Comparing the Rates of Retinal Nerve Fiber Layer and Ganglion Cell–Inner Plexiform Layer Loss in Healthy Eyes and in Glaucoma Eyes
To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes. Cohort study. The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjec...
Saved in:
Published in | American journal of ophthalmology Vol. 178; pp. 38 - 50 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes.
Cohort study.
The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models.
The median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (−0.98 μm/year [95% confidence interval (CI), −1.20 to −0.76]) and normalized global circumpapillary RNFL change (−1.7%/year [95% CI, −2.1 to −1.3]) were significantly faster than average macular GCIPL change (−0.57 μm/year [(95% CI, −0.73 to −0.41]) and normalized macular GCIPL change (−1.3%/year [95% CI, −1.7 to −0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all P < .05).
In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma. |
---|---|
AbstractList | To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes.
Cohort study.
The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models.
The median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (−0.98 μm/year [95% confidence interval (CI), −1.20 to −0.76]) and normalized global circumpapillary RNFL change (−1.7%/year [95% CI, −2.1 to −1.3]) were significantly faster than average macular GCIPL change (−0.57 μm/year [(95% CI, −0.73 to −0.41]) and normalized macular GCIPL change (−1.3%/year [95% CI, −1.7 to −0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all P < .05).
In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma. To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes. Cohort study. The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models. The median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (-0.98 μm/year [95% confidence interval (CI), -1.20 to -0.76]) and normalized global circumpapillary RNFL change (-1.7%/year [95% CI, -2.1 to -1.3]) were significantly faster than average macular GCIPL change (-0.57 μm/year [(95% CI, -0.73 to -0.41]) and normalized macular GCIPL change (-1.3%/year [95% CI, -1.7 to -0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all P < .05). In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma. To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes.PURPOSETo compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes.Cohort study.DESIGNCohort study.The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models.METHODSThe rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models.The median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (-0.98 μm/year [95% confidence interval (CI), -1.20 to -0.76]) and normalized global circumpapillary RNFL change (-1.7%/year [95% CI, -2.1 to -1.3]) were significantly faster than average macular GCIPL change (-0.57 μm/year [(95% CI, -0.73 to -0.41]) and normalized macular GCIPL change (-1.3%/year [95% CI, -1.7 to -0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all P < .05).RESULTSThe median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (-0.98 μm/year [95% confidence interval (CI), -1.20 to -0.76]) and normalized global circumpapillary RNFL change (-1.7%/year [95% CI, -2.1 to -1.3]) were significantly faster than average macular GCIPL change (-0.57 μm/year [(95% CI, -0.73 to -0.41]) and normalized macular GCIPL change (-1.3%/year [95% CI, -1.7 to -0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all P < .05).In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma.CONCLUSIONSIn this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma. Purpose To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes. Design Cohort study. Methods The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed-effects models. Results The median follow-up time and number of visits were 1.7 years and 6 visits and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (−0.98 μm/year [95% confidence interval (CI), −1.20 to −0.76]) and normalized global circumpapillary RNFL change (−1.7%/year [95% CI, −2.1 to −1.3]) were significantly faster than average macular GCIPL change (−0.57 μm/year [(95% CI, −0.73 to −0.41]) and normalized macular GCIPL change (−1.3%/year [95% CI, −1.7 to −0.9]). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, allP< .05). Conclusions In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss was detectable in early, moderate, and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma. Abstract Purpose To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL) change over time in healthy and glaucoma eyes. Design Cohort study. Methods The rates of circumpapillary RNFL and macular GCIPL loss in 28 healthy subjects and 97 glaucoma subjects from the Diagnostic Innovations in Glaucoma Study (DIGS) were compared using mixed effects models. Results The median follow-up time and number of visits were 1.7 years and 6 visits, and 3.2 years and 7 visits for healthy and glaucoma eyes, respectively. Significant rates of loss of both global circumpapillary RNFL and average macular GCIPL thickness were detectable in early and moderate glaucoma eyes; in severe glaucoma eyes, rates of average macular GCIPL rates of loss were significant, but rates of global circumpapillary RNFL loss were not. In glaucoma eyes, mean rates of global circumpapillary RNFL thickness change (-0.98 μm/year (95% CI, -1.20 to -0.76)) and normalized global circumpapillary RNFL change (-1.7 %/year (95% CI, -2.1 to -1.3) were significantly faster than average macular GCIPL change (-0.57 μm/year (95% CI, -0.73 to -0.41)) and normalized macular GCIPL change (-1.3 %/year (95% CI, -1.7 to -0.9)). The rates of global and inferior RNFL change were weakly correlated with global and inferior macular GCIPL change (r ranges from 0.16 to 0.23, all p<0.05). Conclusions In this cohort, the rate of circumpapillary RNFL thickness change was faster than macular GCIPL change for glaucoma eyes. Global circumpapillary RNFL thickness loss was detectable in early and moderate glaucoma, and average macular GCIPL thickness loss in early, moderate and severe glaucoma, suggesting that structural changes can be detected in severe glaucoma. |
Author | Mendoza, Nadia Weinreb, Robert N. Hammel, Naama Medeiros, Felipe A. Zangwill, Linda M. Belghith, Akram |
Author_xml | – sequence: 1 givenname: Naama surname: Hammel fullname: Hammel, Naama – sequence: 2 givenname: Akram surname: Belghith fullname: Belghith, Akram – sequence: 3 givenname: Robert N. surname: Weinreb fullname: Weinreb, Robert N. – sequence: 4 givenname: Felipe A. surname: Medeiros fullname: Medeiros, Felipe A. – sequence: 5 givenname: Nadia surname: Mendoza fullname: Mendoza, Nadia – sequence: 6 givenname: Linda M. surname: Zangwill fullname: Zangwill, Linda M. email: lzangwill@ucsd.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28315655$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUtFqFDEUDVKx2-oH-CIBX3zZNZnMTCYIgizttrCoVH0OmcydNmMm2SYzxX3zwT_wD_0SM-4WYcFKICE355xwz7kn6Mh5Bwg9p2RBCS1fdwvV-UVGKF8QtiCkeoRmtOJiTitBj9CMEJLNBRP5MTqJsUvXkuf8CTrOKkaLsihm6MfS9xsVjLvGww3gKzVAxL7FVzAYpyx-D-EO8LmpIeC12qZduQavlLu2xju8BGt_ff956Vx6-Wjhm2l96PfItY8RG4cvQNnhZovPtkl7oqfayqpR-179KT5Fj1tlIzzbn6foy_nZ5-XFfP1hdbl8t57rosiGuSprrduG8yyjtCoYh6wVgvG8aXJNq6wEXlOhap7TvGB1xRpRtLRmTDd5VaqKnaJXO91N8LcjxEH2JurUgnLgxygn72hahCToywNo58eQHEkoQSgreF6IhHqxR411D43cBNOrsJX3_iYA3wF0SGYEaKU2gxqSdUNQxkpK5JSk7GRKUk5JSsJkSjIx6QHzXvwhzpsdB5KJdwaCjNqA09CYAHqQjTcPst8esLU1zmhlv0IK6W__MmaSyE_TdE3DRTkjlGZTs-LfAv_5_DfCMd0R |
CitedBy_id | crossref_primary_10_1002_cne_25483 crossref_primary_10_1016_j_oftal_2022_05_002 crossref_primary_10_1038_s41433_024_03103_3 crossref_primary_10_1186_s12886_024_03837_4 crossref_primary_10_1136_bjophthalmol_2019_314899 crossref_primary_10_1001_jamaophthalmol_2021_1812 crossref_primary_10_1016_j_apjo_2024_100123 crossref_primary_10_1016_j_ajo_2019_11_002 crossref_primary_10_1001_jamaophthalmol_2022_3450 crossref_primary_10_1097_IAE_0000000000003613 crossref_primary_10_1016_j_pdpdt_2021_102335 crossref_primary_10_1016_j_ogla_2021_07_009 crossref_primary_10_1016_j_ophtha_2019_03_016 crossref_primary_10_1038_s41598_020_75599_0 crossref_primary_10_1111_ceo_14044 crossref_primary_10_1016_j_ajo_2020_05_019 crossref_primary_10_1016_j_ajo_2021_11_029 crossref_primary_10_1001_jamaophthalmol_2018_3160 crossref_primary_10_1080_02713683_2019_1610179 crossref_primary_10_1167_iovs_65_12_5 crossref_primary_10_1016_j_pdpdt_2021_102563 crossref_primary_10_1111_aos_14553 crossref_primary_10_1016_j_ogla_2021_01_003 crossref_primary_10_1016_j_ajo_2022_07_011 crossref_primary_10_1016_j_ophtha_2019_08_015 crossref_primary_10_1364_BOE_10_001822 crossref_primary_10_1016_j_ophtha_2020_06_067 crossref_primary_10_1136_bmjophth_2022_001120 crossref_primary_10_1167_iovs_17_23387 crossref_primary_10_1016_j_ophtha_2017_07_015 crossref_primary_10_1097_IJG_0000000000001620 crossref_primary_10_1016_j_ophtha_2020_03_019 crossref_primary_10_1016_j_survophthal_2020_03_002 crossref_primary_10_1016_j_ogla_2023_03_008 crossref_primary_10_1016_j_ogla_2022_03_007 crossref_primary_10_1080_08820538_2021_1922711 crossref_primary_10_1016_j_ajo_2021_05_016 crossref_primary_10_1371_journal_pone_0247401 crossref_primary_10_1167_tvst_13_8_12 crossref_primary_10_17116_oftalma2023139011122 crossref_primary_10_1016_j_xops_2022_100187 crossref_primary_10_1016_j_ajo_2018_11_012 crossref_primary_10_1016_j_ajo_2023_12_002 crossref_primary_10_1136_bmjophth_2023_001256 crossref_primary_10_1080_02713683_2024_2327087 crossref_primary_10_1007_s00417_019_04325_y crossref_primary_10_1016_j_ogla_2022_06_006 crossref_primary_10_1016_j_ogla_2022_06_004 crossref_primary_10_1007_s10792_024_03214_6 crossref_primary_10_1523_JNEUROSCI_0844_21_2021 crossref_primary_10_1016_j_ogla_2022_08_014 crossref_primary_10_1111_ceo_14471 crossref_primary_10_1136_bjo_2024_325746 crossref_primary_10_1007_s10792_021_01840_y crossref_primary_10_1016_j_ajo_2022_08_030 crossref_primary_10_3390_jcm13175318 crossref_primary_10_1007_s10462_024_10736_z crossref_primary_10_1007_s00417_018_4093_7 crossref_primary_10_1016_j_preteyeres_2024_101246 crossref_primary_10_1371_journal_pone_0222347 crossref_primary_10_1016_j_ajo_2018_02_002 crossref_primary_10_1016_j_ophtha_2017_12_027 crossref_primary_10_1016_j_xops_2024_100601 crossref_primary_10_1016_j_ajo_2017_12_012 crossref_primary_10_1038_s41598_020_59118_9 crossref_primary_10_1111_nyas_15043 crossref_primary_10_1371_journal_pone_0278925 crossref_primary_10_1097_IJG_0000000000001990 crossref_primary_10_1111_aos_15283 crossref_primary_10_1111_ceo_13826 crossref_primary_10_1089_cyber_2022_0296 crossref_primary_10_1016_j_ajo_2019_04_020 crossref_primary_10_1007_s00417_021_05185_1 crossref_primary_10_1136_practneurol_2020_002824 crossref_primary_10_1016_j_artmed_2021_102132 crossref_primary_10_1136_bjo_2023_324916 crossref_primary_10_1167_iovs_18_25296 crossref_primary_10_1136_bjo_2022_321603 crossref_primary_10_1155_2019_8162825 crossref_primary_10_1001_jamaophthalmol_2023_0005 crossref_primary_10_1016_j_ajo_2023_05_003 crossref_primary_10_1016_j_ajo_2020_09_026 crossref_primary_10_1097_IJG_0000000000002197 crossref_primary_10_1007_s10384_024_01049_3 crossref_primary_10_1001_jamaophthalmol_2019_2537 crossref_primary_10_3390_biology10040260 crossref_primary_10_1016_j_ophtha_2019_12_030 crossref_primary_10_1016_j_ajo_2019_04_034 crossref_primary_10_1016_j_ajo_2024_07_025 crossref_primary_10_1111_aos_15787 crossref_primary_10_1016_j_ophtha_2025_01_014 crossref_primary_10_1038_s41598_020_58465_x crossref_primary_10_1038_s41598_019_56387_x crossref_primary_10_1016_j_oftale_2022_08_003 crossref_primary_10_1136_bjophthalmol_2018_313595 crossref_primary_10_1111_opo_13255 crossref_primary_10_3390_jcm11010175 crossref_primary_10_1136_bjophthalmol_2017_310869 crossref_primary_10_1159_000525512 crossref_primary_10_1111_aos_14291 crossref_primary_10_1016_j_jfo_2019_03_001 crossref_primary_10_1016_j_ajo_2022_01_019 crossref_primary_10_5005_jp_journals_10078_1409 |
Cites_doi | 10.1016/j.ophtha.2013.07.021 10.1016/S0161-6420(98)92743-9 10.1167/iovs.09-4350 10.1167/iovs.11-7833 10.1016/j.ajo.2015.01.011 10.1167/iovs.08-2712 10.1016/j.ophtha.2009.05.025 10.1016/j.ajo.2009.01.021 10.1016/j.ophtha.2007.01.023 10.1016/j.preteyeres.2012.08.003 10.1136/bjo.2010.186924 10.1001/archopht.1980.01020040905024 10.1167/iovs.15-18929 10.1007/s00417-010-1585-5 10.1001/archophthalmol.2009.187 10.1016/j.ophtha.2012.09.039 10.1167/iovs.13-13130 10.1016/j.ophtha.2004.10.020 10.1097/IJG.0000000000000046 10.1016/j.ophtha.2011.06.013 10.1167/iovs.09-5053 10.1167/iovs.11-7962 10.1016/j.ophtha.2013.10.044 10.1016/j.ophtha.2009.04.013 10.1002/cne.903000103 10.1016/j.ophtha.2011.01.026 10.1136/bjo.2006.099069 10.1016/j.ophtha.2008.12.062 10.1016/j.ophtha.2009.01.004 10.1001/archophthalmol.2010.58 10.1016/S0140-6736(04)16257-0 10.1016/S0161-6420(02)01564-6 10.1016/j.ajo.2012.04.022 10.1001/jama.2014.3192 10.1001/archopht.121.1.41 10.1167/iovs.13-11676 10.1016/j.ophtha.2003.05.023 10.1371/journal.pone.0125957 10.1038/eye.2010.139 10.1136/bjo.81.10.840 10.1167/iovs.61.1.1 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jun 1, 2017 |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jun 1, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
DOI | 10.1016/j.ajo.2017.03.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-1891 |
EndPage | 50 |
ExternalDocumentID | 28315655 10_1016_j_ajo_2017_03_008 S0002939417301125 1_s2_0_S0002939417301125 |
Genre | Journal Article Comparative Study |
GeographicLocations | United States--US California |
GeographicLocations_xml | – name: United States--US – name: California |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1CY 1P~ 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAHTB AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABCQX ABDPE ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABOCM ABPEJ ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J5H K-O KOM L7B M41 MO0 N4W N9A O-L O9- OAUVE OF- OPF OQ~ OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SPCBC SSH SSZ SV3 T5K UNMZH UV1 VH1 WH7 WOW X7M XPP Z5R ZGI ZXP ~G- 3V. 7RV 7X7 8FI AACTN AFCTW AFKRA AFKWA AJOXV AMFUW AZQEC BENPR FYUFA GUQSH M1P M2O PKN RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG G8K LCYCR ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
ID | FETCH-LOGICAL-c552t-a6bccfd7722118537e2f99374dd4c1826e7b19ab741453b83d95f1b33cd486a83 |
IEDL.DBID | .~1 |
ISSN | 0002-9394 1879-1891 |
IngestDate | Tue Aug 05 10:06:06 EDT 2025 Sat Jul 26 02:02:58 EDT 2025 Wed Feb 19 02:00:05 EST 2025 Tue Jul 01 03:25:28 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Fri Feb 23 02:33:00 EST 2024 Tue Feb 25 19:57:50 EST 2025 Tue Aug 26 17:24:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | rate of change circumpapillary RNFL aging macular GCIPL glaucoma |
Language | English |
License | Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-a6bccfd7722118537e2f99374dd4c1826e7b19ab741453b83d95f1b33cd486a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 28315655 |
PQID | 1901357459 |
PQPubID | 41749 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1879191900 proquest_journals_1901357459 pubmed_primary_28315655 crossref_citationtrail_10_1016_j_ajo_2017_03_008 crossref_primary_10_1016_j_ajo_2017_03_008 elsevier_sciencedirect_doi_10_1016_j_ajo_2017_03_008 elsevier_clinicalkeyesjournals_1_s2_0_S0002939417301125 elsevier_clinicalkey_doi_10_1016_j_ajo_2017_03_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Chicago |
PublicationTitle | American journal of ophthalmology |
PublicationTitleAlternate | Am J Ophthalmol |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Curcio, Allen (bib11) 1990; 300 Yang, Tatham, Weinreb, Medeiros, Liu, Zangwill (bib41) 2015; 10 Jonas, Schmidt, Muller-Bergh, Schlotzer-Schrehardt, Naumann (bib19) 1992; 33 Kerrigan-Baumrind, Quigley, Pease, Kerrigan, Mitchell (bib27) 2000; 41 Lisboa, Paranhos, Weinreb, Zangwill, Leite, Medeiros (bib18) 2013; 54 Gao, Hollyfield (bib20) 1992; 33 Medeiros, Alencar, Zangwill, Sample, Weinreb (bib35) 2009; 116 Alencar, Zangwill, Weinreb (bib37) 2010; 51 Weinreb, Khaw (bib1) 2004; 363 Garas, Vargha, Hollo (bib14) 2011; 25 Medeiros, Zangwill, Anderson (bib28) 2012; 154 Kanadani, Hood, Grippo (bib9) 2006; 90 Tan, Chopra, Lu (bib16) 2009; 116 Leung, Ye, Weinreb, Yu, Lai, Lam (bib25) 2013; 120 Garway-Heath, Wollstein, Hitchings (bib26) 1997; 81 Mwanza, Budenz, Godfrey (bib40) 2014; 121 Na, Sung, Baek, Kim, Shon, Jung (bib29) 2015; 24 Hood, Raza, de Moraes, Liebmann, Ritch (bib12) 2013; 32 Belghith, Medeiros, Bowd (bib42) 2016; 57 Weinreb, Aung, Medeiros (bib2) 2014; 311 Khachatryan, Medeiros, Sharpsten (bib33) 2015; 159 Guedes, Schuman, Hertzmark (bib3) 2003; 110 Sung, Kim, Wollstein, Folio, Kook, Schuman (bib5) 2011; 95 Zeimer, Asrani, Zou, Quigley, Jampel (bib6) 1998; 105 Sample, Girkin, Zangwill (bib30) 2009; 127 Hood, Slobodnick, Raza, de Moraes, Teng, Ritch (bib39) 2014; 55 Tanito, Itai, Ohira, Chihara (bib10) 2004; 111 Greenfield, Bagga, Knighton (bib8) 2003; 121 Schulze, Lamparter, Pfeiffer, Berisha, Schmidtmann, Hoffmann (bib13) 2011; 249 Kim, Lee, Seong, Kim, An, Kim (bib15) 2010; 51 Girkin, McGwin, Sinai (bib24) 2011; 118 Racette, Liebmann, Girkin (bib31) 2010; 128 Leung, Cheung, Weinreb (bib4) 2009; 116 Dolman, McCormick, Drance (bib21) 1980; 98 Sung, Wollstein, Bilonick (bib23) 2009; 116 Leung, Chiu, Weinreb (bib43) 2011; 118 Mwanza, Oakley, Budenz, Chang, Knight, Feuer (bib38) 2011; 52 Na, Sung, Baek, Sun, Lee (bib17) 2011; 52 Medeiros, Lisboa, Weinreb, Liebmann, Girkin, Zangwill (bib32) 2013; 120 Leung, Chan, Yung (bib7) 2005; 112 Parikh, Parikh, Sekhar, Prabakaran, Babu, Thomas (bib22) 2007; 114 Medeiros, Alencar, Zangwill (bib34) 2009; 50 Medeiros, Alencar, Zangwill, Sample, Susanna, Weinreb (bib36) 2009; 148 Garas (10.1016/j.ajo.2017.03.008_bib14) 2011; 25 Sung (10.1016/j.ajo.2017.03.008_bib23) 2009; 116 Na (10.1016/j.ajo.2017.03.008_bib29) 2015; 24 Sample (10.1016/j.ajo.2017.03.008_bib30) 2009; 127 Garway-Heath (10.1016/j.ajo.2017.03.008_bib26) 1997; 81 Kanadani (10.1016/j.ajo.2017.03.008_bib9) 2006; 90 Khachatryan (10.1016/j.ajo.2017.03.008_bib33) 2015; 159 Medeiros (10.1016/j.ajo.2017.03.008_bib32) 2013; 120 Belghith (10.1016/j.ajo.2017.03.008_bib42) 2016; 57 Sung (10.1016/j.ajo.2017.03.008_bib5) 2011; 95 Greenfield (10.1016/j.ajo.2017.03.008_bib8) 2003; 121 Medeiros (10.1016/j.ajo.2017.03.008_bib35) 2009; 116 Tan (10.1016/j.ajo.2017.03.008_bib16) 2009; 116 Leung (10.1016/j.ajo.2017.03.008_bib25) 2013; 120 Girkin (10.1016/j.ajo.2017.03.008_bib24) 2011; 118 Leung (10.1016/j.ajo.2017.03.008_bib7) 2005; 112 Kerrigan-Baumrind (10.1016/j.ajo.2017.03.008_bib27) 2000; 41 Zeimer (10.1016/j.ajo.2017.03.008_bib6) 1998; 105 Medeiros (10.1016/j.ajo.2017.03.008_bib28) 2012; 154 Weinreb (10.1016/j.ajo.2017.03.008_bib2) 2014; 311 Jonas (10.1016/j.ajo.2017.03.008_bib19) 1992; 33 Hood (10.1016/j.ajo.2017.03.008_bib39) 2014; 55 Racette (10.1016/j.ajo.2017.03.008_bib31) 2010; 128 Medeiros (10.1016/j.ajo.2017.03.008_bib36) 2009; 148 Yang (10.1016/j.ajo.2017.03.008_bib41) 2015; 10 Tanito (10.1016/j.ajo.2017.03.008_bib10) 2004; 111 Medeiros (10.1016/j.ajo.2017.03.008_bib34) 2009; 50 Mwanza (10.1016/j.ajo.2017.03.008_bib38) 2011; 52 Guedes (10.1016/j.ajo.2017.03.008_bib3) 2003; 110 Curcio (10.1016/j.ajo.2017.03.008_bib11) 1990; 300 Gao (10.1016/j.ajo.2017.03.008_bib20) 1992; 33 Na (10.1016/j.ajo.2017.03.008_bib17) 2011; 52 Schulze (10.1016/j.ajo.2017.03.008_bib13) 2011; 249 Lisboa (10.1016/j.ajo.2017.03.008_bib18) 2013; 54 Weinreb (10.1016/j.ajo.2017.03.008_bib1) 2004; 363 Parikh (10.1016/j.ajo.2017.03.008_bib22) 2007; 114 Hood (10.1016/j.ajo.2017.03.008_bib12) 2013; 32 Kim (10.1016/j.ajo.2017.03.008_bib15) 2010; 51 Leung (10.1016/j.ajo.2017.03.008_bib4) 2009; 116 Leung (10.1016/j.ajo.2017.03.008_bib43) 2011; 118 Dolman (10.1016/j.ajo.2017.03.008_bib21) 1980; 98 Alencar (10.1016/j.ajo.2017.03.008_bib37) 2010; 51 Mwanza (10.1016/j.ajo.2017.03.008_bib40) 2014; 121 |
References_xml | – volume: 52 start-page: 8094 year: 2011 end-page: 8101 ident: bib17 article-title: Macular and retinal nerve fiber layer thickness: which is more helpful in the diagnosis of glaucoma? publication-title: Invest Ophthalmol Vis Sci – volume: 54 start-page: 3417 year: 2013 end-page: 3425 ident: bib18 article-title: Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 128 start-page: 551 year: 2010 end-page: 559 ident: bib31 article-title: African Descent and Glaucoma Evaluation Study (ADAGES): III. Ancestry differences in visual function in healthy eyes publication-title: Arch Ophthalmol – volume: 51 start-page: 4646 year: 2010 end-page: 4651 ident: bib15 article-title: Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 121 start-page: 41 year: 2003 end-page: 46 ident: bib8 article-title: Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography publication-title: Arch Ophthalmol – volume: 50 start-page: 1675 year: 2009 end-page: 1681 ident: bib34 article-title: Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation publication-title: Invest Ophthalmol Vis Sci – volume: 55 start-page: 632 year: 2014 end-page: 649 ident: bib39 article-title: Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region publication-title: Invest Ophthalmol Vis Sci – volume: 57 start-page: 511 year: 2016 end-page: 518 ident: bib42 article-title: Structural change can be detected in advanced-glaucoma eyes publication-title: Invest Ophthalmol Vis Sci – volume: 114 start-page: 921 year: 2007 end-page: 926 ident: bib22 article-title: Normal age-related decay of retinal nerve fiber layer thickness publication-title: Ophthalmology – volume: 116 start-page: 2305 year: 2009 end-page: 2314 ident: bib16 article-title: Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography publication-title: Ophthalmology – volume: 154 start-page: 814 year: 2012 end-page: 824e1 ident: bib28 article-title: Estimating the rate of retinal ganglion cell loss in glaucoma publication-title: Am J Ophthalmol – volume: 25 start-page: 57 year: 2011 end-page: 65 ident: bib14 article-title: Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma publication-title: Eye (Lond) – volume: 116 start-page: 1257 year: 2009 end-page: 1263 ident: bib4 article-title: Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study publication-title: Ophthalmology – volume: 41 start-page: 741 year: 2000 end-page: 748 ident: bib27 article-title: Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons publication-title: Invest Ophthalmol Vis Sci – volume: 120 start-page: 736 year: 2013 end-page: 744 ident: bib32 article-title: Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma publication-title: Ophthalmology – volume: 24 start-page: 278 year: 2015 end-page: 285 ident: bib29 article-title: Rates and patterns of macular and circumpapillary retinal nerve fiber layer thinning in preperimetric and perimetric glaucomatous eyes publication-title: J Glaucoma – volume: 111 start-page: 265 year: 2004 end-page: 275 ident: bib10 article-title: Reduction of posterior pole retinal thickness in glaucoma detected using the Retinal Thickness Analyzer publication-title: Ophthalmology – volume: 98 start-page: 2053 year: 1980 end-page: 2058 ident: bib21 article-title: Aging of the optic nerve publication-title: Arch Ophthalmol – volume: 148 start-page: 155 year: 2009 end-page: 163e1 ident: bib36 article-title: Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation publication-title: Am J Ophthalmol – volume: 121 start-page: 849 year: 2014 end-page: 854 ident: bib40 article-title: Diagnostic performance of optical coherence tomography ganglion cell–inner plexiform layer thickness measurements in early glaucoma publication-title: Ophthalmology – volume: 127 start-page: 1136 year: 2009 end-page: 1145 ident: bib30 article-title: The African Descent and Glaucoma Evaluation Study (ADAGES): design and baseline data publication-title: Arch Ophthalmol – volume: 118 start-page: 1558 year: 2011 end-page: 1562 ident: bib43 article-title: Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography publication-title: Ophthalmology – volume: 116 start-page: 1119 year: 2009 end-page: 1124 ident: bib23 article-title: Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head publication-title: Ophthalmology – volume: 105 start-page: 224 year: 1998 end-page: 231 ident: bib6 article-title: Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study publication-title: Ophthalmology – volume: 110 start-page: 177 year: 2003 end-page: 189 ident: bib3 article-title: Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes publication-title: Ophthalmology – volume: 300 start-page: 5 year: 1990 end-page: 25 ident: bib11 article-title: Topography of ganglion cells in human retina publication-title: J Comp Neurol – volume: 363 start-page: 1711 year: 2004 end-page: 1720 ident: bib1 article-title: Primary open-angle glaucoma publication-title: Lancet – volume: 118 start-page: 2403 year: 2011 end-page: 2408 ident: bib24 article-title: Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography publication-title: Ophthalmology – volume: 311 start-page: 1901 year: 2014 end-page: 1911 ident: bib2 article-title: The pathophysiology and treatment of glaucoma: a review publication-title: JAMA – volume: 95 start-page: 909 year: 2011 end-page: 914 ident: bib5 article-title: Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis publication-title: Br J Ophthalmol – volume: 112 start-page: 391 year: 2005 end-page: 400 ident: bib7 article-title: Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study publication-title: Ophthalmology – volume: 116 start-page: 1125 year: 2009 end-page: 1133 ident: bib35 article-title: The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma publication-title: Ophthalmology – volume: 52 start-page: 8323 year: 2011 end-page: 8329 ident: bib38 article-title: Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 249 start-page: 1039 year: 2011 end-page: 1045 ident: bib13 article-title: Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography publication-title: Graefes Arch Clin Exp Ophthalmol – volume: 33 start-page: 1 year: 1992 end-page: 17 ident: bib20 article-title: Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells publication-title: Invest Ophthalmol Vis Sci – volume: 90 start-page: 1393 year: 2006 end-page: 1397 ident: bib9 article-title: Structural and functional assessment of the macular region in patients with glaucoma publication-title: Br J Ophthalmol – volume: 10 start-page: e0125957 year: 2015 ident: bib41 article-title: Diagnostic ability of macular ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography publication-title: PLoS One – volume: 51 start-page: 3531 year: 2010 end-page: 3539 ident: bib37 article-title: A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 32 start-page: 1 year: 2013 end-page: 21 ident: bib12 article-title: Glaucomatous damage of the macula publication-title: Prog Retin Eye Res – volume: 159 start-page: 777 year: 2015 end-page: 787 ident: bib33 article-title: The African Descent and Glaucoma Evaluation Study (ADAGES): predictors of visual field damage in glaucoma suspects publication-title: Am J Ophthalmol – volume: 81 start-page: 840 year: 1997 end-page: 845 ident: bib26 article-title: Aging changes of the optic nerve head in relation to open angle glaucoma publication-title: Br J Ophthalmol – volume: 120 start-page: 2485 year: 2013 end-page: 2492 ident: bib25 article-title: Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression publication-title: Ophthalmology – volume: 33 start-page: 2012 year: 1992 end-page: 2018 ident: bib19 article-title: Human optic nerve fiber count and optic disc size publication-title: Invest Ophthalmol Vis Sci – volume: 120 start-page: 2485 issue: 12 year: 2013 ident: 10.1016/j.ajo.2017.03.008_bib25 article-title: Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression publication-title: Ophthalmology doi: 10.1016/j.ophtha.2013.07.021 – volume: 105 start-page: 224 issue: 2 year: 1998 ident: 10.1016/j.ajo.2017.03.008_bib6 article-title: Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study publication-title: Ophthalmology doi: 10.1016/S0161-6420(98)92743-9 – volume: 51 start-page: 3531 issue: 7 year: 2010 ident: 10.1016/j.ajo.2017.03.008_bib37 article-title: A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.09-4350 – volume: 33 start-page: 2012 issue: 6 year: 1992 ident: 10.1016/j.ajo.2017.03.008_bib19 article-title: Human optic nerve fiber count and optic disc size publication-title: Invest Ophthalmol Vis Sci – volume: 52 start-page: 8094 issue: 11 year: 2011 ident: 10.1016/j.ajo.2017.03.008_bib17 article-title: Macular and retinal nerve fiber layer thickness: which is more helpful in the diagnosis of glaucoma? publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.11-7833 – volume: 159 start-page: 777 issue: 4 year: 2015 ident: 10.1016/j.ajo.2017.03.008_bib33 article-title: The African Descent and Glaucoma Evaluation Study (ADAGES): predictors of visual field damage in glaucoma suspects publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2015.01.011 – volume: 50 start-page: 1675 issue: 4 year: 2009 ident: 10.1016/j.ajo.2017.03.008_bib34 article-title: Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.08-2712 – volume: 116 start-page: 2305 issue: 12 year: 2009 ident: 10.1016/j.ajo.2017.03.008_bib16 article-title: Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography publication-title: Ophthalmology doi: 10.1016/j.ophtha.2009.05.025 – volume: 148 start-page: 155 issue: 1 year: 2009 ident: 10.1016/j.ajo.2017.03.008_bib36 article-title: Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2009.01.021 – volume: 114 start-page: 921 issue: 5 year: 2007 ident: 10.1016/j.ajo.2017.03.008_bib22 article-title: Normal age-related decay of retinal nerve fiber layer thickness publication-title: Ophthalmology doi: 10.1016/j.ophtha.2007.01.023 – volume: 32 start-page: 1 year: 2013 ident: 10.1016/j.ajo.2017.03.008_bib12 article-title: Glaucomatous damage of the macula publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2012.08.003 – volume: 95 start-page: 909 issue: 7 year: 2011 ident: 10.1016/j.ajo.2017.03.008_bib5 article-title: Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis publication-title: Br J Ophthalmol doi: 10.1136/bjo.2010.186924 – volume: 98 start-page: 2053 issue: 11 year: 1980 ident: 10.1016/j.ajo.2017.03.008_bib21 article-title: Aging of the optic nerve publication-title: Arch Ophthalmol doi: 10.1001/archopht.1980.01020040905024 – volume: 57 start-page: 511 issue: 9 year: 2016 ident: 10.1016/j.ajo.2017.03.008_bib42 article-title: Structural change can be detected in advanced-glaucoma eyes publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.15-18929 – volume: 249 start-page: 1039 issue: 7 year: 2011 ident: 10.1016/j.ajo.2017.03.008_bib13 article-title: Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography publication-title: Graefes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-010-1585-5 – volume: 127 start-page: 1136 issue: 9 year: 2009 ident: 10.1016/j.ajo.2017.03.008_bib30 article-title: The African Descent and Glaucoma Evaluation Study (ADAGES): design and baseline data publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2009.187 – volume: 120 start-page: 736 issue: 4 year: 2013 ident: 10.1016/j.ajo.2017.03.008_bib32 article-title: Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.09.039 – volume: 55 start-page: 632 issue: 2 year: 2014 ident: 10.1016/j.ajo.2017.03.008_bib39 article-title: Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.13-13130 – volume: 112 start-page: 391 issue: 3 year: 2005 ident: 10.1016/j.ajo.2017.03.008_bib7 article-title: Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2004.10.020 – volume: 41 start-page: 741 issue: 3 year: 2000 ident: 10.1016/j.ajo.2017.03.008_bib27 article-title: Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons publication-title: Invest Ophthalmol Vis Sci – volume: 24 start-page: 278 issue: 4 year: 2015 ident: 10.1016/j.ajo.2017.03.008_bib29 article-title: Rates and patterns of macular and circumpapillary retinal nerve fiber layer thinning in preperimetric and perimetric glaucomatous eyes publication-title: J Glaucoma doi: 10.1097/IJG.0000000000000046 – volume: 118 start-page: 2403 issue: 12 year: 2011 ident: 10.1016/j.ajo.2017.03.008_bib24 article-title: Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography publication-title: Ophthalmology doi: 10.1016/j.ophtha.2011.06.013 – volume: 51 start-page: 4646 issue: 9 year: 2010 ident: 10.1016/j.ajo.2017.03.008_bib15 article-title: Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.09-5053 – volume: 52 start-page: 8323 issue: 11 year: 2011 ident: 10.1016/j.ajo.2017.03.008_bib38 article-title: Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.11-7962 – volume: 121 start-page: 849 issue: 4 year: 2014 ident: 10.1016/j.ajo.2017.03.008_bib40 article-title: Diagnostic performance of optical coherence tomography ganglion cell–inner plexiform layer thickness measurements in early glaucoma publication-title: Ophthalmology doi: 10.1016/j.ophtha.2013.10.044 – volume: 116 start-page: 1257 issue: 7 year: 2009 ident: 10.1016/j.ajo.2017.03.008_bib4 article-title: Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2009.04.013 – volume: 300 start-page: 5 issue: 1 year: 1990 ident: 10.1016/j.ajo.2017.03.008_bib11 article-title: Topography of ganglion cells in human retina publication-title: J Comp Neurol doi: 10.1002/cne.903000103 – volume: 118 start-page: 1558 issue: 8 year: 2011 ident: 10.1016/j.ajo.2017.03.008_bib43 article-title: Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography publication-title: Ophthalmology doi: 10.1016/j.ophtha.2011.01.026 – volume: 90 start-page: 1393 issue: 11 year: 2006 ident: 10.1016/j.ajo.2017.03.008_bib9 article-title: Structural and functional assessment of the macular region in patients with glaucoma publication-title: Br J Ophthalmol doi: 10.1136/bjo.2006.099069 – volume: 116 start-page: 1125 issue: 6 year: 2009 ident: 10.1016/j.ajo.2017.03.008_bib35 article-title: The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma publication-title: Ophthalmology doi: 10.1016/j.ophtha.2008.12.062 – volume: 116 start-page: 1119 issue: 6 year: 2009 ident: 10.1016/j.ajo.2017.03.008_bib23 article-title: Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head publication-title: Ophthalmology doi: 10.1016/j.ophtha.2009.01.004 – volume: 128 start-page: 551 issue: 5 year: 2010 ident: 10.1016/j.ajo.2017.03.008_bib31 article-title: African Descent and Glaucoma Evaluation Study (ADAGES): III. Ancestry differences in visual function in healthy eyes publication-title: Arch Ophthalmol doi: 10.1001/archophthalmol.2010.58 – volume: 363 start-page: 1711 issue: 9422 year: 2004 ident: 10.1016/j.ajo.2017.03.008_bib1 article-title: Primary open-angle glaucoma publication-title: Lancet doi: 10.1016/S0140-6736(04)16257-0 – volume: 110 start-page: 177 issue: 1 year: 2003 ident: 10.1016/j.ajo.2017.03.008_bib3 article-title: Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes publication-title: Ophthalmology doi: 10.1016/S0161-6420(02)01564-6 – volume: 154 start-page: 814 issue: 5 year: 2012 ident: 10.1016/j.ajo.2017.03.008_bib28 article-title: Estimating the rate of retinal ganglion cell loss in glaucoma publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2012.04.022 – volume: 311 start-page: 1901 issue: 18 year: 2014 ident: 10.1016/j.ajo.2017.03.008_bib2 article-title: The pathophysiology and treatment of glaucoma: a review publication-title: JAMA doi: 10.1001/jama.2014.3192 – volume: 121 start-page: 41 issue: 1 year: 2003 ident: 10.1016/j.ajo.2017.03.008_bib8 article-title: Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography publication-title: Arch Ophthalmol doi: 10.1001/archopht.121.1.41 – volume: 54 start-page: 3417 issue: 5 year: 2013 ident: 10.1016/j.ajo.2017.03.008_bib18 article-title: Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.13-11676 – volume: 111 start-page: 265 issue: 2 year: 2004 ident: 10.1016/j.ajo.2017.03.008_bib10 article-title: Reduction of posterior pole retinal thickness in glaucoma detected using the Retinal Thickness Analyzer publication-title: Ophthalmology doi: 10.1016/j.ophtha.2003.05.023 – volume: 10 start-page: e0125957 issue: 5 year: 2015 ident: 10.1016/j.ajo.2017.03.008_bib41 article-title: Diagnostic ability of macular ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography publication-title: PLoS One doi: 10.1371/journal.pone.0125957 – volume: 25 start-page: 57 issue: 1 year: 2011 ident: 10.1016/j.ajo.2017.03.008_bib14 article-title: Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma publication-title: Eye (Lond) doi: 10.1038/eye.2010.139 – volume: 81 start-page: 840 issue: 10 year: 1997 ident: 10.1016/j.ajo.2017.03.008_bib26 article-title: Aging changes of the optic nerve head in relation to open angle glaucoma publication-title: Br J Ophthalmol doi: 10.1136/bjo.81.10.840 – volume: 33 start-page: 1 issue: 1 year: 1992 ident: 10.1016/j.ajo.2017.03.008_bib20 article-title: Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.61.1.1 |
SSID | ssj0006747 |
Score | 2.5244927 |
Snippet | To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL) change over time in... Abstract Purpose To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell–inner plexiform layer (GCIPL)... To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over time in... Purpose To compare the rates of circumpapillary retinal nerve fiber layer (RNFL) and macular retinal ganglion cell-inner plexiform layer (GCIPL) change over... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 38 |
SubjectTerms | Adult Age Aged Aged, 80 and over Assessment centers Automation Cornea Disease Progression Female Follow-Up Studies Glaucoma Glaucoma - diagnosis Glaucoma - physiopathology Human subjects Humans Intraocular Pressure - physiology Male Middle Aged Nerve Fibers - pathology Ophthalmology Optic Disk - pathology Optic nerve Optics Prospective Studies Retina Retinal Ganglion Cells - pathology Time Factors Tomography Tomography, Optical Coherence - methods Visual Acuity Visual Fields - physiology Young Adult |
Title | Comparing the Rates of Retinal Nerve Fiber Layer and Ganglion Cell–Inner Plexiform Layer Loss in Healthy Eyes and in Glaucoma Eyes |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0002939417301125 https://www.clinicalkey.es/playcontent/1-s2.0-S0002939417301125 https://dx.doi.org/10.1016/j.ajo.2017.03.008 https://www.ncbi.nlm.nih.gov/pubmed/28315655 https://www.proquest.com/docview/1901357459 https://www.proquest.com/docview/1879191900 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRUJcEP8ESmUkTkihiX-S-Fitut1Cu0IVlXqz7MRGW62yFbt76AVx4A14Q56EmcTZCkGLxDHOTGzZY8_neD4PwJsaJ1EjdUhdpjgdM2ZpFao85b7nYYba03_Ik2kxOZPvz9X5FowGLgyFVca1v1_Tu9U6luzF3ty7nM2I45uhr9Iy74yUE9FcypKs_N3X6zCPopTlAIFJejjZ7GK87AXx__Iy3nN6k2-6CXt2Pmj8AO5H8Mj2-_Y9hC3fPoK7J_F4_DF8H_VZBdvPDHEdOyUcyRaBnRKvGRWnFN7IxhQkwo4tgm1m24YdWqLyLlo28vP5z28_jigbF_tIN2USoo2Sx9hiNmtZz1u6YgdX-G1Sx7LDuV1jB9qu8AmcjQ8-jSZpTLOQ1krxVWoLV9ehQZiNm0H03qXngVCLbBpZ0_bDly7X1iH2kEq4SjRahdwJUTeyKmwlnsJ2u2j9c2DC8aJ2mW6E5dIilLCiKXzgVgfKvOASyIYONnW8g5xSYczNEGx2YXBMDI2JyYTBMUng7Ublsr-A4zZhPoyaGZiluBYadA-3KZV_U_LLOJuXJjdLbjLzh8UlIDeavxntvyrcGQzKXNeBwEyoUiqdwOvNa5zrdIBjW79Yo0xVatxf6yxL4FlviJs-QZiIW3GlXvxfm17CPXrqg-B2YHv1Ze1fIdxaud1uPu3Cnf2jD5PpL8vvJuI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRcEG8CBYzECSlq4kcex2rV7S7dXaGqlXqz7MRBW62yVXf30FsP_AP-Ib-EmcQJQtAicbU9sTUez3yO5wHwscBDVMq8Cm2kOD0zRmFWZXHIXRuHWRWO_kPO5sn4TH4-V-c7MOxiYcit0uv-Vqc32tq37Htu7l8uFhTjG6GtymXcCClX92CXslOpAeweTI7H814hJ6lMOxRMBN3jZuPmZS4oBDBOfarT28zTbfCzMUOjx_DI40d20C7xCey4-incn_kX8mfwbdgWFqy_MoR27ISgJFtV7IRCm5FwTh6ObER-ImxqEG8zU5fsyFA076pmQ7dc_rj5PqGCXOwLJcskUOtHTnHFbFGzNnTpmh1e47eJHNuOlmaLPDRN43M4Gx2eDsehr7QQFkrxTWgSWxRViUgb74NowFPHKwIusixlQTcQl9o4Nxbhh1TCZqLMVRVbIYpSZonJxAsY1KvavQImLE8KG-WlMFwaRBNGlImruMkrKr5gA4g6BuvCpyGnahhL3fmbXWjcE017oiOhcU8C-NSTXLY5OO4azLtd011wKapDjRbiLqL0b0Ru7Q_0Wsd6zXWk_xC6AGRP-Zvc_mvCvU6g9K85EJsJlUqVB_Ch78bjTm84pnarLY7J0hyv2HkUBfCyFcSeJ4gU8Tau1Ov_W9N7eDA-nU31dDI_fgMPqaf1iduDweZq694i-trYd_50_QTURimT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+the+Rates+of+Retinal+Nerve+Fiber+Layer+and+Ganglion+Cell%E2%80%93Inner+Plexiform+Layer+Loss+in+Healthy+Eyes+and+in+Glaucoma+Eyes&rft.jtitle=American+journal+of+ophthalmology&rft.au=Hammel%2C+Naama&rft.au=Belghith%2C+Akram&rft.au=Weinreb%2C+Robert+N.&rft.au=Medeiros%2C+Felipe+A.&rft.date=2017-06-01&rft.pub=Elsevier+Inc&rft.issn=0002-9394&rft.volume=178&rft.spage=38&rft.epage=50&rft_id=info:doi/10.1016%2Fj.ajo.2017.03.008&rft.externalDocID=S0002939417301125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon |