Comparing the Rates of Retinal Nerve Fiber Layer and Ganglion Cell–Inner Plexiform Layer Loss in Healthy Eyes and in Glaucoma Eyes

To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes. Cohort study. The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjec...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of ophthalmology Vol. 178; pp. 38 - 50
Main Authors Hammel, Naama, Belghith, Akram, Weinreb, Robert N., Medeiros, Felipe A., Mendoza, Nadia, Zangwill, Linda M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2017
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes. Cohort study. The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models. The median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (−0.98 μm/year [95% confidence interval (CI), −1.20 to −0.76]) and normalized global circumpapillary RNFL change (−1.7%/year [95% CI, −2.1 to −1.3]) were significantly faster than average macular GCIPL change (−0.57 μm/year [(95% CI, −0.73 to −0.41]) and normalized macular GCIPL change (−1.3%/year [95% CI, −1.7 to −0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all P < .05). In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma.
AbstractList To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes. Cohort study. The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models. The median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (−0.98 μm/year [95% confidence interval (CI), −1.20 to −0.76]) and normalized global circumpapillary RNFL change (−1.7%/year [95% CI, −2.1 to −1.3]) were significantly faster than average macular GCIPL change (−0.57 μm/year [(95% CI, −0.73 to −0.41]) and normalized macular GCIPL change (−1.3%/year [95% CI, −1.7 to −0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all P < .05). In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma.
To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes. Cohort study. The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models. The median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (-0.98 μm/year [95% confidence interval (CI), -1.20 to -0.76]) and normalized global circumpapillary RNFL change (-1.7%/year [95% CI, -2.1 to -1.3]) were significantly faster than average macular GCIPL change (-0.57 μm/year [(95% CI, -0.73 to -0.41]) and normalized macular GCIPL change (-1.3%/year [95% CI, -1.7 to -0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all P < .05). In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma.
To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes.PURPOSETo compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes.Cohort study.DESIGNCohort study.The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models.METHODSThe rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models.The median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (-0.98 μm/year [95% confidence interval (CI), -1.20 to -0.76]) and normalized global circumpapillary RNFL change (-1.7%/year [95% CI, -2.1 to -1.3]) were significantly faster than average macular GCIPL change (-0.57 μm/year [(95% CI, -0.73 to -0.41]) and normalized macular GCIPL change (-1.3%/year [95% CI, -1.7 to -0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all P < .05).RESULTSThe median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (-0.98 μm/year [95% confidence interval (CI), -1.20 to -0.76]) and normalized global circumpapillary RNFL change (-1.7%/year [95% CI, -2.1 to -1.3]) were significantly faster than average macular GCIPL change (-0.57 μm/year [(95% CI, -0.73 to -0.41]) and normalized macular GCIPL change (-1.3%/year [95% CI, -1.7 to -0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all P < .05).In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma.CONCLUSIONSIn this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma.
Purpose To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes. Design Cohort study. Methods The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models. Results The median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (−0.98 μm/year [95% confidence interval (CI), −1.20 to −0.76]) and normalized global circumpapillary RNFL change (−1.7%/year [95% CI, −2.1 to −1.3]) were significantly faster than average macular GCIPL change (−0.57 μm/year [(95% CI, −0.73 to −0.41]) and normalized macular GCIPL change (−1.3%/year [95% CI, −1.7 to −0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, allP< .05). Conclusions In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma.
Abstract Purpose To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes. Design Cohort study. Methods The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed effects models. Results The median follow-up time and number of visits were 1.7 years and 6 visits, and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL rates of loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (-0.98 μm/year (95% CI, -1.20 to -0.76)) and normalized global circumpapillary RNFL change (-1.7 %/year (95% CI, -2.1 to -1.3) were significantly faster than average macular GCIPL change (-0.57 μm/year (95% CI, -0.73 to -0.41)) and normalized macular GCIPL change (-1.3 %/year (95% CI, -1.7 to -0.9)). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all p<0.05). Conclusions In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss in early, moderate and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma.
Author Mendoza, Nadia
Weinreb, Robert N.
Hammel, Naama
Medeiros, Felipe A.
Zangwill, Linda M.
Belghith, Akram
Author_xml – sequence: 1
  givenname: Naama
  surname: Hammel
  fullname: Hammel, Naama
– sequence: 2
  givenname: Akram
  surname: Belghith
  fullname: Belghith, Akram
– sequence: 3
  givenname: Robert N.
  surname: Weinreb
  fullname: Weinreb, Robert N.
– sequence: 4
  givenname: Felipe A.
  surname: Medeiros
  fullname: Medeiros, Felipe A.
– sequence: 5
  givenname: Nadia
  surname: Mendoza
  fullname: Mendoza, Nadia
– sequence: 6
  givenname: Linda M.
  surname: Zangwill
  fullname: Zangwill, Linda M.
  email: lzangwill@ucsd.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28315655$$D View this record in MEDLINE/PubMed
BookMark eNqFUtFqFDEUDVKx2-oH-CIBX3zZNZnMTCYIgizttrCoVH0OmcydNmMm2SYzxX3zwT_wD_0SM-4WYcFKICE355xwz7kn6Mh5Bwg9p2RBCS1fdwvV-UVGKF8QtiCkeoRmtOJiTitBj9CMEJLNBRP5MTqJsUvXkuf8CTrOKkaLsihm6MfS9xsVjLvGww3gKzVAxL7FVzAYpyx-D-EO8LmpIeC12qZduQavlLu2xju8BGt_ff956Vx6-Wjhm2l96PfItY8RG4cvQNnhZovPtkl7oqfayqpR-179KT5Fj1tlIzzbn6foy_nZ5-XFfP1hdbl8t57rosiGuSprrduG8yyjtCoYh6wVgvG8aXJNq6wEXlOhap7TvGB1xRpRtLRmTDd5VaqKnaJXO91N8LcjxEH2JurUgnLgxygn72hahCToywNo58eQHEkoQSgreF6IhHqxR411D43cBNOrsJX3_iYA3wF0SGYEaKU2gxqSdUNQxkpK5JSk7GRKUk5JSsJkSjIx6QHzXvwhzpsdB5KJdwaCjNqA09CYAHqQjTcPst8esLU1zmhlv0IK6W__MmaSyE_TdE3DRTkjlGZTs-LfAv_5_DfCMd0R
CitedBy_id crossref_primary_10_1002_cne_25483
crossref_primary_10_1016_j_oftal_2022_05_002
crossref_primary_10_1038_s41433_024_03103_3
crossref_primary_10_1186_s12886_024_03837_4
crossref_primary_10_1136_bjophthalmol_2019_314899
crossref_primary_10_1001_jamaophthalmol_2021_1812
crossref_primary_10_1016_j_apjo_2024_100123
crossref_primary_10_1016_j_ajo_2019_11_002
crossref_primary_10_1001_jamaophthalmol_2022_3450
crossref_primary_10_1097_IAE_0000000000003613
crossref_primary_10_1016_j_pdpdt_2021_102335
crossref_primary_10_1016_j_ogla_2021_07_009
crossref_primary_10_1016_j_ophtha_2019_03_016
crossref_primary_10_1038_s41598_020_75599_0
crossref_primary_10_1111_ceo_14044
crossref_primary_10_1016_j_ajo_2020_05_019
crossref_primary_10_1016_j_ajo_2021_11_029
crossref_primary_10_1001_jamaophthalmol_2018_3160
crossref_primary_10_1080_02713683_2019_1610179
crossref_primary_10_1167_iovs_65_12_5
crossref_primary_10_1016_j_pdpdt_2021_102563
crossref_primary_10_1111_aos_14553
crossref_primary_10_1016_j_ogla_2021_01_003
crossref_primary_10_1016_j_ajo_2022_07_011
crossref_primary_10_1016_j_ophtha_2019_08_015
crossref_primary_10_1364_BOE_10_001822
crossref_primary_10_1016_j_ophtha_2020_06_067
crossref_primary_10_1136_bmjophth_2022_001120
crossref_primary_10_1167_iovs_17_23387
crossref_primary_10_1016_j_ophtha_2017_07_015
crossref_primary_10_1097_IJG_0000000000001620
crossref_primary_10_1016_j_ophtha_2020_03_019
crossref_primary_10_1016_j_survophthal_2020_03_002
crossref_primary_10_1016_j_ogla_2023_03_008
crossref_primary_10_1016_j_ogla_2022_03_007
crossref_primary_10_1080_08820538_2021_1922711
crossref_primary_10_1016_j_ajo_2021_05_016
crossref_primary_10_1371_journal_pone_0247401
crossref_primary_10_1167_tvst_13_8_12
crossref_primary_10_17116_oftalma2023139011122
crossref_primary_10_1016_j_xops_2022_100187
crossref_primary_10_1016_j_ajo_2018_11_012
crossref_primary_10_1016_j_ajo_2023_12_002
crossref_primary_10_1136_bmjophth_2023_001256
crossref_primary_10_1080_02713683_2024_2327087
crossref_primary_10_1007_s00417_019_04325_y
crossref_primary_10_1016_j_ogla_2022_06_006
crossref_primary_10_1016_j_ogla_2022_06_004
crossref_primary_10_1007_s10792_024_03214_6
crossref_primary_10_1523_JNEUROSCI_0844_21_2021
crossref_primary_10_1016_j_ogla_2022_08_014
crossref_primary_10_1111_ceo_14471
crossref_primary_10_1136_bjo_2024_325746
crossref_primary_10_1007_s10792_021_01840_y
crossref_primary_10_1016_j_ajo_2022_08_030
crossref_primary_10_3390_jcm13175318
crossref_primary_10_1007_s10462_024_10736_z
crossref_primary_10_1007_s00417_018_4093_7
crossref_primary_10_1016_j_preteyeres_2024_101246
crossref_primary_10_1371_journal_pone_0222347
crossref_primary_10_1016_j_ajo_2018_02_002
crossref_primary_10_1016_j_ophtha_2017_12_027
crossref_primary_10_1016_j_xops_2024_100601
crossref_primary_10_1016_j_ajo_2017_12_012
crossref_primary_10_1038_s41598_020_59118_9
crossref_primary_10_1111_nyas_15043
crossref_primary_10_1371_journal_pone_0278925
crossref_primary_10_1097_IJG_0000000000001990
crossref_primary_10_1111_aos_15283
crossref_primary_10_1111_ceo_13826
crossref_primary_10_1089_cyber_2022_0296
crossref_primary_10_1016_j_ajo_2019_04_020
crossref_primary_10_1007_s00417_021_05185_1
crossref_primary_10_1136_practneurol_2020_002824
crossref_primary_10_1016_j_artmed_2021_102132
crossref_primary_10_1136_bjo_2023_324916
crossref_primary_10_1167_iovs_18_25296
crossref_primary_10_1136_bjo_2022_321603
crossref_primary_10_1155_2019_8162825
crossref_primary_10_1001_jamaophthalmol_2023_0005
crossref_primary_10_1016_j_ajo_2023_05_003
crossref_primary_10_1016_j_ajo_2020_09_026
crossref_primary_10_1097_IJG_0000000000002197
crossref_primary_10_1007_s10384_024_01049_3
crossref_primary_10_1001_jamaophthalmol_2019_2537
crossref_primary_10_3390_biology10040260
crossref_primary_10_1016_j_ophtha_2019_12_030
crossref_primary_10_1016_j_ajo_2019_04_034
crossref_primary_10_1016_j_ajo_2024_07_025
crossref_primary_10_1111_aos_15787
crossref_primary_10_1016_j_ophtha_2025_01_014
crossref_primary_10_1038_s41598_020_58465_x
crossref_primary_10_1038_s41598_019_56387_x
crossref_primary_10_1016_j_oftale_2022_08_003
crossref_primary_10_1136_bjophthalmol_2018_313595
crossref_primary_10_1111_opo_13255
crossref_primary_10_3390_jcm11010175
crossref_primary_10_1136_bjophthalmol_2017_310869
crossref_primary_10_1159_000525512
crossref_primary_10_1111_aos_14291
crossref_primary_10_1016_j_jfo_2019_03_001
crossref_primary_10_1016_j_ajo_2022_01_019
crossref_primary_10_5005_jp_journals_10078_1409
Cites_doi 10.1016/j.ophtha.2013.07.021
10.1016/S0161-6420(98)92743-9
10.1167/iovs.09-4350
10.1167/iovs.11-7833
10.1016/j.ajo.2015.01.011
10.1167/iovs.08-2712
10.1016/j.ophtha.2009.05.025
10.1016/j.ajo.2009.01.021
10.1016/j.ophtha.2007.01.023
10.1016/j.preteyeres.2012.08.003
10.1136/bjo.2010.186924
10.1001/archopht.1980.01020040905024
10.1167/iovs.15-18929
10.1007/s00417-010-1585-5
10.1001/archophthalmol.2009.187
10.1016/j.ophtha.2012.09.039
10.1167/iovs.13-13130
10.1016/j.ophtha.2004.10.020
10.1097/IJG.0000000000000046
10.1016/j.ophtha.2011.06.013
10.1167/iovs.09-5053
10.1167/iovs.11-7962
10.1016/j.ophtha.2013.10.044
10.1016/j.ophtha.2009.04.013
10.1002/cne.903000103
10.1016/j.ophtha.2011.01.026
10.1136/bjo.2006.099069
10.1016/j.ophtha.2008.12.062
10.1016/j.ophtha.2009.01.004
10.1001/archophthalmol.2010.58
10.1016/S0140-6736(04)16257-0
10.1016/S0161-6420(02)01564-6
10.1016/j.ajo.2012.04.022
10.1001/jama.2014.3192
10.1001/archopht.121.1.41
10.1167/iovs.13-11676
10.1016/j.ophtha.2003.05.023
10.1371/journal.pone.0125957
10.1038/eye.2010.139
10.1136/bjo.81.10.840
10.1167/iovs.61.1.1
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jun 1, 2017
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jun 1, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
DOI 10.1016/j.ajo.2017.03.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-1891
EndPage 50
ExternalDocumentID 28315655
10_1016_j_ajo_2017_03_008
S0002939417301125
1_s2_0_S0002939417301125
Genre Journal Article
Comparative Study
GeographicLocations United States--US
California
GeographicLocations_xml – name: United States--US
– name: California
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1CY
1P~
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHTB
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABCQX
ABDPE
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABPEJ
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OF-
OPF
OQ~
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSZ
SV3
T5K
UNMZH
UV1
VH1
WH7
WOW
X7M
XPP
Z5R
ZGI
ZXP
~G-
3V.
7RV
7X7
8FI
AACTN
AFCTW
AFKRA
AFKWA
AJOXV
AMFUW
AZQEC
BENPR
FYUFA
GUQSH
M1P
M2O
PKN
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
G8K
LCYCR
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c552t-a6bccfd7722118537e2f99374dd4c1826e7b19ab741453b83d95f1b33cd486a83
IEDL.DBID .~1
ISSN 0002-9394
1879-1891
IngestDate Tue Aug 05 10:06:06 EDT 2025
Sat Jul 26 02:02:58 EDT 2025
Wed Feb 19 02:00:05 EST 2025
Tue Jul 01 03:25:28 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Fri Feb 23 02:33:00 EST 2024
Tue Feb 25 19:57:50 EST 2025
Tue Aug 26 17:24:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords rate of change
circumpapillary RNFL
aging
macular GCIPL
glaucoma
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-a6bccfd7722118537e2f99374dd4c1826e7b19ab741453b83d95f1b33cd486a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 28315655
PQID 1901357459
PQPubID 41749
PageCount 13
ParticipantIDs proquest_miscellaneous_1879191900
proquest_journals_1901357459
pubmed_primary_28315655
crossref_citationtrail_10_1016_j_ajo_2017_03_008
crossref_primary_10_1016_j_ajo_2017_03_008
elsevier_sciencedirect_doi_10_1016_j_ajo_2017_03_008
elsevier_clinicalkeyesjournals_1_s2_0_S0002939417301125
elsevier_clinicalkey_doi_10_1016_j_ajo_2017_03_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationTitle American journal of ophthalmology
PublicationTitleAlternate Am J Ophthalmol
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Curcio, Allen (bib11) 1990; 300
Yang, Tatham, Weinreb, Medeiros, Liu, Zangwill (bib41) 2015; 10
Jonas, Schmidt, Muller-Bergh, Schlotzer-Schrehardt, Naumann (bib19) 1992; 33
Kerrigan-Baumrind, Quigley, Pease, Kerrigan, Mitchell (bib27) 2000; 41
Lisboa, Paranhos, Weinreb, Zangwill, Leite, Medeiros (bib18) 2013; 54
Gao, Hollyfield (bib20) 1992; 33
Medeiros, Alencar, Zangwill, Sample, Weinreb (bib35) 2009; 116
Alencar, Zangwill, Weinreb (bib37) 2010; 51
Weinreb, Khaw (bib1) 2004; 363
Garas, Vargha, Hollo (bib14) 2011; 25
Medeiros, Zangwill, Anderson (bib28) 2012; 154
Kanadani, Hood, Grippo (bib9) 2006; 90
Tan, Chopra, Lu (bib16) 2009; 116
Leung, Ye, Weinreb, Yu, Lai, Lam (bib25) 2013; 120
Garway-Heath, Wollstein, Hitchings (bib26) 1997; 81
Mwanza, Budenz, Godfrey (bib40) 2014; 121
Na, Sung, Baek, Kim, Shon, Jung (bib29) 2015; 24
Hood, Raza, de Moraes, Liebmann, Ritch (bib12) 2013; 32
Belghith, Medeiros, Bowd (bib42) 2016; 57
Weinreb, Aung, Medeiros (bib2) 2014; 311
Khachatryan, Medeiros, Sharpsten (bib33) 2015; 159
Guedes, Schuman, Hertzmark (bib3) 2003; 110
Sung, Kim, Wollstein, Folio, Kook, Schuman (bib5) 2011; 95
Zeimer, Asrani, Zou, Quigley, Jampel (bib6) 1998; 105
Sample, Girkin, Zangwill (bib30) 2009; 127
Hood, Slobodnick, Raza, de Moraes, Teng, Ritch (bib39) 2014; 55
Tanito, Itai, Ohira, Chihara (bib10) 2004; 111
Greenfield, Bagga, Knighton (bib8) 2003; 121
Schulze, Lamparter, Pfeiffer, Berisha, Schmidtmann, Hoffmann (bib13) 2011; 249
Kim, Lee, Seong, Kim, An, Kim (bib15) 2010; 51
Girkin, McGwin, Sinai (bib24) 2011; 118
Racette, Liebmann, Girkin (bib31) 2010; 128
Leung, Cheung, Weinreb (bib4) 2009; 116
Dolman, McCormick, Drance (bib21) 1980; 98
Sung, Wollstein, Bilonick (bib23) 2009; 116
Leung, Chiu, Weinreb (bib43) 2011; 118
Mwanza, Oakley, Budenz, Chang, Knight, Feuer (bib38) 2011; 52
Na, Sung, Baek, Sun, Lee (bib17) 2011; 52
Medeiros, Lisboa, Weinreb, Liebmann, Girkin, Zangwill (bib32) 2013; 120
Leung, Chan, Yung (bib7) 2005; 112
Parikh, Parikh, Sekhar, Prabakaran, Babu, Thomas (bib22) 2007; 114
Medeiros, Alencar, Zangwill (bib34) 2009; 50
Medeiros, Alencar, Zangwill, Sample, Susanna, Weinreb (bib36) 2009; 148
Garas (10.1016/j.ajo.2017.03.008_bib14) 2011; 25
Sung (10.1016/j.ajo.2017.03.008_bib23) 2009; 116
Na (10.1016/j.ajo.2017.03.008_bib29) 2015; 24
Sample (10.1016/j.ajo.2017.03.008_bib30) 2009; 127
Garway-Heath (10.1016/j.ajo.2017.03.008_bib26) 1997; 81
Kanadani (10.1016/j.ajo.2017.03.008_bib9) 2006; 90
Khachatryan (10.1016/j.ajo.2017.03.008_bib33) 2015; 159
Medeiros (10.1016/j.ajo.2017.03.008_bib32) 2013; 120
Belghith (10.1016/j.ajo.2017.03.008_bib42) 2016; 57
Sung (10.1016/j.ajo.2017.03.008_bib5) 2011; 95
Greenfield (10.1016/j.ajo.2017.03.008_bib8) 2003; 121
Medeiros (10.1016/j.ajo.2017.03.008_bib35) 2009; 116
Tan (10.1016/j.ajo.2017.03.008_bib16) 2009; 116
Leung (10.1016/j.ajo.2017.03.008_bib25) 2013; 120
Girkin (10.1016/j.ajo.2017.03.008_bib24) 2011; 118
Leung (10.1016/j.ajo.2017.03.008_bib7) 2005; 112
Kerrigan-Baumrind (10.1016/j.ajo.2017.03.008_bib27) 2000; 41
Zeimer (10.1016/j.ajo.2017.03.008_bib6) 1998; 105
Medeiros (10.1016/j.ajo.2017.03.008_bib28) 2012; 154
Weinreb (10.1016/j.ajo.2017.03.008_bib2) 2014; 311
Jonas (10.1016/j.ajo.2017.03.008_bib19) 1992; 33
Hood (10.1016/j.ajo.2017.03.008_bib39) 2014; 55
Racette (10.1016/j.ajo.2017.03.008_bib31) 2010; 128
Medeiros (10.1016/j.ajo.2017.03.008_bib36) 2009; 148
Yang (10.1016/j.ajo.2017.03.008_bib41) 2015; 10
Tanito (10.1016/j.ajo.2017.03.008_bib10) 2004; 111
Medeiros (10.1016/j.ajo.2017.03.008_bib34) 2009; 50
Mwanza (10.1016/j.ajo.2017.03.008_bib38) 2011; 52
Guedes (10.1016/j.ajo.2017.03.008_bib3) 2003; 110
Curcio (10.1016/j.ajo.2017.03.008_bib11) 1990; 300
Gao (10.1016/j.ajo.2017.03.008_bib20) 1992; 33
Na (10.1016/j.ajo.2017.03.008_bib17) 2011; 52
Schulze (10.1016/j.ajo.2017.03.008_bib13) 2011; 249
Lisboa (10.1016/j.ajo.2017.03.008_bib18) 2013; 54
Weinreb (10.1016/j.ajo.2017.03.008_bib1) 2004; 363
Parikh (10.1016/j.ajo.2017.03.008_bib22) 2007; 114
Hood (10.1016/j.ajo.2017.03.008_bib12) 2013; 32
Kim (10.1016/j.ajo.2017.03.008_bib15) 2010; 51
Leung (10.1016/j.ajo.2017.03.008_bib4) 2009; 116
Leung (10.1016/j.ajo.2017.03.008_bib43) 2011; 118
Dolman (10.1016/j.ajo.2017.03.008_bib21) 1980; 98
Alencar (10.1016/j.ajo.2017.03.008_bib37) 2010; 51
Mwanza (10.1016/j.ajo.2017.03.008_bib40) 2014; 121
References_xml – volume: 52
  start-page: 8094
  year: 2011
  end-page: 8101
  ident: bib17
  article-title: Macular and retinal nerve fiber layer thickness: which is more helpful in the diagnosis of glaucoma?
  publication-title: Invest Ophthalmol Vis Sci
– volume: 54
  start-page: 3417
  year: 2013
  end-page: 3425
  ident: bib18
  article-title: Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 128
  start-page: 551
  year: 2010
  end-page: 559
  ident: bib31
  article-title: African Descent and Glaucoma Evaluation Study (ADAGES): III. Ancestry differences in visual function in healthy eyes
  publication-title: Arch Ophthalmol
– volume: 51
  start-page: 4646
  year: 2010
  end-page: 4651
  ident: bib15
  article-title: Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 121
  start-page: 41
  year: 2003
  end-page: 46
  ident: bib8
  article-title: Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography
  publication-title: Arch Ophthalmol
– volume: 50
  start-page: 1675
  year: 2009
  end-page: 1681
  ident: bib34
  article-title: Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation
  publication-title: Invest Ophthalmol Vis Sci
– volume: 55
  start-page: 632
  year: 2014
  end-page: 649
  ident: bib39
  article-title: Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region
  publication-title: Invest Ophthalmol Vis Sci
– volume: 57
  start-page: 511
  year: 2016
  end-page: 518
  ident: bib42
  article-title: Structural change can be detected in advanced-glaucoma eyes
  publication-title: Invest Ophthalmol Vis Sci
– volume: 114
  start-page: 921
  year: 2007
  end-page: 926
  ident: bib22
  article-title: Normal age-related decay of retinal nerve fiber layer thickness
  publication-title: Ophthalmology
– volume: 116
  start-page: 2305
  year: 2009
  end-page: 2314
  ident: bib16
  article-title: Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography
  publication-title: Ophthalmology
– volume: 154
  start-page: 814
  year: 2012
  end-page: 824e1
  ident: bib28
  article-title: Estimating the rate of retinal ganglion cell loss in glaucoma
  publication-title: Am J Ophthalmol
– volume: 25
  start-page: 57
  year: 2011
  end-page: 65
  ident: bib14
  article-title: Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma
  publication-title: Eye (Lond)
– volume: 116
  start-page: 1257
  year: 2009
  end-page: 1263
  ident: bib4
  article-title: Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study
  publication-title: Ophthalmology
– volume: 41
  start-page: 741
  year: 2000
  end-page: 748
  ident: bib27
  article-title: Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons
  publication-title: Invest Ophthalmol Vis Sci
– volume: 120
  start-page: 736
  year: 2013
  end-page: 744
  ident: bib32
  article-title: Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma
  publication-title: Ophthalmology
– volume: 24
  start-page: 278
  year: 2015
  end-page: 285
  ident: bib29
  article-title: Rates and patterns of macular and circumpapillary retinal nerve fiber layer thinning in preperimetric and perimetric glaucomatous eyes
  publication-title: J Glaucoma
– volume: 111
  start-page: 265
  year: 2004
  end-page: 275
  ident: bib10
  article-title: Reduction of posterior pole retinal thickness in glaucoma detected using the Retinal Thickness Analyzer
  publication-title: Ophthalmology
– volume: 98
  start-page: 2053
  year: 1980
  end-page: 2058
  ident: bib21
  article-title: Aging of the optic nerve
  publication-title: Arch Ophthalmol
– volume: 148
  start-page: 155
  year: 2009
  end-page: 163e1
  ident: bib36
  article-title: Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation
  publication-title: Am J Ophthalmol
– volume: 121
  start-page: 849
  year: 2014
  end-page: 854
  ident: bib40
  article-title: Diagnostic performance of optical coherence tomography ganglion cell–inner plexiform layer thickness measurements in early glaucoma
  publication-title: Ophthalmology
– volume: 127
  start-page: 1136
  year: 2009
  end-page: 1145
  ident: bib30
  article-title: The African Descent and Glaucoma Evaluation Study (ADAGES): design and baseline data
  publication-title: Arch Ophthalmol
– volume: 118
  start-page: 1558
  year: 2011
  end-page: 1562
  ident: bib43
  article-title: Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography
  publication-title: Ophthalmology
– volume: 116
  start-page: 1119
  year: 2009
  end-page: 1124
  ident: bib23
  article-title: Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head
  publication-title: Ophthalmology
– volume: 105
  start-page: 224
  year: 1998
  end-page: 231
  ident: bib6
  article-title: Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study
  publication-title: Ophthalmology
– volume: 110
  start-page: 177
  year: 2003
  end-page: 189
  ident: bib3
  article-title: Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes
  publication-title: Ophthalmology
– volume: 300
  start-page: 5
  year: 1990
  end-page: 25
  ident: bib11
  article-title: Topography of ganglion cells in human retina
  publication-title: J Comp Neurol
– volume: 363
  start-page: 1711
  year: 2004
  end-page: 1720
  ident: bib1
  article-title: Primary open-angle glaucoma
  publication-title: Lancet
– volume: 118
  start-page: 2403
  year: 2011
  end-page: 2408
  ident: bib24
  article-title: Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography
  publication-title: Ophthalmology
– volume: 311
  start-page: 1901
  year: 2014
  end-page: 1911
  ident: bib2
  article-title: The pathophysiology and treatment of glaucoma: a review
  publication-title: JAMA
– volume: 95
  start-page: 909
  year: 2011
  end-page: 914
  ident: bib5
  article-title: Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis
  publication-title: Br J Ophthalmol
– volume: 112
  start-page: 391
  year: 2005
  end-page: 400
  ident: bib7
  article-title: Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study
  publication-title: Ophthalmology
– volume: 116
  start-page: 1125
  year: 2009
  end-page: 1133
  ident: bib35
  article-title: The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma
  publication-title: Ophthalmology
– volume: 52
  start-page: 8323
  year: 2011
  end-page: 8329
  ident: bib38
  article-title: Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 249
  start-page: 1039
  year: 2011
  end-page: 1045
  ident: bib13
  article-title: Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography
  publication-title: Graefes Arch Clin Exp Ophthalmol
– volume: 33
  start-page: 1
  year: 1992
  end-page: 17
  ident: bib20
  article-title: Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells
  publication-title: Invest Ophthalmol Vis Sci
– volume: 90
  start-page: 1393
  year: 2006
  end-page: 1397
  ident: bib9
  article-title: Structural and functional assessment of the macular region in patients with glaucoma
  publication-title: Br J Ophthalmol
– volume: 10
  start-page: e0125957
  year: 2015
  ident: bib41
  article-title: Diagnostic ability of macular ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography
  publication-title: PLoS One
– volume: 51
  start-page: 3531
  year: 2010
  end-page: 3539
  ident: bib37
  article-title: A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 32
  start-page: 1
  year: 2013
  end-page: 21
  ident: bib12
  article-title: Glaucomatous damage of the macula
  publication-title: Prog Retin Eye Res
– volume: 159
  start-page: 777
  year: 2015
  end-page: 787
  ident: bib33
  article-title: The African Descent and Glaucoma Evaluation Study (ADAGES): predictors of visual field damage in glaucoma suspects
  publication-title: Am J Ophthalmol
– volume: 81
  start-page: 840
  year: 1997
  end-page: 845
  ident: bib26
  article-title: Aging changes of the optic nerve head in relation to open angle glaucoma
  publication-title: Br J Ophthalmol
– volume: 120
  start-page: 2485
  year: 2013
  end-page: 2492
  ident: bib25
  article-title: Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression
  publication-title: Ophthalmology
– volume: 33
  start-page: 2012
  year: 1992
  end-page: 2018
  ident: bib19
  article-title: Human optic nerve fiber count and optic disc size
  publication-title: Invest Ophthalmol Vis Sci
– volume: 120
  start-page: 2485
  issue: 12
  year: 2013
  ident: 10.1016/j.ajo.2017.03.008_bib25
  article-title: Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.07.021
– volume: 105
  start-page: 224
  issue: 2
  year: 1998
  ident: 10.1016/j.ajo.2017.03.008_bib6
  article-title: Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(98)92743-9
– volume: 51
  start-page: 3531
  issue: 7
  year: 2010
  ident: 10.1016/j.ajo.2017.03.008_bib37
  article-title: A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.09-4350
– volume: 33
  start-page: 2012
  issue: 6
  year: 1992
  ident: 10.1016/j.ajo.2017.03.008_bib19
  article-title: Human optic nerve fiber count and optic disc size
  publication-title: Invest Ophthalmol Vis Sci
– volume: 52
  start-page: 8094
  issue: 11
  year: 2011
  ident: 10.1016/j.ajo.2017.03.008_bib17
  article-title: Macular and retinal nerve fiber layer thickness: which is more helpful in the diagnosis of glaucoma?
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.11-7833
– volume: 159
  start-page: 777
  issue: 4
  year: 2015
  ident: 10.1016/j.ajo.2017.03.008_bib33
  article-title: The African Descent and Glaucoma Evaluation Study (ADAGES): predictors of visual field damage in glaucoma suspects
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2015.01.011
– volume: 50
  start-page: 1675
  issue: 4
  year: 2009
  ident: 10.1016/j.ajo.2017.03.008_bib34
  article-title: Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.08-2712
– volume: 116
  start-page: 2305
  issue: 12
  year: 2009
  ident: 10.1016/j.ajo.2017.03.008_bib16
  article-title: Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.05.025
– volume: 148
  start-page: 155
  issue: 1
  year: 2009
  ident: 10.1016/j.ajo.2017.03.008_bib36
  article-title: Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2009.01.021
– volume: 114
  start-page: 921
  issue: 5
  year: 2007
  ident: 10.1016/j.ajo.2017.03.008_bib22
  article-title: Normal age-related decay of retinal nerve fiber layer thickness
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2007.01.023
– volume: 32
  start-page: 1
  year: 2013
  ident: 10.1016/j.ajo.2017.03.008_bib12
  article-title: Glaucomatous damage of the macula
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2012.08.003
– volume: 95
  start-page: 909
  issue: 7
  year: 2011
  ident: 10.1016/j.ajo.2017.03.008_bib5
  article-title: Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2010.186924
– volume: 98
  start-page: 2053
  issue: 11
  year: 1980
  ident: 10.1016/j.ajo.2017.03.008_bib21
  article-title: Aging of the optic nerve
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.1980.01020040905024
– volume: 57
  start-page: 511
  issue: 9
  year: 2016
  ident: 10.1016/j.ajo.2017.03.008_bib42
  article-title: Structural change can be detected in advanced-glaucoma eyes
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.15-18929
– volume: 249
  start-page: 1039
  issue: 7
  year: 2011
  ident: 10.1016/j.ajo.2017.03.008_bib13
  article-title: Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-010-1585-5
– volume: 127
  start-page: 1136
  issue: 9
  year: 2009
  ident: 10.1016/j.ajo.2017.03.008_bib30
  article-title: The African Descent and Glaucoma Evaluation Study (ADAGES): design and baseline data
  publication-title: Arch Ophthalmol
  doi: 10.1001/archophthalmol.2009.187
– volume: 120
  start-page: 736
  issue: 4
  year: 2013
  ident: 10.1016/j.ajo.2017.03.008_bib32
  article-title: Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.09.039
– volume: 55
  start-page: 632
  issue: 2
  year: 2014
  ident: 10.1016/j.ajo.2017.03.008_bib39
  article-title: Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-13130
– volume: 112
  start-page: 391
  issue: 3
  year: 2005
  ident: 10.1016/j.ajo.2017.03.008_bib7
  article-title: Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2004.10.020
– volume: 41
  start-page: 741
  issue: 3
  year: 2000
  ident: 10.1016/j.ajo.2017.03.008_bib27
  article-title: Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons
  publication-title: Invest Ophthalmol Vis Sci
– volume: 24
  start-page: 278
  issue: 4
  year: 2015
  ident: 10.1016/j.ajo.2017.03.008_bib29
  article-title: Rates and patterns of macular and circumpapillary retinal nerve fiber layer thinning in preperimetric and perimetric glaucomatous eyes
  publication-title: J Glaucoma
  doi: 10.1097/IJG.0000000000000046
– volume: 118
  start-page: 2403
  issue: 12
  year: 2011
  ident: 10.1016/j.ajo.2017.03.008_bib24
  article-title: Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2011.06.013
– volume: 51
  start-page: 4646
  issue: 9
  year: 2010
  ident: 10.1016/j.ajo.2017.03.008_bib15
  article-title: Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.09-5053
– volume: 52
  start-page: 8323
  issue: 11
  year: 2011
  ident: 10.1016/j.ajo.2017.03.008_bib38
  article-title: Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.11-7962
– volume: 121
  start-page: 849
  issue: 4
  year: 2014
  ident: 10.1016/j.ajo.2017.03.008_bib40
  article-title: Diagnostic performance of optical coherence tomography ganglion cell–inner plexiform layer thickness measurements in early glaucoma
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.10.044
– volume: 116
  start-page: 1257
  issue: 7
  year: 2009
  ident: 10.1016/j.ajo.2017.03.008_bib4
  article-title: Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.04.013
– volume: 300
  start-page: 5
  issue: 1
  year: 1990
  ident: 10.1016/j.ajo.2017.03.008_bib11
  article-title: Topography of ganglion cells in human retina
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903000103
– volume: 118
  start-page: 1558
  issue: 8
  year: 2011
  ident: 10.1016/j.ajo.2017.03.008_bib43
  article-title: Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2011.01.026
– volume: 90
  start-page: 1393
  issue: 11
  year: 2006
  ident: 10.1016/j.ajo.2017.03.008_bib9
  article-title: Structural and functional assessment of the macular region in patients with glaucoma
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2006.099069
– volume: 116
  start-page: 1125
  issue: 6
  year: 2009
  ident: 10.1016/j.ajo.2017.03.008_bib35
  article-title: The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2008.12.062
– volume: 116
  start-page: 1119
  issue: 6
  year: 2009
  ident: 10.1016/j.ajo.2017.03.008_bib23
  article-title: Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.01.004
– volume: 128
  start-page: 551
  issue: 5
  year: 2010
  ident: 10.1016/j.ajo.2017.03.008_bib31
  article-title: African Descent and Glaucoma Evaluation Study (ADAGES): III. Ancestry differences in visual function in healthy eyes
  publication-title: Arch Ophthalmol
  doi: 10.1001/archophthalmol.2010.58
– volume: 363
  start-page: 1711
  issue: 9422
  year: 2004
  ident: 10.1016/j.ajo.2017.03.008_bib1
  article-title: Primary open-angle glaucoma
  publication-title: Lancet
  doi: 10.1016/S0140-6736(04)16257-0
– volume: 110
  start-page: 177
  issue: 1
  year: 2003
  ident: 10.1016/j.ajo.2017.03.008_bib3
  article-title: Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(02)01564-6
– volume: 154
  start-page: 814
  issue: 5
  year: 2012
  ident: 10.1016/j.ajo.2017.03.008_bib28
  article-title: Estimating the rate of retinal ganglion cell loss in glaucoma
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2012.04.022
– volume: 311
  start-page: 1901
  issue: 18
  year: 2014
  ident: 10.1016/j.ajo.2017.03.008_bib2
  article-title: The pathophysiology and treatment of glaucoma: a review
  publication-title: JAMA
  doi: 10.1001/jama.2014.3192
– volume: 121
  start-page: 41
  issue: 1
  year: 2003
  ident: 10.1016/j.ajo.2017.03.008_bib8
  article-title: Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.121.1.41
– volume: 54
  start-page: 3417
  issue: 5
  year: 2013
  ident: 10.1016/j.ajo.2017.03.008_bib18
  article-title: Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-11676
– volume: 111
  start-page: 265
  issue: 2
  year: 2004
  ident: 10.1016/j.ajo.2017.03.008_bib10
  article-title: Reduction of posterior pole retinal thickness in glaucoma detected using the Retinal Thickness Analyzer
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2003.05.023
– volume: 10
  start-page: e0125957
  issue: 5
  year: 2015
  ident: 10.1016/j.ajo.2017.03.008_bib41
  article-title: Diagnostic ability of macular ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125957
– volume: 25
  start-page: 57
  issue: 1
  year: 2011
  ident: 10.1016/j.ajo.2017.03.008_bib14
  article-title: Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma
  publication-title: Eye (Lond)
  doi: 10.1038/eye.2010.139
– volume: 81
  start-page: 840
  issue: 10
  year: 1997
  ident: 10.1016/j.ajo.2017.03.008_bib26
  article-title: Aging changes of the optic nerve head in relation to open angle glaucoma
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.81.10.840
– volume: 33
  start-page: 1
  issue: 1
  year: 1992
  ident: 10.1016/j.ajo.2017.03.008_bib20
  article-title: Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.61.1.1
SSID ssj0006747
Score 2.5244927
Snippet To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL) change over time in...
Abstract Purpose To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL)...
To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over time in...
Purpose To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 38
SubjectTerms Adult
Age
Aged
Aged, 80 and over
Assessment centers
Automation
Cornea
Disease Progression
Female
Follow-Up Studies
Glaucoma
Glaucoma - diagnosis
Glaucoma - physiopathology
Human subjects
Humans
Intraocular Pressure - physiology
Male
Middle Aged
Nerve Fibers - pathology
Ophthalmology
Optic Disk - pathology
Optic nerve
Optics
Prospective Studies
Retina
Retinal Ganglion Cells - pathology
Time Factors
Tomography
Tomography, Optical Coherence - methods
Visual Acuity
Visual Fields - physiology
Young Adult
Title Comparing the Rates of Retinal Nerve Fiber Layer and Ganglion Cell–Inner Plexiform Layer Loss in Healthy Eyes and in Glaucoma Eyes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0002939417301125
https://www.clinicalkey.es/playcontent/1-s2.0-S0002939417301125
https://dx.doi.org/10.1016/j.ajo.2017.03.008
https://www.ncbi.nlm.nih.gov/pubmed/28315655
https://www.proquest.com/docview/1901357459
https://www.proquest.com/docview/1879191900
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRUJcEP8ESmUkTkihiX-S-Fitut1Cu0IVlXqz7MRGW62yFbt76AVx4A14Q56EmcTZCkGLxDHOTGzZY8_neD4PwJsaJ1EjdUhdpjgdM2ZpFao85b7nYYba03_Ik2kxOZPvz9X5FowGLgyFVca1v1_Tu9U6luzF3ty7nM2I45uhr9Iy74yUE9FcypKs_N3X6zCPopTlAIFJejjZ7GK87AXx__Iy3nN6k2-6CXt2Pmj8AO5H8Mj2-_Y9hC3fPoK7J_F4_DF8H_VZBdvPDHEdOyUcyRaBnRKvGRWnFN7IxhQkwo4tgm1m24YdWqLyLlo28vP5z28_jigbF_tIN2USoo2Sx9hiNmtZz1u6YgdX-G1Sx7LDuV1jB9qu8AmcjQ8-jSZpTLOQ1krxVWoLV9ehQZiNm0H03qXngVCLbBpZ0_bDly7X1iH2kEq4SjRahdwJUTeyKmwlnsJ2u2j9c2DC8aJ2mW6E5dIilLCiKXzgVgfKvOASyIYONnW8g5xSYczNEGx2YXBMDI2JyYTBMUng7Ublsr-A4zZhPoyaGZiluBYadA-3KZV_U_LLOJuXJjdLbjLzh8UlIDeavxntvyrcGQzKXNeBwEyoUiqdwOvNa5zrdIBjW79Yo0xVatxf6yxL4FlviJs-QZiIW3GlXvxfm17CPXrqg-B2YHv1Ze1fIdxaud1uPu3Cnf2jD5PpL8vvJuI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRcEG8CBYzECSlq4kcex2rV7S7dXaGqlXqz7MRBW62yVXf30FsP_AP-Ib-EmcQJQtAicbU9sTUez3yO5wHwscBDVMq8Cm2kOD0zRmFWZXHIXRuHWRWO_kPO5sn4TH4-V-c7MOxiYcit0uv-Vqc32tq37Htu7l8uFhTjG6GtymXcCClX92CXslOpAeweTI7H814hJ6lMOxRMBN3jZuPmZS4oBDBOfarT28zTbfCzMUOjx_DI40d20C7xCey4-incn_kX8mfwbdgWFqy_MoR27ISgJFtV7IRCm5FwTh6ObER-ImxqEG8zU5fsyFA076pmQ7dc_rj5PqGCXOwLJcskUOtHTnHFbFGzNnTpmh1e47eJHNuOlmaLPDRN43M4Gx2eDsehr7QQFkrxTWgSWxRViUgb74NowFPHKwIusixlQTcQl9o4Nxbhh1TCZqLMVRVbIYpSZonJxAsY1KvavQImLE8KG-WlMFwaRBNGlImruMkrKr5gA4g6BuvCpyGnahhL3fmbXWjcE017oiOhcU8C-NSTXLY5OO4azLtd011wKapDjRbiLqL0b0Ru7Q_0Wsd6zXWk_xC6AGRP-Zvc_mvCvU6g9K85EJsJlUqVB_Ch78bjTm84pnarLY7J0hyv2HkUBfCyFcSeJ4gU8Tau1Ov_W9N7eDA-nU31dDI_fgMPqaf1iduDweZq694i-trYd_50_QTURimT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+the+Rates+of+Retinal+Nerve+Fiber+Layer+and+Ganglion+Cell%E2%80%93Inner+Plexiform+Layer+Loss+in+Healthy+Eyes+and+in+Glaucoma+Eyes&rft.jtitle=American+journal+of+ophthalmology&rft.au=Hammel%2C+Naama&rft.au=Belghith%2C+Akram&rft.au=Weinreb%2C+Robert+N.&rft.au=Medeiros%2C+Felipe+A.&rft.date=2017-06-01&rft.pub=Elsevier+Inc&rft.issn=0002-9394&rft.volume=178&rft.spage=38&rft.epage=50&rft_id=info:doi/10.1016%2Fj.ajo.2017.03.008&rft.externalDocID=S0002939417301125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon