Assessment of direct numerical simulation data of turbulent boundary layers
Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Reθ = 500–4...
Saved in:
Published in | Journal of fluid mechanics Vol. 659; pp. 116 - 126 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
25.09.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Reθ = 500–4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient cf or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy. |
---|---|
AbstractList | Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Reθ = 500–4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient cf or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy. Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Re θ = 500–4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient c f or the shape factor H 12 , but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy. Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Re[thetas] = 500-4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient cf or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy. Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Re-theta = 500-4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient c(f) or the shape factor II12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e. g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy. Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Reθ = 500-4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient cf or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy. [PUBLICATION ABSTRACT] |
Author | SCHLATTER, PHILIPP ÖRLÜ, RAMIS |
Author_xml | – sequence: 1 givenname: PHILIPP surname: SCHLATTER fullname: SCHLATTER, PHILIPP email: pschlatt@mech.kth.se organization: Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden – sequence: 2 givenname: RAMIS surname: ÖRLÜ fullname: ÖRLÜ, RAMIS organization: Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23252639$$DView record in Pascal Francis https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26680$$DView record from Swedish Publication Index |
BookMark | eNp9kU9v1DAQxS1UJLaFD8AtQkJwaGBsx3ZyXC20RRQhlj9Xy_baxW0Sb21H0G-Pwy5FKqKnOczvzcx7c4gOxjBahJ5ieIUBi9efAQjBmAAGAIoxfYAWuOFdLXjDDtBibtdz_xE6TOkSAFPoxAK9X6ZkUxrsmKvgqo2P1uRqnAYbvVF9lfww9Sr7MFYbldXM5CnqqZ8FOkzjRsWbqlc3NqbH6KFTfbJP9vUIfT15-2V1Vp9_PH23Wp7XhjGSay2cbjsloNXONFRbAUYzwkirO-sEMKeBkQ13wBpFOeXCOEWg5R2mphENPULHu7nph91OWm6jH8oVMigv3_hvSxnihbzK3yXhvIWCv9jh2xiuJ5uyHHwytu_VaMOUZIsZo6wlM_nyXhLzhtCSMG8L-uwOehmmOBbbUjAA3kGLC_R8D6lUwnRRjcan23sJLaY57QondpyJIaVonTQ-_w49R-V7iUHOT5b_PLko8R3ln-H3aeqdxqdsf94KVLySXFDBJD_9JM_Eer1eNSA_FJ7ud6hBR7-5sH-9_n_LL-HpxrI |
CODEN | JFLSA7 |
CitedBy_id | crossref_primary_10_1121_10_0002251 crossref_primary_10_1007_s00348_015_1935_5 crossref_primary_10_1016_j_compfluid_2023_105795 crossref_primary_10_1299_mer_15_00157 crossref_primary_10_1016_j_ijheatfluidflow_2015_06_010 crossref_primary_10_1016_j_ijheatfluidflow_2014_04_005 crossref_primary_10_1063_5_0079230 crossref_primary_10_1017_jfm_2020_689 crossref_primary_10_2514_1_J058464 crossref_primary_10_1007_s10494_018_9979_2 crossref_primary_10_1063_5_0124498 crossref_primary_10_3390_en14051465 crossref_primary_10_1063_5_0091110 crossref_primary_10_1017_jfm_2019_670 crossref_primary_10_1063_5_0037962 crossref_primary_10_1017_jfm_2012_324 crossref_primary_10_1063_5_0039901 crossref_primary_10_1016_j_jsv_2020_115276 crossref_primary_10_2514_1_J058580 crossref_primary_10_1063_5_0219755 crossref_primary_10_1016_j_ast_2022_108014 crossref_primary_10_1299_transjsme_21_00359 crossref_primary_10_1017_jfm_2020_320 crossref_primary_10_1017_jfm_2024_82 crossref_primary_10_1016_j_euromechflu_2018_01_008 crossref_primary_10_1063_5_0093788 crossref_primary_10_1016_j_ijheatfluidflow_2018_04_017 crossref_primary_10_1063_5_0093782 crossref_primary_10_1017_jfm_2014_286 crossref_primary_10_1063_5_0148359 crossref_primary_10_2514_1_J059683 crossref_primary_10_3390_en16041709 crossref_primary_10_1088_1742_6596_318_5_052020 crossref_primary_10_1017_jfm_2020_350 crossref_primary_10_1016_j_ast_2018_12_009 crossref_primary_10_1016_j_ijheatfluidflow_2012_08_004 crossref_primary_10_1103_PhysRevFluids_2_124603 crossref_primary_10_1016_j_ast_2021_106947 crossref_primary_10_1016_j_ijheatfluidflow_2017_09_002 crossref_primary_10_1146_annurev_fluid_121021_043651 crossref_primary_10_1016_j_ijheatmasstransfer_2013_11_069 crossref_primary_10_1016_j_ijheatfluidflow_2013_03_017 crossref_primary_10_1007_s11433_024_2420_5 crossref_primary_10_1063_1_4792164 crossref_primary_10_1080_10618562_2012_693605 crossref_primary_10_1103_PhysRevFluids_9_024606 crossref_primary_10_1002_pamm_201210272 crossref_primary_10_1016_j_ast_2020_105680 crossref_primary_10_4208_cicp_221113_280714a crossref_primary_10_1017_jfm_2021_1013 crossref_primary_10_1007_s11012_016_0558_0 crossref_primary_10_1088_1742_6596_822_1_012016 crossref_primary_10_1017_jfm_2013_385 crossref_primary_10_1186_s42774_021_00092_9 crossref_primary_10_3390_aerospace11070544 crossref_primary_10_1017_jfm_2013_142 crossref_primary_10_1115_1_4066642 crossref_primary_10_1016_j_ijheatfluidflow_2013_11_007 crossref_primary_10_1007_s00162_022_00623_0 crossref_primary_10_1080_14685248_2012_738907 crossref_primary_10_2514_1_J060760 crossref_primary_10_1007_s10494_018_9923_5 crossref_primary_10_1017_jfm_2019_881 crossref_primary_10_1080_14685248_2016_1259626 crossref_primary_10_1007_s10494_017_9845_7 crossref_primary_10_1007_s00348_012_1436_8 crossref_primary_10_1007_s10494_013_9482_8 crossref_primary_10_1016_j_cja_2023_06_015 crossref_primary_10_1103_PhysRevFluids_4_094601 crossref_primary_10_1007_s00348_023_03580_4 crossref_primary_10_1017_jfm_2021_331 crossref_primary_10_1007_s10494_017_9868_0 crossref_primary_10_1007_s00348_021_03272_x crossref_primary_10_1016_j_euromechflu_2022_03_008 crossref_primary_10_1088_1742_6596_1001_1_012004 crossref_primary_10_1299_transjsme_18_00199 crossref_primary_10_1016_j_euromechflu_2015_09_005 crossref_primary_10_2514_1_J056122 crossref_primary_10_1016_j_euromechflu_2015_09_004 crossref_primary_10_1080_14685248_2019_1566736 crossref_primary_10_1103_PhysRevFluids_3_074601 crossref_primary_10_1007_s00348_015_1968_9 crossref_primary_10_1007_s00348_024_03766_4 crossref_primary_10_1007_s10494_023_00408_3 crossref_primary_10_1017_jfm_2011_334 crossref_primary_10_1007_s00348_013_1547_x crossref_primary_10_1088_1873_7005_ab225c crossref_primary_10_1063_5_0142609 crossref_primary_10_1063_1_4802048 crossref_primary_10_1016_j_jfluidstructs_2017_03_005 crossref_primary_10_1017_jfm_2019_104 crossref_primary_10_1088_1742_6596_899_6_062004 crossref_primary_10_1146_annurev_fluid_010816_060322 crossref_primary_10_1103_PhysRevFluids_6_113904 crossref_primary_10_1017_jfm_2020_639 crossref_primary_10_1016_j_jcp_2025_113793 crossref_primary_10_1007_s00348_015_2024_5 crossref_primary_10_1007_s10494_015_9596_2 crossref_primary_10_1051_matecconf_201711502007 crossref_primary_10_1063_1_3555191 crossref_primary_10_1088_1674_1056_ac4bd0 crossref_primary_10_1017_jfm_2011_342 crossref_primary_10_1017_jfm_2022_595 crossref_primary_10_1080_14685248_2014_989232 crossref_primary_10_1080_14685248_2015_1083574 crossref_primary_10_1017_jfm_2022_597 crossref_primary_10_1063_5_0128798 crossref_primary_10_1103_PhysRevFluids_9_034607 crossref_primary_10_1007_s00348_013_1656_6 crossref_primary_10_1063_5_0083919 crossref_primary_10_1007_s10409_020_01024_4 crossref_primary_10_1007_s10483_019_2428_6 crossref_primary_10_1017_jfm_2023_157 crossref_primary_10_1103_PhysRevFluids_5_114608 crossref_primary_10_1134_S0869864323060033 crossref_primary_10_1063_5_0127220 crossref_primary_10_1088_1674_1056_abc7a6 crossref_primary_10_1007_s00193_021_01018_6 crossref_primary_10_1063_5_0227437 crossref_primary_10_1080_14685248_2015_1043131 crossref_primary_10_1017_jfm_2021_566 crossref_primary_10_1007_s00348_014_1735_3 crossref_primary_10_1017_jfm_2020_781 crossref_primary_10_1017_jfm_2022_80 crossref_primary_10_1016_j_euromechflu_2023_05_008 crossref_primary_10_1080_14685248_2023_2202404 crossref_primary_10_1088_1742_6596_1522_1_012010 crossref_primary_10_1017_jfm_2022_242 crossref_primary_10_1007_s10409_012_0082_y crossref_primary_10_1088_1742_6596_318_4_042023 crossref_primary_10_1007_s10494_020_00110_8 crossref_primary_10_1017_jfm_2024_25 crossref_primary_10_1007_s10494_024_00566_y crossref_primary_10_1007_s10494_020_00133_1 crossref_primary_10_1063_1_4866458 crossref_primary_10_1007_s00348_012_1415_0 crossref_primary_10_1017_jfm_2012_290 crossref_primary_10_1063_1_3622773 crossref_primary_10_1016_j_cpc_2021_107999 crossref_primary_10_1017_jfm_2011_368 crossref_primary_10_1115_1_4004093 crossref_primary_10_1016_j_jcp_2013_04_021 crossref_primary_10_1017_jfm_2020_601 crossref_primary_10_1016_j_ijheatfluidflow_2023_109136 crossref_primary_10_1017_jfm_2019_158 crossref_primary_10_2514_1_J056442 crossref_primary_10_1063_1_4895589 crossref_primary_10_1088_1742_6596_318_2_022020 crossref_primary_10_1088_1873_7005_aaca81 crossref_primary_10_1016_j_ijheatfluidflow_2023_109134 crossref_primary_10_1088_1742_6596_318_2_022023 crossref_primary_10_1016_j_ijheatfluidflow_2023_109131 crossref_primary_10_1063_5_0097859 crossref_primary_10_1007_s00348_018_2663_4 crossref_primary_10_1016_j_ast_2024_109863 crossref_primary_10_1017_jfm_2022_6 crossref_primary_10_1063_1_4947532 crossref_primary_10_1080_14685248_2016_1269911 crossref_primary_10_1016_j_actaastro_2019_10_038 crossref_primary_10_1063_5_0257506 crossref_primary_10_1103_PhysRevFluids_6_123901 crossref_primary_10_1115_1_4063511 crossref_primary_10_1017_jfm_2011_253 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103865 crossref_primary_10_1017_jfm_2022_221 crossref_primary_10_1017_jfm_2022_463 crossref_primary_10_1017_jfm_2017_308 crossref_primary_10_1088_1742_6596_318_2_022018 crossref_primary_10_1103_PhysRevFluids_10_034601 crossref_primary_10_1016_j_euromechflu_2015_12_002 crossref_primary_10_1017_jfm_2018_460 crossref_primary_10_1080_14685248_2024_2392572 crossref_primary_10_1088_1742_6596_2057_1_012097 crossref_primary_10_1017_jfm_2018_347 crossref_primary_10_1088_1742_6596_318_2_022013 crossref_primary_10_1016_j_ijheatfluidflow_2023_109142 crossref_primary_10_1017_jfm_2021_510 crossref_primary_10_1063_5_0226539 crossref_primary_10_1103_PhysRevFluids_9_124604 crossref_primary_10_1103_PhysRevFluids_3_023901 crossref_primary_10_1016_j_actaastro_2019_10_008 crossref_primary_10_1103_PhysRevFluids_3_054606 crossref_primary_10_1017_jfm_2017_773 crossref_primary_10_1088_1742_6596_708_1_012014 crossref_primary_10_1007_s00348_023_03656_1 crossref_primary_10_1017_jfm_2017_898 crossref_primary_10_1017_jfm_2022_560 crossref_primary_10_1007_s10494_020_00221_2 crossref_primary_10_2514_1_J055454 crossref_primary_10_1115_1_4032535 crossref_primary_10_1017_jfm_2023_359 crossref_primary_10_1016_j_flowmeasinst_2023_102324 crossref_primary_10_1016_j_paerosci_2010_04_002 crossref_primary_10_1017_jfm_2018_455 crossref_primary_10_1017_jfm_2018_578 crossref_primary_10_1016_j_actaastro_2018_04_009 crossref_primary_10_1017_jfm_2018_449 crossref_primary_10_1016_j_compfluid_2020_104494 crossref_primary_10_1016_j_compfluid_2023_106138 crossref_primary_10_1016_j_ijheatfluidflow_2020_108658 crossref_primary_10_2514_1_J053039 crossref_primary_10_3390_fluids8100260 crossref_primary_10_1088_1361_6501_abfad0 crossref_primary_10_1115_1_4065716 crossref_primary_10_1017_jfm_2024_399 crossref_primary_10_1103_PhysRevFluids_1_082401 crossref_primary_10_1103_PhysRevFluids_8_024602 crossref_primary_10_1063_5_0174559 crossref_primary_10_1017_jfm_2021_526 crossref_primary_10_1007_s00348_024_03891_0 crossref_primary_10_1017_jfm_2022_561 crossref_primary_10_1017_jfm_2017_406 crossref_primary_10_1016_j_euromechflu_2010_07_006 crossref_primary_10_1063_5_0051649 crossref_primary_10_1016_j_ijheatfluidflow_2014_02_006 crossref_primary_10_1063_5_0068077 crossref_primary_10_1007_s00348_013_1496_4 crossref_primary_10_1016_j_flowmeasinst_2023_102334 crossref_primary_10_1016_j_jcp_2018_02_028 crossref_primary_10_1063_5_0084505 crossref_primary_10_1088_1361_6501_aa4e9e crossref_primary_10_1016_j_ast_2019_02_018 crossref_primary_10_1016_j_ijheatfluidflow_2020_108767 crossref_primary_10_3390_fluids7050153 crossref_primary_10_1080_14685248_2016_1169282 crossref_primary_10_1017_jfm_2017_236 crossref_primary_10_2514_1_J064382 crossref_primary_10_1017_jfm_2024_383 crossref_primary_10_1016_j_cpc_2025_109507 crossref_primary_10_1007_s00348_017_2345_7 crossref_primary_10_1017_jfm_2015_58 crossref_primary_10_1017_jfm_2016_548 crossref_primary_10_1017_jfm_2023_575 crossref_primary_10_3390_app13095253 crossref_primary_10_1103_PhysRevFluids_5_074605 crossref_primary_10_1017_jfm_2018_1019 crossref_primary_10_1007_s00348_024_03871_4 crossref_primary_10_1017_jfm_2021_504 crossref_primary_10_1016_j_apm_2014_07_001 crossref_primary_10_1016_j_expthermflusci_2019_04_022 crossref_primary_10_1016_j_ast_2020_106209 crossref_primary_10_1017_jfm_2024_495 crossref_primary_10_1073_pnas_1704671114 crossref_primary_10_1016_j_ijheatfluidflow_2010_11_001 crossref_primary_10_1017_jfm_2016_794 crossref_primary_10_1017_jfm_2022_663 crossref_primary_10_1007_s10494_023_00502_6 crossref_primary_10_1017_jfm_2016_430 crossref_primary_10_1017_jfm_2022_423 crossref_primary_10_1016_j_compfluid_2019_104249 crossref_primary_10_1016_j_euromechflu_2020_07_003 crossref_primary_10_1017_jfm_2022_546 crossref_primary_10_1155_2020_1253652 crossref_primary_10_1080_14685248_2016_1277734 crossref_primary_10_1016_j_euromechflu_2015_07_003 crossref_primary_10_1016_j_euromechflu_2015_07_001 crossref_primary_10_1016_j_ijheatfluidflow_2017_09_015 crossref_primary_10_1017_jfm_2021_1052 crossref_primary_10_1016_j_ijheatfluidflow_2020_108626 crossref_primary_10_1017_jfm_2017_694 crossref_primary_10_1115_1_4041218 crossref_primary_10_1063_1_4923234 crossref_primary_10_1016_j_compfluid_2021_104885 crossref_primary_10_1017_jfm_2017_455 crossref_primary_10_1017_jfm_2017_212 crossref_primary_10_2514_1_J062066 crossref_primary_10_1063_5_0130596 crossref_primary_10_1016_j_engappai_2023_105978 crossref_primary_10_1017_jfm_2017_579 crossref_primary_10_1016_j_oceaneng_2024_119175 crossref_primary_10_1063_1_4861066 crossref_primary_10_1088_1742_6596_318_1_012003 crossref_primary_10_1088_1742_6596_318_2_022005 crossref_primary_10_1016_j_ijheatfluidflow_2023_109234 crossref_primary_10_1103_PhysRevFluids_9_114602 crossref_primary_10_1103_PhysRevFluids_2_124005 crossref_primary_10_1016_j_ijheatfluidflow_2024_109314 crossref_primary_10_1063_1_4823831 crossref_primary_10_1016_j_ijheatfluidflow_2023_109117 crossref_primary_10_1017_jfm_2018_257 crossref_primary_10_1088_1361_6463_aa8879 crossref_primary_10_1063_5_0070476 crossref_primary_10_1016_j_piutam_2013_09_007 crossref_primary_10_1088_1742_6596_318_2_022002 crossref_primary_10_1007_s00348_022_03536_0 crossref_primary_10_1016_j_ijheatfluidflow_2023_109110 crossref_primary_10_1017_jfm_2023_570 crossref_primary_10_1017_jfm_2023_690 crossref_primary_10_1017_jfm_2024_359 crossref_primary_10_1016_j_euromechflu_2012_03_015 crossref_primary_10_1063_5_0047472 crossref_primary_10_1063_1_3581074 crossref_primary_10_1063_5_0045175 crossref_primary_10_1002_adfm_202307121 crossref_primary_10_1103_PhysRevFluids_9_054603 crossref_primary_10_1007_s00348_017_2379_x crossref_primary_10_1017_jfm_2022_883 crossref_primary_10_1017_jfm_2023_329 crossref_primary_10_2139_ssrn_4115464 crossref_primary_10_1017_jfm_2016_12 crossref_primary_10_1016_j_ijheatfluidflow_2015_05_019 crossref_primary_10_1029_2020JD032934 crossref_primary_10_1016_j_compfluid_2023_106067 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122744 crossref_primary_10_1007_s10494_023_00492_5 crossref_primary_10_1016_j_ijheatfluidflow_2023_109244 crossref_primary_10_1016_j_oceaneng_2017_07_055 crossref_primary_10_1017_jfm_2023_562 crossref_primary_10_1115_1_4039259 crossref_primary_10_1080_14685248_2012_734625 crossref_primary_10_1016_j_compfluid_2022_105712 crossref_primary_10_2139_ssrn_4196494 crossref_primary_10_1063_1_3589345 crossref_primary_10_1007_s42241_023_0032_0 crossref_primary_10_1017_jfm_2021_814 crossref_primary_10_1007_s10409_022_22022_x crossref_primary_10_1063_5_0094070 crossref_primary_10_1007_s00348_024_03812_1 crossref_primary_10_1017_jfm_2018_191 crossref_primary_10_1017_jfm_2022_731 crossref_primary_10_1016_j_cnsns_2020_105491 crossref_primary_10_1017_jfm_2023_777 crossref_primary_10_3788_gzxb20245303_0312002 crossref_primary_10_1017_jfm_2022_737 crossref_primary_10_1007_s00348_011_1088_0 crossref_primary_10_1145_3355089_3356545 crossref_primary_10_1016_j_cja_2022_08_013 crossref_primary_10_2514_1_J052249 crossref_primary_10_1007_s11012_021_01396_2 crossref_primary_10_1007_s10494_015_9624_2 crossref_primary_10_1016_j_combustflame_2021_02_005 crossref_primary_10_1017_jfm_2015_319 crossref_primary_10_1017_jfm_2024_213 crossref_primary_10_1017_jfm_2015_556 crossref_primary_10_1063_1_4868364 crossref_primary_10_1111_cgf_13532 crossref_primary_10_1016_j_compfluid_2022_105728 crossref_primary_10_1063_1_4866180 crossref_primary_10_1016_j_jcp_2021_110788 crossref_primary_10_1016_j_cja_2021_07_027 crossref_primary_10_1080_14685248_2020_1797058 crossref_primary_10_1016_j_vrih_2021_02_002 crossref_primary_10_1007_s10409_023_23202_x crossref_primary_10_1016_j_ijheatfluidflow_2024_109486 crossref_primary_10_1103_PhysRevFluids_5_052602 crossref_primary_10_1017_jfm_2023_663 crossref_primary_10_1017_jfm_2023_541 crossref_primary_10_1063_5_0255296 crossref_primary_10_1063_5_0242189 crossref_primary_10_1103_PhysRevFluids_4_054605 crossref_primary_10_1017_jfm_2024_1195 crossref_primary_10_1017_jfm_2017_258 crossref_primary_10_1103_PhysRevFluids_5_064611 crossref_primary_10_1017_jfm_2024_442 crossref_primary_10_1103_PhysRevFluids_4_044602 crossref_primary_10_1103_PhysRevFluids_4_103904 crossref_primary_10_1017_jfm_2016_682 crossref_primary_10_1007_s00348_023_03641_8 crossref_primary_10_1063_5_0257367 crossref_primary_10_1007_s10409_013_0033_2 crossref_primary_10_1088_1742_6596_506_1_012010 crossref_primary_10_1103_PhysRevFluids_7_034601 crossref_primary_10_2514_1_B37314 crossref_primary_10_1017_jfm_2018_1004 crossref_primary_10_1017_jfm_2022_952 crossref_primary_10_1017_jfm_2023_633 crossref_primary_10_1017_jfm_2016_205 crossref_primary_10_3389_fams_2022_1076296 crossref_primary_10_1017_jfm_2016_207 crossref_primary_10_1017_jfm_2018_179 crossref_primary_10_1016_j_ijheatfluidflow_2024_109590 crossref_primary_10_1103_PhysRevFluids_3_114604 crossref_primary_10_1007_s00348_022_03534_2 crossref_primary_10_1029_2019JF005246 crossref_primary_10_1007_s10546_016_0190_5 crossref_primary_10_1016_j_actaastro_2021_02_017 crossref_primary_10_1063_5_0051375 crossref_primary_10_1007_s10409_022_22035_x crossref_primary_10_1088_1361_6501_ace8ad crossref_primary_10_1016_j_compfluid_2022_105704 crossref_primary_10_1080_14685248_2013_851386 crossref_primary_10_1007_s12046_016_0480_0 crossref_primary_10_1063_5_0123729 crossref_primary_10_1103_PhysRevFluids_2_084602 crossref_primary_10_1080_14685248_2017_1335869 crossref_primary_10_1007_s11227_021_03642_6 crossref_primary_10_1017_jfm_2018_160 crossref_primary_10_1016_j_jcp_2021_110408 crossref_primary_10_1063_5_0213631 crossref_primary_10_1016_j_actaastro_2020_08_042 crossref_primary_10_1103_PhysRevFluids_3_012601 crossref_primary_10_2514_1_J062027 crossref_primary_10_1017_jfm_2022_603 crossref_primary_10_1063_5_0255191 crossref_primary_10_1007_s00348_021_03374_6 crossref_primary_10_1017_jfm_2023_521 crossref_primary_10_1080_14685248_2016_1192285 crossref_primary_10_1007_s00348_021_03352_y crossref_primary_10_1088_1674_1056_acb1ff crossref_primary_10_1088_1742_6596_506_1_012008 crossref_primary_10_1088_1361_6501_acf872 crossref_primary_10_1007_s00348_014_1892_4 crossref_primary_10_1115_1_4047615 crossref_primary_10_1007_s00348_024_03946_2 crossref_primary_10_1017_jfm_2019_19 crossref_primary_10_1051_aacus_2022030 crossref_primary_10_1017_jfm_2019_911 crossref_primary_10_1007_s42241_020_0023_3 crossref_primary_10_1088_1873_7005_aab57b crossref_primary_10_1016_j_ijheatfluidflow_2021_108885 crossref_primary_10_1038_s42256_022_00572_7 crossref_primary_10_1063_1_4824988 crossref_primary_10_1017_jfm_2020_17 crossref_primary_10_1016_j_compfluid_2012_07_004 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121866 crossref_primary_10_1103_PhysRevFluids_3_024601 crossref_primary_10_3390_aerospace10120989 crossref_primary_10_1017_jfm_2015_237 crossref_primary_10_1103_PhysRevFluids_1_084403 crossref_primary_10_1016_j_ijheatfluidflow_2020_108591 crossref_primary_10_1017_jfm_2016_153 crossref_primary_10_1088_1361_6501_abb483 crossref_primary_10_1080_14685248_2019_1593425 crossref_primary_10_1007_s00162_020_00558_4 crossref_primary_10_2514_1_J064785 crossref_primary_10_1017_jfm_2019_27 crossref_primary_10_2514_1_J063335 crossref_primary_10_2514_1_J063456 crossref_primary_10_1016_j_ijthermalsci_2024_109202 crossref_primary_10_1017_jfm_2022_948 crossref_primary_10_1063_5_0120241 crossref_primary_10_1017_jfm_2015_563 crossref_primary_10_1103_PhysRevFluids_8_124601 crossref_primary_10_1017_jfm_2017_170 crossref_primary_10_1017_jfm_2020_1129 crossref_primary_10_1007_s10494_017_9861_7 crossref_primary_10_1002_pamm_202300055 crossref_primary_10_1016_j_ijheatfluidflow_2018_08_005 crossref_primary_10_1103_PhysRevFluids_7_013905 crossref_primary_10_1016_j_actaastro_2018_11_005 crossref_primary_10_1016_j_cja_2019_03_020 crossref_primary_10_1017_jfm_2014_318 crossref_primary_10_1016_j_compfluid_2019_104314 crossref_primary_10_1103_PhysRevFluids_8_064607 crossref_primary_10_1017_jfm_2014_431 crossref_primary_10_1017_jfm_2016_83 crossref_primary_10_1017_jfm_2013_629 crossref_primary_10_1016_j_ijheatfluidflow_2017_06_009 crossref_primary_10_1103_PhysRevFluids_6_024603 crossref_primary_10_1515_ijnsns_2016_0018 crossref_primary_10_1080_14685248_2021_1974466 crossref_primary_10_1177_0309524X18821883 crossref_primary_10_1016_j_euromechflu_2014_04_011 crossref_primary_10_1016_j_ijheatfluidflow_2021_108872 crossref_primary_10_1007_s00348_024_03802_3 crossref_primary_10_1016_j_expthermflusci_2024_111327 crossref_primary_10_1017_jfm_2022_923 crossref_primary_10_1103_PhysRevFluids_2_094604 crossref_primary_10_1146_annurev_fluid_122109_160753 crossref_primary_10_1016_j_ijheatfluidflow_2013_04_007 crossref_primary_10_1115_1_4066579 crossref_primary_10_2514_1_J052516 crossref_primary_10_1007_s10494_017_9840_z crossref_primary_10_3390_aerospace11010094 crossref_primary_10_1103_PhysRevFluids_3_014609 crossref_primary_10_1007_s00348_017_2318_x crossref_primary_10_1007_s00348_019_2694_5 crossref_primary_10_1016_j_ijheatfluidflow_2016_02_001 crossref_primary_10_1103_PhysRevFluids_7_084603 crossref_primary_10_1103_PhysRevFluids_9_084601 crossref_primary_10_1007_s00348_011_1167_2 crossref_primary_10_1017_jfm_2023_818 crossref_primary_10_1016_j_expthermflusci_2024_111395 crossref_primary_10_1016_j_compfluid_2015_03_026 crossref_primary_10_1016_j_compfluid_2014_09_052 crossref_primary_10_1063_1_4964686 crossref_primary_10_1017_jfm_2024_1138 crossref_primary_10_1016_j_compfluid_2021_105024 crossref_primary_10_1103_PhysRevFluids_8_064605 crossref_primary_10_1017_jfm_2021_95 crossref_primary_10_1103_PhysRevFluids_4_034607 crossref_primary_10_1103_PhysRevFluids_7_084610 crossref_primary_10_1016_j_ijheatfluidflow_2018_06_004 crossref_primary_10_1016_j_ast_2023_108838 crossref_primary_10_1016_j_compfluid_2018_08_015 crossref_primary_10_1016_j_ijheatfluidflow_2012_06_005 crossref_primary_10_1017_jfm_2015_158 crossref_primary_10_1017_jfm_2014_204 crossref_primary_10_1016_j_jsv_2018_02_017 crossref_primary_10_2514_1_J063417 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118590 crossref_primary_10_1007_s10494_023_00451_0 crossref_primary_10_1063_5_0207016 crossref_primary_10_1007_s10409_015_0486_6 crossref_primary_10_1016_j_expthermflusci_2025_111444 crossref_primary_10_2514_1_J062203 crossref_primary_10_1103_PhysRevFluids_5_014602 crossref_primary_10_1115_1_4050899 crossref_primary_10_1080_14685248_2019_1674859 crossref_primary_10_1007_s10494_013_9485_5 crossref_primary_10_1017_flo_2021_21 crossref_primary_10_61653_joast_v71i4_2019_170 crossref_primary_10_1016_j_ijheatfluidflow_2014_09_009 crossref_primary_10_1016_j_paerosci_2021_100713 crossref_primary_10_1063_5_0156580 crossref_primary_10_1103_PhysRevE_92_033302 crossref_primary_10_1007_s10494_016_9757_y crossref_primary_10_1063_5_0229126 crossref_primary_10_1016_j_taml_2022_100337 crossref_primary_10_1016_j_euromechflu_2014_03_009 crossref_primary_10_1088_1742_6596_891_1_012094 crossref_primary_10_1103_PhysRevFluids_3_083401 crossref_primary_10_1007_s10494_021_00296_5 crossref_primary_10_1063_5_0210872 crossref_primary_10_1017_jfm_2012_508 crossref_primary_10_1080_14685248_2020_1727914 crossref_primary_10_1016_j_ast_2018_06_005 crossref_primary_10_1016_j_euromechflu_2013_01_001 crossref_primary_10_1017_jfm_2012_626 crossref_primary_10_1063_1_4907783 crossref_primary_10_1115_1_4026418 crossref_primary_10_1016_j_ijheatfluidflow_2013_05_022 crossref_primary_10_1016_j_ijheatfluidflow_2014_09_006 crossref_primary_10_1007_s00348_011_1048_8 crossref_primary_10_3390_en15166013 crossref_primary_10_1007_s10494_017_9852_8 crossref_primary_10_1103_PhysRevFluids_4_024605 crossref_primary_10_1016_j_compfluid_2017_06_020 crossref_primary_10_1007_s00348_011_1157_4 crossref_primary_10_1017_jfm_2023_928 crossref_primary_10_1017_jfm_2016_299 crossref_primary_10_1016_j_cma_2020_112894 crossref_primary_10_1017_jfm_2021_76 crossref_primary_10_1134_S0021894424010139 crossref_primary_10_1002_aic_15530 crossref_primary_10_1017_jfm_2014_101 crossref_primary_10_1115_1_4037675 crossref_primary_10_1063_1_4775361 crossref_primary_10_3390_fluids7020065 crossref_primary_10_1007_s10409_018_0820_x crossref_primary_10_1007_s42241_024_0072_0 crossref_primary_10_1017_jfm_2018_838 crossref_primary_10_1016_j_ijheatfluidflow_2017_03_006 crossref_primary_10_1007_s10494_017_9864_4 crossref_primary_10_1007_s00348_019_2692_7 crossref_primary_10_1007_s10494_021_00270_1 crossref_primary_10_1017_jfm_2013_211 crossref_primary_10_2514_1_J058025 crossref_primary_10_1016_j_jcp_2016_12_050 crossref_primary_10_1017_jfm_2020_488 crossref_primary_10_1016_j_compfluid_2021_105087 crossref_primary_10_1017_jfm_2014_132 crossref_primary_10_1017_jfm_2024_1219 crossref_primary_10_1103_PhysRevFluids_8_074602 crossref_primary_10_1080_14685248_2019_1685673 crossref_primary_10_1016_j_ijheatfluidflow_2018_05_001 crossref_primary_10_1063_5_0050048 crossref_primary_10_1016_j_rineng_2021_100254 crossref_primary_10_1103_PhysRevFluids_6_044611 crossref_primary_10_3390_aerospace11060422 crossref_primary_10_1017_jfm_2019_1027 crossref_primary_10_1063_5_0077401 crossref_primary_10_1103_PhysRevFluids_5_127602 crossref_primary_10_3390_w12041116 crossref_primary_10_1103_PhysRevFluids_5_127601 crossref_primary_10_1016_j_compfluid_2017_04_012 crossref_primary_10_1115_1_4067354 crossref_primary_10_1017_jfm_2013_565 crossref_primary_10_1017_jfm_2012_419 crossref_primary_10_2514_1_J059368 crossref_primary_10_1103_PhysRevFluids_7_033903 crossref_primary_10_1017_jfm_2012_538 crossref_primary_10_1063_5_0077513 crossref_primary_10_1103_PhysRevFluids_6_054603 crossref_primary_10_1103_PhysRevFluids_8_113902 crossref_primary_10_1017_jfm_2015_168 crossref_primary_10_1103_PhysRevFluids_6_044604 crossref_primary_10_3390_fluids7020082 crossref_primary_10_1103_PhysRevFluids_6_044603 crossref_primary_10_1063_1_3696304 crossref_primary_10_1063_1_3696303 crossref_primary_10_1063_5_0088405 crossref_primary_10_1017_jfm_2019_736 crossref_primary_10_1115_1_4067126 crossref_primary_10_1017_jfm_2022_1024 crossref_primary_10_2514_1_J058487 crossref_primary_10_1103_PhysRevLett_132_014001 crossref_primary_10_3390_e23060782 crossref_primary_10_1007_s11433_014_5462_9 crossref_primary_10_1017_jfm_2019_76 crossref_primary_10_1063_5_0157360 crossref_primary_10_1016_j_paerosci_2022_100807 crossref_primary_10_1080_14685248_2016_1153106 crossref_primary_10_1016_j_compfluid_2018_06_009 crossref_primary_10_1017_jfm_2019_968 crossref_primary_10_1080_14685248_2022_2071429 crossref_primary_10_1016_j_cja_2021_10_013 crossref_primary_10_1017_jfm_2022_1013 crossref_primary_10_2514_1_J063714 crossref_primary_10_1016_j_compfluid_2014_09_021 crossref_primary_10_1016_j_psep_2019_04_028 crossref_primary_10_1140_epje_s10189_021_00029_6 |
Cites_doi | 10.1017/S0022112005006440 10.1063/1.866783 10.1017/S0022112088000345 10.1016/S0142-727X(99)00014-4 10.1016/j.ijheatfluidflow.2009.12.011 10.1016/j.ijheatfluidflow.2009.06.004 10.1017/S0022112091000691 10.1063/1.2972935 10.1063/1.3139294 10.1615/TSFP4.1550 10.1016/S0142-727X(02)00164-9 10.1006/jcph.1998.5882 10.1615/TSFP5.680 10.1007/s00162-004-0149-x 10.1016/0376-0421(95)00007-0 10.1023/A:1020404706293 10.1063/1.1570830 10.1016/j.ijheatfluidflow.2004.02.010 10.1098/rspa.1995.0125 10.1088/0169-5983/41/2/021404 10.1017/S0022112009006624 10.1063/1.2162185 10.5957/jsr.1983.27.3.147 10.1017/S002211200300733X 10.1017/S0022112004001788 10.1016/j.jcp.2009.02.031 |
ContentType | Journal Article |
Copyright | Copyright © Cambridge University Press 2010 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © Cambridge University Press 2010 – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W 7TG KL. ADTPV AOWAS D8V |
DOI | 10.1017/S0022112010003113 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
EndPage | 126 |
ExternalDocumentID | oai_DiVA_org_kth_26680 2134276661 23252639 10_1017_S0022112010003113 ark_67375_6GQ_H7RRRC40_M |
Genre | Feature |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 6TJ 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ABZUI ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC COF CS3 D-I DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZYDXJ ~02 AATMM ABVKB ABXAU ABXHF ACDLN ACRPL ADMLS ADNMO AEMFK AEUYN AFZFC AGQPQ AKMAY BSCLL PHGZM PHGZT PQGLB PUEGO AAYXX CITATION -1F -2P -2V -~6 -~N 6~7 8WZ 9M5 A6W AANRG ABDMP ABDPE ABFSI ABKAW ABVFV ABVZP ACETC ACKIV ADOVH AEBPU AENCP AGLWM AI. ALEEW BESQT BMAJL CCUQV CDIZJ DC4 H~9 I.7 I.9 IQODW KAFGG LHUNA NMFBF VH1 VOH ZJOSE ZMEZD ZY4 ~V1 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U 7TG KL. ADTPV AOWAS D8V |
ID | FETCH-LOGICAL-c552t-b7fb89a708bfc43be70cb52528b9ef705fb052d6f054a36367cfa2086913c4743 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 1469-7645 |
IngestDate | Thu Aug 21 06:44:30 EDT 2025 Fri Jul 11 15:35:39 EDT 2025 Thu Jul 10 22:03:01 EDT 2025 Fri Aug 15 19:12:24 EDT 2025 Mon Jul 21 09:16:56 EDT 2025 Tue Jul 01 01:44:58 EDT 2025 Thu Apr 24 23:05:52 EDT 2025 Sun Aug 31 06:48:18 EDT 2025 Wed Mar 13 05:52:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | turbulent boundary layers turbulence simulation Turbulent flow Skin friction Digital simulation Modelling Velocity distribution Form factors Boundary layers Turbulence structure |
Language | English |
License | https://www.cambridge.org/core/terms CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-b7fb89a708bfc43be70cb52528b9ef705fb052d6f054a36367cfa2086913c4743 |
Notes | ArticleID:00311 PII:S0022112010003113 ark:/67375/6GQ-H7RRRC40-M istex:FF36D4E4691962987B3EEDF38E7D5284B346984C SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 750069081 |
PQPubID | 34769 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_26680 proquest_miscellaneous_815535820 proquest_miscellaneous_1642301068 proquest_journals_750069081 pascalfrancis_primary_23252639 crossref_citationtrail_10_1017_S0022112010003113 crossref_primary_10_1017_S0022112010003113 istex_primary_ark_67375_6GQ_H7RRRC40_M cambridge_journals_10_1017_S0022112010003113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100925 |
PublicationDateYYYYMMDD | 2010-09-25 |
PublicationDate_xml | – month: 09 year: 2010 text: 20100925 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2010 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S0022112010003113_ref8 S0022112010003113_ref10 S0022112010003113_ref9 Schlatter (S0022112010003113_ref22) 2009; 54 S0022112010003113_ref4 S0022112010003113_ref14 Tsukahara (S0022112010003113_ref28) 2005 S0022112010003113_ref5 S0022112010003113_ref13 S0022112010003113_ref6 S0022112010003113_ref12 S0022112010003113_ref11 S0022112010003113_ref7 S0022112010003113_ref18 S0022112010003113_ref17 S0022112010003113_ref16 S0022112010003113_ref19 S0022112010003113_ref1 S0022112010003113_ref2 S0022112010003113_ref3 S0022112010003113_ref21 S0022112010003113_ref20 S0022112010003113_ref25 S0022112010003113_ref24 S0022112010003113_ref23 S0022112010003113_ref29 S0022112010003113_ref27 Smits (S0022112010003113_ref26) 1983; 27 Khujadze (S0022112010003113_ref15) 2007 |
References_xml | – ident: S0022112010003113_ref9 doi: 10.1017/S0022112005006440 – ident: S0022112010003113_ref4 doi: 10.1063/1.866783 – ident: S0022112010003113_ref27 doi: 10.1017/S0022112088000345 – ident: S0022112010003113_ref13 doi: 10.1016/S0142-727X(99)00014-4 – ident: S0022112010003113_ref20 – ident: S0022112010003113_ref24 doi: 10.1016/j.ijheatfluidflow.2009.12.011 – ident: S0022112010003113_ref5 doi: 10.1016/j.ijheatfluidflow.2009.06.004 – volume: 54 start-page: 59 year: 2009 ident: S0022112010003113_ref22 article-title: High-Reynolds number turbulent boundary layers studied by numerical simulation publication-title: Bull. Am. Phys. Soc. – ident: S0022112010003113_ref7 doi: 10.1017/S0022112091000691 – ident: S0022112010003113_ref18 doi: 10.1063/1.2972935 – ident: S0022112010003113_ref23 doi: 10.1063/1.3139294 – start-page: 935 volume-title: Proceedings of the Fourth International Symposium on Turbulence and Shear Flow Phenomena year: 2005 ident: S0022112010003113_ref28 doi: 10.1615/TSFP4.1550 – ident: S0022112010003113_ref11 doi: 10.1016/S0142-727X(02)00164-9 – ident: S0022112010003113_ref17 doi: 10.1006/jcph.1998.5882 – start-page: 443 volume-title: Proceedingsof the Fifth International Symposium on Turbulence and Shear Flow Phenomena year: 2007 ident: S0022112010003113_ref15 doi: 10.1615/TSFP5.680 – ident: S0022112010003113_ref14 doi: 10.1007/s00162-004-0149-x – ident: S0022112010003113_ref8 doi: 10.1016/0376-0421(95)00007-0 – ident: S0022112010003113_ref16 doi: 10.1023/A:1020404706293 – ident: S0022112010003113_ref2 doi: 10.1063/1.1570830 – ident: S0022112010003113_ref21 – ident: S0022112010003113_ref1 doi: 10.1016/j.ijheatfluidflow.2004.02.010 – ident: S0022112010003113_ref12 doi: 10.1098/rspa.1995.0125 – ident: S0022112010003113_ref6 doi: 10.1088/0169-5983/41/2/021404 – ident: S0022112010003113_ref29 doi: 10.1017/S0022112009006624 – ident: S0022112010003113_ref10 doi: 10.1063/1.2162185 – volume: 27 start-page: 147 year: 1983 ident: S0022112010003113_ref26 article-title: Low-Reynolds-number turbulent boundary layers in zero and favourable pressure gradients publication-title: J. Ship Res. doi: 10.5957/jsr.1983.27.3.147 – ident: S0022112010003113_ref3 doi: 10.1017/S002211200300733X – ident: S0022112010003113_ref19 doi: 10.1017/S0022112004001788 – ident: S0022112010003113_ref25 doi: 10.1016/j.jcp.2009.02.031 |
SSID | ssj0013097 |
Score | 2.547521 |
Snippet | Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure... |
SourceID | swepub proquest pascalfrancis crossref istex cambridge |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116 |
SubjectTerms | Boundary conditions Boundary layer Boundary layer and shear turbulence Boundary layers Computer simulation Engineering mechanics Exact sciences and technology Fluid dynamics Fluid flow Fluid mechanics Friction Fundamental areas of phenomenology (including applications) Inflow Mathematical models Numerical analysis Physics Statistical analysis Strömningsmekanik TECHNOLOGY TEKNIKVETENSKAP Teknisk mekanik Turbulence turbulence simulation Turbulence simulation and modeling Turbulent boundary layer turbulent boundary layers Turbulent flow Turbulent flows, convection, and heat transfer |
Title | Assessment of direct numerical simulation data of turbulent boundary layers |
URI | https://www.cambridge.org/core/product/identifier/S0022112010003113/type/journal_article https://api.istex.fr/ark:/67375/6GQ-H7RRRC40-M/fulltext.pdf https://www.proquest.com/docview/750069081 https://www.proquest.com/docview/1642301068 https://www.proquest.com/docview/815535820 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26680 |
Volume | 659 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD5irZDggUsBEQaVkYAHRLTcfMkTKtu6CugEhaG9RbETw7TSjqaV4N9zTuKmqxB9dWwlto99PvucfB_ACyGMQMeGu19hjZ-ktvARHOV-GIc2CmSZ8pT-HR6fitFZ8v6cn7vcnMqlVa73xHqjLuaG7sgP0LMRqa4K31798kk0ioKrTkFjD7q4AyvVge6749NPk00YIUjlmi4cgUUb1qw5o7GQyuiCOw5J3mBDrrDlpLo03r8paTKvcNxsI3ixjUivs4zWnml4D-44SMkGjQ3chxvlrAd3HbxkbvFWPbh9jXuwBzfr3E9TPYAPg5adk80ta5wcm62aWM6UVRc_ncYXo3xSqoN-Sq_IXzFdyzIt_rBpTuD9IZwNj78ejnynseAbzqOlr6XVKs1loLQ1SaxLGRjNIx4pnZZWBtzqgEeFsAjt8ljEQhqbR3gOSsPYJAg_HkFnNp-Vj4HJsuA2SfKIxyJRkUlFSjFDW8QagUEiPHjTDnDmVkqVNVlmMvtnPjwI1nOQGcdXTrIZ011NXrdNrhqyjl2VX9UT29bMF5eU5SZ5Jk4-ZyM5mUwOkyAbe9Dfmvm2AYJRHiHC82B_bQqbfrX26sHz9ikuXYrH5LNyvsKu49kvpjO58oD9p44iXSeOMM2Dl42Rta8nYvCji2-DbL74nl0uf2SItVTwZOfH7MOtJv0h9SP-FDrLxap8hqhqqfuwp4YnfegOjsYfv_TdSvoL2hob_w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4amxDjgUsBEQbDSIwHRETqxHbygFC10XV0nUS1ob2F2InHtNKOphXsR_EfOSe3rkL0ba-p3VyOfb7PPsffAXgtpZEIbOj9UmvcILKpi-Qocdt-23JPZZGI6Ozw4Ej2ToLPp-J0Df7UZ2EorbL2iYWjTieG9sjfI7KRqG7Y_nj506WiURRcrStolKOin139whVb_uFgD827w3n30_Fuz62KCrhGCD5ztbI6jBLlhdqawNeZ8owWXPBQR5lVnrDaEzyVFrlM4ktfKmMTjsQ_avsmQLzF_70FG4GPQE4H07v7i6CFF6lanBxpTBNELRSq8SJdo-10v03FFBZSDkuQuEHW_U0pmkmOVrJleY1l_ntd07TAwe4DuFcRWNYpR9xDWMvGLbhfkVlWuYq8BXevKR224HaRaWryR9DvNFqgbGJZCalsPC8jRyOWn_-oKooxyl6lNoiKek7oyHRRBGp6xUYJLRUew8mNfPwnsD6ejLOnwFSWChsECRe-DEJuIhlRhNKmvkYaEkgH3jUfOK7mZR6XOW0q_sceDni1DWJTqaNTkY7Rqi5vmy6XpTTIqsZvCsM2LZPpBeXUKRHL_S9xTw2Hw93AiwcObC9ZvumA1Fdw5JMObNVDYfFezexw4FXzKzoKiv4k42wyx1fHlaZPOwChA-w_bUKqIiWQFDqwUw6y5vYkQ753_rUTT6Zn8cXse4zMLvSerXyYl3Cndzw4jA8PjvpbsFkmXkQuF89hfTadZy-Qz830djGLGHy76Wn7F1BIVHU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+direct+numerical+simulation+data+of+turbulent+boundary+layers&rft.jtitle=Journal+of+fluid+mechanics&rft.au=SCHLATTER%2C+PHILIPP&rft.au=%C3%96RL%C3%9C%2C+RAMIS&rft.date=2010-09-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=659&rft.spage=116&rft.epage=126&rft_id=info:doi/10.1017%2FS0022112010003113&rft.externalDocID=10_1017_S0022112010003113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |