Assessment of direct numerical simulation data of turbulent boundary layers

Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Reθ = 500–4...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 659; pp. 116 - 126
Main Authors SCHLATTER, PHILIPP, ÖRLÜ, RAMIS
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Reθ = 500–4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient cf or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy.
AbstractList Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Reθ = 500–4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient cf or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy.
Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Re θ = 500–4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient c f or the shape factor H 12 , but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy.
Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Re[thetas] = 500-4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient cf or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy.
Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Re-theta = 500-4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient c(f) or the shape factor II12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e. g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy.
Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure gradient are compiled and compared. The considered data sets include a recent DNS of a TBL with the extended range of Reynolds numbers Reθ = 500-4300. Although all the simulations relate to the same physical flow case, the approaches differ in the applied numerical method, grid resolution and distribution, inflow generation method, boundary conditions and box dimensions. The resulting comparison shows surprisingly large differences not only in both basic integral quantities such as the friction coefficient cf or the shape factor H12, but also in their predictions of mean and fluctuation profiles far into the sublayer. It is thus shown that the numerical simulation of TBLs is, mainly due to the spatial development of the flow, very sensitive to, e.g. proper inflow condition, sufficient settling length and appropriate box dimensions. Thus, a DNS has to be considered as a numerical experiment and should be the subject of the same scrutiny as experimental data. However, if a DNS is set up with the necessary care, it can provide a faithful tool to predict even such notoriously difficult flow cases with great accuracy. [PUBLICATION ABSTRACT]
Author SCHLATTER, PHILIPP
ÖRLÜ, RAMIS
Author_xml – sequence: 1
  givenname: PHILIPP
  surname: SCHLATTER
  fullname: SCHLATTER, PHILIPP
  email: pschlatt@mech.kth.se
  organization: Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
– sequence: 2
  givenname: RAMIS
  surname: ÖRLÜ
  fullname: ÖRLÜ, RAMIS
  organization: Linné Flow Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23252639$$DView record in Pascal Francis
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26680$$DView record from Swedish Publication Index
BookMark eNp9kU9v1DAQxS1UJLaFD8AtQkJwaGBsx3ZyXC20RRQhlj9Xy_baxW0Sb21H0G-Pwy5FKqKnOczvzcx7c4gOxjBahJ5ieIUBi9efAQjBmAAGAIoxfYAWuOFdLXjDDtBibtdz_xE6TOkSAFPoxAK9X6ZkUxrsmKvgqo2P1uRqnAYbvVF9lfww9Sr7MFYbldXM5CnqqZ8FOkzjRsWbqlc3NqbH6KFTfbJP9vUIfT15-2V1Vp9_PH23Wp7XhjGSay2cbjsloNXONFRbAUYzwkirO-sEMKeBkQ13wBpFOeXCOEWg5R2mphENPULHu7nph91OWm6jH8oVMigv3_hvSxnihbzK3yXhvIWCv9jh2xiuJ5uyHHwytu_VaMOUZIsZo6wlM_nyXhLzhtCSMG8L-uwOehmmOBbbUjAA3kGLC_R8D6lUwnRRjcan23sJLaY57QondpyJIaVonTQ-_w49R-V7iUHOT5b_PLko8R3ln-H3aeqdxqdsf94KVLySXFDBJD_9JM_Eer1eNSA_FJ7ud6hBR7-5sH-9_n_LL-HpxrI
CODEN JFLSA7
CitedBy_id crossref_primary_10_1121_10_0002251
crossref_primary_10_1007_s00348_015_1935_5
crossref_primary_10_1016_j_compfluid_2023_105795
crossref_primary_10_1299_mer_15_00157
crossref_primary_10_1016_j_ijheatfluidflow_2015_06_010
crossref_primary_10_1016_j_ijheatfluidflow_2014_04_005
crossref_primary_10_1063_5_0079230
crossref_primary_10_1017_jfm_2020_689
crossref_primary_10_2514_1_J058464
crossref_primary_10_1007_s10494_018_9979_2
crossref_primary_10_1063_5_0124498
crossref_primary_10_3390_en14051465
crossref_primary_10_1063_5_0091110
crossref_primary_10_1017_jfm_2019_670
crossref_primary_10_1063_5_0037962
crossref_primary_10_1017_jfm_2012_324
crossref_primary_10_1063_5_0039901
crossref_primary_10_1016_j_jsv_2020_115276
crossref_primary_10_2514_1_J058580
crossref_primary_10_1063_5_0219755
crossref_primary_10_1016_j_ast_2022_108014
crossref_primary_10_1299_transjsme_21_00359
crossref_primary_10_1017_jfm_2020_320
crossref_primary_10_1017_jfm_2024_82
crossref_primary_10_1016_j_euromechflu_2018_01_008
crossref_primary_10_1063_5_0093788
crossref_primary_10_1016_j_ijheatfluidflow_2018_04_017
crossref_primary_10_1063_5_0093782
crossref_primary_10_1017_jfm_2014_286
crossref_primary_10_1063_5_0148359
crossref_primary_10_2514_1_J059683
crossref_primary_10_3390_en16041709
crossref_primary_10_1088_1742_6596_318_5_052020
crossref_primary_10_1017_jfm_2020_350
crossref_primary_10_1016_j_ast_2018_12_009
crossref_primary_10_1016_j_ijheatfluidflow_2012_08_004
crossref_primary_10_1103_PhysRevFluids_2_124603
crossref_primary_10_1016_j_ast_2021_106947
crossref_primary_10_1016_j_ijheatfluidflow_2017_09_002
crossref_primary_10_1146_annurev_fluid_121021_043651
crossref_primary_10_1016_j_ijheatmasstransfer_2013_11_069
crossref_primary_10_1016_j_ijheatfluidflow_2013_03_017
crossref_primary_10_1007_s11433_024_2420_5
crossref_primary_10_1063_1_4792164
crossref_primary_10_1080_10618562_2012_693605
crossref_primary_10_1103_PhysRevFluids_9_024606
crossref_primary_10_1002_pamm_201210272
crossref_primary_10_1016_j_ast_2020_105680
crossref_primary_10_4208_cicp_221113_280714a
crossref_primary_10_1017_jfm_2021_1013
crossref_primary_10_1007_s11012_016_0558_0
crossref_primary_10_1088_1742_6596_822_1_012016
crossref_primary_10_1017_jfm_2013_385
crossref_primary_10_1186_s42774_021_00092_9
crossref_primary_10_3390_aerospace11070544
crossref_primary_10_1017_jfm_2013_142
crossref_primary_10_1115_1_4066642
crossref_primary_10_1016_j_ijheatfluidflow_2013_11_007
crossref_primary_10_1007_s00162_022_00623_0
crossref_primary_10_1080_14685248_2012_738907
crossref_primary_10_2514_1_J060760
crossref_primary_10_1007_s10494_018_9923_5
crossref_primary_10_1017_jfm_2019_881
crossref_primary_10_1080_14685248_2016_1259626
crossref_primary_10_1007_s10494_017_9845_7
crossref_primary_10_1007_s00348_012_1436_8
crossref_primary_10_1007_s10494_013_9482_8
crossref_primary_10_1016_j_cja_2023_06_015
crossref_primary_10_1103_PhysRevFluids_4_094601
crossref_primary_10_1007_s00348_023_03580_4
crossref_primary_10_1017_jfm_2021_331
crossref_primary_10_1007_s10494_017_9868_0
crossref_primary_10_1007_s00348_021_03272_x
crossref_primary_10_1016_j_euromechflu_2022_03_008
crossref_primary_10_1088_1742_6596_1001_1_012004
crossref_primary_10_1299_transjsme_18_00199
crossref_primary_10_1016_j_euromechflu_2015_09_005
crossref_primary_10_2514_1_J056122
crossref_primary_10_1016_j_euromechflu_2015_09_004
crossref_primary_10_1080_14685248_2019_1566736
crossref_primary_10_1103_PhysRevFluids_3_074601
crossref_primary_10_1007_s00348_015_1968_9
crossref_primary_10_1007_s00348_024_03766_4
crossref_primary_10_1007_s10494_023_00408_3
crossref_primary_10_1017_jfm_2011_334
crossref_primary_10_1007_s00348_013_1547_x
crossref_primary_10_1088_1873_7005_ab225c
crossref_primary_10_1063_5_0142609
crossref_primary_10_1063_1_4802048
crossref_primary_10_1016_j_jfluidstructs_2017_03_005
crossref_primary_10_1017_jfm_2019_104
crossref_primary_10_1088_1742_6596_899_6_062004
crossref_primary_10_1146_annurev_fluid_010816_060322
crossref_primary_10_1103_PhysRevFluids_6_113904
crossref_primary_10_1017_jfm_2020_639
crossref_primary_10_1016_j_jcp_2025_113793
crossref_primary_10_1007_s00348_015_2024_5
crossref_primary_10_1007_s10494_015_9596_2
crossref_primary_10_1051_matecconf_201711502007
crossref_primary_10_1063_1_3555191
crossref_primary_10_1088_1674_1056_ac4bd0
crossref_primary_10_1017_jfm_2011_342
crossref_primary_10_1017_jfm_2022_595
crossref_primary_10_1080_14685248_2014_989232
crossref_primary_10_1080_14685248_2015_1083574
crossref_primary_10_1017_jfm_2022_597
crossref_primary_10_1063_5_0128798
crossref_primary_10_1103_PhysRevFluids_9_034607
crossref_primary_10_1007_s00348_013_1656_6
crossref_primary_10_1063_5_0083919
crossref_primary_10_1007_s10409_020_01024_4
crossref_primary_10_1007_s10483_019_2428_6
crossref_primary_10_1017_jfm_2023_157
crossref_primary_10_1103_PhysRevFluids_5_114608
crossref_primary_10_1134_S0869864323060033
crossref_primary_10_1063_5_0127220
crossref_primary_10_1088_1674_1056_abc7a6
crossref_primary_10_1007_s00193_021_01018_6
crossref_primary_10_1063_5_0227437
crossref_primary_10_1080_14685248_2015_1043131
crossref_primary_10_1017_jfm_2021_566
crossref_primary_10_1007_s00348_014_1735_3
crossref_primary_10_1017_jfm_2020_781
crossref_primary_10_1017_jfm_2022_80
crossref_primary_10_1016_j_euromechflu_2023_05_008
crossref_primary_10_1080_14685248_2023_2202404
crossref_primary_10_1088_1742_6596_1522_1_012010
crossref_primary_10_1017_jfm_2022_242
crossref_primary_10_1007_s10409_012_0082_y
crossref_primary_10_1088_1742_6596_318_4_042023
crossref_primary_10_1007_s10494_020_00110_8
crossref_primary_10_1017_jfm_2024_25
crossref_primary_10_1007_s10494_024_00566_y
crossref_primary_10_1007_s10494_020_00133_1
crossref_primary_10_1063_1_4866458
crossref_primary_10_1007_s00348_012_1415_0
crossref_primary_10_1017_jfm_2012_290
crossref_primary_10_1063_1_3622773
crossref_primary_10_1016_j_cpc_2021_107999
crossref_primary_10_1017_jfm_2011_368
crossref_primary_10_1115_1_4004093
crossref_primary_10_1016_j_jcp_2013_04_021
crossref_primary_10_1017_jfm_2020_601
crossref_primary_10_1016_j_ijheatfluidflow_2023_109136
crossref_primary_10_1017_jfm_2019_158
crossref_primary_10_2514_1_J056442
crossref_primary_10_1063_1_4895589
crossref_primary_10_1088_1742_6596_318_2_022020
crossref_primary_10_1088_1873_7005_aaca81
crossref_primary_10_1016_j_ijheatfluidflow_2023_109134
crossref_primary_10_1088_1742_6596_318_2_022023
crossref_primary_10_1016_j_ijheatfluidflow_2023_109131
crossref_primary_10_1063_5_0097859
crossref_primary_10_1007_s00348_018_2663_4
crossref_primary_10_1016_j_ast_2024_109863
crossref_primary_10_1017_jfm_2022_6
crossref_primary_10_1063_1_4947532
crossref_primary_10_1080_14685248_2016_1269911
crossref_primary_10_1016_j_actaastro_2019_10_038
crossref_primary_10_1063_5_0257506
crossref_primary_10_1103_PhysRevFluids_6_123901
crossref_primary_10_1115_1_4063511
crossref_primary_10_1017_jfm_2011_253
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103865
crossref_primary_10_1017_jfm_2022_221
crossref_primary_10_1017_jfm_2022_463
crossref_primary_10_1017_jfm_2017_308
crossref_primary_10_1088_1742_6596_318_2_022018
crossref_primary_10_1103_PhysRevFluids_10_034601
crossref_primary_10_1016_j_euromechflu_2015_12_002
crossref_primary_10_1017_jfm_2018_460
crossref_primary_10_1080_14685248_2024_2392572
crossref_primary_10_1088_1742_6596_2057_1_012097
crossref_primary_10_1017_jfm_2018_347
crossref_primary_10_1088_1742_6596_318_2_022013
crossref_primary_10_1016_j_ijheatfluidflow_2023_109142
crossref_primary_10_1017_jfm_2021_510
crossref_primary_10_1063_5_0226539
crossref_primary_10_1103_PhysRevFluids_9_124604
crossref_primary_10_1103_PhysRevFluids_3_023901
crossref_primary_10_1016_j_actaastro_2019_10_008
crossref_primary_10_1103_PhysRevFluids_3_054606
crossref_primary_10_1017_jfm_2017_773
crossref_primary_10_1088_1742_6596_708_1_012014
crossref_primary_10_1007_s00348_023_03656_1
crossref_primary_10_1017_jfm_2017_898
crossref_primary_10_1017_jfm_2022_560
crossref_primary_10_1007_s10494_020_00221_2
crossref_primary_10_2514_1_J055454
crossref_primary_10_1115_1_4032535
crossref_primary_10_1017_jfm_2023_359
crossref_primary_10_1016_j_flowmeasinst_2023_102324
crossref_primary_10_1016_j_paerosci_2010_04_002
crossref_primary_10_1017_jfm_2018_455
crossref_primary_10_1017_jfm_2018_578
crossref_primary_10_1016_j_actaastro_2018_04_009
crossref_primary_10_1017_jfm_2018_449
crossref_primary_10_1016_j_compfluid_2020_104494
crossref_primary_10_1016_j_compfluid_2023_106138
crossref_primary_10_1016_j_ijheatfluidflow_2020_108658
crossref_primary_10_2514_1_J053039
crossref_primary_10_3390_fluids8100260
crossref_primary_10_1088_1361_6501_abfad0
crossref_primary_10_1115_1_4065716
crossref_primary_10_1017_jfm_2024_399
crossref_primary_10_1103_PhysRevFluids_1_082401
crossref_primary_10_1103_PhysRevFluids_8_024602
crossref_primary_10_1063_5_0174559
crossref_primary_10_1017_jfm_2021_526
crossref_primary_10_1007_s00348_024_03891_0
crossref_primary_10_1017_jfm_2022_561
crossref_primary_10_1017_jfm_2017_406
crossref_primary_10_1016_j_euromechflu_2010_07_006
crossref_primary_10_1063_5_0051649
crossref_primary_10_1016_j_ijheatfluidflow_2014_02_006
crossref_primary_10_1063_5_0068077
crossref_primary_10_1007_s00348_013_1496_4
crossref_primary_10_1016_j_flowmeasinst_2023_102334
crossref_primary_10_1016_j_jcp_2018_02_028
crossref_primary_10_1063_5_0084505
crossref_primary_10_1088_1361_6501_aa4e9e
crossref_primary_10_1016_j_ast_2019_02_018
crossref_primary_10_1016_j_ijheatfluidflow_2020_108767
crossref_primary_10_3390_fluids7050153
crossref_primary_10_1080_14685248_2016_1169282
crossref_primary_10_1017_jfm_2017_236
crossref_primary_10_2514_1_J064382
crossref_primary_10_1017_jfm_2024_383
crossref_primary_10_1016_j_cpc_2025_109507
crossref_primary_10_1007_s00348_017_2345_7
crossref_primary_10_1017_jfm_2015_58
crossref_primary_10_1017_jfm_2016_548
crossref_primary_10_1017_jfm_2023_575
crossref_primary_10_3390_app13095253
crossref_primary_10_1103_PhysRevFluids_5_074605
crossref_primary_10_1017_jfm_2018_1019
crossref_primary_10_1007_s00348_024_03871_4
crossref_primary_10_1017_jfm_2021_504
crossref_primary_10_1016_j_apm_2014_07_001
crossref_primary_10_1016_j_expthermflusci_2019_04_022
crossref_primary_10_1016_j_ast_2020_106209
crossref_primary_10_1017_jfm_2024_495
crossref_primary_10_1073_pnas_1704671114
crossref_primary_10_1016_j_ijheatfluidflow_2010_11_001
crossref_primary_10_1017_jfm_2016_794
crossref_primary_10_1017_jfm_2022_663
crossref_primary_10_1007_s10494_023_00502_6
crossref_primary_10_1017_jfm_2016_430
crossref_primary_10_1017_jfm_2022_423
crossref_primary_10_1016_j_compfluid_2019_104249
crossref_primary_10_1016_j_euromechflu_2020_07_003
crossref_primary_10_1017_jfm_2022_546
crossref_primary_10_1155_2020_1253652
crossref_primary_10_1080_14685248_2016_1277734
crossref_primary_10_1016_j_euromechflu_2015_07_003
crossref_primary_10_1016_j_euromechflu_2015_07_001
crossref_primary_10_1016_j_ijheatfluidflow_2017_09_015
crossref_primary_10_1017_jfm_2021_1052
crossref_primary_10_1016_j_ijheatfluidflow_2020_108626
crossref_primary_10_1017_jfm_2017_694
crossref_primary_10_1115_1_4041218
crossref_primary_10_1063_1_4923234
crossref_primary_10_1016_j_compfluid_2021_104885
crossref_primary_10_1017_jfm_2017_455
crossref_primary_10_1017_jfm_2017_212
crossref_primary_10_2514_1_J062066
crossref_primary_10_1063_5_0130596
crossref_primary_10_1016_j_engappai_2023_105978
crossref_primary_10_1017_jfm_2017_579
crossref_primary_10_1016_j_oceaneng_2024_119175
crossref_primary_10_1063_1_4861066
crossref_primary_10_1088_1742_6596_318_1_012003
crossref_primary_10_1088_1742_6596_318_2_022005
crossref_primary_10_1016_j_ijheatfluidflow_2023_109234
crossref_primary_10_1103_PhysRevFluids_9_114602
crossref_primary_10_1103_PhysRevFluids_2_124005
crossref_primary_10_1016_j_ijheatfluidflow_2024_109314
crossref_primary_10_1063_1_4823831
crossref_primary_10_1016_j_ijheatfluidflow_2023_109117
crossref_primary_10_1017_jfm_2018_257
crossref_primary_10_1088_1361_6463_aa8879
crossref_primary_10_1063_5_0070476
crossref_primary_10_1016_j_piutam_2013_09_007
crossref_primary_10_1088_1742_6596_318_2_022002
crossref_primary_10_1007_s00348_022_03536_0
crossref_primary_10_1016_j_ijheatfluidflow_2023_109110
crossref_primary_10_1017_jfm_2023_570
crossref_primary_10_1017_jfm_2023_690
crossref_primary_10_1017_jfm_2024_359
crossref_primary_10_1016_j_euromechflu_2012_03_015
crossref_primary_10_1063_5_0047472
crossref_primary_10_1063_1_3581074
crossref_primary_10_1063_5_0045175
crossref_primary_10_1002_adfm_202307121
crossref_primary_10_1103_PhysRevFluids_9_054603
crossref_primary_10_1007_s00348_017_2379_x
crossref_primary_10_1017_jfm_2022_883
crossref_primary_10_1017_jfm_2023_329
crossref_primary_10_2139_ssrn_4115464
crossref_primary_10_1017_jfm_2016_12
crossref_primary_10_1016_j_ijheatfluidflow_2015_05_019
crossref_primary_10_1029_2020JD032934
crossref_primary_10_1016_j_compfluid_2023_106067
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122744
crossref_primary_10_1007_s10494_023_00492_5
crossref_primary_10_1016_j_ijheatfluidflow_2023_109244
crossref_primary_10_1016_j_oceaneng_2017_07_055
crossref_primary_10_1017_jfm_2023_562
crossref_primary_10_1115_1_4039259
crossref_primary_10_1080_14685248_2012_734625
crossref_primary_10_1016_j_compfluid_2022_105712
crossref_primary_10_2139_ssrn_4196494
crossref_primary_10_1063_1_3589345
crossref_primary_10_1007_s42241_023_0032_0
crossref_primary_10_1017_jfm_2021_814
crossref_primary_10_1007_s10409_022_22022_x
crossref_primary_10_1063_5_0094070
crossref_primary_10_1007_s00348_024_03812_1
crossref_primary_10_1017_jfm_2018_191
crossref_primary_10_1017_jfm_2022_731
crossref_primary_10_1016_j_cnsns_2020_105491
crossref_primary_10_1017_jfm_2023_777
crossref_primary_10_3788_gzxb20245303_0312002
crossref_primary_10_1017_jfm_2022_737
crossref_primary_10_1007_s00348_011_1088_0
crossref_primary_10_1145_3355089_3356545
crossref_primary_10_1016_j_cja_2022_08_013
crossref_primary_10_2514_1_J052249
crossref_primary_10_1007_s11012_021_01396_2
crossref_primary_10_1007_s10494_015_9624_2
crossref_primary_10_1016_j_combustflame_2021_02_005
crossref_primary_10_1017_jfm_2015_319
crossref_primary_10_1017_jfm_2024_213
crossref_primary_10_1017_jfm_2015_556
crossref_primary_10_1063_1_4868364
crossref_primary_10_1111_cgf_13532
crossref_primary_10_1016_j_compfluid_2022_105728
crossref_primary_10_1063_1_4866180
crossref_primary_10_1016_j_jcp_2021_110788
crossref_primary_10_1016_j_cja_2021_07_027
crossref_primary_10_1080_14685248_2020_1797058
crossref_primary_10_1016_j_vrih_2021_02_002
crossref_primary_10_1007_s10409_023_23202_x
crossref_primary_10_1016_j_ijheatfluidflow_2024_109486
crossref_primary_10_1103_PhysRevFluids_5_052602
crossref_primary_10_1017_jfm_2023_663
crossref_primary_10_1017_jfm_2023_541
crossref_primary_10_1063_5_0255296
crossref_primary_10_1063_5_0242189
crossref_primary_10_1103_PhysRevFluids_4_054605
crossref_primary_10_1017_jfm_2024_1195
crossref_primary_10_1017_jfm_2017_258
crossref_primary_10_1103_PhysRevFluids_5_064611
crossref_primary_10_1017_jfm_2024_442
crossref_primary_10_1103_PhysRevFluids_4_044602
crossref_primary_10_1103_PhysRevFluids_4_103904
crossref_primary_10_1017_jfm_2016_682
crossref_primary_10_1007_s00348_023_03641_8
crossref_primary_10_1063_5_0257367
crossref_primary_10_1007_s10409_013_0033_2
crossref_primary_10_1088_1742_6596_506_1_012010
crossref_primary_10_1103_PhysRevFluids_7_034601
crossref_primary_10_2514_1_B37314
crossref_primary_10_1017_jfm_2018_1004
crossref_primary_10_1017_jfm_2022_952
crossref_primary_10_1017_jfm_2023_633
crossref_primary_10_1017_jfm_2016_205
crossref_primary_10_3389_fams_2022_1076296
crossref_primary_10_1017_jfm_2016_207
crossref_primary_10_1017_jfm_2018_179
crossref_primary_10_1016_j_ijheatfluidflow_2024_109590
crossref_primary_10_1103_PhysRevFluids_3_114604
crossref_primary_10_1007_s00348_022_03534_2
crossref_primary_10_1029_2019JF005246
crossref_primary_10_1007_s10546_016_0190_5
crossref_primary_10_1016_j_actaastro_2021_02_017
crossref_primary_10_1063_5_0051375
crossref_primary_10_1007_s10409_022_22035_x
crossref_primary_10_1088_1361_6501_ace8ad
crossref_primary_10_1016_j_compfluid_2022_105704
crossref_primary_10_1080_14685248_2013_851386
crossref_primary_10_1007_s12046_016_0480_0
crossref_primary_10_1063_5_0123729
crossref_primary_10_1103_PhysRevFluids_2_084602
crossref_primary_10_1080_14685248_2017_1335869
crossref_primary_10_1007_s11227_021_03642_6
crossref_primary_10_1017_jfm_2018_160
crossref_primary_10_1016_j_jcp_2021_110408
crossref_primary_10_1063_5_0213631
crossref_primary_10_1016_j_actaastro_2020_08_042
crossref_primary_10_1103_PhysRevFluids_3_012601
crossref_primary_10_2514_1_J062027
crossref_primary_10_1017_jfm_2022_603
crossref_primary_10_1063_5_0255191
crossref_primary_10_1007_s00348_021_03374_6
crossref_primary_10_1017_jfm_2023_521
crossref_primary_10_1080_14685248_2016_1192285
crossref_primary_10_1007_s00348_021_03352_y
crossref_primary_10_1088_1674_1056_acb1ff
crossref_primary_10_1088_1742_6596_506_1_012008
crossref_primary_10_1088_1361_6501_acf872
crossref_primary_10_1007_s00348_014_1892_4
crossref_primary_10_1115_1_4047615
crossref_primary_10_1007_s00348_024_03946_2
crossref_primary_10_1017_jfm_2019_19
crossref_primary_10_1051_aacus_2022030
crossref_primary_10_1017_jfm_2019_911
crossref_primary_10_1007_s42241_020_0023_3
crossref_primary_10_1088_1873_7005_aab57b
crossref_primary_10_1016_j_ijheatfluidflow_2021_108885
crossref_primary_10_1038_s42256_022_00572_7
crossref_primary_10_1063_1_4824988
crossref_primary_10_1017_jfm_2020_17
crossref_primary_10_1016_j_compfluid_2012_07_004
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121866
crossref_primary_10_1103_PhysRevFluids_3_024601
crossref_primary_10_3390_aerospace10120989
crossref_primary_10_1017_jfm_2015_237
crossref_primary_10_1103_PhysRevFluids_1_084403
crossref_primary_10_1016_j_ijheatfluidflow_2020_108591
crossref_primary_10_1017_jfm_2016_153
crossref_primary_10_1088_1361_6501_abb483
crossref_primary_10_1080_14685248_2019_1593425
crossref_primary_10_1007_s00162_020_00558_4
crossref_primary_10_2514_1_J064785
crossref_primary_10_1017_jfm_2019_27
crossref_primary_10_2514_1_J063335
crossref_primary_10_2514_1_J063456
crossref_primary_10_1016_j_ijthermalsci_2024_109202
crossref_primary_10_1017_jfm_2022_948
crossref_primary_10_1063_5_0120241
crossref_primary_10_1017_jfm_2015_563
crossref_primary_10_1103_PhysRevFluids_8_124601
crossref_primary_10_1017_jfm_2017_170
crossref_primary_10_1017_jfm_2020_1129
crossref_primary_10_1007_s10494_017_9861_7
crossref_primary_10_1002_pamm_202300055
crossref_primary_10_1016_j_ijheatfluidflow_2018_08_005
crossref_primary_10_1103_PhysRevFluids_7_013905
crossref_primary_10_1016_j_actaastro_2018_11_005
crossref_primary_10_1016_j_cja_2019_03_020
crossref_primary_10_1017_jfm_2014_318
crossref_primary_10_1016_j_compfluid_2019_104314
crossref_primary_10_1103_PhysRevFluids_8_064607
crossref_primary_10_1017_jfm_2014_431
crossref_primary_10_1017_jfm_2016_83
crossref_primary_10_1017_jfm_2013_629
crossref_primary_10_1016_j_ijheatfluidflow_2017_06_009
crossref_primary_10_1103_PhysRevFluids_6_024603
crossref_primary_10_1515_ijnsns_2016_0018
crossref_primary_10_1080_14685248_2021_1974466
crossref_primary_10_1177_0309524X18821883
crossref_primary_10_1016_j_euromechflu_2014_04_011
crossref_primary_10_1016_j_ijheatfluidflow_2021_108872
crossref_primary_10_1007_s00348_024_03802_3
crossref_primary_10_1016_j_expthermflusci_2024_111327
crossref_primary_10_1017_jfm_2022_923
crossref_primary_10_1103_PhysRevFluids_2_094604
crossref_primary_10_1146_annurev_fluid_122109_160753
crossref_primary_10_1016_j_ijheatfluidflow_2013_04_007
crossref_primary_10_1115_1_4066579
crossref_primary_10_2514_1_J052516
crossref_primary_10_1007_s10494_017_9840_z
crossref_primary_10_3390_aerospace11010094
crossref_primary_10_1103_PhysRevFluids_3_014609
crossref_primary_10_1007_s00348_017_2318_x
crossref_primary_10_1007_s00348_019_2694_5
crossref_primary_10_1016_j_ijheatfluidflow_2016_02_001
crossref_primary_10_1103_PhysRevFluids_7_084603
crossref_primary_10_1103_PhysRevFluids_9_084601
crossref_primary_10_1007_s00348_011_1167_2
crossref_primary_10_1017_jfm_2023_818
crossref_primary_10_1016_j_expthermflusci_2024_111395
crossref_primary_10_1016_j_compfluid_2015_03_026
crossref_primary_10_1016_j_compfluid_2014_09_052
crossref_primary_10_1063_1_4964686
crossref_primary_10_1017_jfm_2024_1138
crossref_primary_10_1016_j_compfluid_2021_105024
crossref_primary_10_1103_PhysRevFluids_8_064605
crossref_primary_10_1017_jfm_2021_95
crossref_primary_10_1103_PhysRevFluids_4_034607
crossref_primary_10_1103_PhysRevFluids_7_084610
crossref_primary_10_1016_j_ijheatfluidflow_2018_06_004
crossref_primary_10_1016_j_ast_2023_108838
crossref_primary_10_1016_j_compfluid_2018_08_015
crossref_primary_10_1016_j_ijheatfluidflow_2012_06_005
crossref_primary_10_1017_jfm_2015_158
crossref_primary_10_1017_jfm_2014_204
crossref_primary_10_1016_j_jsv_2018_02_017
crossref_primary_10_2514_1_J063417
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118590
crossref_primary_10_1007_s10494_023_00451_0
crossref_primary_10_1063_5_0207016
crossref_primary_10_1007_s10409_015_0486_6
crossref_primary_10_1016_j_expthermflusci_2025_111444
crossref_primary_10_2514_1_J062203
crossref_primary_10_1103_PhysRevFluids_5_014602
crossref_primary_10_1115_1_4050899
crossref_primary_10_1080_14685248_2019_1674859
crossref_primary_10_1007_s10494_013_9485_5
crossref_primary_10_1017_flo_2021_21
crossref_primary_10_61653_joast_v71i4_2019_170
crossref_primary_10_1016_j_ijheatfluidflow_2014_09_009
crossref_primary_10_1016_j_paerosci_2021_100713
crossref_primary_10_1063_5_0156580
crossref_primary_10_1103_PhysRevE_92_033302
crossref_primary_10_1007_s10494_016_9757_y
crossref_primary_10_1063_5_0229126
crossref_primary_10_1016_j_taml_2022_100337
crossref_primary_10_1016_j_euromechflu_2014_03_009
crossref_primary_10_1088_1742_6596_891_1_012094
crossref_primary_10_1103_PhysRevFluids_3_083401
crossref_primary_10_1007_s10494_021_00296_5
crossref_primary_10_1063_5_0210872
crossref_primary_10_1017_jfm_2012_508
crossref_primary_10_1080_14685248_2020_1727914
crossref_primary_10_1016_j_ast_2018_06_005
crossref_primary_10_1016_j_euromechflu_2013_01_001
crossref_primary_10_1017_jfm_2012_626
crossref_primary_10_1063_1_4907783
crossref_primary_10_1115_1_4026418
crossref_primary_10_1016_j_ijheatfluidflow_2013_05_022
crossref_primary_10_1016_j_ijheatfluidflow_2014_09_006
crossref_primary_10_1007_s00348_011_1048_8
crossref_primary_10_3390_en15166013
crossref_primary_10_1007_s10494_017_9852_8
crossref_primary_10_1103_PhysRevFluids_4_024605
crossref_primary_10_1016_j_compfluid_2017_06_020
crossref_primary_10_1007_s00348_011_1157_4
crossref_primary_10_1017_jfm_2023_928
crossref_primary_10_1017_jfm_2016_299
crossref_primary_10_1016_j_cma_2020_112894
crossref_primary_10_1017_jfm_2021_76
crossref_primary_10_1134_S0021894424010139
crossref_primary_10_1002_aic_15530
crossref_primary_10_1017_jfm_2014_101
crossref_primary_10_1115_1_4037675
crossref_primary_10_1063_1_4775361
crossref_primary_10_3390_fluids7020065
crossref_primary_10_1007_s10409_018_0820_x
crossref_primary_10_1007_s42241_024_0072_0
crossref_primary_10_1017_jfm_2018_838
crossref_primary_10_1016_j_ijheatfluidflow_2017_03_006
crossref_primary_10_1007_s10494_017_9864_4
crossref_primary_10_1007_s00348_019_2692_7
crossref_primary_10_1007_s10494_021_00270_1
crossref_primary_10_1017_jfm_2013_211
crossref_primary_10_2514_1_J058025
crossref_primary_10_1016_j_jcp_2016_12_050
crossref_primary_10_1017_jfm_2020_488
crossref_primary_10_1016_j_compfluid_2021_105087
crossref_primary_10_1017_jfm_2014_132
crossref_primary_10_1017_jfm_2024_1219
crossref_primary_10_1103_PhysRevFluids_8_074602
crossref_primary_10_1080_14685248_2019_1685673
crossref_primary_10_1016_j_ijheatfluidflow_2018_05_001
crossref_primary_10_1063_5_0050048
crossref_primary_10_1016_j_rineng_2021_100254
crossref_primary_10_1103_PhysRevFluids_6_044611
crossref_primary_10_3390_aerospace11060422
crossref_primary_10_1017_jfm_2019_1027
crossref_primary_10_1063_5_0077401
crossref_primary_10_1103_PhysRevFluids_5_127602
crossref_primary_10_3390_w12041116
crossref_primary_10_1103_PhysRevFluids_5_127601
crossref_primary_10_1016_j_compfluid_2017_04_012
crossref_primary_10_1115_1_4067354
crossref_primary_10_1017_jfm_2013_565
crossref_primary_10_1017_jfm_2012_419
crossref_primary_10_2514_1_J059368
crossref_primary_10_1103_PhysRevFluids_7_033903
crossref_primary_10_1017_jfm_2012_538
crossref_primary_10_1063_5_0077513
crossref_primary_10_1103_PhysRevFluids_6_054603
crossref_primary_10_1103_PhysRevFluids_8_113902
crossref_primary_10_1017_jfm_2015_168
crossref_primary_10_1103_PhysRevFluids_6_044604
crossref_primary_10_3390_fluids7020082
crossref_primary_10_1103_PhysRevFluids_6_044603
crossref_primary_10_1063_1_3696304
crossref_primary_10_1063_1_3696303
crossref_primary_10_1063_5_0088405
crossref_primary_10_1017_jfm_2019_736
crossref_primary_10_1115_1_4067126
crossref_primary_10_1017_jfm_2022_1024
crossref_primary_10_2514_1_J058487
crossref_primary_10_1103_PhysRevLett_132_014001
crossref_primary_10_3390_e23060782
crossref_primary_10_1007_s11433_014_5462_9
crossref_primary_10_1017_jfm_2019_76
crossref_primary_10_1063_5_0157360
crossref_primary_10_1016_j_paerosci_2022_100807
crossref_primary_10_1080_14685248_2016_1153106
crossref_primary_10_1016_j_compfluid_2018_06_009
crossref_primary_10_1017_jfm_2019_968
crossref_primary_10_1080_14685248_2022_2071429
crossref_primary_10_1016_j_cja_2021_10_013
crossref_primary_10_1017_jfm_2022_1013
crossref_primary_10_2514_1_J063714
crossref_primary_10_1016_j_compfluid_2014_09_021
crossref_primary_10_1016_j_psep_2019_04_028
crossref_primary_10_1140_epje_s10189_021_00029_6
Cites_doi 10.1017/S0022112005006440
10.1063/1.866783
10.1017/S0022112088000345
10.1016/S0142-727X(99)00014-4
10.1016/j.ijheatfluidflow.2009.12.011
10.1016/j.ijheatfluidflow.2009.06.004
10.1017/S0022112091000691
10.1063/1.2972935
10.1063/1.3139294
10.1615/TSFP4.1550
10.1016/S0142-727X(02)00164-9
10.1006/jcph.1998.5882
10.1615/TSFP5.680
10.1007/s00162-004-0149-x
10.1016/0376-0421(95)00007-0
10.1023/A:1020404706293
10.1063/1.1570830
10.1016/j.ijheatfluidflow.2004.02.010
10.1098/rspa.1995.0125
10.1088/0169-5983/41/2/021404
10.1017/S0022112009006624
10.1063/1.2162185
10.5957/jsr.1983.27.3.147
10.1017/S002211200300733X
10.1017/S0022112004001788
10.1016/j.jcp.2009.02.031
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2010
2015 INIST-CNRS
Copyright_xml – notice: Copyright © Cambridge University Press 2010
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
7TG
KL.
ADTPV
AOWAS
D8V
DOI 10.1017/S0022112010003113
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 126
ExternalDocumentID oai_DiVA_org_kth_26680
2134276661
23252639
10_1017_S0022112010003113
ark_67375_6GQ_H7RRRC40_M
Genre Feature
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
6TJ
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ABZUI
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
D-I
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZYDXJ
~02
AATMM
ABVKB
ABXAU
ABXHF
ACDLN
ACRPL
ADMLS
ADNMO
AEMFK
AEUYN
AFZFC
AGQPQ
AKMAY
BSCLL
PHGZM
PHGZT
PQGLB
PUEGO
AAYXX
CITATION
-1F
-2P
-2V
-~6
-~N
6~7
8WZ
9M5
A6W
AANRG
ABDMP
ABDPE
ABFSI
ABKAW
ABVFV
ABVZP
ACETC
ACKIV
ADOVH
AEBPU
AENCP
AGLWM
AI.
ALEEW
BESQT
BMAJL
CCUQV
CDIZJ
DC4
H~9
I.7
I.9
IQODW
KAFGG
LHUNA
NMFBF
VH1
VOH
ZJOSE
ZMEZD
ZY4
~V1
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7TG
KL.
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c552t-b7fb89a708bfc43be70cb52528b9ef705fb052d6f054a36367cfa2086913c4743
IEDL.DBID BENPR
ISSN 0022-1120
1469-7645
IngestDate Thu Aug 21 06:44:30 EDT 2025
Fri Jul 11 15:35:39 EDT 2025
Thu Jul 10 22:03:01 EDT 2025
Fri Aug 15 19:12:24 EDT 2025
Mon Jul 21 09:16:56 EDT 2025
Tue Jul 01 01:44:58 EDT 2025
Thu Apr 24 23:05:52 EDT 2025
Sun Aug 31 06:48:18 EDT 2025
Wed Mar 13 05:52:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords turbulent boundary layers
turbulence simulation
Turbulent flow
Skin friction
Digital simulation
Modelling
Velocity distribution
Form factors
Boundary layers
Turbulence structure
Language English
License https://www.cambridge.org/core/terms
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-b7fb89a708bfc43be70cb52528b9ef705fb052d6f054a36367cfa2086913c4743
Notes ArticleID:00311
PII:S0022112010003113
ark:/67375/6GQ-H7RRRC40-M
istex:FF36D4E4691962987B3EEDF38E7D5284B346984C
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 750069081
PQPubID 34769
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_kth_26680
proquest_miscellaneous_815535820
proquest_miscellaneous_1642301068
proquest_journals_750069081
pascalfrancis_primary_23252639
crossref_citationtrail_10_1017_S0022112010003113
crossref_primary_10_1017_S0022112010003113
istex_primary_ark_67375_6GQ_H7RRRC40_M
cambridge_journals_10_1017_S0022112010003113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100925
PublicationDateYYYYMMDD 2010-09-25
PublicationDate_xml – month: 09
  year: 2010
  text: 20100925
  day: 25
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2010
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0022112010003113_ref8
S0022112010003113_ref10
S0022112010003113_ref9
Schlatter (S0022112010003113_ref22) 2009; 54
S0022112010003113_ref4
S0022112010003113_ref14
Tsukahara (S0022112010003113_ref28) 2005
S0022112010003113_ref5
S0022112010003113_ref13
S0022112010003113_ref6
S0022112010003113_ref12
S0022112010003113_ref11
S0022112010003113_ref7
S0022112010003113_ref18
S0022112010003113_ref17
S0022112010003113_ref16
S0022112010003113_ref19
S0022112010003113_ref1
S0022112010003113_ref2
S0022112010003113_ref3
S0022112010003113_ref21
S0022112010003113_ref20
S0022112010003113_ref25
S0022112010003113_ref24
S0022112010003113_ref23
S0022112010003113_ref29
S0022112010003113_ref27
Smits (S0022112010003113_ref26) 1983; 27
Khujadze (S0022112010003113_ref15) 2007
References_xml – ident: S0022112010003113_ref9
  doi: 10.1017/S0022112005006440
– ident: S0022112010003113_ref4
  doi: 10.1063/1.866783
– ident: S0022112010003113_ref27
  doi: 10.1017/S0022112088000345
– ident: S0022112010003113_ref13
  doi: 10.1016/S0142-727X(99)00014-4
– ident: S0022112010003113_ref20
– ident: S0022112010003113_ref24
  doi: 10.1016/j.ijheatfluidflow.2009.12.011
– ident: S0022112010003113_ref5
  doi: 10.1016/j.ijheatfluidflow.2009.06.004
– volume: 54
  start-page: 59
  year: 2009
  ident: S0022112010003113_ref22
  article-title: High-Reynolds number turbulent boundary layers studied by numerical simulation
  publication-title: Bull. Am. Phys. Soc.
– ident: S0022112010003113_ref7
  doi: 10.1017/S0022112091000691
– ident: S0022112010003113_ref18
  doi: 10.1063/1.2972935
– ident: S0022112010003113_ref23
  doi: 10.1063/1.3139294
– start-page: 935
  volume-title: Proceedings of the Fourth International Symposium on Turbulence and Shear Flow Phenomena
  year: 2005
  ident: S0022112010003113_ref28
  doi: 10.1615/TSFP4.1550
– ident: S0022112010003113_ref11
  doi: 10.1016/S0142-727X(02)00164-9
– ident: S0022112010003113_ref17
  doi: 10.1006/jcph.1998.5882
– start-page: 443
  volume-title: Proceedingsof the Fifth International Symposium on Turbulence and Shear Flow Phenomena
  year: 2007
  ident: S0022112010003113_ref15
  doi: 10.1615/TSFP5.680
– ident: S0022112010003113_ref14
  doi: 10.1007/s00162-004-0149-x
– ident: S0022112010003113_ref8
  doi: 10.1016/0376-0421(95)00007-0
– ident: S0022112010003113_ref16
  doi: 10.1023/A:1020404706293
– ident: S0022112010003113_ref2
  doi: 10.1063/1.1570830
– ident: S0022112010003113_ref21
– ident: S0022112010003113_ref1
  doi: 10.1016/j.ijheatfluidflow.2004.02.010
– ident: S0022112010003113_ref12
  doi: 10.1098/rspa.1995.0125
– ident: S0022112010003113_ref6
  doi: 10.1088/0169-5983/41/2/021404
– ident: S0022112010003113_ref29
  doi: 10.1017/S0022112009006624
– ident: S0022112010003113_ref10
  doi: 10.1063/1.2162185
– volume: 27
  start-page: 147
  year: 1983
  ident: S0022112010003113_ref26
  article-title: Low-Reynolds-number turbulent boundary layers in zero and favourable pressure gradients
  publication-title: J. Ship Res.
  doi: 10.5957/jsr.1983.27.3.147
– ident: S0022112010003113_ref3
  doi: 10.1017/S002211200300733X
– ident: S0022112010003113_ref19
  doi: 10.1017/S0022112004001788
– ident: S0022112010003113_ref25
  doi: 10.1016/j.jcp.2009.02.031
SSID ssj0013097
Score 2.547521
Snippet Statistics obtained from seven different direct numerical simulations (DNSs) pertaining to a canonical turbulent boundary layer (TBL) under zero pressure...
SourceID swepub
proquest
pascalfrancis
crossref
istex
cambridge
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116
SubjectTerms Boundary conditions
Boundary layer
Boundary layer and shear turbulence
Boundary layers
Computer simulation
Engineering mechanics
Exact sciences and technology
Fluid dynamics
Fluid flow
Fluid mechanics
Friction
Fundamental areas of phenomenology (including applications)
Inflow
Mathematical models
Numerical analysis
Physics
Statistical analysis
Strömningsmekanik
TECHNOLOGY
TEKNIKVETENSKAP
Teknisk mekanik
Turbulence
turbulence simulation
Turbulence simulation and modeling
Turbulent boundary layer
turbulent boundary layers
Turbulent flow
Turbulent flows, convection, and heat transfer
Title Assessment of direct numerical simulation data of turbulent boundary layers
URI https://www.cambridge.org/core/product/identifier/S0022112010003113/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-H7RRRC40-M/fulltext.pdf
https://www.proquest.com/docview/750069081
https://www.proquest.com/docview/1642301068
https://www.proquest.com/docview/815535820
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26680
Volume 659
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD5irZDggUsBEQaVkYAHRLTcfMkTKtu6CugEhaG9RbETw7TSjqaV4N9zTuKmqxB9dWwlto99PvucfB_ACyGMQMeGu19hjZ-ktvARHOV-GIc2CmSZ8pT-HR6fitFZ8v6cn7vcnMqlVa73xHqjLuaG7sgP0LMRqa4K31798kk0ioKrTkFjD7q4AyvVge6749NPk00YIUjlmi4cgUUb1qw5o7GQyuiCOw5J3mBDrrDlpLo03r8paTKvcNxsI3ixjUivs4zWnml4D-44SMkGjQ3chxvlrAd3HbxkbvFWPbh9jXuwBzfr3E9TPYAPg5adk80ta5wcm62aWM6UVRc_ncYXo3xSqoN-Sq_IXzFdyzIt_rBpTuD9IZwNj78ejnynseAbzqOlr6XVKs1loLQ1SaxLGRjNIx4pnZZWBtzqgEeFsAjt8ljEQhqbR3gOSsPYJAg_HkFnNp-Vj4HJsuA2SfKIxyJRkUlFSjFDW8QagUEiPHjTDnDmVkqVNVlmMvtnPjwI1nOQGcdXTrIZ011NXrdNrhqyjl2VX9UT29bMF5eU5SZ5Jk4-ZyM5mUwOkyAbe9Dfmvm2AYJRHiHC82B_bQqbfrX26sHz9ikuXYrH5LNyvsKu49kvpjO58oD9p44iXSeOMM2Dl42Rta8nYvCji2-DbL74nl0uf2SItVTwZOfH7MOtJv0h9SP-FDrLxap8hqhqqfuwp4YnfegOjsYfv_TdSvoL2hob_w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4amxDjgUsBEQbDSIwHRETqxHbygFC10XV0nUS1ob2F2InHtNKOphXsR_EfOSe3rkL0ba-p3VyOfb7PPsffAXgtpZEIbOj9UmvcILKpi-Qocdt-23JPZZGI6Ozw4Ej2ToLPp-J0Df7UZ2EorbL2iYWjTieG9sjfI7KRqG7Y_nj506WiURRcrStolKOin139whVb_uFgD827w3n30_Fuz62KCrhGCD5ztbI6jBLlhdqawNeZ8owWXPBQR5lVnrDaEzyVFrlM4ktfKmMTjsQ_avsmQLzF_70FG4GPQE4H07v7i6CFF6lanBxpTBNELRSq8SJdo-10v03FFBZSDkuQuEHW_U0pmkmOVrJleY1l_ntd07TAwe4DuFcRWNYpR9xDWMvGLbhfkVlWuYq8BXevKR224HaRaWryR9DvNFqgbGJZCalsPC8jRyOWn_-oKooxyl6lNoiKek7oyHRRBGp6xUYJLRUew8mNfPwnsD6ejLOnwFSWChsECRe-DEJuIhlRhNKmvkYaEkgH3jUfOK7mZR6XOW0q_sceDni1DWJTqaNTkY7Rqi5vmy6XpTTIqsZvCsM2LZPpBeXUKRHL_S9xTw2Hw93AiwcObC9ZvumA1Fdw5JMObNVDYfFezexw4FXzKzoKiv4k42wyx1fHlaZPOwChA-w_bUKqIiWQFDqwUw6y5vYkQ753_rUTT6Zn8cXse4zMLvSerXyYl3Cndzw4jA8PjvpbsFkmXkQuF89hfTadZy-Qz830djGLGHy76Wn7F1BIVHU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+direct+numerical+simulation+data+of+turbulent+boundary+layers&rft.jtitle=Journal+of+fluid+mechanics&rft.au=SCHLATTER%2C+PHILIPP&rft.au=%C3%96RL%C3%9C%2C+RAMIS&rft.date=2010-09-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=659&rft.spage=116&rft.epage=126&rft_id=info:doi/10.1017%2FS0022112010003113&rft.externalDocID=10_1017_S0022112010003113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon