A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control

[Display omitted] •Different applications demand distinctive active sites in biochar-based catalyst.•Biochar as a support possesses favourable intrinsic features to assist catalysis.•Biochar properties govern reactant access to active sites as the key to catalysis.•Relative significance of the prope...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 246; pp. 254 - 270
Main Authors Xiong, Xinni, Yu, Iris K.M., Cao, Leichang, Tsang, Daniel C.W., Zhang, Shicheng, Ok, Yong Sik
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Different applications demand distinctive active sites in biochar-based catalyst.•Biochar as a support possesses favourable intrinsic features to assist catalysis.•Biochar properties govern reactant access to active sites as the key to catalysis.•Relative significance of the properties varies with the active site location.•Catalytic activity of biochar can be improved by various pre- and post-treatments. This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (–SO3H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future.
AbstractList This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (-SO3H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future.This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (-SO3H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future.
This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (–SO₃H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future.
This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (-SO H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future.
[Display omitted] •Different applications demand distinctive active sites in biochar-based catalyst.•Biochar as a support possesses favourable intrinsic features to assist catalysis.•Biochar properties govern reactant access to active sites as the key to catalysis.•Relative significance of the properties varies with the active site location.•Catalytic activity of biochar can be improved by various pre- and post-treatments. This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (–SO3H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future.
Author Xiong, Xinni
Cao, Leichang
Yu, Iris K.M.
Tsang, Daniel C.W.
Zhang, Shicheng
Ok, Yong Sik
Author_xml – sequence: 1
  givenname: Xinni
  surname: Xiong
  fullname: Xiong, Xinni
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 2
  givenname: Iris K.M.
  surname: Yu
  fullname: Yu, Iris K.M.
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 3
  givenname: Leichang
  surname: Cao
  fullname: Cao, Leichang
  organization: Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
– sequence: 4
  givenname: Daniel C.W.
  surname: Tsang
  fullname: Tsang, Daniel C.W.
  email: dan.tsang@polyu.edu.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
– sequence: 5
  givenname: Shicheng
  surname: Zhang
  fullname: Zhang, Shicheng
  organization: Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
– sequence: 6
  givenname: Yong Sik
  surname: Ok
  fullname: Ok, Yong Sik
  organization: O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28712780$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rHCEchqWkNJu0XyF47CEzVWfGP9BDQ2iTQqCX9iyO_oZ1ccetOi377euw2UsvexLheV_leW_Q1RxnQOiOkpYSyj_t2tHHVMBuW0aoaAlvKe_eoA2VomuYEvwKbYjipJED66_RTc47QkhHBXuHrpkUlAlJNggecII_Hv7iOOFaabcmNaPJ4LA1xYRjLhlPMWG7hb23JuB8nMsWss_3Kz8tEPAhRbfY4uN8j83s8CGGsKxXbONcUgzv0dvJhAwfXs9b9Ovb15-Pz83Lj6fvjw8vjR0GVhrJFRl7Z4gyTrhBGjl11lhFOylYL5wiXDIjO2c7N45gRmUqz8TIrQPZjd0t-njqrT_6vUAueu-zhRDMDHHJmlUFvVKyZxdRqqpXxSkdKnr3ii7jHpw-JL836ajPFivw-QTYFHNOMGnri1kFlGR80JTodTS90-fR9DqaJlzX0Wqc_xc_v3Ax-OUUhOq0jph0th5mC84nsEW76C9V_ANqz7az
CitedBy_id crossref_primary_10_1016_j_fuel_2021_120309
crossref_primary_10_1016_j_biortech_2019_122286
crossref_primary_10_1016_j_fuel_2021_121632
crossref_primary_10_1016_j_chemosphere_2020_128287
crossref_primary_10_1016_j_biortech_2018_12_079
crossref_primary_10_1016_j_chemosphere_2019_124464
crossref_primary_10_1016_j_fuel_2023_128714
crossref_primary_10_1016_j_fuel_2022_126136
crossref_primary_10_1016_j_jclepro_2019_117770
crossref_primary_10_1007_s42452_021_04636_y
crossref_primary_10_1016_j_eti_2023_103100
crossref_primary_10_1016_j_envpol_2018_04_084
crossref_primary_10_1007_s42773_019_00006_5
crossref_primary_10_1016_j_chemosphere_2022_134292
crossref_primary_10_1016_j_jaap_2020_104799
crossref_primary_10_1016_j_chemosphere_2021_131969
crossref_primary_10_1016_j_fuel_2021_122616
crossref_primary_10_1016_j_ccst_2022_100059
crossref_primary_10_1016_j_renene_2020_03_113
crossref_primary_10_1039_D0CC07308C
crossref_primary_10_1016_j_scitotenv_2020_144608
crossref_primary_10_1016_j_biortech_2019_122050
crossref_primary_10_1016_j_biortech_2018_11_013
crossref_primary_10_3390_app10030918
crossref_primary_10_1007_s10311_023_01582_6
crossref_primary_10_1039_D4VA00109E
crossref_primary_10_1016_j_jhazmat_2021_127828
crossref_primary_10_1016_j_scitotenv_2020_142104
crossref_primary_10_3775_jie_99_236
crossref_primary_10_3390_app9061149
crossref_primary_10_1016_j_bej_2022_108360
crossref_primary_10_1016_j_cscee_2023_100473
crossref_primary_10_1016_j_fuel_2019_116204
crossref_primary_10_1016_j_jclepro_2019_04_282
crossref_primary_10_1016_j_biortech_2017_08_044
crossref_primary_10_1016_j_fuproc_2019_106162
crossref_primary_10_1016_j_eti_2021_101841
crossref_primary_10_1021_acssuschemeng_8b05311
crossref_primary_10_1016_j_ijhydene_2019_09_119
crossref_primary_10_1016_j_scitotenv_2019_134115
crossref_primary_10_1002_slct_201901451
crossref_primary_10_1039_C8GC00358K
crossref_primary_10_1016_j_scitotenv_2021_147084
crossref_primary_10_1016_j_apcatb_2023_123223
crossref_primary_10_1016_j_cherd_2022_09_024
crossref_primary_10_3390_pr10081542
crossref_primary_10_1016_j_electacta_2023_142351
crossref_primary_10_1016_j_jclepro_2020_122378
crossref_primary_10_1016_j_jhazmat_2019_121649
crossref_primary_10_1016_j_biortech_2021_125251
crossref_primary_10_1016_j_rser_2021_111372
crossref_primary_10_1016_j_scitotenv_2018_05_298
crossref_primary_10_3390_su132414041
crossref_primary_10_1016_j_enconman_2019_112457
crossref_primary_10_1007_s42452_019_1126_8
crossref_primary_10_1016_j_scitotenv_2020_141672
crossref_primary_10_1016_j_conbuildmat_2020_120723
crossref_primary_10_1016_j_psep_2023_10_029
crossref_primary_10_1016_j_cej_2020_126136
crossref_primary_10_1016_j_jaap_2023_106135
crossref_primary_10_1016_j_biortech_2019_122252
crossref_primary_10_1016_j_enconman_2019_112445
crossref_primary_10_1016_j_indcrop_2024_120073
crossref_primary_10_1007_s10562_019_03059_0
crossref_primary_10_1016_j_ijhydene_2024_06_397
crossref_primary_10_1016_j_biortech_2017_12_098
crossref_primary_10_3390_catal12091067
crossref_primary_10_3390_catal12050517
crossref_primary_10_1016_j_biortech_2019_122263
crossref_primary_10_1007_s12649_019_00904_6
crossref_primary_10_1016_j_heliyon_2024_e26637
crossref_primary_10_1016_j_scitotenv_2019_134381
crossref_primary_10_1016_j_envpol_2022_118831
crossref_primary_10_1016_j_envpol_2022_119920
crossref_primary_10_1007_s42773_022_00189_4
crossref_primary_10_1111_sum_12762
crossref_primary_10_5572_ajae_2022_117
crossref_primary_10_3390_catal8090346
crossref_primary_10_1016_j_psep_2019_06_009
crossref_primary_10_1016_j_fuel_2020_119205
crossref_primary_10_1039_D3SU00153A
crossref_primary_10_1016_j_apcatb_2021_119938
crossref_primary_10_1038_s41598_024_67997_5
crossref_primary_10_1007_s42773_024_00388_1
crossref_primary_10_1007_s43939_025_00193_y
crossref_primary_10_1115_1_4052617
crossref_primary_10_1016_j_fuel_2022_123172
crossref_primary_10_1016_j_biortech_2019_03_028
crossref_primary_10_1039_D0GC00717J
crossref_primary_10_1016_j_cemconcomp_2019_103348
crossref_primary_10_1016_j_chemosphere_2022_137238
crossref_primary_10_3390_molecules25143123
crossref_primary_10_1016_j_scitotenv_2019_136215
crossref_primary_10_1016_j_jhazmat_2019_121533
crossref_primary_10_1016_j_cej_2019_121983
crossref_primary_10_1016_j_hazadv_2022_100226
crossref_primary_10_1021_acsomega_0c01970
crossref_primary_10_1016_j_inoche_2025_114078
crossref_primary_10_1016_j_eti_2020_101276
crossref_primary_10_1007_s41660_023_00342_x
crossref_primary_10_1088_1742_6596_1763_1_012071
crossref_primary_10_1016_j_fuel_2022_124473
crossref_primary_10_1515_psr_2023_0043
crossref_primary_10_1016_j_jaap_2019_05_012
crossref_primary_10_1007_s11356_023_26541_0
crossref_primary_10_1007_s11356_023_31697_w
crossref_primary_10_1002_slct_202200504
crossref_primary_10_1080_15435075_2023_2228886
crossref_primary_10_1016_j_biortech_2019_02_105
crossref_primary_10_1016_j_envpol_2020_115827
crossref_primary_10_1016_j_cej_2019_122937
crossref_primary_10_3390_c6040065
crossref_primary_10_1016_j_molstruc_2022_133237
crossref_primary_10_1016_j_biortech_2019_121802
crossref_primary_10_1016_j_jhazmat_2021_125935
crossref_primary_10_1080_17597269_2023_2215629
crossref_primary_10_1016_j_rser_2019_109582
crossref_primary_10_1016_j_biombioe_2025_107778
crossref_primary_10_1016_j_jclepro_2020_121097
crossref_primary_10_1016_j_envpol_2021_118244
crossref_primary_10_1016_j_jece_2019_103219
crossref_primary_10_1016_j_fuel_2022_125216
crossref_primary_10_1016_j_scitotenv_2019_02_200
crossref_primary_10_1016_j_cattod_2018_02_034
crossref_primary_10_1016_j_ijhydene_2021_11_091
crossref_primary_10_1016_j_jece_2023_109616
crossref_primary_10_3390_c4030047
crossref_primary_10_1016_j_jece_2020_103912
crossref_primary_10_1016_j_chemosphere_2024_142775
crossref_primary_10_1039_C7NJ00742F
crossref_primary_10_1016_j_wmb_2023_07_007
crossref_primary_10_1016_j_jclepro_2020_122272
crossref_primary_10_1016_j_seppur_2021_118327
crossref_primary_10_1016_j_ijhydene_2022_11_127
crossref_primary_10_1016_j_jenvman_2025_124547
crossref_primary_10_1007_s10570_020_03192_9
crossref_primary_10_1016_j_btre_2020_e00570
crossref_primary_10_1016_j_biortech_2022_126845
crossref_primary_10_31590_ejosat_858676
crossref_primary_10_1039_D2RA06085J
crossref_primary_10_1016_j_apcatb_2023_122886
crossref_primary_10_1016_j_catcom_2023_106741
crossref_primary_10_1016_j_fuel_2020_119411
crossref_primary_10_1016_j_rser_2020_109944
crossref_primary_10_1016_j_diamond_2022_109130
crossref_primary_10_1016_j_envres_2024_118938
crossref_primary_10_3390_catal13091247
crossref_primary_10_1016_j_scitotenv_2021_146037
crossref_primary_10_1016_j_jhazmat_2020_123833
crossref_primary_10_1016_j_jallcom_2021_163287
crossref_primary_10_3390_catal11010003
crossref_primary_10_1016_j_electacta_2020_137583
crossref_primary_10_1002_pat_5823
crossref_primary_10_1016_j_energy_2019_116103
crossref_primary_10_1016_j_psep_2021_03_009
crossref_primary_10_1016_j_envres_2020_109547
crossref_primary_10_1016_j_biortech_2020_123088
crossref_primary_10_1021_acsomega_0c04404
crossref_primary_10_3390_ma17153858
crossref_primary_10_1007_s13399_021_01774_6
crossref_primary_10_1016_j_watres_2018_03_012
crossref_primary_10_1039_D2SE01503J
crossref_primary_10_1016_j_bej_2019_107403
crossref_primary_10_1016_j_scitotenv_2021_146448
crossref_primary_10_1016_j_envpol_2019_07_012
crossref_primary_10_1007_s13399_023_04032_z
crossref_primary_10_1016_j_scitotenv_2023_166575
crossref_primary_10_1016_j_jaap_2024_106816
crossref_primary_10_1016_j_cej_2018_10_193
crossref_primary_10_1016_j_jhazmat_2019_121243
crossref_primary_10_1016_j_biortech_2023_129587
crossref_primary_10_1016_j_jece_2024_114785
crossref_primary_10_1016_j_rser_2019_109305
crossref_primary_10_1007_s11244_024_01976_y
crossref_primary_10_1016_j_scitotenv_2019_136079
crossref_primary_10_1016_j_scitotenv_2021_148756
crossref_primary_10_1016_j_biortech_2021_125424
crossref_primary_10_1515_pac_2021_0106
crossref_primary_10_1002_bbb_2593
crossref_primary_10_1007_s10311_022_01527_5
crossref_primary_10_1007_s42773_022_00150_5
crossref_primary_10_1007_s42773_023_00207_z
crossref_primary_10_1016_j_seppur_2021_120118
crossref_primary_10_1007_s11356_022_24124_z
crossref_primary_10_1021_acssusresmgt_4c00028
crossref_primary_10_1016_j_chemosphere_2020_128349
crossref_primary_10_1039_C9GC01843C
crossref_primary_10_1016_j_jclepro_2020_125221
crossref_primary_10_1016_j_biortech_2018_10_042
crossref_primary_10_1039_C9GC00734B
crossref_primary_10_1038_s43586_024_00297_4
crossref_primary_10_1002_ente_202000597
crossref_primary_10_1007_s11368_020_02723_y
crossref_primary_10_1016_j_energy_2018_11_055
crossref_primary_10_1016_j_jenvman_2021_113762
crossref_primary_10_1016_j_apcata_2019_117267
crossref_primary_10_1016_j_cattod_2024_114941
crossref_primary_10_1039_D1GC01707A
crossref_primary_10_1016_j_scitotenv_2020_137116
crossref_primary_10_1016_j_renene_2021_02_064
crossref_primary_10_1016_j_biotechadv_2023_108181
crossref_primary_10_2166_wst_2022_077
crossref_primary_10_1039_D4GC03071K
crossref_primary_10_1016_j_jclepro_2021_128803
crossref_primary_10_1016_j_rser_2023_113302
crossref_primary_10_1016_j_psep_2022_05_056
crossref_primary_10_1007_s11356_023_27416_0
crossref_primary_10_1016_j_cej_2021_132287
crossref_primary_10_1080_10643389_2020_1753632
crossref_primary_10_1016_j_fuel_2024_131678
crossref_primary_10_1016_j_fuproc_2023_107753
crossref_primary_10_1016_j_envres_2020_109340
crossref_primary_10_3389_fchem_2022_1022779
crossref_primary_10_1016_j_fuproc_2021_106782
crossref_primary_10_1016_j_susmat_2020_e00168
crossref_primary_10_3390_catal12020207
crossref_primary_10_1016_j_biortech_2019_121878
crossref_primary_10_1007_s13399_020_00870_3
crossref_primary_10_1016_j_biortech_2018_07_048
crossref_primary_10_1016_j_fuel_2021_122048
crossref_primary_10_1021_acssuschemeng_8b02931
crossref_primary_10_1021_acsenvironau_1c00032
crossref_primary_10_1016_j_seppur_2024_128022
crossref_primary_10_1016_j_clay_2020_105645
crossref_primary_10_1016_j_scitotenv_2020_137415
crossref_primary_10_1016_j_chemosphere_2020_126539
crossref_primary_10_1016_j_jaap_2019_03_006
crossref_primary_10_1016_j_scitotenv_2020_138743
crossref_primary_10_1080_10643389_2018_1518860
crossref_primary_10_1080_09506608_2021_1922047
crossref_primary_10_1016_j_ijbiomac_2023_126656
crossref_primary_10_1016_j_chemosphere_2020_127988
crossref_primary_10_1016_j_jwpe_2024_106341
crossref_primary_10_1016_j_chemosphere_2019_01_132
crossref_primary_10_1016_j_jece_2021_105891
crossref_primary_10_1016_j_cemconcomp_2024_105864
crossref_primary_10_1016_j_jece_2022_109038
crossref_primary_10_1021_acs_iecr_3c02292
crossref_primary_10_1016_j_jenvman_2024_122341
crossref_primary_10_3390_plants11202745
crossref_primary_10_1016_j_energy_2020_119151
crossref_primary_10_1016_j_scitotenv_2022_153555
crossref_primary_10_1080_09542299_2018_1487774
crossref_primary_10_1002_apj_3158
crossref_primary_10_1016_j_biombioe_2021_105978
crossref_primary_10_1021_acssuschemeng_1c02008
crossref_primary_10_1016_j_jhazmat_2019_04_071
crossref_primary_10_1039_D0SE01024C
crossref_primary_10_1007_s11356_022_21743_4
crossref_primary_10_3390_catal8110562
crossref_primary_10_1016_j_fuproc_2018_02_013
crossref_primary_10_1016_j_biortech_2020_124100
crossref_primary_10_1016_j_fuel_2022_123643
crossref_primary_10_1016_j_biortech_2018_06_104
crossref_primary_10_1016_j_chemosphere_2024_141715
crossref_primary_10_1016_j_scitotenv_2022_153427
crossref_primary_10_1002_eem2_12074
crossref_primary_10_1016_j_cej_2020_124611
crossref_primary_10_1002_ep_13440
crossref_primary_10_1016_j_biortech_2018_08_065
crossref_primary_10_1002_adsu_201900149
crossref_primary_10_1039_C8GC02466A
crossref_primary_10_3390_polym14235244
crossref_primary_10_1007_s10668_020_00970_0
crossref_primary_10_1016_j_chemosphere_2021_131391
crossref_primary_10_1016_j_scitotenv_2019_133943
crossref_primary_10_1007_s10311_019_00885_x
crossref_primary_10_1016_j_scitotenv_2020_138751
crossref_primary_10_1016_j_joei_2025_102031
crossref_primary_10_1039_D2RA01897G
crossref_primary_10_1002_elsc_202100025
crossref_primary_10_1016_j_jece_2024_115291
crossref_primary_10_1007_s42773_023_00286_y
crossref_primary_10_1016_j_jhazmat_2020_124893
crossref_primary_10_1016_j_ijhydene_2021_11_065
crossref_primary_10_1016_j_enconman_2021_113836
crossref_primary_10_1007_s11356_022_24628_8
crossref_primary_10_1016_j_scitotenv_2018_01_037
crossref_primary_10_1016_j_apenergy_2019_01_021
crossref_primary_10_1016_j_ijhydene_2021_05_193
crossref_primary_10_1007_s11356_023_28908_9
crossref_primary_10_1007_s10668_023_03470_z
crossref_primary_10_1016_j_jece_2021_105321
crossref_primary_10_1016_j_envpol_2020_115985
crossref_primary_10_1021_acsestwater_2c00046
crossref_primary_10_1016_j_surfin_2024_104770
crossref_primary_10_3390_app10217810
crossref_primary_10_1016_j_chemosphere_2023_139250
crossref_primary_10_1016_j_jclepro_2018_07_199
crossref_primary_10_1016_j_jhazmat_2021_126029
crossref_primary_10_3390_ma17030565
crossref_primary_10_1016_j_jhazmat_2019_121192
crossref_primary_10_1016_j_envint_2019_04_006
crossref_primary_10_1080_10643389_2020_1713030
crossref_primary_10_1002_ange_202302180
crossref_primary_10_1016_j_biombioe_2024_107482
crossref_primary_10_1016_j_jhazmat_2020_123460
crossref_primary_10_55905_cuadv16n1_166
crossref_primary_10_1016_j_catcom_2020_106229
crossref_primary_10_1016_j_mtener_2021_100905
crossref_primary_10_1016_j_cej_2021_130387
crossref_primary_10_1007_s11356_023_30192_6
crossref_primary_10_1016_j_chemosphere_2019_124842
crossref_primary_10_1016_j_biortech_2023_129634
crossref_primary_10_3390_catal12020223
crossref_primary_10_3390_insects15010042
crossref_primary_10_1016_j_scitotenv_2021_146617
crossref_primary_10_1016_j_chemosphere_2018_08_033
crossref_primary_10_2166_wst_2022_332
crossref_primary_10_1016_j_indcrop_2021_113475
crossref_primary_10_3390_nano13061129
crossref_primary_10_1002_anie_202302180
crossref_primary_10_1016_j_cej_2020_125505
crossref_primary_10_1016_j_ijhydene_2018_09_028
crossref_primary_10_1016_j_chemosphere_2019_124732
crossref_primary_10_1007_s44246_023_00035_7
crossref_primary_10_1016_j_biortech_2019_121627
crossref_primary_10_1016_j_biortech_2020_123442
crossref_primary_10_1016_j_biortech_2021_125915
crossref_primary_10_1016_j_scitotenv_2020_136894
crossref_primary_10_1016_j_biortech_2019_122564
crossref_primary_10_1016_j_jclepro_2020_121643
crossref_primary_10_1016_j_scitotenv_2023_167061
crossref_primary_10_3390_catal11080939
crossref_primary_10_3390_pr13020589
crossref_primary_10_1016_j_jclepro_2020_120678
crossref_primary_10_1016_j_xinn_2021_100180
crossref_primary_10_3390_catal13061004
crossref_primary_10_1016_j_renene_2019_03_077
crossref_primary_10_1016_j_tibtech_2022_09_011
crossref_primary_10_1007_s11164_024_05252_2
crossref_primary_10_3390_molecules26237080
crossref_primary_10_1007_s12649_021_01519_6
crossref_primary_10_1016_j_resconrec_2020_105036
crossref_primary_10_1016_j_envint_2019_105376
crossref_primary_10_3390_toxics12040245
crossref_primary_10_1016_j_biortech_2022_127467
crossref_primary_10_1016_j_rser_2020_110365
crossref_primary_10_1016_j_scitotenv_2020_144213
crossref_primary_10_1016_j_renene_2021_03_126
crossref_primary_10_1007_s42823_024_00766_6
crossref_primary_10_1016_j_jhazmat_2021_127663
crossref_primary_10_1016_j_ijhydene_2019_02_226
crossref_primary_10_1016_j_jclepro_2020_121986
crossref_primary_10_1007_s11356_021_13959_7
crossref_primary_10_1016_j_scitotenv_2021_145851
crossref_primary_10_3390_catal11121470
crossref_primary_10_1002_aoc_5913
crossref_primary_10_1021_acssuschemeng_1c06326
crossref_primary_10_1016_j_rineng_2025_104036
crossref_primary_10_1039_D2SE00129B
crossref_primary_10_1007_s10668_024_05841_6
crossref_primary_10_1002_cplu_202400246
crossref_primary_10_1016_j_fuel_2021_121227
crossref_primary_10_1016_j_scp_2023_101216
crossref_primary_10_1016_j_egyr_2024_03_015
crossref_primary_10_1039_D0EE03757E
crossref_primary_10_1007_s42773_019_00030_5
crossref_primary_10_1039_C9GC03553B
crossref_primary_10_1016_j_biortech_2019_121381
crossref_primary_10_1021_acssuschemeng_0c06139
crossref_primary_10_1016_j_energy_2019_01_035
crossref_primary_10_1039_D1GC04746A
crossref_primary_10_1016_j_conbuildmat_2023_134736
crossref_primary_10_1016_j_mssp_2020_105088
crossref_primary_10_1016_j_scitotenv_2022_157062
crossref_primary_10_1039_C7SE00553A
crossref_primary_10_1039_D4RA02265C
crossref_primary_10_1016_j_energy_2018_08_026
crossref_primary_10_1021_acs_energyfuels_9b03247
crossref_primary_10_1002_slct_201901084
crossref_primary_10_1016_j_cep_2023_109419
crossref_primary_10_1016_j_jaap_2022_105608
crossref_primary_10_1016_j_scitotenv_2019_135414
crossref_primary_10_1016_j_envres_2021_112455
crossref_primary_10_1016_j_apcatb_2022_121932
crossref_primary_10_1039_C8EN00968F
crossref_primary_10_1016_j_jclepro_2020_122300
crossref_primary_10_3390_horticulturae11010073
crossref_primary_10_1016_j_biortech_2020_123613
crossref_primary_10_1016_j_scitotenv_2020_143679
crossref_primary_10_1016_j_scitotenv_2021_144955
crossref_primary_10_1016_j_biombioe_2021_106245
crossref_primary_10_1016_j_chemosphere_2021_132222
crossref_primary_10_1007_s42773_025_00438_2
crossref_primary_10_1016_j_jhazmat_2019_121827
crossref_primary_10_1016_j_jclepro_2020_121427
crossref_primary_10_1007_s10163_024_02113_3
crossref_primary_10_1021_acssuschemeng_8b02752
crossref_primary_10_1016_j_scitotenv_2020_144204
crossref_primary_10_3390_en16020644
crossref_primary_10_3390_molecules29143286
crossref_primary_10_1039_C9EE00206E
crossref_primary_10_1016_j_jaap_2021_105429
crossref_primary_10_1016_j_micromeso_2020_110573
crossref_primary_10_1016_j_envres_2023_118027
crossref_primary_10_1016_j_fuel_2023_127791
crossref_primary_10_1016_j_chemosphere_2019_125664
crossref_primary_10_1016_j_hybadv_2023_100056
crossref_primary_10_1016_j_jhazmat_2022_130076
crossref_primary_10_1016_j_fuproc_2021_106749
crossref_primary_10_3390_catal12121495
Cites_doi 10.1016/j.chemosphere.2014.12.058
10.1002/fuce.201300089
10.1016/j.rser.2017.04.002
10.1021/ja3122763
10.1016/j.biortech.2016.08.002
10.1016/j.biortech.2017.01.017
10.1016/j.biortech.2017.01.067
10.1016/j.fuel.2015.04.027
10.1016/j.renene.2013.12.017
10.1016/j.biortech.2012.06.036
10.1016/j.cej.2017.07.020
10.1007/s11368-016-1360-2
10.1016/j.jiec.2014.11.041
10.1021/acs.chemrev.6b00311
10.1016/j.biortech.2014.06.103
10.1016/j.jpowsour.2008.08.030
10.1016/j.fuel.2015.04.036
10.1016/j.biortech.2017.04.026
10.1016/j.electacta.2015.02.157
10.1016/j.jpowsour.2009.12.135
10.1039/C5CY00077G
10.1021/cs300265d
10.1016/j.enconman.2015.06.072
10.1016/j.apsusc.2007.05.057
10.1016/j.eti.2015.08.003
10.1002/jctb.5144
10.1016/j.ijhydene.2011.04.175
10.1016/j.apcata.2008.05.023
10.1016/j.biombioe.2012.03.003
10.1016/j.cej.2017.06.108
10.1080/10643389.2015.1096880
10.1016/j.apcata.2011.08.039
10.1016/j.chemosphere.2013.10.071
10.1016/j.biortech.2016.05.011
10.1016/j.biortech.2016.04.055
10.1039/C5GC01938A
10.4155/bfs.10.81
10.1002/cssc.201300328
10.1021/es9031419
10.1016/j.rser.2015.06.032
10.1039/C3CY00409K
10.1007/s11244-010-9560-2
10.1016/j.jece.2013.09.004
10.1021/am501844p
10.1016/j.fuel.2008.01.004
10.1016/j.cattod.2012.02.006
10.1016/j.fuel.2015.07.007
10.1016/j.fuproc.2014.09.038
10.1016/j.biortech.2013.06.075
10.1016/j.chemosphere.2016.01.043
10.1016/j.chemosphere.2009.01.035
10.1007/s10570-016-1118-4
10.1016/j.jbiosc.2013.05.035
10.1016/j.cej.2014.07.054
10.1016/j.biortech.2013.06.087
10.1016/j.biombioe.2014.12.022
10.1016/j.cej.2009.10.027
10.1016/j.rser.2014.10.074
10.1016/j.cej.2016.08.099
10.1007/s11104-015-2658-3
10.1039/c1cs15124j
10.1002/cssc.200900296
10.1016/j.apcata.2010.04.051
10.1016/j.biortech.2016.08.017
10.1007/s11368-015-1325-x
10.1016/j.chemosphere.2017.06.095
10.1039/C4NJ00780H
10.1021/acs.chemrev.5b00195
10.1039/c0gc00900h
10.1021/ie501843y
10.1016/j.fuel.2006.12.013
10.1039/c3ra23314f
10.1016/j.chemosphere.2011.12.007
10.1016/j.carres.2010.10.022
10.1016/j.cattod.2012.02.050
10.1016/j.biortech.2014.01.120
10.1016/j.cej.2010.10.019
10.1016/j.jiec.2016.06.002
10.1016/j.jcat.2016.03.007
10.1016/j.biortech.2010.09.049
10.1039/c0gc00881h
10.1016/j.biortech.2013.12.070
10.1016/j.jenvman.2016.05.016
10.1016/j.ijhydene.2016.04.041
10.1016/j.rser.2011.02.018
10.1016/j.fuel.2012.11.063
10.1039/c3gc37107g
10.1016/j.biortech.2016.06.002
10.1016/j.molcata.2016.01.005
10.1016/j.fuel.2015.09.042
10.1007/s11356-015-5697-7
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2017.06.163
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 270
ExternalDocumentID 28712780
10_1016_j_biortech_2017_06_163
S0960852417310672
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c552t-8690b4da09ad7d58a8f3cac91387247d90682a83dc3dbbeab9a0b427b6cde83b3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Wed Jul 02 04:49:35 EDT 2025
Fri Jul 11 08:42:09 EDT 2025
Mon Jul 21 05:51:57 EDT 2025
Tue Jul 01 02:06:50 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Sat Nov 02 16:01:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Waste valorization
Biorefinery
Biochar
Solid catalyst
Acid-catalyzed conversion
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-8690b4da09ad7d58a8f3cac91387247d90682a83dc3dbbeab9a0b427b6cde83b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S0960852417310672-fx1_lrg.jpg
PMID 28712780
PQID 1920196115
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2000499842
proquest_miscellaneous_1920196115
pubmed_primary_28712780
crossref_citationtrail_10_1016_j_biortech_2017_06_163
crossref_primary_10_1016_j_biortech_2017_06_163
elsevier_sciencedirect_doi_10_1016_j_biortech_2017_06_163
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bhandari, Kumar, Bellmer, Huhnke (b0015) 2014; 66
Gallo, Alamillo, Dumesic (b0110) 2016; 422
Enslow, Bell (b0100) 2015; 5
Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Ok (b0325) 2016; 148
Mohan, Sarswat, Ok, Pittman (b0285) 2014; 160
Osatiashtiani, Lee, Brown, Melero, Morales, Wilson (b0315) 2014; 4
Kastner, Miller, Kolar, Das (b0155) 2009; 75
Zhang, Liang, Liu (b0440) 2011; 36
Guilminot, Gavillon, Chatenet, Berthon-Fabry, Rigacci, Budtova (b0115) 2008; 185
Jin, Capareda, Chang, Gao, Xu, Zhang (b0140) 2014; 169
Chen, Li, Jiang, Xiong (b0035) 2015; 259
Chen, Yu, Tsang, Yip, Khan, Wang, Ok, Poon (b0045) 2017; 327
Lee, Kim, Kwon (b0205) 2017; 77
Yuan, Yuan, Wang, Tang, Zhou (b0435) 2013; 144
Zhou, Wang, Ji, Feng, Wang (b0465) 2014; 14
Kastner, Miller, Geller, Locklin, Keith, Johnson (b0160) 2012; 190
Dehkhoda, West, Ellis (b0070) 2010; 382
Tan, Liu, Zeng, Wang, Hu, Gu, Yang (b0360) 2015; 125
Gupta, Paul (b0120) 2011; 13
Wang, Zhu, Wang, Cui, Zhang, Zhang (b0390) 2016; 92
Dong, Gao, Miao, Yu, Degan, Garcia-Pérez, Chen (b0080) 2015; 105
Lee, Jung, Oh, Ok, Lee, Kwon (b0210) 2017; 231
Ma, Dai, Zou, Wang, Pan, Fu (b0265) 2014; 6
Li, Zhang, Yu, Yin (b0220) 2007; 253
Rizwan, Ali, Qayyum, Ibrahim, Zia-ur-Rehman, Abbas, Ok (b0335) 2016; 23
Deng, Lin, Yan, Li, Ren, Liu, Sun (b0075) 2016; 216
Libra, Ro, Kammann, Funke, Berge, Neubauer, Emmerich (b0240) 2011; 2
Kostić, Bazargan, Stamenković, Veljković, McKay (b0195) 2016; 163
Ormsby, Kastner, Miller (b0310) 2012; 190
Zhang, Jin, Hu, Huo (b0445) 2011; 102
Hussain, Farooq, Nawaz, Al-Sadi, Solaiman, Alghamdi, Ammara, Ok, Siddique (b0125) 2017; 17
Yan, Wan, Liu, Gao, Yu, Zhang, Cai (b0400) 2013; 15
Morone, Apte, Pandey (b0290) 2015; 51
Yu, Tsang, Yip, Chen, Ok, Poon (b0425) 2017; 184
Kim, Kan (b0175) 2016; 180
Johnson, Thielemans, Walsh (b0145) 2011; 13
Madhu, Chavan, Singh, Singh, Sharma (b0270) 2016; 214
Keiluweit, Nico, Johnson, Kleber (b0170) 2010; 44
Choudhary, Pinar, Lobo, Vlachos, Sandler (b0060) 2013; 6
Kang, Ye, Zhang, Chang (b0150) 2013; 3
Rajapaksha, Vithanage, Lee, Seo, Tsang, Ok (b0330) 2016; 16
Iwazaki, Yang, Obinata, Sugimoto, Takasu (b0135) 2010; 195
Muradov, Fidalgo, Gujar, Garceau, Ali (b0295) 2012; 42
Yang, Yan, Chen, Lee, Zheng (b0405) 2007; 86
Komanoya, Kobayashi, Hara, Chun, Fukuoka (b0190) 2011; 407
Tang, Zhu, Kookana, Katayama (b0365) 2013; 116
Yao, Hu, Wang, Yang, Wu, Wang, Chen (b0410) 2016; 216
Dufour, Celzard, Fierro, Martin, Broust, Zoulalian (b0090) 2008; 346
Kreissl, Nakagawa, Peng, Koito, Zheng, Tsang (b0200) 2016; 338
Zhang, Wilson, Lee (b0450) 2016; 116
Smith, Oopathum, Weeramongkhonlert, Smith, Chaveanghong, Ketwong, Boonyuen (b0355) 2013; 143
El-Rub, Bramer, Brem (b0095) 2008; 87
Lehmann, Kuzyakov, Pan, Ok (b0215) 2015; 395
Shen, Chen, Sun, Jia (b0350) 2015; 159
Wang, Wang, Yin, Zhu, Yin (b0385) 2014; 38
Li, Peng, Liu, Xia, Wang (b0235) 2016
Ok, Chang, Gao, Chung (b0305) 2015; 4
Dora, Bhaskar, Singh, Naik, Adhikari (b0085) 2012; 120
Yu, Tsang, Yip, Chen, Ok, Poon (b0420) 2016; 219
Zhang, Cheng, Fu, Liu, Yi, Zheng, Kirk, Yin (b0455) 2017; 24
McBeath, Wurster, Bird (b0275) 2015; 73
Wei, Wu (b0395) 2017; 307
Zhou, Xia, Lin, Tong, Beltramini (b0460) 2011; 40
Chen, Maneerung, Tsang, Ok, Wang (b0040) 2017
Klinghoffer, Castaldi, Nzihou (b0180) 2015; 157
Tao, Song, Chou (b0370) 2011; 346
Ahmad, Rajapaksha, Lim, Zhang, Bolan, Mohan, Ok (b0005) 2014; 99
Crisci, Tucker, Dumesic, Scott (b0065) 2010; 53
Min, Zhang, Yimsiri, Wang, Asadullah, Li (b0280) 2013; 106
Umeyama, Imahori (b0380) 2013; 117
Kobayashi, Komanoya, Hara, Fukuoka (b0185) 2010; 3
Liu, Yang, Liu, Li (b0250) 2015; 26
Inyang, Gao, Yao, Xue, Zimmerman, Mosa, Cao (b0130) 2016; 46
Norouzi, Jafarian, Safari, Tavasoli, Nejati (b0300) 2016; 219
Choudhary, Mushrif, Ho, Anderko, Nikolakis, Marinkovic, Vlachos (b0055) 2013; 135
Fan, Liu, Yang, Jiang, Yao, Han, Xiong (b0105) 2015; 163
Tsilomelekis, Orella, Lin, Cheng, Zheng, Nikolakis, Vlachos (b0375) 2016; 18
Yu, Tsang, Yip, Chen, Wang, Ok, Poon (b0430) 2017; 237
Li, Gu, Bjornson, Muthukumarappan (b0225) 2013; 1
Choudhary, Sandler, Vlachos (b0050) 2012; 2
Lobos, Sieben, Comignani, Duarte, Volpe, Moyano (b0260) 2016; 41
Yu, Tsang (b0415) 2017; 238
Chakraborty, Bepari, Banerjee (b0030) 2010; 165
Anis, Zainal (b0010) 2011; 15
Li, Zheng, Chen, Zhu (b0230) 2014; 154
Kastner, Mani, Juneja (b0165) 2015; 130
Lin, Munroe, Joseph, Henderson, Ziolkowski (b0245) 2012; 87
Shen, Yoshikawa (b0340) 2014; 53
Cha, Park, Jung, Ryu, Jeon, Shin, Park (b0025) 2016; 40
Liu, Jiang, Yu (b0255) 2015; 115
Shen, Chen, Yue, Li (b0345) 2015; 156
Qian, Kumar, Zhang, Bellmer, Huhnke (b0320) 2015; 42
Cha, Choi, Ko, Park, Park, Jeong, Jeon (b0020) 2010; 156
Mohan (10.1016/j.biortech.2017.06.163_b0285) 2014; 160
Zhang (10.1016/j.biortech.2017.06.163_b0450) 2016; 116
Libra (10.1016/j.biortech.2017.06.163_b0240) 2011; 2
Chen (10.1016/j.biortech.2017.06.163_b0040) 2017
Min (10.1016/j.biortech.2017.06.163_b0280) 2013; 106
Yan (10.1016/j.biortech.2017.06.163_b0400) 2013; 15
Chen (10.1016/j.biortech.2017.06.163_b0045) 2017; 327
Tsilomelekis (10.1016/j.biortech.2017.06.163_b0375) 2016; 18
Gallo (10.1016/j.biortech.2017.06.163_b0110) 2016; 422
Kastner (10.1016/j.biortech.2017.06.163_b0155) 2009; 75
Wang (10.1016/j.biortech.2017.06.163_b0385) 2014; 38
Cha (10.1016/j.biortech.2017.06.163_b0020) 2010; 156
Ok (10.1016/j.biortech.2017.06.163_b0305) 2015; 4
Smith (10.1016/j.biortech.2017.06.163_b0355) 2013; 143
Wang (10.1016/j.biortech.2017.06.163_b0390) 2016; 92
Zhou (10.1016/j.biortech.2017.06.163_b0460) 2011; 40
Klinghoffer (10.1016/j.biortech.2017.06.163_b0180) 2015; 157
McBeath (10.1016/j.biortech.2017.06.163_b0275) 2015; 73
Crisci (10.1016/j.biortech.2017.06.163_b0065) 2010; 53
El-Rub (10.1016/j.biortech.2017.06.163_b0095) 2008; 87
Qian (10.1016/j.biortech.2017.06.163_b0320) 2015; 42
Liu (10.1016/j.biortech.2017.06.163_b0255) 2015; 115
Rajapaksha (10.1016/j.biortech.2017.06.163_b0325) 2016; 148
Yu (10.1016/j.biortech.2017.06.163_b0415) 2017; 238
Zhou (10.1016/j.biortech.2017.06.163_b0465) 2014; 14
Dufour (10.1016/j.biortech.2017.06.163_b0090) 2008; 346
Madhu (10.1016/j.biortech.2017.06.163_b0270) 2016; 214
Tao (10.1016/j.biortech.2017.06.163_b0370) 2011; 346
Li (10.1016/j.biortech.2017.06.163_b0220) 2007; 253
Inyang (10.1016/j.biortech.2017.06.163_b0130) 2016; 46
Gupta (10.1016/j.biortech.2017.06.163_b0120) 2011; 13
Yang (10.1016/j.biortech.2017.06.163_b0405) 2007; 86
Yuan (10.1016/j.biortech.2017.06.163_b0435) 2013; 144
Yu (10.1016/j.biortech.2017.06.163_b0420) 2016; 219
Bhandari (10.1016/j.biortech.2017.06.163_b0015) 2014; 66
Deng (10.1016/j.biortech.2017.06.163_b0075) 2016; 216
Zhang (10.1016/j.biortech.2017.06.163_b0445) 2011; 102
Lehmann (10.1016/j.biortech.2017.06.163_b0215) 2015; 395
Enslow (10.1016/j.biortech.2017.06.163_b0100) 2015; 5
Shen (10.1016/j.biortech.2017.06.163_b0350) 2015; 159
Lobos (10.1016/j.biortech.2017.06.163_b0260) 2016; 41
Fan (10.1016/j.biortech.2017.06.163_b0105) 2015; 163
Wei (10.1016/j.biortech.2017.06.163_b0395) 2017; 307
Kreissl (10.1016/j.biortech.2017.06.163_b0200) 2016; 338
Chakraborty (10.1016/j.biortech.2017.06.163_b0030) 2010; 165
Ahmad (10.1016/j.biortech.2017.06.163_b0005) 2014; 99
Johnson (10.1016/j.biortech.2017.06.163_b0145) 2011; 13
Zhang (10.1016/j.biortech.2017.06.163_b0455) 2017; 24
Choudhary (10.1016/j.biortech.2017.06.163_b0055) 2013; 135
Yao (10.1016/j.biortech.2017.06.163_b0410) 2016; 216
Norouzi (10.1016/j.biortech.2017.06.163_b0300) 2016; 219
Lee (10.1016/j.biortech.2017.06.163_b0205) 2017; 77
Kastner (10.1016/j.biortech.2017.06.163_b0160) 2012; 190
Kim (10.1016/j.biortech.2017.06.163_b0175) 2016; 180
Morone (10.1016/j.biortech.2017.06.163_b0290) 2015; 51
Muradov (10.1016/j.biortech.2017.06.163_b0295) 2012; 42
Zhang (10.1016/j.biortech.2017.06.163_b0440) 2011; 36
Komanoya (10.1016/j.biortech.2017.06.163_b0190) 2011; 407
Dehkhoda (10.1016/j.biortech.2017.06.163_b0070) 2010; 382
Chen (10.1016/j.biortech.2017.06.163_b0035) 2015; 259
Shen (10.1016/j.biortech.2017.06.163_b0340) 2014; 53
Shen (10.1016/j.biortech.2017.06.163_b0345) 2015; 156
Jin (10.1016/j.biortech.2017.06.163_b0140) 2014; 169
Ma (10.1016/j.biortech.2017.06.163_b0265) 2014; 6
Tang (10.1016/j.biortech.2017.06.163_b0365) 2013; 116
Yu (10.1016/j.biortech.2017.06.163_b0430) 2017; 237
Lee (10.1016/j.biortech.2017.06.163_b0210) 2017; 231
Osatiashtiani (10.1016/j.biortech.2017.06.163_b0315) 2014; 4
Li (10.1016/j.biortech.2017.06.163_b0225) 2013; 1
Li (10.1016/j.biortech.2017.06.163_b0230) 2014; 154
Kang (10.1016/j.biortech.2017.06.163_b0150) 2013; 3
Lin (10.1016/j.biortech.2017.06.163_b0245) 2012; 87
Kastner (10.1016/j.biortech.2017.06.163_b0165) 2015; 130
Umeyama (10.1016/j.biortech.2017.06.163_b0380) 2013; 117
Keiluweit (10.1016/j.biortech.2017.06.163_b0170) 2010; 44
Rajapaksha (10.1016/j.biortech.2017.06.163_b0330) 2016; 16
Dora (10.1016/j.biortech.2017.06.163_b0085) 2012; 120
Dong (10.1016/j.biortech.2017.06.163_b0080) 2015; 105
Choudhary (10.1016/j.biortech.2017.06.163_b0060) 2013; 6
Liu (10.1016/j.biortech.2017.06.163_b0250) 2015; 26
Rizwan (10.1016/j.biortech.2017.06.163_b0335) 2016; 23
Kostić (10.1016/j.biortech.2017.06.163_b0195) 2016; 163
Li (10.1016/j.biortech.2017.06.163_b0235) 2016
Cha (10.1016/j.biortech.2017.06.163_b0025) 2016; 40
Anis (10.1016/j.biortech.2017.06.163_b0010) 2011; 15
Iwazaki (10.1016/j.biortech.2017.06.163_b0135) 2010; 195
Hussain (10.1016/j.biortech.2017.06.163_b0125) 2017; 17
Guilminot (10.1016/j.biortech.2017.06.163_b0115) 2008; 185
Tan (10.1016/j.biortech.2017.06.163_b0360) 2015; 125
Yu (10.1016/j.biortech.2017.06.163_b0425) 2017; 184
Choudhary (10.1016/j.biortech.2017.06.163_b0050) 2012; 2
Kobayashi (10.1016/j.biortech.2017.06.163_b0185) 2010; 3
Ormsby (10.1016/j.biortech.2017.06.163_b0310) 2012; 190
References_xml – volume: 190
  start-page: 122
  year: 2012
  end-page: 132
  ident: b0160
  article-title: Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon
  publication-title: Catal. Today
– volume: 159
  start-page: 570
  year: 2015
  end-page: 579
  ident: b0350
  article-title: Catalytic reforming of pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar
  publication-title: Fuel
– volume: 87
  start-page: 2243
  year: 2008
  end-page: 2252
  ident: b0095
  article-title: Experimental comparison of biomass chars with other catalysts for tar reduction
  publication-title: Fuel
– volume: 44
  start-page: 1247
  year: 2010
  end-page: 1253
  ident: b0170
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 144
  start-page: 115
  year: 2013
  end-page: 120
  ident: b0435
  article-title: Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell
  publication-title: Bioresour. Technol.
– year: 2017
  ident: b0040
  article-title: Valorization of Biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts
  publication-title: Chem. Eng. J.
– volume: 87
  start-page: 151
  year: 2012
  end-page: 157
  ident: b0245
  article-title: Water extractable organic carbon in untreated and chemical treated biochars
  publication-title: Chemosphere
– volume: 148
  start-page: 276
  year: 2016
  end-page: 291
  ident: b0325
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
– volume: 346
  start-page: 58
  year: 2011
  end-page: 63
  ident: b0370
  article-title: Catalytic conversion of cellulose to chemicals in ionic liquid
  publication-title: Carbohydr. Res.
– volume: 214
  start-page: 210
  year: 2016
  end-page: 217
  ident: b0270
  article-title: An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst
  publication-title: Bioresour. Technol.
– volume: 6
  start-page: 2369
  year: 2013
  end-page: 2376
  ident: b0060
  article-title: Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media
  publication-title: ChemSusChem.
– volume: 163
  start-page: 304
  year: 2016
  end-page: 313
  ident: b0195
  article-title: Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar
  publication-title: Fuel
– volume: 184
  start-page: 1099
  year: 2017
  end-page: 1107
  ident: b0425
  article-title: Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis
  publication-title: Chemosphere
– volume: 14
  start-page: 296
  year: 2014
  end-page: 302
  ident: b0465
  article-title: Synthesis of mesoporous carbon from okara and application as electrocatalyst support
  publication-title: Fuel Cells
– volume: 106
  start-page: 858
  year: 2013
  end-page: 863
  ident: b0280
  article-title: Catalytic reforming of tar during gasification. Part IV. Changes in the structure of char in the char-supported iron catalyst during reforming
  publication-title: Fuel
– volume: 259
  start-page: 161
  year: 2015
  end-page: 169
  ident: b0035
  article-title: High-performance Pd nanoalloy on functionalized activated carbon for the hydrogenation of nitroaromatic compounds
  publication-title: Chem. Eng. J.
– volume: 253
  start-page: 9254
  year: 2007
  end-page: 9258
  ident: b0220
  article-title: The effects of activated carbon supports on the structure and properties of TiO
  publication-title: Appl. Surf. Sci.
– volume: 15
  start-page: 1631
  year: 2013
  end-page: 1640
  ident: b0400
  article-title: Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons
  publication-title: Green Chem.
– volume: 216
  start-page: 159
  year: 2016
  end-page: 164
  ident: b0410
  article-title: Hydrogen production from biomass gasification using biochar as a catalyst/support
  publication-title: Bioresour. Technol.
– volume: 17
  start-page: 685
  year: 2017
  end-page: 716
  ident: b0125
  article-title: Biochar for crop production: potential benefits and risks
  publication-title: J. Soils Sediments
– year: 2016
  ident: b0235
  article-title: Comprehensive understanding the role of Brønsted and Lewis acid sites in glucose conversion to 5-hydromethylfurfural
  publication-title: ChemCatChem
– volume: 4
  start-page: 206
  year: 2015
  end-page: 209
  ident: b0305
  article-title: SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research
  publication-title: Environ. Technol. Innovation
– volume: 66
  start-page: 346
  year: 2014
  end-page: 353
  ident: b0015
  article-title: Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas
  publication-title: Renewable Energy
– volume: 42
  start-page: 1055
  year: 2015
  end-page: 1064
  ident: b0320
  article-title: Recent advances in utilization of biochar
  publication-title: Renewable Sustainable Energy Rev.
– volume: 143
  start-page: 686
  year: 2013
  end-page: 690
  ident: b0355
  article-title: Transesterification of soybean oil using bovine bone waste as new catalyst
  publication-title: Bioresour. Technol.
– volume: 99
  start-page: 19
  year: 2014
  end-page: 33
  ident: b0005
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
– volume: 5
  start-page: 2839
  year: 2015
  end-page: 2847
  ident: b0100
  article-title: SnCl
  publication-title: Catal. Sci. Technol.
– volume: 195
  start-page: 5840
  year: 2010
  end-page: 5847
  ident: b0135
  article-title: Oxygen-reduction activity of silk-derived carbons
  publication-title: J. Power Sources
– volume: 92
  start-page: 1454
  year: 2016
  end-page: 1463
  ident: b0390
  article-title: Fructose dehydration to 5-HMF over three sulfonated carbons: effect of different pore structures
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 53
  start-page: 10929
  year: 2014
  end-page: 10942
  ident: b0340
  article-title: Tar conversion and vapor upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification
  publication-title: Ind. Eng. Chem. Res.
– volume: 185
  start-page: 717
  year: 2008
  end-page: 726
  ident: b0115
  article-title: New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis
  publication-title: J. Power Sources
– volume: 6
  start-page: 13438
  year: 2014
  end-page: 13447
  ident: b0265
  article-title: Synthesis of iron oxide/partly graphitized carbon composites as a high-efficiency and low-cost cathode catalyst for microbial fuel cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 116
  start-page: 12328
  year: 2016
  end-page: 12368
  ident: b0450
  article-title: Heterogeneously catalyzed hydrothermal processing of C
  publication-title: Chem. Rev.
– volume: 125
  start-page: 70
  year: 2015
  end-page: 85
  ident: b0360
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
– volume: 130
  start-page: 31
  year: 2015
  end-page: 37
  ident: b0165
  article-title: Catalytic decomposition of tar using iron supported biochar
  publication-title: Fuel Process. Technol.
– volume: 15
  start-page: 2355
  year: 2011
  end-page: 2377
  ident: b0010
  article-title: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review
  publication-title: Renewable Sustainable Energy Rev.
– volume: 116
  start-page: 653
  year: 2013
  end-page: 659
  ident: b0365
  article-title: Characteristics of biochar and its application in remediation of contaminated soil
  publication-title: J. Biosci. Bioeng.
– volume: 73
  start-page: 155
  year: 2015
  end-page: 173
  ident: b0275
  article-title: Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis
  publication-title: Biomass Bioenergy
– volume: 105
  start-page: 1389
  year: 2015
  end-page: 1396
  ident: b0080
  article-title: Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char
  publication-title: Energy Convers. Manage.
– volume: 327
  start-page: 328
  year: 2017
  end-page: 335
  ident: b0045
  article-title: Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: temperature and solvent effects
  publication-title: Chem. Eng. J.
– volume: 190
  start-page: 89
  year: 2012
  end-page: 97
  ident: b0310
  article-title: Hemicellulose hydrolysis using solid acid catalysts generated from biochar
  publication-title: Catal. Today
– volume: 3
  start-page: 440
  year: 2010
  end-page: 443
  ident: b0185
  article-title: Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose
  publication-title: ChemSusChem
– volume: 75
  start-page: 739
  year: 2009
  end-page: 744
  ident: b0155
  article-title: Catalytic ozonation of ammonia using biomass char and wood fly ash
  publication-title: Chemosphere
– volume: 115
  start-page: 12251
  year: 2015
  end-page: 12285
  ident: b0255
  article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material
  publication-title: Chem. Rev.
– volume: 102
  start-page: 1998
  year: 2011
  end-page: 2003
  ident: b0445
  article-title: Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions
  publication-title: Bioresour. Technol.
– volume: 216
  start-page: 754
  year: 2016
  end-page: 760
  ident: b0075
  article-title: A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system
  publication-title: Bioresour. Technol.
– volume: 180
  start-page: 94
  year: 2016
  end-page: 101
  ident: b0175
  article-title: Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO
  publication-title: J. Environ. Manage.
– volume: 422
  start-page: 13
  year: 2016
  end-page: 17
  ident: b0110
  article-title: Acid-functionalized mesoporous carbons for the continuous production of 5-hydroxymethylfurfural
  publication-title: J. Mol. Catal. A: Chem.
– volume: 18
  start-page: 1983
  year: 2016
  end-page: 1993
  ident: b0375
  article-title: Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins
  publication-title: Green Chem.
– volume: 407
  start-page: 188
  year: 2011
  end-page: 194
  ident: b0190
  article-title: Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis
  publication-title: Appl. Catal. A
– volume: 120
  start-page: 318
  year: 2012
  end-page: 321
  ident: b0085
  article-title: Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst
  publication-title: Bioresour. Technol.
– volume: 219
  start-page: 338
  year: 2016
  end-page: 347
  ident: b0420
  article-title: Valorization of food waste into hydroxymethylfurfural: dual role of metal ions in successive conversion steps
  publication-title: Bioresour. Technol.
– volume: 307
  start-page: 389
  year: 2017
  end-page: 398
  ident: b0395
  article-title: Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids
  publication-title: Chem. Eng. J.
– volume: 219
  start-page: 643
  year: 2016
  end-page: 651
  ident: b0300
  article-title: Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char
  publication-title: Bioresour. Technol.
– volume: 40
  start-page: 5588
  year: 2011
  end-page: 5617
  ident: b0460
  article-title: Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels
  publication-title: Chem. Soc. Rev.
– volume: 117
  start-page: 3195
  year: 2013
  end-page: 3209
  ident: b0380
  article-title: Photofunctional hybrid nanocarbon materials
  publication-title: J. Phys. Chem.
– volume: 382
  start-page: 197
  year: 2010
  end-page: 204
  ident: b0070
  article-title: Biochar based solid acid catalyst for biodiesel production
  publication-title: Appl. Catal. A
– volume: 24
  start-page: 95
  year: 2017
  end-page: 106
  ident: b0455
  article-title: Effective transformation of cellulose to 5-hydroxymethylfurfural catalyzed by fluorine anion-containing ionic liquid modified biochar sulfonic acids in water
  publication-title: Cellulose
– volume: 156
  start-page: 47
  year: 2015
  end-page: 53
  ident: b0345
  article-title: A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR
  publication-title: Fuel
– volume: 160
  start-page: 191
  year: 2014
  end-page: 202
  ident: b0285
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review
  publication-title: Bioresour. Technol.
– volume: 165
  start-page: 798
  year: 2010
  end-page: 805
  ident: b0030
  article-title: Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts
  publication-title: Chem. Eng. J.
– volume: 231
  start-page: 59
  year: 2017
  end-page: 64
  ident: b0210
  article-title: Evaluating the effectiveness of various biochars as porous media for biodiesel synthesis via pseudo-catalytic transesterification
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 7360
  year: 2013
  end-page: 7366
  ident: b0150
  article-title: Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production
  publication-title: RSC Adv.
– volume: 46
  start-page: 406
  year: 2016
  end-page: 433
  ident: b0130
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 40
  start-page: 1
  year: 2016
  end-page: 15
  ident: b0025
  article-title: Production and utilization of biochar: a review
  publication-title: J. Ind. Eng. Chem.
– volume: 157
  start-page: 37
  year: 2015
  end-page: 47
  ident: b0180
  article-title: Influence of char composition and inorganics on catalytic activity of char from biomass gasification
  publication-title: Fuel
– volume: 395
  start-page: 1
  year: 2015
  end-page: 5
  ident: b0215
  article-title: Biochars and the plant-soil interface
  publication-title: Plant Soil
– volume: 41
  start-page: 10695
  year: 2016
  end-page: 10706
  ident: b0260
  article-title: Biochar from pyrolysis of cellulose: an alternative catalyst support for the electro-oxidation of methanol
  publication-title: Int. J. Hyd. Energy.
– volume: 4
  start-page: 333
  year: 2014
  end-page: 342
  ident: b0315
  article-title: Bifunctional SO
  publication-title: Catal. Sci. Technol.
– volume: 16
  start-page: 889
  year: 2016
  end-page: 895
  ident: b0330
  article-title: Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption
  publication-title: J. Soils Sediments
– volume: 338
  start-page: 329
  year: 2016
  end-page: 339
  ident: b0200
  article-title: Niobium oxides: correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural
  publication-title: J. Catal.
– volume: 36
  start-page: 8902
  year: 2011
  end-page: 8907
  ident: b0440
  article-title: Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char
  publication-title: Int. J. Hyd. Energy.
– volume: 86
  start-page: 1781
  year: 2007
  end-page: 1788
  ident: b0405
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
– volume: 2
  start-page: 2022
  year: 2012
  end-page: 2028
  ident: b0050
  article-title: Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media
  publication-title: ACS Catal.
– volume: 42
  start-page: 123
  year: 2012
  end-page: 131
  ident: b0295
  article-title: Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming
  publication-title: Biomass Bioenergy
– volume: 346
  start-page: 164
  year: 2008
  end-page: 173
  ident: b0090
  article-title: Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas
  publication-title: Appl. Catal. A
– volume: 38
  start-page: 4471
  year: 2014
  end-page: 4477
  ident: b0385
  article-title: Methanation of bio-syngas over a biochar supported catalyst
  publication-title: New J. Chem.
– volume: 53
  start-page: 1185
  year: 2010
  end-page: 1192
  ident: b0065
  article-title: Bifunctional solid catalysts for the selective conversion of fructose to 5-hydroxymethylfurfural
  publication-title: Top. Catal.
– volume: 13
  start-page: 1686
  year: 2011
  end-page: 1693
  ident: b0145
  article-title: Synthesis of carbon-supported Pt nanoparticle electrocatalysts using nanocrystalline cellulose as reducing agent
  publication-title: Green Chem.
– volume: 154
  start-page: 345
  year: 2014
  end-page: 348
  ident: b0230
  article-title: Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk
  publication-title: Bioresour. Technol.
– volume: 13
  start-page: 2365
  year: 2011
  end-page: 2372
  ident: b0120
  article-title: Amorphous carbon-silica composites bearing sulfonic acid as solid acid catalysts for the chemoselective protection of aldehydes as 1, 1-diacetates and for N-, O-and S-acylations
  publication-title: Green Chem.
– volume: 163
  start-page: 140
  year: 2015
  end-page: 148
  ident: b0105
  article-title: Bi-functional porous carbon spheres derived from pectin as electrode material for supercapacitors and support material for Pt nanowires towards electrocatalytic methanol and ethanol oxidation
  publication-title: Electrochim. Acta
– volume: 238
  start-page: 716
  year: 2017
  end-page: 732
  ident: b0415
  article-title: Conversion of biomass and carbohydrates to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms
  publication-title: Bioresour. Technol.
– volume: 169
  start-page: 622
  year: 2014
  end-page: 629
  ident: b0140
  article-title: Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: adsorption property and its improvement with KOH activation
  publication-title: Bioresour. Technol.
– volume: 51
  start-page: 548
  year: 2015
  end-page: 565
  ident: b0290
  article-title: Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications
  publication-title: Renewable Sustainable Energy Rev.
– volume: 2
  start-page: 71
  year: 2011
  end-page: 106
  ident: b0240
  article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis
  publication-title: Biofuels
– volume: 1
  start-page: 1174
  year: 2013
  end-page: 1181
  ident: b0225
  article-title: Biochar based solid acid catalyst hydrolyze biomass
  publication-title: J. Environ. Chem. Eng.
– volume: 23
  start-page: 2230
  year: 2016
  end-page: 2248
  ident: b0335
  article-title: Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review
  publication-title: Environ. Sci. Pollut. Res.
– volume: 135
  start-page: 3997
  year: 2013
  end-page: 4006
  ident: b0055
  article-title: Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 46
  year: 2015
  end-page: 54
  ident: b0250
  article-title: Preparation of SnO
  publication-title: J. Ind. Eng. Chem.
– volume: 156
  start-page: 321
  year: 2010
  end-page: 327
  ident: b0020
  article-title: The low-temperature SCR of NO over rice straw and sewage sludge derived char
  publication-title: Chem. Eng. J.
– volume: 77
  start-page: 70
  year: 2017
  end-page: 79
  ident: b0205
  article-title: Biochar as a catalyst
  publication-title: Renewable Sustainable Energy Rev.
– volume: 237
  start-page: 222
  year: 2017
  end-page: 230
  ident: b0430
  article-title: Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): controlling relative kinetics for high productivity
  publication-title: Bioresour. Technol.
– volume: 125
  start-page: 70
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0360
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.058
– volume: 14
  start-page: 296
  year: 2014
  ident: 10.1016/j.biortech.2017.06.163_b0465
  article-title: Synthesis of mesoporous carbon from okara and application as electrocatalyst support
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201300089
– volume: 77
  start-page: 70
  year: 2017
  ident: 10.1016/j.biortech.2017.06.163_b0205
  article-title: Biochar as a catalyst
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2017.04.002
– volume: 135
  start-page: 3997
  year: 2013
  ident: 10.1016/j.biortech.2017.06.163_b0055
  article-title: Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3122763
– volume: 219
  start-page: 338
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0420
  article-title: Valorization of food waste into hydroxymethylfurfural: dual role of metal ions in successive conversion steps
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.08.002
– volume: 237
  start-page: 222
  year: 2017
  ident: 10.1016/j.biortech.2017.06.163_b0430
  article-title: Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): controlling relative kinetics for high productivity
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.01.017
– volume: 231
  start-page: 59
  year: 2017
  ident: 10.1016/j.biortech.2017.06.163_b0210
  article-title: Evaluating the effectiveness of various biochars as porous media for biodiesel synthesis via pseudo-catalytic transesterification
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.01.067
– volume: 156
  start-page: 47
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0345
  article-title: A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.04.027
– volume: 66
  start-page: 346
  year: 2014
  ident: 10.1016/j.biortech.2017.06.163_b0015
  article-title: Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2013.12.017
– volume: 120
  start-page: 318
  year: 2012
  ident: 10.1016/j.biortech.2017.06.163_b0085
  article-title: Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.06.036
– year: 2017
  ident: 10.1016/j.biortech.2017.06.163_b0040
  article-title: Valorization of Biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.020
– volume: 17
  start-page: 685
  year: 2017
  ident: 10.1016/j.biortech.2017.06.163_b0125
  article-title: Biochar for crop production: potential benefits and risks
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-016-1360-2
– volume: 26
  start-page: 46
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0250
  article-title: Preparation of SnO2–Co3O4/C biochar catalyst as a Lewis acid for corncob hydrolysis into furfural in water medium
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2014.11.041
– volume: 116
  start-page: 12328
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0450
  article-title: Heterogeneously catalyzed hydrothermal processing of C5–C6 sugars
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00311
– volume: 169
  start-page: 622
  year: 2014
  ident: 10.1016/j.biortech.2017.06.163_b0140
  article-title: Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: adsorption property and its improvement with KOH activation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.06.103
– volume: 185
  start-page: 717
  year: 2008
  ident: 10.1016/j.biortech.2017.06.163_b0115
  article-title: New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and use as platinum nanoparticles substrate for oxygen reduction electrocatalysis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.08.030
– volume: 157
  start-page: 37
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0180
  article-title: Influence of char composition and inorganics on catalytic activity of char from biomass gasification
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.04.036
– volume: 238
  start-page: 716
  year: 2017
  ident: 10.1016/j.biortech.2017.06.163_b0415
  article-title: Conversion of biomass and carbohydrates to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.04.026
– volume: 163
  start-page: 140
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0105
  article-title: Bi-functional porous carbon spheres derived from pectin as electrode material for supercapacitors and support material for Pt nanowires towards electrocatalytic methanol and ethanol oxidation
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.02.157
– volume: 195
  start-page: 5840
  year: 2010
  ident: 10.1016/j.biortech.2017.06.163_b0135
  article-title: Oxygen-reduction activity of silk-derived carbons
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.12.135
– volume: 5
  start-page: 2839
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0100
  article-title: SnCl4-catalyzed isomerization/dehydration of xylose and glucose to furanics in water
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY00077G
– volume: 2
  start-page: 2022
  year: 2012
  ident: 10.1016/j.biortech.2017.06.163_b0050
  article-title: Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media
  publication-title: ACS Catal.
  doi: 10.1021/cs300265d
– volume: 105
  start-page: 1389
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0080
  article-title: Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.06.072
– volume: 253
  start-page: 9254
  year: 2007
  ident: 10.1016/j.biortech.2017.06.163_b0220
  article-title: The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol–gel method
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.05.057
– volume: 4
  start-page: 206
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0305
  article-title: SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research
  publication-title: Environ. Technol. Innovation
  doi: 10.1016/j.eti.2015.08.003
– volume: 92
  start-page: 1454
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0390
  article-title: Fructose dehydration to 5-HMF over three sulfonated carbons: effect of different pore structures
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5144
– volume: 36
  start-page: 8902
  year: 2011
  ident: 10.1016/j.biortech.2017.06.163_b0440
  article-title: Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char
  publication-title: Int. J. Hyd. Energy.
  doi: 10.1016/j.ijhydene.2011.04.175
– volume: 346
  start-page: 164
  year: 2008
  ident: 10.1016/j.biortech.2017.06.163_b0090
  article-title: Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2008.05.023
– volume: 42
  start-page: 123
  year: 2012
  ident: 10.1016/j.biortech.2017.06.163_b0295
  article-title: Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.03.003
– volume: 327
  start-page: 328
  year: 2017
  ident: 10.1016/j.biortech.2017.06.163_b0045
  article-title: Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: temperature and solvent effects
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.06.108
– volume: 46
  start-page: 406
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0130
  article-title: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2015.1096880
– volume: 407
  start-page: 188
  year: 2011
  ident: 10.1016/j.biortech.2017.06.163_b0190
  article-title: Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2011.08.039
– volume: 99
  start-page: 19
  year: 2014
  ident: 10.1016/j.biortech.2017.06.163_b0005
  article-title: Biochar as a sorbent for contaminant management in soil and water: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 216
  start-page: 159
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0410
  article-title: Hydrogen production from biomass gasification using biochar as a catalyst/support
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.011
– volume: 214
  start-page: 210
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0270
  article-title: An economically viable synthesis of biodiesel from a crude Millettia pinnata oil of Jharkhand, India as feedstock and crab shell derived catalyst
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.04.055
– volume: 18
  start-page: 1983
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0375
  article-title: Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins
  publication-title: Green Chem.
  doi: 10.1039/C5GC01938A
– volume: 2
  start-page: 71
  year: 2011
  ident: 10.1016/j.biortech.2017.06.163_b0240
  article-title: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis
  publication-title: Biofuels
  doi: 10.4155/bfs.10.81
– volume: 6
  start-page: 2369
  year: 2013
  ident: 10.1016/j.biortech.2017.06.163_b0060
  article-title: Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201300328
– volume: 44
  start-page: 1247
  year: 2010
  ident: 10.1016/j.biortech.2017.06.163_b0170
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 51
  start-page: 548
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0290
  article-title: Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2015.06.032
– volume: 117
  start-page: 3195
  year: 2013
  ident: 10.1016/j.biortech.2017.06.163_b0380
  article-title: Photofunctional hybrid nanocarbon materials
  publication-title: J. Phys. Chem.
– volume: 4
  start-page: 333
  year: 2014
  ident: 10.1016/j.biortech.2017.06.163_b0315
  article-title: Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C3CY00409K
– volume: 53
  start-page: 1185
  year: 2010
  ident: 10.1016/j.biortech.2017.06.163_b0065
  article-title: Bifunctional solid catalysts for the selective conversion of fructose to 5-hydroxymethylfurfural
  publication-title: Top. Catal.
  doi: 10.1007/s11244-010-9560-2
– volume: 1
  start-page: 1174
  year: 2013
  ident: 10.1016/j.biortech.2017.06.163_b0225
  article-title: Biochar based solid acid catalyst hydrolyze biomass
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2013.09.004
– volume: 6
  start-page: 13438
  year: 2014
  ident: 10.1016/j.biortech.2017.06.163_b0265
  article-title: Synthesis of iron oxide/partly graphitized carbon composites as a high-efficiency and low-cost cathode catalyst for microbial fuel cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501844p
– volume: 87
  start-page: 2243
  year: 2008
  ident: 10.1016/j.biortech.2017.06.163_b0095
  article-title: Experimental comparison of biomass chars with other catalysts for tar reduction
  publication-title: Fuel
  doi: 10.1016/j.fuel.2008.01.004
– volume: 190
  start-page: 122
  year: 2012
  ident: 10.1016/j.biortech.2017.06.163_b0160
  article-title: Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2012.02.006
– volume: 159
  start-page: 570
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0350
  article-title: Catalytic reforming of pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.07.007
– volume: 130
  start-page: 31
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0165
  article-title: Catalytic decomposition of tar using iron supported biochar
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2014.09.038
– volume: 144
  start-page: 115
  year: 2013
  ident: 10.1016/j.biortech.2017.06.163_b0435
  article-title: Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.06.075
– volume: 148
  start-page: 276
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0325
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.043
– volume: 75
  start-page: 739
  year: 2009
  ident: 10.1016/j.biortech.2017.06.163_b0155
  article-title: Catalytic ozonation of ammonia using biomass char and wood fly ash
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.01.035
– volume: 24
  start-page: 95
  year: 2017
  ident: 10.1016/j.biortech.2017.06.163_b0455
  article-title: Effective transformation of cellulose to 5-hydroxymethylfurfural catalyzed by fluorine anion-containing ionic liquid modified biochar sulfonic acids in water
  publication-title: Cellulose
  doi: 10.1007/s10570-016-1118-4
– volume: 116
  start-page: 653
  year: 2013
  ident: 10.1016/j.biortech.2017.06.163_b0365
  article-title: Characteristics of biochar and its application in remediation of contaminated soil
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2013.05.035
– volume: 259
  start-page: 161
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0035
  article-title: High-performance Pd nanoalloy on functionalized activated carbon for the hydrogenation of nitroaromatic compounds
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.07.054
– volume: 143
  start-page: 686
  year: 2013
  ident: 10.1016/j.biortech.2017.06.163_b0355
  article-title: Transesterification of soybean oil using bovine bone waste as new catalyst
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.06.087
– volume: 73
  start-page: 155
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0275
  article-title: Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2014.12.022
– volume: 156
  start-page: 321
  year: 2010
  ident: 10.1016/j.biortech.2017.06.163_b0020
  article-title: The low-temperature SCR of NO over rice straw and sewage sludge derived char
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.10.027
– volume: 42
  start-page: 1055
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0320
  article-title: Recent advances in utilization of biochar
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2014.10.074
– volume: 307
  start-page: 389
  year: 2017
  ident: 10.1016/j.biortech.2017.06.163_b0395
  article-title: Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.099
– volume: 395
  start-page: 1
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0215
  article-title: Biochars and the plant-soil interface
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2658-3
– volume: 40
  start-page: 5588
  year: 2011
  ident: 10.1016/j.biortech.2017.06.163_b0460
  article-title: Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15124j
– volume: 3
  start-page: 440
  year: 2010
  ident: 10.1016/j.biortech.2017.06.163_b0185
  article-title: Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200900296
– volume: 382
  start-page: 197
  year: 2010
  ident: 10.1016/j.biortech.2017.06.163_b0070
  article-title: Biochar based solid acid catalyst for biodiesel production
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2010.04.051
– volume: 219
  start-page: 643
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0300
  article-title: Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.08.017
– volume: 16
  start-page: 889
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0330
  article-title: Steam activation of biochars facilitates kinetics and pH-resilience of sulfamethazine sorption
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-015-1325-x
– volume: 184
  start-page: 1099
  year: 2017
  ident: 10.1016/j.biortech.2017.06.163_b0425
  article-title: Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.06.095
– volume: 38
  start-page: 4471
  year: 2014
  ident: 10.1016/j.biortech.2017.06.163_b0385
  article-title: Methanation of bio-syngas over a biochar supported catalyst
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ00780H
– volume: 115
  start-page: 12251
  year: 2015
  ident: 10.1016/j.biortech.2017.06.163_b0255
  article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00195
– volume: 13
  start-page: 2365
  year: 2011
  ident: 10.1016/j.biortech.2017.06.163_b0120
  article-title: Amorphous carbon-silica composites bearing sulfonic acid as solid acid catalysts for the chemoselective protection of aldehydes as 1, 1-diacetates and for N-, O-and S-acylations
  publication-title: Green Chem.
  doi: 10.1039/c0gc00900h
– year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0235
  article-title: Comprehensive understanding the role of Brønsted and Lewis acid sites in glucose conversion to 5-hydromethylfurfural
  publication-title: ChemCatChem
– volume: 53
  start-page: 10929
  year: 2014
  ident: 10.1016/j.biortech.2017.06.163_b0340
  article-title: Tar conversion and vapor upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie501843y
– volume: 86
  start-page: 1781
  year: 2007
  ident: 10.1016/j.biortech.2017.06.163_b0405
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2006.12.013
– volume: 3
  start-page: 7360
  year: 2013
  ident: 10.1016/j.biortech.2017.06.163_b0150
  article-title: Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production
  publication-title: RSC Adv.
  doi: 10.1039/c3ra23314f
– volume: 87
  start-page: 151
  year: 2012
  ident: 10.1016/j.biortech.2017.06.163_b0245
  article-title: Water extractable organic carbon in untreated and chemical treated biochars
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.12.007
– volume: 346
  start-page: 58
  year: 2011
  ident: 10.1016/j.biortech.2017.06.163_b0370
  article-title: Catalytic conversion of cellulose to chemicals in ionic liquid
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2010.10.022
– volume: 190
  start-page: 89
  year: 2012
  ident: 10.1016/j.biortech.2017.06.163_b0310
  article-title: Hemicellulose hydrolysis using solid acid catalysts generated from biochar
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2012.02.050
– volume: 160
  start-page: 191
  year: 2014
  ident: 10.1016/j.biortech.2017.06.163_b0285
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.120
– volume: 165
  start-page: 798
  year: 2010
  ident: 10.1016/j.biortech.2017.06.163_b0030
  article-title: Transesterification of soybean oil catalyzed by fly ash and egg shell derived solid catalysts
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.10.019
– volume: 40
  start-page: 1
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0025
  article-title: Production and utilization of biochar: a review
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.06.002
– volume: 338
  start-page: 329
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0200
  article-title: Niobium oxides: correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.03.007
– volume: 102
  start-page: 1998
  year: 2011
  ident: 10.1016/j.biortech.2017.06.163_b0445
  article-title: Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.09.049
– volume: 13
  start-page: 1686
  year: 2011
  ident: 10.1016/j.biortech.2017.06.163_b0145
  article-title: Synthesis of carbon-supported Pt nanoparticle electrocatalysts using nanocrystalline cellulose as reducing agent
  publication-title: Green Chem.
  doi: 10.1039/c0gc00881h
– volume: 154
  start-page: 345
  year: 2014
  ident: 10.1016/j.biortech.2017.06.163_b0230
  article-title: Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.12.070
– volume: 180
  start-page: 94
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0175
  article-title: Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2016.05.016
– volume: 41
  start-page: 10695
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0260
  article-title: Biochar from pyrolysis of cellulose: an alternative catalyst support for the electro-oxidation of methanol
  publication-title: Int. J. Hyd. Energy.
  doi: 10.1016/j.ijhydene.2016.04.041
– volume: 15
  start-page: 2355
  year: 2011
  ident: 10.1016/j.biortech.2017.06.163_b0010
  article-title: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2011.02.018
– volume: 106
  start-page: 858
  year: 2013
  ident: 10.1016/j.biortech.2017.06.163_b0280
  article-title: Catalytic reforming of tar during gasification. Part IV. Changes in the structure of char in the char-supported iron catalyst during reforming
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.11.063
– volume: 15
  start-page: 1631
  year: 2013
  ident: 10.1016/j.biortech.2017.06.163_b0400
  article-title: Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons
  publication-title: Green Chem.
  doi: 10.1039/c3gc37107g
– volume: 216
  start-page: 754
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0075
  article-title: A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.06.002
– volume: 422
  start-page: 13
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0110
  article-title: Acid-functionalized mesoporous carbons for the continuous production of 5-hydroxymethylfurfural
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2016.01.005
– volume: 163
  start-page: 304
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0195
  article-title: Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.09.042
– volume: 23
  start-page: 2230
  year: 2016
  ident: 10.1016/j.biortech.2017.06.163_b0335
  article-title: Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-5697-7
SSID ssj0003172
Score 2.6652117
SecondaryResourceType review_article
Snippet [Display omitted] •Different applications demand distinctive active sites in biochar-based catalyst.•Biochar as a support possesses favourable intrinsic...
This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 254
SubjectTerms Acid-catalyzed conversion
active sites
Biochar
biodiesel
Biofuels
Biomass
Biorefinery
catalysts
Charcoal
fuel production
pollutants
porosity
Soil
soil remediation
Solid catalyst
surface area
synthesis
technology
Waste valorization
Title A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control
URI https://dx.doi.org/10.1016/j.biortech.2017.06.163
https://www.ncbi.nlm.nih.gov/pubmed/28712780
https://www.proquest.com/docview/1920196115
https://www.proquest.com/docview/2000499842
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0heqA9oBbasrRFrsSRsImdxM5xtSratoJLQeJm-SvVIpRdkd0DF347M4lD4bDi0GOSsWR5JjPP9swbgGPBs6BKWyeGKzqtMnWiMpclvg7oCZ2XgVPt8PlFObvKf10X11swHWphKK0y-v7ep3feOr4Zx9UcL-fz8R8C36rACCQF8aCRH85zSVZ--vAvzQPjY3eTgMIJST-rEr45tXPKaO0uJTJJPJ5ZKTYFqE0AtAtEZ-9hNyJINukn-QG2QrMH7yZ_7yKLRtiDnenQxg2_PGMc3IcwYX2xClvUDOdFRVcJRTLPuoOc-3bVMsSxzEUiAdbeN4gR23l7QvL1OtyyZc8Sixo9YabxbEntkumRxcT3j3B19uNyOktip4XEFQVfJdSWyubepJXx0hfKqFo446pMKMlz6au0VNwo4Z3w1gZjK4PyXNrS-aCEFZ9gu1k04QBYKX1W1gjLqjTk3uaWFI4_vsF9S1o4M4JiWF7tIg05dcO41UO-2Y0e1KJJLTotNaplBOOnccueiOPVEdWgPf3CpDRGi1fHfh_UrVFfdIlimrBYtxoRMVEKIZDeLMP7naTK-Qg-97byNGfaoXKp0sP_mN0XeEtPfVbNV9he3a3DN8RGK3vUGf8RvJn8_D27eATNshB5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED4EzpB2KNr05T5ZoGNUS6QkUqNhNHCaxEsTIBvBlwoHgWxE9pB_3zuJMtLByNBR4hEgeOTdR_LuO4DvgmdBlbZODFd0W2XqRGUuS3wd0BI6LwOn3OHLRTm_zn_dFDcHMBtyYSisMtr-3qZ31jr-mcTZnKyXy8lvAt-qQA8kBfGgoR0-JHaqYgSH07Pz-WJnkNFFdo8JKJ9Qh0eJwrc_7JKCWrt3iUwSlWdWin0-ah8G7XzR6Ut4EUEkm_bjfAUHoTmG59M_95FIIxzD0Wyo5IYtj0gHX0OYsj5fha1qhuOivKuEnJln3V3OQ7tpGUJZ5iKXAGsfGoSJ7bI9Ifl6G-7YuieKRaWeMNN4tqaKyfTJYuz7G7g-_Xk1myex2ELiioJvEqpMZXNv0sp46QtlVC2ccVUmlOS59FVaKm6U8E54a4OxlUF5Lm3pfFDCircwalZNeA-slD4ra0RmVRpyb3NLOse9b_DokhbOjKEYple7yEROBTHu9BBydqsHtWhSi05LjWoZw2TXb91zcTzZoxq0p_9ZVRodxpN9vw3q1qgvekcxTVhtW42gmFiFEEvvl-H9YVLlfAzv-rWyGzMdUrlU6Yf_GN1XOJpfXV7oi7PF-Ud4Ri19kM0nGG3ut-EzQqWN_RK3wl8S0hMq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+biochar-based+catalysts+for+chemical+synthesis%2C+biofuel+production%2C+and+pollution+control&rft.jtitle=Bioresource+technology&rft.au=Xiong%2C+Xinni&rft.au=Yu%2C+Iris+K+M&rft.au=Cao%2C+Leichang&rft.au=Tsang%2C+Daniel+C+W&rft.date=2017-12-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=246&rft.spage=254&rft_id=info:doi/10.1016%2Fj.biortech.2017.06.163&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon