A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control
[Display omitted] •Different applications demand distinctive active sites in biochar-based catalyst.•Biochar as a support possesses favourable intrinsic features to assist catalysis.•Biochar properties govern reactant access to active sites as the key to catalysis.•Relative significance of the prope...
Saved in:
Published in | Bioresource technology Vol. 246; pp. 254 - 270 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Different applications demand distinctive active sites in biochar-based catalyst.•Biochar as a support possesses favourable intrinsic features to assist catalysis.•Biochar properties govern reactant access to active sites as the key to catalysis.•Relative significance of the properties varies with the active site location.•Catalytic activity of biochar can be improved by various pre- and post-treatments.
This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (–SO3H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future. |
---|---|
AbstractList | This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (-SO3H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future.This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (-SO3H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future. This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (–SO₃H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future. This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (-SO H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future. [Display omitted] •Different applications demand distinctive active sites in biochar-based catalyst.•Biochar as a support possesses favourable intrinsic features to assist catalysis.•Biochar properties govern reactant access to active sites as the key to catalysis.•Relative significance of the properties varies with the active site location.•Catalytic activity of biochar can be improved by various pre- and post-treatments. This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (–SO3H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future. |
Author | Xiong, Xinni Cao, Leichang Yu, Iris K.M. Tsang, Daniel C.W. Zhang, Shicheng Ok, Yong Sik |
Author_xml | – sequence: 1 givenname: Xinni surname: Xiong fullname: Xiong, Xinni organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 2 givenname: Iris K.M. surname: Yu fullname: Yu, Iris K.M. organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 3 givenname: Leichang surname: Cao fullname: Cao, Leichang organization: Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China – sequence: 4 givenname: Daniel C.W. surname: Tsang fullname: Tsang, Daniel C.W. email: dan.tsang@polyu.edu.hk organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China – sequence: 5 givenname: Shicheng surname: Zhang fullname: Zhang, Shicheng organization: Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China – sequence: 6 givenname: Yong Sik surname: Ok fullname: Ok, Yong Sik organization: O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28712780$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rHCEchqWkNJu0XyF47CEzVWfGP9BDQ2iTQqCX9iyO_oZ1ccetOi377euw2UsvexLheV_leW_Q1RxnQOiOkpYSyj_t2tHHVMBuW0aoaAlvKe_eoA2VomuYEvwKbYjipJED66_RTc47QkhHBXuHrpkUlAlJNggecII_Hv7iOOFaabcmNaPJ4LA1xYRjLhlPMWG7hb23JuB8nMsWss_3Kz8tEPAhRbfY4uN8j83s8CGGsKxXbONcUgzv0dvJhAwfXs9b9Ovb15-Pz83Lj6fvjw8vjR0GVhrJFRl7Z4gyTrhBGjl11lhFOylYL5wiXDIjO2c7N45gRmUqz8TIrQPZjd0t-njqrT_6vUAueu-zhRDMDHHJmlUFvVKyZxdRqqpXxSkdKnr3ii7jHpw-JL836ajPFivw-QTYFHNOMGnri1kFlGR80JTodTS90-fR9DqaJlzX0Wqc_xc_v3Ax-OUUhOq0jph0th5mC84nsEW76C9V_ANqz7az |
CitedBy_id | crossref_primary_10_1016_j_fuel_2021_120309 crossref_primary_10_1016_j_biortech_2019_122286 crossref_primary_10_1016_j_fuel_2021_121632 crossref_primary_10_1016_j_chemosphere_2020_128287 crossref_primary_10_1016_j_biortech_2018_12_079 crossref_primary_10_1016_j_chemosphere_2019_124464 crossref_primary_10_1016_j_fuel_2023_128714 crossref_primary_10_1016_j_fuel_2022_126136 crossref_primary_10_1016_j_jclepro_2019_117770 crossref_primary_10_1007_s42452_021_04636_y crossref_primary_10_1016_j_eti_2023_103100 crossref_primary_10_1016_j_envpol_2018_04_084 crossref_primary_10_1007_s42773_019_00006_5 crossref_primary_10_1016_j_chemosphere_2022_134292 crossref_primary_10_1016_j_jaap_2020_104799 crossref_primary_10_1016_j_chemosphere_2021_131969 crossref_primary_10_1016_j_fuel_2021_122616 crossref_primary_10_1016_j_ccst_2022_100059 crossref_primary_10_1016_j_renene_2020_03_113 crossref_primary_10_1039_D0CC07308C crossref_primary_10_1016_j_scitotenv_2020_144608 crossref_primary_10_1016_j_biortech_2019_122050 crossref_primary_10_1016_j_biortech_2018_11_013 crossref_primary_10_3390_app10030918 crossref_primary_10_1007_s10311_023_01582_6 crossref_primary_10_1039_D4VA00109E crossref_primary_10_1016_j_jhazmat_2021_127828 crossref_primary_10_1016_j_scitotenv_2020_142104 crossref_primary_10_3775_jie_99_236 crossref_primary_10_3390_app9061149 crossref_primary_10_1016_j_bej_2022_108360 crossref_primary_10_1016_j_cscee_2023_100473 crossref_primary_10_1016_j_fuel_2019_116204 crossref_primary_10_1016_j_jclepro_2019_04_282 crossref_primary_10_1016_j_biortech_2017_08_044 crossref_primary_10_1016_j_fuproc_2019_106162 crossref_primary_10_1016_j_eti_2021_101841 crossref_primary_10_1021_acssuschemeng_8b05311 crossref_primary_10_1016_j_ijhydene_2019_09_119 crossref_primary_10_1016_j_scitotenv_2019_134115 crossref_primary_10_1002_slct_201901451 crossref_primary_10_1039_C8GC00358K crossref_primary_10_1016_j_scitotenv_2021_147084 crossref_primary_10_1016_j_apcatb_2023_123223 crossref_primary_10_1016_j_cherd_2022_09_024 crossref_primary_10_3390_pr10081542 crossref_primary_10_1016_j_electacta_2023_142351 crossref_primary_10_1016_j_jclepro_2020_122378 crossref_primary_10_1016_j_jhazmat_2019_121649 crossref_primary_10_1016_j_biortech_2021_125251 crossref_primary_10_1016_j_rser_2021_111372 crossref_primary_10_1016_j_scitotenv_2018_05_298 crossref_primary_10_3390_su132414041 crossref_primary_10_1016_j_enconman_2019_112457 crossref_primary_10_1007_s42452_019_1126_8 crossref_primary_10_1016_j_scitotenv_2020_141672 crossref_primary_10_1016_j_conbuildmat_2020_120723 crossref_primary_10_1016_j_psep_2023_10_029 crossref_primary_10_1016_j_cej_2020_126136 crossref_primary_10_1016_j_jaap_2023_106135 crossref_primary_10_1016_j_biortech_2019_122252 crossref_primary_10_1016_j_enconman_2019_112445 crossref_primary_10_1016_j_indcrop_2024_120073 crossref_primary_10_1007_s10562_019_03059_0 crossref_primary_10_1016_j_ijhydene_2024_06_397 crossref_primary_10_1016_j_biortech_2017_12_098 crossref_primary_10_3390_catal12091067 crossref_primary_10_3390_catal12050517 crossref_primary_10_1016_j_biortech_2019_122263 crossref_primary_10_1007_s12649_019_00904_6 crossref_primary_10_1016_j_heliyon_2024_e26637 crossref_primary_10_1016_j_scitotenv_2019_134381 crossref_primary_10_1016_j_envpol_2022_118831 crossref_primary_10_1016_j_envpol_2022_119920 crossref_primary_10_1007_s42773_022_00189_4 crossref_primary_10_1111_sum_12762 crossref_primary_10_5572_ajae_2022_117 crossref_primary_10_3390_catal8090346 crossref_primary_10_1016_j_psep_2019_06_009 crossref_primary_10_1016_j_fuel_2020_119205 crossref_primary_10_1039_D3SU00153A crossref_primary_10_1016_j_apcatb_2021_119938 crossref_primary_10_1038_s41598_024_67997_5 crossref_primary_10_1007_s42773_024_00388_1 crossref_primary_10_1007_s43939_025_00193_y crossref_primary_10_1115_1_4052617 crossref_primary_10_1016_j_fuel_2022_123172 crossref_primary_10_1016_j_biortech_2019_03_028 crossref_primary_10_1039_D0GC00717J crossref_primary_10_1016_j_cemconcomp_2019_103348 crossref_primary_10_1016_j_chemosphere_2022_137238 crossref_primary_10_3390_molecules25143123 crossref_primary_10_1016_j_scitotenv_2019_136215 crossref_primary_10_1016_j_jhazmat_2019_121533 crossref_primary_10_1016_j_cej_2019_121983 crossref_primary_10_1016_j_hazadv_2022_100226 crossref_primary_10_1021_acsomega_0c01970 crossref_primary_10_1016_j_inoche_2025_114078 crossref_primary_10_1016_j_eti_2020_101276 crossref_primary_10_1007_s41660_023_00342_x crossref_primary_10_1088_1742_6596_1763_1_012071 crossref_primary_10_1016_j_fuel_2022_124473 crossref_primary_10_1515_psr_2023_0043 crossref_primary_10_1016_j_jaap_2019_05_012 crossref_primary_10_1007_s11356_023_26541_0 crossref_primary_10_1007_s11356_023_31697_w crossref_primary_10_1002_slct_202200504 crossref_primary_10_1080_15435075_2023_2228886 crossref_primary_10_1016_j_biortech_2019_02_105 crossref_primary_10_1016_j_envpol_2020_115827 crossref_primary_10_1016_j_cej_2019_122937 crossref_primary_10_3390_c6040065 crossref_primary_10_1016_j_molstruc_2022_133237 crossref_primary_10_1016_j_biortech_2019_121802 crossref_primary_10_1016_j_jhazmat_2021_125935 crossref_primary_10_1080_17597269_2023_2215629 crossref_primary_10_1016_j_rser_2019_109582 crossref_primary_10_1016_j_biombioe_2025_107778 crossref_primary_10_1016_j_jclepro_2020_121097 crossref_primary_10_1016_j_envpol_2021_118244 crossref_primary_10_1016_j_jece_2019_103219 crossref_primary_10_1016_j_fuel_2022_125216 crossref_primary_10_1016_j_scitotenv_2019_02_200 crossref_primary_10_1016_j_cattod_2018_02_034 crossref_primary_10_1016_j_ijhydene_2021_11_091 crossref_primary_10_1016_j_jece_2023_109616 crossref_primary_10_3390_c4030047 crossref_primary_10_1016_j_jece_2020_103912 crossref_primary_10_1016_j_chemosphere_2024_142775 crossref_primary_10_1039_C7NJ00742F crossref_primary_10_1016_j_wmb_2023_07_007 crossref_primary_10_1016_j_jclepro_2020_122272 crossref_primary_10_1016_j_seppur_2021_118327 crossref_primary_10_1016_j_ijhydene_2022_11_127 crossref_primary_10_1016_j_jenvman_2025_124547 crossref_primary_10_1007_s10570_020_03192_9 crossref_primary_10_1016_j_btre_2020_e00570 crossref_primary_10_1016_j_biortech_2022_126845 crossref_primary_10_31590_ejosat_858676 crossref_primary_10_1039_D2RA06085J crossref_primary_10_1016_j_apcatb_2023_122886 crossref_primary_10_1016_j_catcom_2023_106741 crossref_primary_10_1016_j_fuel_2020_119411 crossref_primary_10_1016_j_rser_2020_109944 crossref_primary_10_1016_j_diamond_2022_109130 crossref_primary_10_1016_j_envres_2024_118938 crossref_primary_10_3390_catal13091247 crossref_primary_10_1016_j_scitotenv_2021_146037 crossref_primary_10_1016_j_jhazmat_2020_123833 crossref_primary_10_1016_j_jallcom_2021_163287 crossref_primary_10_3390_catal11010003 crossref_primary_10_1016_j_electacta_2020_137583 crossref_primary_10_1002_pat_5823 crossref_primary_10_1016_j_energy_2019_116103 crossref_primary_10_1016_j_psep_2021_03_009 crossref_primary_10_1016_j_envres_2020_109547 crossref_primary_10_1016_j_biortech_2020_123088 crossref_primary_10_1021_acsomega_0c04404 crossref_primary_10_3390_ma17153858 crossref_primary_10_1007_s13399_021_01774_6 crossref_primary_10_1016_j_watres_2018_03_012 crossref_primary_10_1039_D2SE01503J crossref_primary_10_1016_j_bej_2019_107403 crossref_primary_10_1016_j_scitotenv_2021_146448 crossref_primary_10_1016_j_envpol_2019_07_012 crossref_primary_10_1007_s13399_023_04032_z crossref_primary_10_1016_j_scitotenv_2023_166575 crossref_primary_10_1016_j_jaap_2024_106816 crossref_primary_10_1016_j_cej_2018_10_193 crossref_primary_10_1016_j_jhazmat_2019_121243 crossref_primary_10_1016_j_biortech_2023_129587 crossref_primary_10_1016_j_jece_2024_114785 crossref_primary_10_1016_j_rser_2019_109305 crossref_primary_10_1007_s11244_024_01976_y crossref_primary_10_1016_j_scitotenv_2019_136079 crossref_primary_10_1016_j_scitotenv_2021_148756 crossref_primary_10_1016_j_biortech_2021_125424 crossref_primary_10_1515_pac_2021_0106 crossref_primary_10_1002_bbb_2593 crossref_primary_10_1007_s10311_022_01527_5 crossref_primary_10_1007_s42773_022_00150_5 crossref_primary_10_1007_s42773_023_00207_z crossref_primary_10_1016_j_seppur_2021_120118 crossref_primary_10_1007_s11356_022_24124_z crossref_primary_10_1021_acssusresmgt_4c00028 crossref_primary_10_1016_j_chemosphere_2020_128349 crossref_primary_10_1039_C9GC01843C crossref_primary_10_1016_j_jclepro_2020_125221 crossref_primary_10_1016_j_biortech_2018_10_042 crossref_primary_10_1039_C9GC00734B crossref_primary_10_1038_s43586_024_00297_4 crossref_primary_10_1002_ente_202000597 crossref_primary_10_1007_s11368_020_02723_y crossref_primary_10_1016_j_energy_2018_11_055 crossref_primary_10_1016_j_jenvman_2021_113762 crossref_primary_10_1016_j_apcata_2019_117267 crossref_primary_10_1016_j_cattod_2024_114941 crossref_primary_10_1039_D1GC01707A crossref_primary_10_1016_j_scitotenv_2020_137116 crossref_primary_10_1016_j_renene_2021_02_064 crossref_primary_10_1016_j_biotechadv_2023_108181 crossref_primary_10_2166_wst_2022_077 crossref_primary_10_1039_D4GC03071K crossref_primary_10_1016_j_jclepro_2021_128803 crossref_primary_10_1016_j_rser_2023_113302 crossref_primary_10_1016_j_psep_2022_05_056 crossref_primary_10_1007_s11356_023_27416_0 crossref_primary_10_1016_j_cej_2021_132287 crossref_primary_10_1080_10643389_2020_1753632 crossref_primary_10_1016_j_fuel_2024_131678 crossref_primary_10_1016_j_fuproc_2023_107753 crossref_primary_10_1016_j_envres_2020_109340 crossref_primary_10_3389_fchem_2022_1022779 crossref_primary_10_1016_j_fuproc_2021_106782 crossref_primary_10_1016_j_susmat_2020_e00168 crossref_primary_10_3390_catal12020207 crossref_primary_10_1016_j_biortech_2019_121878 crossref_primary_10_1007_s13399_020_00870_3 crossref_primary_10_1016_j_biortech_2018_07_048 crossref_primary_10_1016_j_fuel_2021_122048 crossref_primary_10_1021_acssuschemeng_8b02931 crossref_primary_10_1021_acsenvironau_1c00032 crossref_primary_10_1016_j_seppur_2024_128022 crossref_primary_10_1016_j_clay_2020_105645 crossref_primary_10_1016_j_scitotenv_2020_137415 crossref_primary_10_1016_j_chemosphere_2020_126539 crossref_primary_10_1016_j_jaap_2019_03_006 crossref_primary_10_1016_j_scitotenv_2020_138743 crossref_primary_10_1080_10643389_2018_1518860 crossref_primary_10_1080_09506608_2021_1922047 crossref_primary_10_1016_j_ijbiomac_2023_126656 crossref_primary_10_1016_j_chemosphere_2020_127988 crossref_primary_10_1016_j_jwpe_2024_106341 crossref_primary_10_1016_j_chemosphere_2019_01_132 crossref_primary_10_1016_j_jece_2021_105891 crossref_primary_10_1016_j_cemconcomp_2024_105864 crossref_primary_10_1016_j_jece_2022_109038 crossref_primary_10_1021_acs_iecr_3c02292 crossref_primary_10_1016_j_jenvman_2024_122341 crossref_primary_10_3390_plants11202745 crossref_primary_10_1016_j_energy_2020_119151 crossref_primary_10_1016_j_scitotenv_2022_153555 crossref_primary_10_1080_09542299_2018_1487774 crossref_primary_10_1002_apj_3158 crossref_primary_10_1016_j_biombioe_2021_105978 crossref_primary_10_1021_acssuschemeng_1c02008 crossref_primary_10_1016_j_jhazmat_2019_04_071 crossref_primary_10_1039_D0SE01024C crossref_primary_10_1007_s11356_022_21743_4 crossref_primary_10_3390_catal8110562 crossref_primary_10_1016_j_fuproc_2018_02_013 crossref_primary_10_1016_j_biortech_2020_124100 crossref_primary_10_1016_j_fuel_2022_123643 crossref_primary_10_1016_j_biortech_2018_06_104 crossref_primary_10_1016_j_chemosphere_2024_141715 crossref_primary_10_1016_j_scitotenv_2022_153427 crossref_primary_10_1002_eem2_12074 crossref_primary_10_1016_j_cej_2020_124611 crossref_primary_10_1002_ep_13440 crossref_primary_10_1016_j_biortech_2018_08_065 crossref_primary_10_1002_adsu_201900149 crossref_primary_10_1039_C8GC02466A crossref_primary_10_3390_polym14235244 crossref_primary_10_1007_s10668_020_00970_0 crossref_primary_10_1016_j_chemosphere_2021_131391 crossref_primary_10_1016_j_scitotenv_2019_133943 crossref_primary_10_1007_s10311_019_00885_x crossref_primary_10_1016_j_scitotenv_2020_138751 crossref_primary_10_1016_j_joei_2025_102031 crossref_primary_10_1039_D2RA01897G crossref_primary_10_1002_elsc_202100025 crossref_primary_10_1016_j_jece_2024_115291 crossref_primary_10_1007_s42773_023_00286_y crossref_primary_10_1016_j_jhazmat_2020_124893 crossref_primary_10_1016_j_ijhydene_2021_11_065 crossref_primary_10_1016_j_enconman_2021_113836 crossref_primary_10_1007_s11356_022_24628_8 crossref_primary_10_1016_j_scitotenv_2018_01_037 crossref_primary_10_1016_j_apenergy_2019_01_021 crossref_primary_10_1016_j_ijhydene_2021_05_193 crossref_primary_10_1007_s11356_023_28908_9 crossref_primary_10_1007_s10668_023_03470_z crossref_primary_10_1016_j_jece_2021_105321 crossref_primary_10_1016_j_envpol_2020_115985 crossref_primary_10_1021_acsestwater_2c00046 crossref_primary_10_1016_j_surfin_2024_104770 crossref_primary_10_3390_app10217810 crossref_primary_10_1016_j_chemosphere_2023_139250 crossref_primary_10_1016_j_jclepro_2018_07_199 crossref_primary_10_1016_j_jhazmat_2021_126029 crossref_primary_10_3390_ma17030565 crossref_primary_10_1016_j_jhazmat_2019_121192 crossref_primary_10_1016_j_envint_2019_04_006 crossref_primary_10_1080_10643389_2020_1713030 crossref_primary_10_1002_ange_202302180 crossref_primary_10_1016_j_biombioe_2024_107482 crossref_primary_10_1016_j_jhazmat_2020_123460 crossref_primary_10_55905_cuadv16n1_166 crossref_primary_10_1016_j_catcom_2020_106229 crossref_primary_10_1016_j_mtener_2021_100905 crossref_primary_10_1016_j_cej_2021_130387 crossref_primary_10_1007_s11356_023_30192_6 crossref_primary_10_1016_j_chemosphere_2019_124842 crossref_primary_10_1016_j_biortech_2023_129634 crossref_primary_10_3390_catal12020223 crossref_primary_10_3390_insects15010042 crossref_primary_10_1016_j_scitotenv_2021_146617 crossref_primary_10_1016_j_chemosphere_2018_08_033 crossref_primary_10_2166_wst_2022_332 crossref_primary_10_1016_j_indcrop_2021_113475 crossref_primary_10_3390_nano13061129 crossref_primary_10_1002_anie_202302180 crossref_primary_10_1016_j_cej_2020_125505 crossref_primary_10_1016_j_ijhydene_2018_09_028 crossref_primary_10_1016_j_chemosphere_2019_124732 crossref_primary_10_1007_s44246_023_00035_7 crossref_primary_10_1016_j_biortech_2019_121627 crossref_primary_10_1016_j_biortech_2020_123442 crossref_primary_10_1016_j_biortech_2021_125915 crossref_primary_10_1016_j_scitotenv_2020_136894 crossref_primary_10_1016_j_biortech_2019_122564 crossref_primary_10_1016_j_jclepro_2020_121643 crossref_primary_10_1016_j_scitotenv_2023_167061 crossref_primary_10_3390_catal11080939 crossref_primary_10_3390_pr13020589 crossref_primary_10_1016_j_jclepro_2020_120678 crossref_primary_10_1016_j_xinn_2021_100180 crossref_primary_10_3390_catal13061004 crossref_primary_10_1016_j_renene_2019_03_077 crossref_primary_10_1016_j_tibtech_2022_09_011 crossref_primary_10_1007_s11164_024_05252_2 crossref_primary_10_3390_molecules26237080 crossref_primary_10_1007_s12649_021_01519_6 crossref_primary_10_1016_j_resconrec_2020_105036 crossref_primary_10_1016_j_envint_2019_105376 crossref_primary_10_3390_toxics12040245 crossref_primary_10_1016_j_biortech_2022_127467 crossref_primary_10_1016_j_rser_2020_110365 crossref_primary_10_1016_j_scitotenv_2020_144213 crossref_primary_10_1016_j_renene_2021_03_126 crossref_primary_10_1007_s42823_024_00766_6 crossref_primary_10_1016_j_jhazmat_2021_127663 crossref_primary_10_1016_j_ijhydene_2019_02_226 crossref_primary_10_1016_j_jclepro_2020_121986 crossref_primary_10_1007_s11356_021_13959_7 crossref_primary_10_1016_j_scitotenv_2021_145851 crossref_primary_10_3390_catal11121470 crossref_primary_10_1002_aoc_5913 crossref_primary_10_1021_acssuschemeng_1c06326 crossref_primary_10_1016_j_rineng_2025_104036 crossref_primary_10_1039_D2SE00129B crossref_primary_10_1007_s10668_024_05841_6 crossref_primary_10_1002_cplu_202400246 crossref_primary_10_1016_j_fuel_2021_121227 crossref_primary_10_1016_j_scp_2023_101216 crossref_primary_10_1016_j_egyr_2024_03_015 crossref_primary_10_1039_D0EE03757E crossref_primary_10_1007_s42773_019_00030_5 crossref_primary_10_1039_C9GC03553B crossref_primary_10_1016_j_biortech_2019_121381 crossref_primary_10_1021_acssuschemeng_0c06139 crossref_primary_10_1016_j_energy_2019_01_035 crossref_primary_10_1039_D1GC04746A crossref_primary_10_1016_j_conbuildmat_2023_134736 crossref_primary_10_1016_j_mssp_2020_105088 crossref_primary_10_1016_j_scitotenv_2022_157062 crossref_primary_10_1039_C7SE00553A crossref_primary_10_1039_D4RA02265C crossref_primary_10_1016_j_energy_2018_08_026 crossref_primary_10_1021_acs_energyfuels_9b03247 crossref_primary_10_1002_slct_201901084 crossref_primary_10_1016_j_cep_2023_109419 crossref_primary_10_1016_j_jaap_2022_105608 crossref_primary_10_1016_j_scitotenv_2019_135414 crossref_primary_10_1016_j_envres_2021_112455 crossref_primary_10_1016_j_apcatb_2022_121932 crossref_primary_10_1039_C8EN00968F crossref_primary_10_1016_j_jclepro_2020_122300 crossref_primary_10_3390_horticulturae11010073 crossref_primary_10_1016_j_biortech_2020_123613 crossref_primary_10_1016_j_scitotenv_2020_143679 crossref_primary_10_1016_j_scitotenv_2021_144955 crossref_primary_10_1016_j_biombioe_2021_106245 crossref_primary_10_1016_j_chemosphere_2021_132222 crossref_primary_10_1007_s42773_025_00438_2 crossref_primary_10_1016_j_jhazmat_2019_121827 crossref_primary_10_1016_j_jclepro_2020_121427 crossref_primary_10_1007_s10163_024_02113_3 crossref_primary_10_1021_acssuschemeng_8b02752 crossref_primary_10_1016_j_scitotenv_2020_144204 crossref_primary_10_3390_en16020644 crossref_primary_10_3390_molecules29143286 crossref_primary_10_1039_C9EE00206E crossref_primary_10_1016_j_jaap_2021_105429 crossref_primary_10_1016_j_micromeso_2020_110573 crossref_primary_10_1016_j_envres_2023_118027 crossref_primary_10_1016_j_fuel_2023_127791 crossref_primary_10_1016_j_chemosphere_2019_125664 crossref_primary_10_1016_j_hybadv_2023_100056 crossref_primary_10_1016_j_jhazmat_2022_130076 crossref_primary_10_1016_j_fuproc_2021_106749 crossref_primary_10_3390_catal12121495 |
Cites_doi | 10.1016/j.chemosphere.2014.12.058 10.1002/fuce.201300089 10.1016/j.rser.2017.04.002 10.1021/ja3122763 10.1016/j.biortech.2016.08.002 10.1016/j.biortech.2017.01.017 10.1016/j.biortech.2017.01.067 10.1016/j.fuel.2015.04.027 10.1016/j.renene.2013.12.017 10.1016/j.biortech.2012.06.036 10.1016/j.cej.2017.07.020 10.1007/s11368-016-1360-2 10.1016/j.jiec.2014.11.041 10.1021/acs.chemrev.6b00311 10.1016/j.biortech.2014.06.103 10.1016/j.jpowsour.2008.08.030 10.1016/j.fuel.2015.04.036 10.1016/j.biortech.2017.04.026 10.1016/j.electacta.2015.02.157 10.1016/j.jpowsour.2009.12.135 10.1039/C5CY00077G 10.1021/cs300265d 10.1016/j.enconman.2015.06.072 10.1016/j.apsusc.2007.05.057 10.1016/j.eti.2015.08.003 10.1002/jctb.5144 10.1016/j.ijhydene.2011.04.175 10.1016/j.apcata.2008.05.023 10.1016/j.biombioe.2012.03.003 10.1016/j.cej.2017.06.108 10.1080/10643389.2015.1096880 10.1016/j.apcata.2011.08.039 10.1016/j.chemosphere.2013.10.071 10.1016/j.biortech.2016.05.011 10.1016/j.biortech.2016.04.055 10.1039/C5GC01938A 10.4155/bfs.10.81 10.1002/cssc.201300328 10.1021/es9031419 10.1016/j.rser.2015.06.032 10.1039/C3CY00409K 10.1007/s11244-010-9560-2 10.1016/j.jece.2013.09.004 10.1021/am501844p 10.1016/j.fuel.2008.01.004 10.1016/j.cattod.2012.02.006 10.1016/j.fuel.2015.07.007 10.1016/j.fuproc.2014.09.038 10.1016/j.biortech.2013.06.075 10.1016/j.chemosphere.2016.01.043 10.1016/j.chemosphere.2009.01.035 10.1007/s10570-016-1118-4 10.1016/j.jbiosc.2013.05.035 10.1016/j.cej.2014.07.054 10.1016/j.biortech.2013.06.087 10.1016/j.biombioe.2014.12.022 10.1016/j.cej.2009.10.027 10.1016/j.rser.2014.10.074 10.1016/j.cej.2016.08.099 10.1007/s11104-015-2658-3 10.1039/c1cs15124j 10.1002/cssc.200900296 10.1016/j.apcata.2010.04.051 10.1016/j.biortech.2016.08.017 10.1007/s11368-015-1325-x 10.1016/j.chemosphere.2017.06.095 10.1039/C4NJ00780H 10.1021/acs.chemrev.5b00195 10.1039/c0gc00900h 10.1021/ie501843y 10.1016/j.fuel.2006.12.013 10.1039/c3ra23314f 10.1016/j.chemosphere.2011.12.007 10.1016/j.carres.2010.10.022 10.1016/j.cattod.2012.02.050 10.1016/j.biortech.2014.01.120 10.1016/j.cej.2010.10.019 10.1016/j.jiec.2016.06.002 10.1016/j.jcat.2016.03.007 10.1016/j.biortech.2010.09.049 10.1039/c0gc00881h 10.1016/j.biortech.2013.12.070 10.1016/j.jenvman.2016.05.016 10.1016/j.ijhydene.2016.04.041 10.1016/j.rser.2011.02.018 10.1016/j.fuel.2012.11.063 10.1039/c3gc37107g 10.1016/j.biortech.2016.06.002 10.1016/j.molcata.2016.01.005 10.1016/j.fuel.2015.09.042 10.1007/s11356-015-5697-7 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2017.06.163 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 270 |
ExternalDocumentID | 28712780 10_1016_j_biortech_2017_06_163 S0960852417310672 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXKI AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c552t-8690b4da09ad7d58a8f3cac91387247d90682a83dc3dbbeab9a0b427b6cde83b3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Wed Jul 02 04:49:35 EDT 2025 Fri Jul 11 08:42:09 EDT 2025 Mon Jul 21 05:51:57 EDT 2025 Tue Jul 01 02:06:50 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Sat Nov 02 16:01:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Waste valorization Biorefinery Biochar Solid catalyst Acid-catalyzed conversion |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-8690b4da09ad7d58a8f3cac91387247d90682a83dc3dbbeab9a0b427b6cde83b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S0960852417310672-fx1_lrg.jpg |
PMID | 28712780 |
PQID | 1920196115 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2000499842 proquest_miscellaneous_1920196115 pubmed_primary_28712780 crossref_citationtrail_10_1016_j_biortech_2017_06_163 crossref_primary_10_1016_j_biortech_2017_06_163 elsevier_sciencedirect_doi_10_1016_j_biortech_2017_06_163 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bhandari, Kumar, Bellmer, Huhnke (b0015) 2014; 66 Gallo, Alamillo, Dumesic (b0110) 2016; 422 Enslow, Bell (b0100) 2015; 5 Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Ok (b0325) 2016; 148 Mohan, Sarswat, Ok, Pittman (b0285) 2014; 160 Osatiashtiani, Lee, Brown, Melero, Morales, Wilson (b0315) 2014; 4 Kastner, Miller, Kolar, Das (b0155) 2009; 75 Zhang, Liang, Liu (b0440) 2011; 36 Guilminot, Gavillon, Chatenet, Berthon-Fabry, Rigacci, Budtova (b0115) 2008; 185 Jin, Capareda, Chang, Gao, Xu, Zhang (b0140) 2014; 169 Chen, Li, Jiang, Xiong (b0035) 2015; 259 Chen, Yu, Tsang, Yip, Khan, Wang, Ok, Poon (b0045) 2017; 327 Lee, Kim, Kwon (b0205) 2017; 77 Yuan, Yuan, Wang, Tang, Zhou (b0435) 2013; 144 Zhou, Wang, Ji, Feng, Wang (b0465) 2014; 14 Kastner, Miller, Geller, Locklin, Keith, Johnson (b0160) 2012; 190 Dehkhoda, West, Ellis (b0070) 2010; 382 Tan, Liu, Zeng, Wang, Hu, Gu, Yang (b0360) 2015; 125 Gupta, Paul (b0120) 2011; 13 Wang, Zhu, Wang, Cui, Zhang, Zhang (b0390) 2016; 92 Dong, Gao, Miao, Yu, Degan, Garcia-Pérez, Chen (b0080) 2015; 105 Lee, Jung, Oh, Ok, Lee, Kwon (b0210) 2017; 231 Ma, Dai, Zou, Wang, Pan, Fu (b0265) 2014; 6 Li, Zhang, Yu, Yin (b0220) 2007; 253 Rizwan, Ali, Qayyum, Ibrahim, Zia-ur-Rehman, Abbas, Ok (b0335) 2016; 23 Deng, Lin, Yan, Li, Ren, Liu, Sun (b0075) 2016; 216 Libra, Ro, Kammann, Funke, Berge, Neubauer, Emmerich (b0240) 2011; 2 Kostić, Bazargan, Stamenković, Veljković, McKay (b0195) 2016; 163 Ormsby, Kastner, Miller (b0310) 2012; 190 Zhang, Jin, Hu, Huo (b0445) 2011; 102 Hussain, Farooq, Nawaz, Al-Sadi, Solaiman, Alghamdi, Ammara, Ok, Siddique (b0125) 2017; 17 Yan, Wan, Liu, Gao, Yu, Zhang, Cai (b0400) 2013; 15 Morone, Apte, Pandey (b0290) 2015; 51 Yu, Tsang, Yip, Chen, Ok, Poon (b0425) 2017; 184 Kim, Kan (b0175) 2016; 180 Johnson, Thielemans, Walsh (b0145) 2011; 13 Madhu, Chavan, Singh, Singh, Sharma (b0270) 2016; 214 Keiluweit, Nico, Johnson, Kleber (b0170) 2010; 44 Choudhary, Pinar, Lobo, Vlachos, Sandler (b0060) 2013; 6 Kang, Ye, Zhang, Chang (b0150) 2013; 3 Rajapaksha, Vithanage, Lee, Seo, Tsang, Ok (b0330) 2016; 16 Iwazaki, Yang, Obinata, Sugimoto, Takasu (b0135) 2010; 195 Muradov, Fidalgo, Gujar, Garceau, Ali (b0295) 2012; 42 Yang, Yan, Chen, Lee, Zheng (b0405) 2007; 86 Komanoya, Kobayashi, Hara, Chun, Fukuoka (b0190) 2011; 407 Tang, Zhu, Kookana, Katayama (b0365) 2013; 116 Yao, Hu, Wang, Yang, Wu, Wang, Chen (b0410) 2016; 216 Dufour, Celzard, Fierro, Martin, Broust, Zoulalian (b0090) 2008; 346 Kreissl, Nakagawa, Peng, Koito, Zheng, Tsang (b0200) 2016; 338 Zhang, Wilson, Lee (b0450) 2016; 116 Smith, Oopathum, Weeramongkhonlert, Smith, Chaveanghong, Ketwong, Boonyuen (b0355) 2013; 143 El-Rub, Bramer, Brem (b0095) 2008; 87 Lehmann, Kuzyakov, Pan, Ok (b0215) 2015; 395 Shen, Chen, Sun, Jia (b0350) 2015; 159 Wang, Wang, Yin, Zhu, Yin (b0385) 2014; 38 Li, Peng, Liu, Xia, Wang (b0235) 2016 Ok, Chang, Gao, Chung (b0305) 2015; 4 Dora, Bhaskar, Singh, Naik, Adhikari (b0085) 2012; 120 Yu, Tsang, Yip, Chen, Ok, Poon (b0420) 2016; 219 Zhang, Cheng, Fu, Liu, Yi, Zheng, Kirk, Yin (b0455) 2017; 24 McBeath, Wurster, Bird (b0275) 2015; 73 Wei, Wu (b0395) 2017; 307 Zhou, Xia, Lin, Tong, Beltramini (b0460) 2011; 40 Chen, Maneerung, Tsang, Ok, Wang (b0040) 2017 Klinghoffer, Castaldi, Nzihou (b0180) 2015; 157 Tao, Song, Chou (b0370) 2011; 346 Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Ok (b0005) 2014; 99 Crisci, Tucker, Dumesic, Scott (b0065) 2010; 53 Min, Zhang, Yimsiri, Wang, Asadullah, Li (b0280) 2013; 106 Umeyama, Imahori (b0380) 2013; 117 Kobayashi, Komanoya, Hara, Fukuoka (b0185) 2010; 3 Liu, Yang, Liu, Li (b0250) 2015; 26 Inyang, Gao, Yao, Xue, Zimmerman, Mosa, Cao (b0130) 2016; 46 Norouzi, Jafarian, Safari, Tavasoli, Nejati (b0300) 2016; 219 Choudhary, Mushrif, Ho, Anderko, Nikolakis, Marinkovic, Vlachos (b0055) 2013; 135 Fan, Liu, Yang, Jiang, Yao, Han, Xiong (b0105) 2015; 163 Tsilomelekis, Orella, Lin, Cheng, Zheng, Nikolakis, Vlachos (b0375) 2016; 18 Yu, Tsang, Yip, Chen, Wang, Ok, Poon (b0430) 2017; 237 Li, Gu, Bjornson, Muthukumarappan (b0225) 2013; 1 Choudhary, Sandler, Vlachos (b0050) 2012; 2 Lobos, Sieben, Comignani, Duarte, Volpe, Moyano (b0260) 2016; 41 Yu, Tsang (b0415) 2017; 238 Chakraborty, Bepari, Banerjee (b0030) 2010; 165 Anis, Zainal (b0010) 2011; 15 Li, Zheng, Chen, Zhu (b0230) 2014; 154 Kastner, Mani, Juneja (b0165) 2015; 130 Lin, Munroe, Joseph, Henderson, Ziolkowski (b0245) 2012; 87 Shen, Yoshikawa (b0340) 2014; 53 Cha, Park, Jung, Ryu, Jeon, Shin, Park (b0025) 2016; 40 Liu, Jiang, Yu (b0255) 2015; 115 Shen, Chen, Yue, Li (b0345) 2015; 156 Qian, Kumar, Zhang, Bellmer, Huhnke (b0320) 2015; 42 Cha, Choi, Ko, Park, Park, Jeong, Jeon (b0020) 2010; 156 Mohan (10.1016/j.biortech.2017.06.163_b0285) 2014; 160 Zhang (10.1016/j.biortech.2017.06.163_b0450) 2016; 116 Libra (10.1016/j.biortech.2017.06.163_b0240) 2011; 2 Chen (10.1016/j.biortech.2017.06.163_b0040) 2017 Min (10.1016/j.biortech.2017.06.163_b0280) 2013; 106 Yan (10.1016/j.biortech.2017.06.163_b0400) 2013; 15 Chen (10.1016/j.biortech.2017.06.163_b0045) 2017; 327 Tsilomelekis (10.1016/j.biortech.2017.06.163_b0375) 2016; 18 Gallo (10.1016/j.biortech.2017.06.163_b0110) 2016; 422 Kastner (10.1016/j.biortech.2017.06.163_b0155) 2009; 75 Wang (10.1016/j.biortech.2017.06.163_b0385) 2014; 38 Cha (10.1016/j.biortech.2017.06.163_b0020) 2010; 156 Ok (10.1016/j.biortech.2017.06.163_b0305) 2015; 4 Smith (10.1016/j.biortech.2017.06.163_b0355) 2013; 143 Wang (10.1016/j.biortech.2017.06.163_b0390) 2016; 92 Zhou (10.1016/j.biortech.2017.06.163_b0460) 2011; 40 Klinghoffer (10.1016/j.biortech.2017.06.163_b0180) 2015; 157 McBeath (10.1016/j.biortech.2017.06.163_b0275) 2015; 73 Crisci (10.1016/j.biortech.2017.06.163_b0065) 2010; 53 El-Rub (10.1016/j.biortech.2017.06.163_b0095) 2008; 87 Qian (10.1016/j.biortech.2017.06.163_b0320) 2015; 42 Liu (10.1016/j.biortech.2017.06.163_b0255) 2015; 115 Rajapaksha (10.1016/j.biortech.2017.06.163_b0325) 2016; 148 Yu (10.1016/j.biortech.2017.06.163_b0415) 2017; 238 Zhou (10.1016/j.biortech.2017.06.163_b0465) 2014; 14 Dufour (10.1016/j.biortech.2017.06.163_b0090) 2008; 346 Madhu (10.1016/j.biortech.2017.06.163_b0270) 2016; 214 Tao (10.1016/j.biortech.2017.06.163_b0370) 2011; 346 Li (10.1016/j.biortech.2017.06.163_b0220) 2007; 253 Inyang (10.1016/j.biortech.2017.06.163_b0130) 2016; 46 Gupta (10.1016/j.biortech.2017.06.163_b0120) 2011; 13 Yang (10.1016/j.biortech.2017.06.163_b0405) 2007; 86 Yuan (10.1016/j.biortech.2017.06.163_b0435) 2013; 144 Yu (10.1016/j.biortech.2017.06.163_b0420) 2016; 219 Bhandari (10.1016/j.biortech.2017.06.163_b0015) 2014; 66 Deng (10.1016/j.biortech.2017.06.163_b0075) 2016; 216 Zhang (10.1016/j.biortech.2017.06.163_b0445) 2011; 102 Lehmann (10.1016/j.biortech.2017.06.163_b0215) 2015; 395 Enslow (10.1016/j.biortech.2017.06.163_b0100) 2015; 5 Shen (10.1016/j.biortech.2017.06.163_b0350) 2015; 159 Lobos (10.1016/j.biortech.2017.06.163_b0260) 2016; 41 Fan (10.1016/j.biortech.2017.06.163_b0105) 2015; 163 Wei (10.1016/j.biortech.2017.06.163_b0395) 2017; 307 Kreissl (10.1016/j.biortech.2017.06.163_b0200) 2016; 338 Chakraborty (10.1016/j.biortech.2017.06.163_b0030) 2010; 165 Ahmad (10.1016/j.biortech.2017.06.163_b0005) 2014; 99 Johnson (10.1016/j.biortech.2017.06.163_b0145) 2011; 13 Zhang (10.1016/j.biortech.2017.06.163_b0455) 2017; 24 Choudhary (10.1016/j.biortech.2017.06.163_b0055) 2013; 135 Yao (10.1016/j.biortech.2017.06.163_b0410) 2016; 216 Norouzi (10.1016/j.biortech.2017.06.163_b0300) 2016; 219 Lee (10.1016/j.biortech.2017.06.163_b0205) 2017; 77 Kastner (10.1016/j.biortech.2017.06.163_b0160) 2012; 190 Kim (10.1016/j.biortech.2017.06.163_b0175) 2016; 180 Morone (10.1016/j.biortech.2017.06.163_b0290) 2015; 51 Muradov (10.1016/j.biortech.2017.06.163_b0295) 2012; 42 Zhang (10.1016/j.biortech.2017.06.163_b0440) 2011; 36 Komanoya (10.1016/j.biortech.2017.06.163_b0190) 2011; 407 Dehkhoda (10.1016/j.biortech.2017.06.163_b0070) 2010; 382 Chen (10.1016/j.biortech.2017.06.163_b0035) 2015; 259 Shen (10.1016/j.biortech.2017.06.163_b0340) 2014; 53 Shen (10.1016/j.biortech.2017.06.163_b0345) 2015; 156 Jin (10.1016/j.biortech.2017.06.163_b0140) 2014; 169 Ma (10.1016/j.biortech.2017.06.163_b0265) 2014; 6 Tang (10.1016/j.biortech.2017.06.163_b0365) 2013; 116 Yu (10.1016/j.biortech.2017.06.163_b0430) 2017; 237 Lee (10.1016/j.biortech.2017.06.163_b0210) 2017; 231 Osatiashtiani (10.1016/j.biortech.2017.06.163_b0315) 2014; 4 Li (10.1016/j.biortech.2017.06.163_b0225) 2013; 1 Li (10.1016/j.biortech.2017.06.163_b0230) 2014; 154 Kang (10.1016/j.biortech.2017.06.163_b0150) 2013; 3 Lin (10.1016/j.biortech.2017.06.163_b0245) 2012; 87 Kastner (10.1016/j.biortech.2017.06.163_b0165) 2015; 130 Umeyama (10.1016/j.biortech.2017.06.163_b0380) 2013; 117 Keiluweit (10.1016/j.biortech.2017.06.163_b0170) 2010; 44 Rajapaksha (10.1016/j.biortech.2017.06.163_b0330) 2016; 16 Dora (10.1016/j.biortech.2017.06.163_b0085) 2012; 120 Dong (10.1016/j.biortech.2017.06.163_b0080) 2015; 105 Choudhary (10.1016/j.biortech.2017.06.163_b0060) 2013; 6 Liu (10.1016/j.biortech.2017.06.163_b0250) 2015; 26 Rizwan (10.1016/j.biortech.2017.06.163_b0335) 2016; 23 Kostić (10.1016/j.biortech.2017.06.163_b0195) 2016; 163 Li (10.1016/j.biortech.2017.06.163_b0235) 2016 Cha (10.1016/j.biortech.2017.06.163_b0025) 2016; 40 Anis (10.1016/j.biortech.2017.06.163_b0010) 2011; 15 Iwazaki (10.1016/j.biortech.2017.06.163_b0135) 2010; 195 Hussain (10.1016/j.biortech.2017.06.163_b0125) 2017; 17 Guilminot (10.1016/j.biortech.2017.06.163_b0115) 2008; 185 Tan (10.1016/j.biortech.2017.06.163_b0360) 2015; 125 Yu (10.1016/j.biortech.2017.06.163_b0425) 2017; 184 Choudhary (10.1016/j.biortech.2017.06.163_b0050) 2012; 2 Kobayashi (10.1016/j.biortech.2017.06.163_b0185) 2010; 3 Ormsby (10.1016/j.biortech.2017.06.163_b0310) 2012; 190 |
References_xml | – volume: 190 start-page: 122 year: 2012 end-page: 132 ident: b0160 article-title: Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon publication-title: Catal. Today – volume: 159 start-page: 570 year: 2015 end-page: 579 ident: b0350 article-title: Catalytic reforming of pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar publication-title: Fuel – volume: 87 start-page: 2243 year: 2008 end-page: 2252 ident: b0095 article-title: Experimental comparison of biomass chars with other catalysts for tar reduction publication-title: Fuel – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: b0170 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 144 start-page: 115 year: 2013 end-page: 120 ident: b0435 article-title: Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell publication-title: Bioresour. Technol. – year: 2017 ident: b0040 article-title: Valorization of Biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts publication-title: Chem. Eng. J. – volume: 87 start-page: 151 year: 2012 end-page: 157 ident: b0245 article-title: Water extractable organic carbon in untreated and chemical treated biochars publication-title: Chemosphere – volume: 148 start-page: 276 year: 2016 end-page: 291 ident: b0325 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere – volume: 346 start-page: 58 year: 2011 end-page: 63 ident: b0370 article-title: Catalytic conversion of cellulose to chemicals in ionic liquid publication-title: Carbohydr. Res. – volume: 214 start-page: 210 year: 2016 end-page: 217 ident: b0270 article-title: An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst publication-title: Bioresour. Technol. – volume: 6 start-page: 2369 year: 2013 end-page: 2376 ident: b0060 article-title: Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media publication-title: ChemSusChem. – volume: 163 start-page: 304 year: 2016 end-page: 313 ident: b0195 article-title: Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar publication-title: Fuel – volume: 184 start-page: 1099 year: 2017 end-page: 1107 ident: b0425 article-title: Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis publication-title: Chemosphere – volume: 14 start-page: 296 year: 2014 end-page: 302 ident: b0465 article-title: Synthesis of mesoporous carbon from okara and application as electrocatalyst support publication-title: Fuel Cells – volume: 106 start-page: 858 year: 2013 end-page: 863 ident: b0280 article-title: Catalytic reforming of tar during gasification. Part IV. Changes in the structure of char in the char-supported iron catalyst during reforming publication-title: Fuel – volume: 259 start-page: 161 year: 2015 end-page: 169 ident: b0035 article-title: High-performance Pd nanoalloy on functionalized activated carbon for the hydrogenation of nitroaromatic compounds publication-title: Chem. Eng. J. – volume: 253 start-page: 9254 year: 2007 end-page: 9258 ident: b0220 article-title: The effects of activated carbon supports on the structure and properties of TiO publication-title: Appl. Surf. Sci. – volume: 15 start-page: 1631 year: 2013 end-page: 1640 ident: b0400 article-title: Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons publication-title: Green Chem. – volume: 216 start-page: 159 year: 2016 end-page: 164 ident: b0410 article-title: Hydrogen production from biomass gasification using biochar as a catalyst/support publication-title: Bioresour. Technol. – volume: 17 start-page: 685 year: 2017 end-page: 716 ident: b0125 article-title: Biochar for crop production: potential benefits and risks publication-title: J. Soils Sediments – year: 2016 ident: b0235 article-title: Comprehensive understanding the role of Brønsted and Lewis acid sites in glucose conversion to 5-hydromethylfurfural publication-title: ChemCatChem – volume: 4 start-page: 206 year: 2015 end-page: 209 ident: b0305 article-title: SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research publication-title: Environ. Technol. Innovation – volume: 66 start-page: 346 year: 2014 end-page: 353 ident: b0015 article-title: Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas publication-title: Renewable Energy – volume: 42 start-page: 1055 year: 2015 end-page: 1064 ident: b0320 article-title: Recent advances in utilization of biochar publication-title: Renewable Sustainable Energy Rev. – volume: 143 start-page: 686 year: 2013 end-page: 690 ident: b0355 article-title: Transesterification of soybean oil using bovine bone waste as new catalyst publication-title: Bioresour. Technol. – volume: 99 start-page: 19 year: 2014 end-page: 33 ident: b0005 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere – volume: 5 start-page: 2839 year: 2015 end-page: 2847 ident: b0100 article-title: SnCl publication-title: Catal. Sci. Technol. – volume: 195 start-page: 5840 year: 2010 end-page: 5847 ident: b0135 article-title: Oxygen-reduction activity of silk-derived carbons publication-title: J. Power Sources – volume: 92 start-page: 1454 year: 2016 end-page: 1463 ident: b0390 article-title: Fructose dehydration to 5-HMF over three sulfonated carbons: effect of different pore structures publication-title: J. Chem. Technol. Biotechnol. – volume: 53 start-page: 10929 year: 2014 end-page: 10942 ident: b0340 article-title: Tar conversion and vapor upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification publication-title: Ind. Eng. Chem. Res. – volume: 185 start-page: 717 year: 2008 end-page: 726 ident: b0115 article-title: New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis publication-title: J. Power Sources – volume: 6 start-page: 13438 year: 2014 end-page: 13447 ident: b0265 article-title: Synthesis of iron oxide/partly graphitized carbon composites as a high-efficiency and low-cost cathode catalyst for microbial fuel cells publication-title: ACS Appl. Mater. Interfaces – volume: 116 start-page: 12328 year: 2016 end-page: 12368 ident: b0450 article-title: Heterogeneously catalyzed hydrothermal processing of C publication-title: Chem. Rev. – volume: 125 start-page: 70 year: 2015 end-page: 85 ident: b0360 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere – volume: 130 start-page: 31 year: 2015 end-page: 37 ident: b0165 article-title: Catalytic decomposition of tar using iron supported biochar publication-title: Fuel Process. Technol. – volume: 15 start-page: 2355 year: 2011 end-page: 2377 ident: b0010 article-title: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review publication-title: Renewable Sustainable Energy Rev. – volume: 116 start-page: 653 year: 2013 end-page: 659 ident: b0365 article-title: Characteristics of biochar and its application in remediation of contaminated soil publication-title: J. Biosci. Bioeng. – volume: 73 start-page: 155 year: 2015 end-page: 173 ident: b0275 article-title: Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis publication-title: Biomass Bioenergy – volume: 105 start-page: 1389 year: 2015 end-page: 1396 ident: b0080 article-title: Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char publication-title: Energy Convers. Manage. – volume: 327 start-page: 328 year: 2017 end-page: 335 ident: b0045 article-title: Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: temperature and solvent effects publication-title: Chem. Eng. J. – volume: 190 start-page: 89 year: 2012 end-page: 97 ident: b0310 article-title: Hemicellulose hydrolysis using solid acid catalysts generated from biochar publication-title: Catal. Today – volume: 3 start-page: 440 year: 2010 end-page: 443 ident: b0185 article-title: Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose publication-title: ChemSusChem – volume: 75 start-page: 739 year: 2009 end-page: 744 ident: b0155 article-title: Catalytic ozonation of ammonia using biomass char and wood fly ash publication-title: Chemosphere – volume: 115 start-page: 12251 year: 2015 end-page: 12285 ident: b0255 article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material publication-title: Chem. Rev. – volume: 102 start-page: 1998 year: 2011 end-page: 2003 ident: b0445 article-title: Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions publication-title: Bioresour. Technol. – volume: 216 start-page: 754 year: 2016 end-page: 760 ident: b0075 article-title: A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system publication-title: Bioresour. Technol. – volume: 180 start-page: 94 year: 2016 end-page: 101 ident: b0175 article-title: Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO publication-title: J. Environ. Manage. – volume: 422 start-page: 13 year: 2016 end-page: 17 ident: b0110 article-title: Acid-functionalized mesoporous carbons for the continuous production of 5-hydroxymethylfurfural publication-title: J. Mol. Catal. A: Chem. – volume: 18 start-page: 1983 year: 2016 end-page: 1993 ident: b0375 article-title: Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins publication-title: Green Chem. – volume: 407 start-page: 188 year: 2011 end-page: 194 ident: b0190 article-title: Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis publication-title: Appl. Catal. A – volume: 120 start-page: 318 year: 2012 end-page: 321 ident: b0085 article-title: Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst publication-title: Bioresour. Technol. – volume: 219 start-page: 338 year: 2016 end-page: 347 ident: b0420 article-title: Valorization of food waste into hydroxymethylfurfural: dual role of metal ions in successive conversion steps publication-title: Bioresour. Technol. – volume: 307 start-page: 389 year: 2017 end-page: 398 ident: b0395 article-title: Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids publication-title: Chem. Eng. J. – volume: 219 start-page: 643 year: 2016 end-page: 651 ident: b0300 article-title: Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char publication-title: Bioresour. Technol. – volume: 40 start-page: 5588 year: 2011 end-page: 5617 ident: b0460 article-title: Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels publication-title: Chem. Soc. Rev. – volume: 117 start-page: 3195 year: 2013 end-page: 3209 ident: b0380 article-title: Photofunctional hybrid nanocarbon materials publication-title: J. Phys. Chem. – volume: 382 start-page: 197 year: 2010 end-page: 204 ident: b0070 article-title: Biochar based solid acid catalyst for biodiesel production publication-title: Appl. Catal. A – volume: 24 start-page: 95 year: 2017 end-page: 106 ident: b0455 article-title: Effective transformation of cellulose to 5-hydroxymethylfurfural catalyzed by fluorine anion-containing ionic liquid modified biochar sulfonic acids in water publication-title: Cellulose – volume: 156 start-page: 47 year: 2015 end-page: 53 ident: b0345 article-title: A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR publication-title: Fuel – volume: 160 start-page: 191 year: 2014 end-page: 202 ident: b0285 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review publication-title: Bioresour. Technol. – volume: 165 start-page: 798 year: 2010 end-page: 805 ident: b0030 article-title: Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts publication-title: Chem. Eng. J. – volume: 231 start-page: 59 year: 2017 end-page: 64 ident: b0210 article-title: Evaluating the effectiveness of various biochars as porous media for biodiesel synthesis via pseudo-catalytic transesterification publication-title: Bioresour. Technol. – volume: 3 start-page: 7360 year: 2013 end-page: 7366 ident: b0150 article-title: Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production publication-title: RSC Adv. – volume: 46 start-page: 406 year: 2016 end-page: 433 ident: b0130 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 40 start-page: 1 year: 2016 end-page: 15 ident: b0025 article-title: Production and utilization of biochar: a review publication-title: J. Ind. Eng. Chem. – volume: 157 start-page: 37 year: 2015 end-page: 47 ident: b0180 article-title: Influence of char composition and inorganics on catalytic activity of char from biomass gasification publication-title: Fuel – volume: 395 start-page: 1 year: 2015 end-page: 5 ident: b0215 article-title: Biochars and the plant-soil interface publication-title: Plant Soil – volume: 41 start-page: 10695 year: 2016 end-page: 10706 ident: b0260 article-title: Biochar from pyrolysis of cellulose: an alternative catalyst support for the electro-oxidation of methanol publication-title: Int. J. Hyd. Energy. – volume: 4 start-page: 333 year: 2014 end-page: 342 ident: b0315 article-title: Bifunctional SO publication-title: Catal. Sci. Technol. – volume: 16 start-page: 889 year: 2016 end-page: 895 ident: b0330 article-title: Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption publication-title: J. Soils Sediments – volume: 338 start-page: 329 year: 2016 end-page: 339 ident: b0200 article-title: Niobium oxides: correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural publication-title: J. Catal. – volume: 36 start-page: 8902 year: 2011 end-page: 8907 ident: b0440 article-title: Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char publication-title: Int. J. Hyd. Energy. – volume: 86 start-page: 1781 year: 2007 end-page: 1788 ident: b0405 article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis publication-title: Fuel – volume: 2 start-page: 2022 year: 2012 end-page: 2028 ident: b0050 article-title: Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media publication-title: ACS Catal. – volume: 42 start-page: 123 year: 2012 end-page: 131 ident: b0295 article-title: Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming publication-title: Biomass Bioenergy – volume: 346 start-page: 164 year: 2008 end-page: 173 ident: b0090 article-title: Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas publication-title: Appl. Catal. A – volume: 38 start-page: 4471 year: 2014 end-page: 4477 ident: b0385 article-title: Methanation of bio-syngas over a biochar supported catalyst publication-title: New J. Chem. – volume: 53 start-page: 1185 year: 2010 end-page: 1192 ident: b0065 article-title: Bifunctional solid catalysts for the selective conversion of fructose to 5-hydroxymethylfurfural publication-title: Top. Catal. – volume: 13 start-page: 1686 year: 2011 end-page: 1693 ident: b0145 article-title: Synthesis of carbon-supported Pt nanoparticle electrocatalysts using nanocrystalline cellulose as reducing agent publication-title: Green Chem. – volume: 154 start-page: 345 year: 2014 end-page: 348 ident: b0230 article-title: Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk publication-title: Bioresour. Technol. – volume: 13 start-page: 2365 year: 2011 end-page: 2372 ident: b0120 article-title: Amorphous carbon-silica composites bearing sulfonic acid as solid acid catalysts for the chemoselective protection of aldehydes as 1, 1-diacetates and for N-, O-and S-acylations publication-title: Green Chem. – volume: 163 start-page: 140 year: 2015 end-page: 148 ident: b0105 article-title: Bi-functional porous carbon spheres derived from pectin as electrode material for supercapacitors and support material for Pt nanowires towards electrocatalytic methanol and ethanol oxidation publication-title: Electrochim. Acta – volume: 238 start-page: 716 year: 2017 end-page: 732 ident: b0415 article-title: Conversion of biomass and carbohydrates to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms publication-title: Bioresour. Technol. – volume: 169 start-page: 622 year: 2014 end-page: 629 ident: b0140 article-title: Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: adsorption property and its improvement with KOH activation publication-title: Bioresour. Technol. – volume: 51 start-page: 548 year: 2015 end-page: 565 ident: b0290 article-title: Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications publication-title: Renewable Sustainable Energy Rev. – volume: 2 start-page: 71 year: 2011 end-page: 106 ident: b0240 article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis publication-title: Biofuels – volume: 1 start-page: 1174 year: 2013 end-page: 1181 ident: b0225 article-title: Biochar based solid acid catalyst hydrolyze biomass publication-title: J. Environ. Chem. Eng. – volume: 23 start-page: 2230 year: 2016 end-page: 2248 ident: b0335 article-title: Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review publication-title: Environ. Sci. Pollut. Res. – volume: 135 start-page: 3997 year: 2013 end-page: 4006 ident: b0055 article-title: Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 46 year: 2015 end-page: 54 ident: b0250 article-title: Preparation of SnO publication-title: J. Ind. Eng. Chem. – volume: 156 start-page: 321 year: 2010 end-page: 327 ident: b0020 article-title: The low-temperature SCR of NO over rice straw and sewage sludge derived char publication-title: Chem. Eng. J. – volume: 77 start-page: 70 year: 2017 end-page: 79 ident: b0205 article-title: Biochar as a catalyst publication-title: Renewable Sustainable Energy Rev. – volume: 237 start-page: 222 year: 2017 end-page: 230 ident: b0430 article-title: Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): controlling relative kinetics for high productivity publication-title: Bioresour. Technol. – volume: 125 start-page: 70 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0360 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.058 – volume: 14 start-page: 296 year: 2014 ident: 10.1016/j.biortech.2017.06.163_b0465 article-title: Synthesis of mesoporous carbon from okara and application as electrocatalyst support publication-title: Fuel Cells doi: 10.1002/fuce.201300089 – volume: 77 start-page: 70 year: 2017 ident: 10.1016/j.biortech.2017.06.163_b0205 article-title: Biochar as a catalyst publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2017.04.002 – volume: 135 start-page: 3997 year: 2013 ident: 10.1016/j.biortech.2017.06.163_b0055 article-title: Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3122763 – volume: 219 start-page: 338 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0420 article-title: Valorization of food waste into hydroxymethylfurfural: dual role of metal ions in successive conversion steps publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.08.002 – volume: 237 start-page: 222 year: 2017 ident: 10.1016/j.biortech.2017.06.163_b0430 article-title: Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): controlling relative kinetics for high productivity publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.01.017 – volume: 231 start-page: 59 year: 2017 ident: 10.1016/j.biortech.2017.06.163_b0210 article-title: Evaluating the effectiveness of various biochars as porous media for biodiesel synthesis via pseudo-catalytic transesterification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.01.067 – volume: 156 start-page: 47 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0345 article-title: A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR publication-title: Fuel doi: 10.1016/j.fuel.2015.04.027 – volume: 66 start-page: 346 year: 2014 ident: 10.1016/j.biortech.2017.06.163_b0015 article-title: Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas publication-title: Renewable Energy doi: 10.1016/j.renene.2013.12.017 – volume: 120 start-page: 318 year: 2012 ident: 10.1016/j.biortech.2017.06.163_b0085 article-title: Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.036 – year: 2017 ident: 10.1016/j.biortech.2017.06.163_b0040 article-title: Valorization of Biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.020 – volume: 17 start-page: 685 year: 2017 ident: 10.1016/j.biortech.2017.06.163_b0125 article-title: Biochar for crop production: potential benefits and risks publication-title: J. Soils Sediments doi: 10.1007/s11368-016-1360-2 – volume: 26 start-page: 46 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0250 article-title: Preparation of SnO2–Co3O4/C biochar catalyst as a Lewis acid for corncob hydrolysis into furfural in water medium publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2014.11.041 – volume: 116 start-page: 12328 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0450 article-title: Heterogeneously catalyzed hydrothermal processing of C5–C6 sugars publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00311 – volume: 169 start-page: 622 year: 2014 ident: 10.1016/j.biortech.2017.06.163_b0140 article-title: Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: adsorption property and its improvement with KOH activation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.103 – volume: 185 start-page: 717 year: 2008 ident: 10.1016/j.biortech.2017.06.163_b0115 article-title: New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.08.030 – volume: 157 start-page: 37 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0180 article-title: Influence of char composition and inorganics on catalytic activity of char from biomass gasification publication-title: Fuel doi: 10.1016/j.fuel.2015.04.036 – volume: 238 start-page: 716 year: 2017 ident: 10.1016/j.biortech.2017.06.163_b0415 article-title: Conversion of biomass and carbohydrates to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.026 – volume: 163 start-page: 140 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0105 article-title: Bi-functional porous carbon spheres derived from pectin as electrode material for supercapacitors and support material for Pt nanowires towards electrocatalytic methanol and ethanol oxidation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.02.157 – volume: 195 start-page: 5840 year: 2010 ident: 10.1016/j.biortech.2017.06.163_b0135 article-title: Oxygen-reduction activity of silk-derived carbons publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.12.135 – volume: 5 start-page: 2839 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0100 article-title: SnCl4-catalyzed isomerization/dehydration of xylose and glucose to furanics in water publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY00077G – volume: 2 start-page: 2022 year: 2012 ident: 10.1016/j.biortech.2017.06.163_b0050 article-title: Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media publication-title: ACS Catal. doi: 10.1021/cs300265d – volume: 105 start-page: 1389 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0080 article-title: Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.06.072 – volume: 253 start-page: 9254 year: 2007 ident: 10.1016/j.biortech.2017.06.163_b0220 article-title: The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol–gel method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.05.057 – volume: 4 start-page: 206 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0305 article-title: SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research publication-title: Environ. Technol. Innovation doi: 10.1016/j.eti.2015.08.003 – volume: 92 start-page: 1454 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0390 article-title: Fructose dehydration to 5-HMF over three sulfonated carbons: effect of different pore structures publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5144 – volume: 36 start-page: 8902 year: 2011 ident: 10.1016/j.biortech.2017.06.163_b0440 article-title: Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char publication-title: Int. J. Hyd. Energy. doi: 10.1016/j.ijhydene.2011.04.175 – volume: 346 start-page: 164 year: 2008 ident: 10.1016/j.biortech.2017.06.163_b0090 article-title: Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2008.05.023 – volume: 42 start-page: 123 year: 2012 ident: 10.1016/j.biortech.2017.06.163_b0295 article-title: Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.03.003 – volume: 327 start-page: 328 year: 2017 ident: 10.1016/j.biortech.2017.06.163_b0045 article-title: Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: temperature and solvent effects publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.108 – volume: 46 start-page: 406 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0130 article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2015.1096880 – volume: 407 start-page: 188 year: 2011 ident: 10.1016/j.biortech.2017.06.163_b0190 article-title: Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2011.08.039 – volume: 99 start-page: 19 year: 2014 ident: 10.1016/j.biortech.2017.06.163_b0005 article-title: Biochar as a sorbent for contaminant management in soil and water: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.071 – volume: 216 start-page: 159 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0410 article-title: Hydrogen production from biomass gasification using biochar as a catalyst/support publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.011 – volume: 214 start-page: 210 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0270 article-title: An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.04.055 – volume: 18 start-page: 1983 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0375 article-title: Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins publication-title: Green Chem. doi: 10.1039/C5GC01938A – volume: 2 start-page: 71 year: 2011 ident: 10.1016/j.biortech.2017.06.163_b0240 article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis publication-title: Biofuels doi: 10.4155/bfs.10.81 – volume: 6 start-page: 2369 year: 2013 ident: 10.1016/j.biortech.2017.06.163_b0060 article-title: Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media publication-title: ChemSusChem. doi: 10.1002/cssc.201300328 – volume: 44 start-page: 1247 year: 2010 ident: 10.1016/j.biortech.2017.06.163_b0170 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 51 start-page: 548 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0290 article-title: Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2015.06.032 – volume: 117 start-page: 3195 year: 2013 ident: 10.1016/j.biortech.2017.06.163_b0380 article-title: Photofunctional hybrid nanocarbon materials publication-title: J. Phys. Chem. – volume: 4 start-page: 333 year: 2014 ident: 10.1016/j.biortech.2017.06.163_b0315 article-title: Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose publication-title: Catal. Sci. Technol. doi: 10.1039/C3CY00409K – volume: 53 start-page: 1185 year: 2010 ident: 10.1016/j.biortech.2017.06.163_b0065 article-title: Bifunctional solid catalysts for the selective conversion of fructose to 5-hydroxymethylfurfural publication-title: Top. Catal. doi: 10.1007/s11244-010-9560-2 – volume: 1 start-page: 1174 year: 2013 ident: 10.1016/j.biortech.2017.06.163_b0225 article-title: Biochar based solid acid catalyst hydrolyze biomass publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2013.09.004 – volume: 6 start-page: 13438 year: 2014 ident: 10.1016/j.biortech.2017.06.163_b0265 article-title: Synthesis of iron oxide/partly graphitized carbon composites as a high-efficiency and low-cost cathode catalyst for microbial fuel cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501844p – volume: 87 start-page: 2243 year: 2008 ident: 10.1016/j.biortech.2017.06.163_b0095 article-title: Experimental comparison of biomass chars with other catalysts for tar reduction publication-title: Fuel doi: 10.1016/j.fuel.2008.01.004 – volume: 190 start-page: 122 year: 2012 ident: 10.1016/j.biortech.2017.06.163_b0160 article-title: Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon publication-title: Catal. Today doi: 10.1016/j.cattod.2012.02.006 – volume: 159 start-page: 570 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0350 article-title: Catalytic reforming of pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar publication-title: Fuel doi: 10.1016/j.fuel.2015.07.007 – volume: 130 start-page: 31 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0165 article-title: Catalytic decomposition of tar using iron supported biochar publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2014.09.038 – volume: 144 start-page: 115 year: 2013 ident: 10.1016/j.biortech.2017.06.163_b0435 article-title: Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.06.075 – volume: 148 start-page: 276 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0325 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.043 – volume: 75 start-page: 739 year: 2009 ident: 10.1016/j.biortech.2017.06.163_b0155 article-title: Catalytic ozonation of ammonia using biomass char and wood fly ash publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.01.035 – volume: 24 start-page: 95 year: 2017 ident: 10.1016/j.biortech.2017.06.163_b0455 article-title: Effective transformation of cellulose to 5-hydroxymethylfurfural catalyzed by fluorine anion-containing ionic liquid modified biochar sulfonic acids in water publication-title: Cellulose doi: 10.1007/s10570-016-1118-4 – volume: 116 start-page: 653 year: 2013 ident: 10.1016/j.biortech.2017.06.163_b0365 article-title: Characteristics of biochar and its application in remediation of contaminated soil publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2013.05.035 – volume: 259 start-page: 161 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0035 article-title: High-performance Pd nanoalloy on functionalized activated carbon for the hydrogenation of nitroaromatic compounds publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.07.054 – volume: 143 start-page: 686 year: 2013 ident: 10.1016/j.biortech.2017.06.163_b0355 article-title: Transesterification of soybean oil using bovine bone waste as new catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.06.087 – volume: 73 start-page: 155 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0275 article-title: Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2014.12.022 – volume: 156 start-page: 321 year: 2010 ident: 10.1016/j.biortech.2017.06.163_b0020 article-title: The low-temperature SCR of NO over rice straw and sewage sludge derived char publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.10.027 – volume: 42 start-page: 1055 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0320 article-title: Recent advances in utilization of biochar publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2014.10.074 – volume: 307 start-page: 389 year: 2017 ident: 10.1016/j.biortech.2017.06.163_b0395 article-title: Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.099 – volume: 395 start-page: 1 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0215 article-title: Biochars and the plant-soil interface publication-title: Plant Soil doi: 10.1007/s11104-015-2658-3 – volume: 40 start-page: 5588 year: 2011 ident: 10.1016/j.biortech.2017.06.163_b0460 article-title: Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15124j – volume: 3 start-page: 440 year: 2010 ident: 10.1016/j.biortech.2017.06.163_b0185 article-title: Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose publication-title: ChemSusChem doi: 10.1002/cssc.200900296 – volume: 382 start-page: 197 year: 2010 ident: 10.1016/j.biortech.2017.06.163_b0070 article-title: Biochar based solid acid catalyst for biodiesel production publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2010.04.051 – volume: 219 start-page: 643 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0300 article-title: Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.08.017 – volume: 16 start-page: 889 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0330 article-title: Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption publication-title: J. Soils Sediments doi: 10.1007/s11368-015-1325-x – volume: 184 start-page: 1099 year: 2017 ident: 10.1016/j.biortech.2017.06.163_b0425 article-title: Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.06.095 – volume: 38 start-page: 4471 year: 2014 ident: 10.1016/j.biortech.2017.06.163_b0385 article-title: Methanation of bio-syngas over a biochar supported catalyst publication-title: New J. Chem. doi: 10.1039/C4NJ00780H – volume: 115 start-page: 12251 year: 2015 ident: 10.1016/j.biortech.2017.06.163_b0255 article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00195 – volume: 13 start-page: 2365 year: 2011 ident: 10.1016/j.biortech.2017.06.163_b0120 article-title: Amorphous carbon-silica composites bearing sulfonic acid as solid acid catalysts for the chemoselective protection of aldehydes as 1, 1-diacetates and for N-, O-and S-acylations publication-title: Green Chem. doi: 10.1039/c0gc00900h – year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0235 article-title: Comprehensive understanding the role of Brønsted and Lewis acid sites in glucose conversion to 5-hydromethylfurfural publication-title: ChemCatChem – volume: 53 start-page: 10929 year: 2014 ident: 10.1016/j.biortech.2017.06.163_b0340 article-title: Tar conversion and vapor upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie501843y – volume: 86 start-page: 1781 year: 2007 ident: 10.1016/j.biortech.2017.06.163_b0405 article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis publication-title: Fuel doi: 10.1016/j.fuel.2006.12.013 – volume: 3 start-page: 7360 year: 2013 ident: 10.1016/j.biortech.2017.06.163_b0150 article-title: Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production publication-title: RSC Adv. doi: 10.1039/c3ra23314f – volume: 87 start-page: 151 year: 2012 ident: 10.1016/j.biortech.2017.06.163_b0245 article-title: Water extractable organic carbon in untreated and chemical treated biochars publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.12.007 – volume: 346 start-page: 58 year: 2011 ident: 10.1016/j.biortech.2017.06.163_b0370 article-title: Catalytic conversion of cellulose to chemicals in ionic liquid publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2010.10.022 – volume: 190 start-page: 89 year: 2012 ident: 10.1016/j.biortech.2017.06.163_b0310 article-title: Hemicellulose hydrolysis using solid acid catalysts generated from biochar publication-title: Catal. Today doi: 10.1016/j.cattod.2012.02.050 – volume: 160 start-page: 191 year: 2014 ident: 10.1016/j.biortech.2017.06.163_b0285 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.120 – volume: 165 start-page: 798 year: 2010 ident: 10.1016/j.biortech.2017.06.163_b0030 article-title: Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.10.019 – volume: 40 start-page: 1 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0025 article-title: Production and utilization of biochar: a review publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.06.002 – volume: 338 start-page: 329 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0200 article-title: Niobium oxides: correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural publication-title: J. Catal. doi: 10.1016/j.jcat.2016.03.007 – volume: 102 start-page: 1998 year: 2011 ident: 10.1016/j.biortech.2017.06.163_b0445 article-title: Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.09.049 – volume: 13 start-page: 1686 year: 2011 ident: 10.1016/j.biortech.2017.06.163_b0145 article-title: Synthesis of carbon-supported Pt nanoparticle electrocatalysts using nanocrystalline cellulose as reducing agent publication-title: Green Chem. doi: 10.1039/c0gc00881h – volume: 154 start-page: 345 year: 2014 ident: 10.1016/j.biortech.2017.06.163_b0230 article-title: Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.12.070 – volume: 180 start-page: 94 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0175 article-title: Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.05.016 – volume: 41 start-page: 10695 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0260 article-title: Biochar from pyrolysis of cellulose: an alternative catalyst support for the electro-oxidation of methanol publication-title: Int. J. Hyd. Energy. doi: 10.1016/j.ijhydene.2016.04.041 – volume: 15 start-page: 2355 year: 2011 ident: 10.1016/j.biortech.2017.06.163_b0010 article-title: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2011.02.018 – volume: 106 start-page: 858 year: 2013 ident: 10.1016/j.biortech.2017.06.163_b0280 article-title: Catalytic reforming of tar during gasification. Part IV. Changes in the structure of char in the char-supported iron catalyst during reforming publication-title: Fuel doi: 10.1016/j.fuel.2012.11.063 – volume: 15 start-page: 1631 year: 2013 ident: 10.1016/j.biortech.2017.06.163_b0400 article-title: Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons publication-title: Green Chem. doi: 10.1039/c3gc37107g – volume: 216 start-page: 754 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0075 article-title: A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.06.002 – volume: 422 start-page: 13 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0110 article-title: Acid-functionalized mesoporous carbons for the continuous production of 5-hydroxymethylfurfural publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2016.01.005 – volume: 163 start-page: 304 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0195 article-title: Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar publication-title: Fuel doi: 10.1016/j.fuel.2015.09.042 – volume: 23 start-page: 2230 year: 2016 ident: 10.1016/j.biortech.2017.06.163_b0335 article-title: Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5697-7 |
SSID | ssj0003172 |
Score | 2.6652117 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Different applications demand distinctive active sites in biochar-based catalyst.•Biochar as a support possesses favourable intrinsic... This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 254 |
SubjectTerms | Acid-catalyzed conversion active sites Biochar biodiesel Biofuels Biomass Biorefinery catalysts Charcoal fuel production pollutants porosity Soil soil remediation Solid catalyst surface area synthesis technology Waste valorization |
Title | A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control |
URI | https://dx.doi.org/10.1016/j.biortech.2017.06.163 https://www.ncbi.nlm.nih.gov/pubmed/28712780 https://www.proquest.com/docview/1920196115 https://www.proquest.com/docview/2000499842 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0heqA9oBbasrRFrsSRsImdxM5xtSratoJLQeJm-SvVIpRdkd0DF347M4lD4bDi0GOSsWR5JjPP9swbgGPBs6BKWyeGKzqtMnWiMpclvg7oCZ2XgVPt8PlFObvKf10X11swHWphKK0y-v7ep3feOr4Zx9UcL-fz8R8C36rACCQF8aCRH85zSVZ--vAvzQPjY3eTgMIJST-rEr45tXPKaO0uJTJJPJ5ZKTYFqE0AtAtEZ-9hNyJINukn-QG2QrMH7yZ_7yKLRtiDnenQxg2_PGMc3IcwYX2xClvUDOdFRVcJRTLPuoOc-3bVMsSxzEUiAdbeN4gR23l7QvL1OtyyZc8Sixo9YabxbEntkumRxcT3j3B19uNyOktip4XEFQVfJdSWyubepJXx0hfKqFo446pMKMlz6au0VNwo4Z3w1gZjK4PyXNrS-aCEFZ9gu1k04QBYKX1W1gjLqjTk3uaWFI4_vsF9S1o4M4JiWF7tIg05dcO41UO-2Y0e1KJJLTotNaplBOOnccueiOPVEdWgPf3CpDRGi1fHfh_UrVFfdIlimrBYtxoRMVEKIZDeLMP7naTK-Qg-97byNGfaoXKp0sP_mN0XeEtPfVbNV9he3a3DN8RGK3vUGf8RvJn8_D27eATNshB5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED4EzpB2KNr05T5ZoGNUS6QkUqNhNHCaxEsTIBvBlwoHgWxE9pB_3zuJMtLByNBR4hEgeOTdR_LuO4DvgmdBlbZODFd0W2XqRGUuS3wd0BI6LwOn3OHLRTm_zn_dFDcHMBtyYSisMtr-3qZ31jr-mcTZnKyXy8lvAt-qQA8kBfGgoR0-JHaqYgSH07Pz-WJnkNFFdo8JKJ9Qh0eJwrc_7JKCWrt3iUwSlWdWin0-ah8G7XzR6Ut4EUEkm_bjfAUHoTmG59M_95FIIxzD0Wyo5IYtj0gHX0OYsj5fha1qhuOivKuEnJln3V3OQ7tpGUJZ5iKXAGsfGoSJ7bI9Ifl6G-7YuieKRaWeMNN4tqaKyfTJYuz7G7g-_Xk1myex2ELiioJvEqpMZXNv0sp46QtlVC2ccVUmlOS59FVaKm6U8E54a4OxlUF5Lm3pfFDCircwalZNeA-slD4ra0RmVRpyb3NLOse9b_DokhbOjKEYple7yEROBTHu9BBydqsHtWhSi05LjWoZw2TXb91zcTzZoxq0p_9ZVRodxpN9vw3q1qgvekcxTVhtW42gmFiFEEvvl-H9YVLlfAzv-rWyGzMdUrlU6Yf_GN1XOJpfXV7oi7PF-Ud4Ri19kM0nGG3ut-EzQqWN_RK3wl8S0hMq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+biochar-based+catalysts+for+chemical+synthesis%2C+biofuel+production%2C+and+pollution+control&rft.jtitle=Bioresource+technology&rft.au=Xiong%2C+Xinni&rft.au=Yu%2C+Iris+K+M&rft.au=Cao%2C+Leichang&rft.au=Tsang%2C+Daniel+C+W&rft.date=2017-12-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=246&rft.spage=254&rft_id=info:doi/10.1016%2Fj.biortech.2017.06.163&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |