primary_10_1039_D3CS00537B
crossref_primary_10_1007_s12274_019_2438_0
crossref_primary_10_1016_j_corsci_2020_108746
crossref_primary_10_1038_s41467_024_45759_1
crossref_primary_10_1016_j_jclepro_2020_122012
crossref_primary_10_1038_s41522_020_00177_1
crossref_primary_10_1038_ncomms15419
crossref_primary_10_3390_en81112366
crossref_primary_10_1016_j_jchromb_2019_01_028
crossref_primary_10_1007_s00203_019_01659_3
crossref_primary_10_1016_j_biortech_2019_121706
crossref_primary_10_1080_01490451_2019_1594464
crossref_primary_10_1146_annurev_micro_032521_023815
crossref_primary_10_1128_mbio_03085_22
crossref_primary_10_1111_mmi_14067
crossref_primary_10_3389_fbioe_2021_786416
crossref_primary_10_1038_s41586_018_0498_z
crossref_primary_10_1007_s00284_017_1386_8
crossref_primary_10_1007_s12209_024_00410_4
crossref_primary_10_1111_1462_2920_12277
crossref_primary_10_5194_bg_14_5171_2017
crossref_primary_10_1016_j_copbio_2013_12_003
crossref_primary_10_1111_1751_7915_13280
crossref_primary_10_1093_femsec_fiy104
crossref_primary_10_3389_fmicb_2014_00318
crossref_primary_10_1038_srep05628
crossref_primary_10_1021_acs_est_0c00141
crossref_primary_10_1002_bit_25128
crossref_primary_10_1002_bit_27305
crossref_primary_10_1016_j_jwpe_2022_103277
crossref_primary_10_1146_annurev_micro_032221_023725
crossref_primary_10_1016_j_chroma_2015_09_049
crossref_primary_10_1002_advs_202004393
crossref_primary_10_1002_jctb_5658
crossref_primary_10_1002_advs_202308597
crossref_primary_10_1038_s41557_020_0460_1
crossref_primary_10_1039_D1EE03094A
crossref_primary_10_1021_acs_analchem_0c01650
crossref_primary_10_1073_pnas_2006534117
crossref_primary_10_1002_elan_201700110
crossref_primary_10_1016_j_jwpe_2022_102868
crossref_primary_10_1039_C4EE03875D
crossref_primary_10_1128_AEM_03109_20
crossref_primary_10_1002_celc_201600079
crossref_primary_10_1002_celc_201402195
crossref_primary_10_1016_j_jmst_2018_10_026
crossref_primary_10_1016_j_chemgeo_2019_07_038
crossref_primary_10_1557_mrc_2019_27
crossref_primary_10_1016_j_electacta_2022_140917
crossref_primary_10_1016_j_rser_2015_12_029
crossref_primary_10_1186_s13068_021_01981_3
crossref_primary_10_1128_AEM_04038_14
crossref_primary_10_1002_bit_27563
crossref_primary_10_1016_j_gca_2018_01_004
crossref_primary_10_1111_1462_2920_16179
crossref_primary_10_1016_j_electacta_2019_05_094
crossref_primary_10_1039_C9SC01942A
crossref_primary_10_1016_j_scitotenv_2019_133980
crossref_primary_10_1021_acs_est_4c00007
crossref_primary_10_2116_analsci_18P237
crossref_primary_10_1016_j_bioelechem_2022_108210
crossref_primary_10_1128_AEM_03033_16
crossref_primary_10_1016_j_watres_2024_122957
crossref_primary_10_3389_fmicb_2022_853411
crossref_primary_10_1128_AEM_01122_14
crossref_primary_10_20964_2022_10_11
crossref_primary_10_1111_1751_7915_13823
crossref_primary_10_1002_cben_201900023
crossref_primary_10_1002_aenm_202405901
crossref_primary_10_5194_bg_11_4953_2014
crossref_primary_10_1016_j_progpolymsci_2022_101545
crossref_primary_10_1089_ast_2016_1560
crossref_primary_10_1016_j_chemosphere_2017_12_007
crossref_primary_10_1002_aenm_201501535
crossref_primary_10_1016_j_nanoen_2019_103875
crossref_primary_10_1016_j_pecs_2019_100814
crossref_primary_10_1016_j_electacta_2016_03_074
crossref_primary_10_1038_ncomms13270
crossref_primary_10_1002_advs_202407599
crossref_primary_10_1002_elsa_202100197
crossref_primary_10_1016_j_electacta_2024_144215
crossref_primary_10_1002_anie_202425220
crossref_primary_10_1016_j_jhazmat_2017_06_054
crossref_primary_10_1039_C9RA02343G
crossref_primary_10_1016_j_bioelechem_2023_108460
crossref_primary_10_1016_j_scitotenv_2017_08_184
crossref_primary_10_3390_molecules26154487
crossref_primary_10_1039_C6TA07521E
crossref_primary_10_1016_j_cbpa_2020_06_006
crossref_primary_10_1016_j_corsci_2023_111567
crossref_primary_10_1093_nar_gkac554
crossref_primary_10_1042_BST20180524
crossref_primary_10_1039_c3cp53759e
crossref_primary_10_1016_j_biotechadv_2017_07_010
crossref_primary_10_1002_er_3305
crossref_primary_10_1016_j_jhazmat_2021_127795
crossref_primary_10_3389_fmicb_2019_01623
crossref_primary_10_1007_s11274_017_2223_8
crossref_primary_10_1016_j_isci_2020_101787
crossref_primary_10_1371_journal_pone_0186805
crossref_primary_10_1007_s12010_020_03469_6
crossref_primary_10_1016_j_bioelechem_2018_07_001
crossref_primary_10_1016_j_electacta_2016_05_139
crossref_primary_10_1093_femsec_fiw247
crossref_primary_10_1016_j_tibtech_2024_09_021
crossref_primary_10_1039_D3CS00655G
crossref_primary_10_4161_21655979_2014_969173
crossref_primary_10_1128_msystems_01259_24
crossref_primary_10_1016_j_cbpa_2017_03_009
crossref_primary_10_2139_ssrn_4010468
crossref_primary_10_1021_acselectrochem_4c00076
crossref_primary_10_1021_jacs_7b11135
crossref_primary_10_1002_bit_26094
crossref_primary_10_1039_D0CP01556C
crossref_primary_10_1016_j_renene_2022_06_059
crossref_primary_10_1021_acs_est_8b04718
crossref_primary_10_1149_1945_7111_acb239
crossref_primary_10_1073_pnas_1915678116
crossref_primary_10_1371_journal_pone_0078466
crossref_primary_10_1007_s11356_024_33118_y
crossref_primary_10_1038_ismej_2014_82
crossref_primary_10_1134_S0006297914130094
crossref_primary_10_3389_fbioe_2019_00060
crossref_primary_10_1016_j_bioelechem_2020_107632
crossref_primary_10_1016_j_scitotenv_2024_174410
crossref_primary_10_1016_j_scitotenv_2024_173443
crossref_primary_10_1002_pro_3787
crossref_primary_10_1371_journal_pone_0191289
crossref_primary_10_1007_s00253_013_5396_6
crossref_primary_10_1016_j_bioelechem_2019_05_014
crossref_primary_10_1016_j_electacta_2024_144555
crossref_primary_10_1002_bio_3744
crossref_primary_10_1016_j_bioelechem_2019_05_012
crossref_primary_10_1016_j_scitotenv_2022_157560
crossref_primary_10_1002_biot_201700491
crossref_primary_10_1002_celc_201500505
crossref_primary_10_1016_j_electacta_2023_141924
crossref_primary_10_1016_j_jhazmat_2022_128595
crossref_primary_10_1111_mmi_14647
crossref_primary_10_3390_microorganisms10081585
crossref_primary_10_1002_ange_201800294
crossref_primary_10_1088_1361_6528_ab5de6
crossref_primary_10_1093_femsec_fiy086
crossref_primary_10_1016_j_bioelechem_2023_108439
crossref_primary_10_1016_j_cej_2024_148886
crossref_primary_10_1093_femsec_fiy081
crossref_primary_10_1016_j_scitotenv_2023_169576
crossref_primary_10_1016_j_bioelechem_2017_10_001
crossref_primary_10_1016_j_bioelechem_2020_107644
crossref_primary_10_1016_j_jwpe_2022_103135
crossref_primary_10_1021_acscentsci_1c01208
crossref_primary_10_1021_acs_estlett_9b00707
crossref_primary_10_1039_D1CB00072A
crossref_primary_10_1007_s11120_022_00912_z
crossref_primary_10_1007_s11783_018_1072_5
crossref_primary_10_1039_D1EM00108F
crossref_primary_10_1039_D2EN00156J
crossref_primary_10_1128_aem_01313_22
crossref_primary_10_1021_acsami_4c12355
crossref_primary_10_1016_j_tibtech_2015_02_001
crossref_primary_10_1016_j_bioelechem_2020_107519
crossref_primary_10_1016_j_enzmictec_2018_04_005
crossref_primary_10_3389_fmicb_2017_02568
crossref_primary_10_1002_cite_201800214
crossref_primary_10_1021_acs_est_3c00666
crossref_primary_10_3389_fmicb_2017_01115
crossref_primary_10_1016_j_electacta_2020_135934
crossref_primary_10_1002_anie_201800294
crossref_primary_10_1016_j_biotechadv_2019_107468
crossref_primary_10_1007_s00253_014_5973_3
crossref_primary_10_1146_annurev_micro_090816_093913
crossref_primary_10_1016_j_micres_2019_126324
crossref_primary_10_1021_acs_chemrev_0c00472
crossref_primary_10_1016_j_bioelechem_2024_108661
crossref_primary_10_3389_fmicb_2020_571244
crossref_primary_10_1016_j_mib_2021_12_003
crossref_primary_10_1007_s00775_024_02076_8
crossref_primary_10_3390_microorganisms8111841
crossref_primary_10_1002_cbic_201600339
crossref_primary_10_1152_physiolgenomics_00010_2015
crossref_primary_10_3390_microorganisms12091796
crossref_primary_10_1039_D1RA08487A
crossref_primary_10_1371_journal_pntd_0005513
crossref_primary_10_3390_pr9061038
crossref_primary_10_3389_fenrg_2019_00060
crossref_primary_10_1021_acssynbio_8b00218
crossref_primary_10_1007_s13213_015_1148_4
crossref_primary_10_1016_j_electacta_2019_06_018
crossref_primary_10_1111_1462_2920_14842
crossref_primary_10_1021_sb500331x
crossref_primary_10_1021_acsorginorgau_3c00051
crossref_primary_10_7554_eLife_48054
crossref_primary_10_1016_j_bioelechem_2024_108679
crossref_primary_10_1021_acs_est_4c00748
crossref_primary_10_1016_j_jwpe_2023_104744
crossref_primary_10_1016_j_geoderma_2018_12_045
crossref_primary_10_1002_mlf2_12018
crossref_primary_10_1038_srep11222
crossref_primary_10_1039_C5AN01200G
crossref_primary_10_1128_AEM_01615_16
crossref_primary_10_1016_j_tibtech_2020_06_006
crossref_primary_10_1021_acs_iecr_1c03324
crossref_primary_10_1038_s41579_021_00597_6
crossref_primary_10_1111_1462_2920_15235
crossref_primary_10_1002_anie_202115572
crossref_primary_10_1021_jacs_4c01288
crossref_primary_10_1021_acsmacrolett_0c00573
crossref_primary_10_1039_C3EE43674H
crossref_primary_10_1016_j_bioactmat_2024_01_007
crossref_primary_10_1021_acs_est_7b01854
crossref_primary_10_1149_2_0161703jes
crossref_primary_10_1128_AEM_01676_21
crossref_primary_10_1111_1751_7915_12561
crossref_primary_10_3390_molecules25173932
crossref_primary_10_7554_eLife_60049
crossref_primary_10_1007_s10853_023_08929_y
crossref_primary_10_1016_j_hydromet_2016_08_002
crossref_primary_10_4161_psb_26116
crossref_primary_10_1039_D3EN00351E
crossref_primary_10_1039_C4CP04065A
crossref_primary_10_1021_acssynbio_5b00279
crossref_primary_10_1016_j_electacta_2023_143191
crossref_primary_10_1016_j_jmst_2023_01_041
crossref_primary_10_1021_acs_est_9b05285
crossref_primary_10_1128_AEM_00852_19
crossref_primary_10_3390_s17102230
crossref_primary_10_1016_j_scitotenv_2021_151009
crossref_primary_10_1021_acs_est_2c07862
crossref_primary_10_1038_s41598_019_51452_x
crossref_primary_10_1002_ange_202115572
crossref_primary_10_1016_j_bios_2019_111763
crossref_primary_10_1186_s40643_023_00685_w
crossref_primary_10_1016_j_watres_2025_123149
crossref_primary_10_1038_ngeo2084
crossref_primary_10_3389_fmicb_2020_01344
crossref_primary_10_1021_acs_jnatprod_9b01086
crossref_primary_10_1128_AEM_01693_17
crossref_primary_10_1002_celc_201900997
crossref_primary_10_1016_j_chemgeo_2016_09_031
crossref_primary_10_1007_s00253_015_6903_8
crossref_primary_10_1021_acs_est_8b01263
crossref_primary_10_1016_j_jhazmat_2024_136898
crossref_primary_10_1021_acscentsci_1c01126
crossref_primary_10_3389_fmicb_2021_727709
crossref_primary_10_1016_j_rser_2020_110184
crossref_primary_10_1111_1348_0421_12541
crossref_primary_10_1038_nrmicro_2016_93
crossref_primary_10_1016_j_biotechadv_2023_108175
crossref_primary_10_1038_s41467_018_05995_8
crossref_primary_10_1007_s10529_016_2128_x
crossref_primary_10_1149_1945_7111_accf3e
crossref_primary_10_1016_j_etap_2018_07_006
Cites_doi 10.1073/pnas.0710525105
10.1128/AEM.71.8.4414-4426.2005
10.1111/j.1365-2958.2010.07353.x
10.1016/j.bbapap.2008.11.012
10.1128/jb.174.14.4558-4575.1992
10.3389/fmicb.2012.00050
10.1111/j.1574-6968.2010.01949.x
10.1073/pnas.0900086106
10.1016/S0065-2911(04)49005-5
10.1016/B978-0-12-387661-4.00004-5
10.1128/AEM.01387-07
10.1073/pnas.1017200108
10.1128/JB.00925-09
10.1038/35011098
10.1021/ac60289a016
10.1038/nature03661
10.1021/es301544b
10.1128/AEM.66.5.2248-2251.2000
10.1073/pnas.0604517103
10.1073/pnas.1834303100
10.1021/es204302w
10.1146/annurev-micro-092611-150104
10.1111/j.1365-2958.2010.07266.x
ContentType Journal Article
Copyright Copyright © 2013 Kotloski and Gralnick. 2013 Kotloski and Gralnick
Copyright_xml – notice: Copyright © 2013 Kotloski and Gralnick. 2013 Kotloski and Gralnick
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1128/mBio.00553-12
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Flavin Electron Shuttling in S. oneidensis
EISSN 2150-7511
ExternalDocumentID oai_doaj_org_article_604cdc3046e74e5f9f81eb180507cfde
PMC3551548
23322638
10_1128_mBio_00553_12
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM081388
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
C1A
CITATION
DIK
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c552t-ccee1a24d53d0522a74ad6fa846ceff6e5a7f3ea1a0beb8f7cea68c86918aa3c3
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:29:20 EDT 2025
Thu Aug 21 14:06:00 EDT 2025
Fri Jul 11 01:29:12 EDT 2025
Thu Jul 10 22:25:44 EDT 2025
Wed Feb 19 02:31:33 EST 2025
Tue Jul 01 01:52:21 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-ccee1a24d53d0522a74ad6fa846ceff6e5a7f3ea1a0beb8f7cea68c86918aa3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Editor Dianne Newman, California Institute of Technology/HHMI
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.00553-12
PMID 23322638
PQID 1273590717
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_604cdc3046e74e5f9f81eb180507cfde
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3551548
proquest_miscellaneous_1746405037
proquest_miscellaneous_1273590717
pubmed_primary_23322638
crossref_citationtrail_10_1128_mBio_00553_12
crossref_primary_10_1128_mBio_00553_12
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130301
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 20130301
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2013
Publisher American Society of Microbiology
American Society for Microbiology
Publisher_xml – name: American Society of Microbiology
– name: American Society for Microbiology
References e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
Coursolle D (e_1_3_2_17_2) 2010; 77
e_1_3_2_20_2
e_1_3_2_10_2
e_1_3_2_21_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_22_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_23_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_24_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_10_2
  doi: 10.1073/pnas.0710525105
– ident: e_1_3_2_6_2
  doi: 10.1128/AEM.71.8.4414-4426.2005
– ident: e_1_3_2_20_2
  doi: 10.1111/j.1365-2958.2010.07353.x
– ident: e_1_3_2_21_2
  doi: 10.1016/j.bbapap.2008.11.012
– ident: e_1_3_2_19_2
  doi: 10.1128/jb.174.14.4558-4575.1992
– ident: e_1_3_2_5_2
  doi: 10.3389/fmicb.2012.00050
– ident: e_1_3_2_16_2
  doi: 10.1111/j.1574-6968.2010.01949.x
– ident: e_1_3_2_24_2
  doi: 10.1073/pnas.0900086106
– ident: e_1_3_2_2_2
  doi: 10.1016/S0065-2911(04)49005-5
– ident: e_1_3_2_4_2
  doi: 10.1016/B978-0-12-387661-4.00004-5
– ident: e_1_3_2_11_2
  doi: 10.1128/AEM.01387-07
– ident: e_1_3_2_15_2
  doi: 10.1073/pnas.1017200108
– ident: e_1_3_2_14_2
  doi: 10.1128/JB.00925-09
– ident: e_1_3_2_23_2
  doi: 10.1038/35011098
– ident: e_1_3_2_22_2
  doi: 10.1021/ac60289a016
– ident: e_1_3_2_9_2
  doi: 10.1038/nature03661
– ident: e_1_3_2_12_2
  doi: 10.1021/es301544b
– ident: e_1_3_2_7_2
  doi: 10.1128/AEM.66.5.2248-2251.2000
– ident: e_1_3_2_8_2
  doi: 10.1073/pnas.0604517103
– ident: e_1_3_2_18_2
  doi: 10.1073/pnas.1834303100
– ident: e_1_3_2_13_2
  doi: 10.1021/es204302w
– ident: e_1_3_2_3_2
  doi: 10.1146/annurev-micro-092611-150104
– volume: 77
  start-page: 995
  year: 2010
  ident: e_1_3_2_17_2
  article-title: Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07266.x
SSID ssj0000331830
Score 2.5102587
Snippet Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to...
Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to...
ABSTRACT Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms bacteria
biocatalysis
Bioelectric Energy Sources
bioreactors
bioremediation
Dinitrocresols - metabolism
direct contact
DNA Transposable Elements
Electricity
electrodes
electron transfer
Electron Transport
ferric oxide
flavin-adenine dinucleotide
Gene Deletion
graphene
iron
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
mutagenesis
Mutagenesis, Insertional
mutants
nanowires
Observation
Oxidation-Reduction
Shewanella - genetics
Shewanella - metabolism
Shewanella oneidensis
transposons
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et-uLCuLJaptHkx5d3UUEveiCeClpmuCCdsXd9fHvnUm76674uHhtp006mcx8kw7fELIfc6dyqnVYAF4NeZy7MBVY9scAnMvI5dI37bu8Ss47_OJW3E60-sKasIoeuFLccRJxUxj8f2clt8KlTsXgX1QEQMa4wqL3hZg3kUx5H8zQVqMRqSZVx4_Nbu8IGadYGNOpIOS5-r8DmF_rJCcCT3uRLNSIMTipZrpEZmy5TOaqHpLvK-Su_aBfumXQqvvZBNf3Q-Ql7gdnPSxzGdig9QbvxRN6LDn9FPRhytnnIH-Hh-yrxooXHfRKpL4q-93-Kum0Wzen52HdMCE0QtBBaCDixZryQrAiAmClJddF4jRgDGOdS6zQ0jGrYx3lNldOGqsTZVSSxkprZtgamS1hlA0SMAtAz1AOSwwAQBpINlNIZoocAJ-Q2jXI4UiDmanZxLGpxUPmswqqMlR45hWexbRBDsbiTxWNxk-CTVyOsRCyX_sLYBNZbRPZXzbRIHujxcxgt6CCQYW9YR8GkEykmMP-IiN5wpEmB2TWKwMYT4cycIDgshpETpnG1Hyn75Tde8_aDcAO08PN__jALTJPfVsOrIXbJrOD56HdAXA0yHf9PvgAniQQXg
  priority: 102
  providerName: Directory of Open Access Journals
Title Flavin Electron Shuttles Dominate Extracellular Electron Transfer by Shewanella oneidensis
URI https://www.ncbi.nlm.nih.gov/pubmed/23322638
https://www.proquest.com/docview/1273590717
https://www.proquest.com/docview/1746405037
https://pubmed.ncbi.nlm.nih.gov/PMC3551548
https://doaj.org/article/604cdc3046e74e5f9f81eb180507cfde
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEF1VVJV6QZS2ECjIlRCnGuz98K4PCEGbgJDopY0U9WKt17slUmpDnFDy75lZO6FBFHHxwR7bq9mPebMev0fIXsydyqnWYQF4NeRx7sJUYNkfA3AuI5dLL9p3-T057_OLgRg8UAq1DqyfTO1QT6o_Hh3c3cyOYcIfNT_AqMM_p8PqAMmkWIh6w68hKEkUM7hskb5flBkOXtxxoYBxQliw0znj5uMnLEUoT-T_FPp8XET5T1TqrZHVFk4GJ03_vyOvbLlO3jQCk7P35FdvpG-HZdBtxW6CH1dTJC2ug28V1sBMbNC9g-fi9j3Woz4Y-hjm7DjIZ3CT_auxHEYHVYm8WGU9rD-Qfq_78-t52KophEYIOgkNhMNYU14IVkSAurTkukicBgBirHOJFVo6ZnWso9zmykljdaKMStJYac0M-0hWSnjLJgmYBRRoKIf-B3QgDWSiKWQ6RQ5oUEjtOuTL3IOZaanGUfFilPmUg6oMHZ55h2cx7ZD9hfl1w7HxP8NT7I6FEVJj-xPV-HfWzrQsibgpDH7wtZJb4VKnYghIKgLka1xhO-TzvDMzmEroYHBhNa3hBZKJFBPcZ2wkTzhy6IDNRjMAFs2hDFZHWM86RC4NjaX2Ll8ph1ee0htQH-aOWy_1xDZ5S70uBxbDfSIrk_HU7gA6muS7flcBjmeDeNfPgXv44hC9
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flavin+Electron+Shuttles+Dominate+Extracellular+Electron+Transfer+by+Shewanella+oneidensis&rft.jtitle=mBio&rft.au=Kotloski%2C+Nicholas+J.&rft.au=Gralnick%2C+Jeffrey+A.&rft.date=2013-03-01&rft.issn=2161-2129&rft.eissn=2150-7511&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1128%2FmBio.00553-12&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mBio_00553_12
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon