Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals

No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source com...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 6; no. 2; p. e00037
Main Authors Bassis, Christine M., Erb-Downward, John R., Dickson, Robert P., Freeman, Christine M., Schmidt, Thomas M., Young, Vincent B., Beck, James M., Curtis, Jeffrey L., Huffnagle, Gary B.
Format Journal Article
LanguageEnglish
Published United States American Society of Microbiology 01.05.2015
American Society for Microbiology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways. IMPORTANCE We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals. We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals.
AbstractList No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways.UNLABELLEDNo studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways.We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals.IMPORTANCEWe have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals.
No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways. We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals.
No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways.
No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways. IMPORTANCE We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals. We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals.
ABSTRACT No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways. IMPORTANCE We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals.
No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways. We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals.
Author Dickson, Robert P.
Beck, James M.
Bassis, Christine M.
Curtis, Jeffrey L.
Erb-Downward, John R.
Young, Vincent B.
Freeman, Christine M.
Huffnagle, Gary B.
Schmidt, Thomas M.
Author_xml – sequence: 1
  givenname: Christine M.
  surname: Bassis
  fullname: Bassis, Christine M.
  organization: Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
– sequence: 2
  givenname: John R.
  surname: Erb-Downward
  fullname: Erb-Downward, John R.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
– sequence: 3
  givenname: Robert P.
  surname: Dickson
  fullname: Dickson, Robert P.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
– sequence: 4
  givenname: Christine M.
  surname: Freeman
  fullname: Freeman, Christine M.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA, Research Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
– sequence: 5
  givenname: Thomas M.
  surname: Schmidt
  fullname: Schmidt, Thomas M.
  organization: Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
– sequence: 6
  givenname: Vincent B.
  surname: Young
  fullname: Young, Vincent B.
  organization: Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
– sequence: 7
  givenname: James M.
  surname: Beck
  fullname: Beck, James M.
  organization: Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA, Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
– sequence: 8
  givenname: Jeffrey L.
  surname: Curtis
  fullname: Curtis, Jeffrey L.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA, Pulmonary and Critical Care Medicine Section, Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
– sequence: 9
  givenname: Gary B.
  surname: Huffnagle
  fullname: Huffnagle, Gary B.
  organization: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25736890$$D View this record in MEDLINE/PubMed
BookMark eNqFktFrFDEQxhep2Fr76Kvk0ZetyWaT7L4ItWh7cCJo-xwmyexdyt7mTLKFA_94d3tt8QQRAhOS33yZyXyvi6MhDFgUbxk9Z6xqPmw--XBOKeWqZOJFcVIxQUslGDua95KVFava4-IspTs6Y5w1nL4qjiuhuGxaelL8uhig3yWfSOhIXiO53W4xku-Ytj5CDnFHbiLYTL56G4PxIUMi05rRH2GMFp8Sl-OwIjA4cgUpR28PMvxArhH6vN6RxeD8vXcj9OlN8bKbAp49xtPi9svnm8vrcvntanF5sSytEFWeGhJGOquoUqxzpmnACWoMVJWF1tUdtoDQKMO5bWjb1tTW4JqaS0YlTN_AT4vFXtcFuNPb6DcQdzqA1w8HIa40xOxtj5q1grLOOFM1WNPpKWPQ1q1E5Ggk4KT1ca-1Hc0GncUhR-gPRA9vBr_Wq3Cvay4aytQk8P5RIIafI6asNz5Z7HsYMIxJM1XLmkql6P9RKWlbKdbM6Ls_y3qu52nSE1DugWkoKUXsnhFG9WwmPZtJP5hJMzHx_C_e-gzZh7kr3_8j6zcFAc9L
CitedBy_id crossref_primary_10_1097_MCP_0000000000000299
crossref_primary_10_1097_SHK_0000000000001654
crossref_primary_10_1002_ppul_24504
crossref_primary_10_1080_1040841X_2020_1830748
crossref_primary_10_1161_HYPERTENSIONAHA_120_15025
crossref_primary_10_1128_Spectrum_01669_21
crossref_primary_10_1139_cjm_2016_0603
crossref_primary_10_1186_s40168_022_01362_4
crossref_primary_10_1038_s41598_023_43821_4
crossref_primary_10_1038_s41598_023_45007_4
crossref_primary_10_1016_j_gpb_2018_03_009
crossref_primary_10_1164_rccm_202308_1357OC
crossref_primary_10_1016_j_nupar_2021_04_002
crossref_primary_10_3390_medicina54050072
crossref_primary_10_3389_fmicb_2017_02477
crossref_primary_10_1186_s12931_020_01392_2
crossref_primary_10_1164_rccm_202210_1865OC
crossref_primary_10_1016_j_jdsr_2023_10_004
crossref_primary_10_1080_1040841X_2021_1992345
crossref_primary_10_1186_s12903_024_04635_6
crossref_primary_10_1186_s12890_023_02638_7
crossref_primary_10_2169_internalmedicine_4825_24
crossref_primary_10_3389_fmolb_2021_718222
crossref_primary_10_1038_s41467_021_26500_8
crossref_primary_10_1016_S2213_2600_15_00427_0
crossref_primary_10_1186_s12931_016_0479_4
crossref_primary_10_3390_toxins9090266
crossref_primary_10_3389_fmicb_2020_575550
crossref_primary_10_3389_fped_2016_00010
crossref_primary_10_1371_journal_pone_0177340
crossref_primary_10_1128_JCM_02299_15
crossref_primary_10_1007_s00248_017_1068_x
crossref_primary_10_1186_s40168_017_0277_3
crossref_primary_10_1164_rccm_201710_2028PP
crossref_primary_10_1016_j_jaci_2017_02_004
crossref_primary_10_3389_fmed_2022_927607
crossref_primary_10_3390_cancers15143562
crossref_primary_10_1155_2021_9278441
crossref_primary_10_1186_s12866_019_1560_1
crossref_primary_10_1016_j_immuni_2020_01_007
crossref_primary_10_1002_1873_3468_12455
crossref_primary_10_1016_j_csbj_2019_09_010
crossref_primary_10_1371_journal_pone_0225636
crossref_primary_10_1186_s40168_017_0364_5
crossref_primary_10_3390_nu15102398
crossref_primary_10_1186_s40168_025_02031_y
crossref_primary_10_1016_j_envres_2022_114125
crossref_primary_10_1152_physrev_00032_2017
crossref_primary_10_3390_cancers15204935
crossref_primary_10_3389_fmicb_2021_687513
crossref_primary_10_3389_fmicb_2021_709421
crossref_primary_10_1128_spectrum_01901_21
crossref_primary_10_3389_fimmu_2023_1220610
crossref_primary_10_1038_emm_2017_7
crossref_primary_10_3390_biology9100318
crossref_primary_10_1097_COH_0000000000000427
crossref_primary_10_3390_ijms25074051
crossref_primary_10_1016_j_jhazmat_2021_126710
crossref_primary_10_1016_j_jaci_2020_01_002
crossref_primary_10_3389_fonc_2022_1072474
crossref_primary_10_2147_COPD_S371958
crossref_primary_10_1038_s41598_018_29793_w
crossref_primary_10_3390_nu15224738
crossref_primary_10_1080_1040841X_2018_1549019
crossref_primary_10_26442_20751753_2024_9_202675
crossref_primary_10_1007_s00204_023_03452_0
crossref_primary_10_1186_s40168_017_0234_1
crossref_primary_10_1038_s41522_022_00330_y
crossref_primary_10_3389_fmicb_2024_1323842
crossref_primary_10_3390_microorganisms11082108
crossref_primary_10_1016_j_bioflm_2022_100067
crossref_primary_10_1097_NCQ_0000000000000359
crossref_primary_10_1042_CS20210879
crossref_primary_10_1080_21505594_2019_1682797
crossref_primary_10_1016_j_ygeno_2024_110816
crossref_primary_10_1111_brv_12407
crossref_primary_10_1165_rcmb_2023_0057WS
crossref_primary_10_1128_mBio_00258_20
crossref_primary_10_1186_s12890_018_0632_6
crossref_primary_10_3390_cells11050916
crossref_primary_10_1021_acsomega_3c05846
crossref_primary_10_1186_s40168_018_0566_5
crossref_primary_10_1186_s41479_018_0051_8
crossref_primary_10_1016_j_healun_2017_07_007
crossref_primary_10_3389_fmicb_2020_589501
crossref_primary_10_1164_rccm_202202_0274OC
crossref_primary_10_1371_journal_pone_0182520
crossref_primary_10_1186_s12866_023_02790_4
crossref_primary_10_1038_srep26985
crossref_primary_10_1152_ajplung_00279_2015
crossref_primary_10_1186_s13567_021_01020_x
crossref_primary_10_1186_s40635_021_00398_4
crossref_primary_10_1186_s12931_022_01935_9
crossref_primary_10_1128_IAI_01539_15
crossref_primary_10_1111_apt_15650
crossref_primary_10_3389_fonc_2022_811279
crossref_primary_10_1128_mBio_01598_21
crossref_primary_10_1016_j_arr_2020_101235
crossref_primary_10_1038_s41538_020_00078_9
crossref_primary_10_1111_jcpe_13819
crossref_primary_10_1016_j_celrep_2025_115442
crossref_primary_10_1183_23120541_00008_2017
crossref_primary_10_1590_s1806_37562017000000209
crossref_primary_10_1186_s40168_024_01772_6
crossref_primary_10_1038_s41598_020_62424_x
crossref_primary_10_1111_resp_12971
crossref_primary_10_1097_MCP_0000000000000399
crossref_primary_10_1136_gutjnl_2016_312904
crossref_primary_10_1093_femsec_fiaa127
crossref_primary_10_3389_fvets_2019_00354
crossref_primary_10_3389_fmicb_2022_719541
crossref_primary_10_1111_resp_12732
crossref_primary_10_1016_j_jff_2024_106272
crossref_primary_10_1111_all_13495
crossref_primary_10_1186_s12864_020_07252_z
crossref_primary_10_1080_1040841X_2020_1863330
crossref_primary_10_3390_microorganisms11112703
crossref_primary_10_1016_j_tim_2019_04_005
crossref_primary_10_1111_prd_12388
crossref_primary_10_3389_fimmu_2022_954339
crossref_primary_10_3390_jof5020031
crossref_primary_10_1007_s00248_022_02148_9
crossref_primary_10_1016_j_canlet_2017_11_036
crossref_primary_10_1002_ppul_24336
crossref_primary_10_52586_4930
crossref_primary_10_1371_journal_pone_0191499
crossref_primary_10_1016_j_cbi_2019_108732
crossref_primary_10_1007_s40572_024_00437_8
crossref_primary_10_3389_fmicb_2017_01162
crossref_primary_10_1186_s40168_020_00869_y
crossref_primary_10_1038_s41598_024_59514_5
crossref_primary_10_1016_j_scitotenv_2020_143623
crossref_primary_10_1016_j_arbres_2019_04_017
crossref_primary_10_1016_j_micres_2022_127244
crossref_primary_10_1111_apha_14266
crossref_primary_10_1080_21655979_2021_1997563
crossref_primary_10_1128_mbio_00300_23
crossref_primary_10_1186_s40168_021_01201_y
crossref_primary_10_2174_2665978604666221122112434
crossref_primary_10_1055_s_0044_1785673
crossref_primary_10_3389_fmicb_2023_1236348
crossref_primary_10_3389_fimmu_2023_1091165
crossref_primary_10_1002_ppul_23243
crossref_primary_10_1186_s40168_018_0531_3
crossref_primary_10_1002_iid3_483
crossref_primary_10_1164_rccm_201504_0779OC
crossref_primary_10_1016_j_chom_2018_10_019
crossref_primary_10_3390_life12101505
crossref_primary_10_1016_j_ecoenv_2024_116875
crossref_primary_10_1038_s41564_019_0640_1
crossref_primary_10_1007_s11894_017_0577_6
crossref_primary_10_1038_s41522_020_00171_7
crossref_primary_10_1186_s12931_023_02491_6
crossref_primary_10_1371_journal_pone_0232215
crossref_primary_10_21518_2079_701X_2019_2_173_182
crossref_primary_10_1016_j_ccm_2024_10_006
crossref_primary_10_1038_s41591_023_02617_9
crossref_primary_10_1371_journal_pone_0228085
crossref_primary_10_1038_s41385_022_00541_8
crossref_primary_10_1016_j_jaci_2020_08_035
crossref_primary_10_1007_s11739_019_02208_y
crossref_primary_10_1183_13993003_00242_2018
crossref_primary_10_1165_rcmb_2019_0273TR
crossref_primary_10_1016_j_jaci_2023_10_001
crossref_primary_10_1186_s40168_017_0372_5
crossref_primary_10_1038_s41467_022_31074_0
crossref_primary_10_1183_23120541_00720_2022
crossref_primary_10_1513_AnnalsATS_202110_1152OC
crossref_primary_10_3389_fcimb_2018_00432
crossref_primary_10_1371_journal_pone_0154646
crossref_primary_10_1186_s13059_016_1021_1
crossref_primary_10_3390_antibiotics10070766
crossref_primary_10_1016_j_annepidem_2016_03_010
crossref_primary_10_1016_j_mimet_2016_01_013
crossref_primary_10_3390_diagnostics13101784
crossref_primary_10_1007_s12630_017_0896_y
crossref_primary_10_1159_000508330
crossref_primary_10_3389_fimmu_2022_897462
crossref_primary_10_1016_S2666_5247_21_00035_5
crossref_primary_10_1016_j_critrevonc_2021_103404
crossref_primary_10_1186_s40168_016_0206_x
crossref_primary_10_3390_cancers13010013
crossref_primary_10_1136_thoraxjnl_2016_208599
crossref_primary_10_1002_ppul_23953
crossref_primary_10_3389_fcimb_2024_1492881
crossref_primary_10_4187_respcare_07332
crossref_primary_10_1155_2022_6274265
crossref_primary_10_1165_rcmb_2017_0228OC
crossref_primary_10_3390_cancers15010192
crossref_primary_10_1080_10408398_2020_1836605
crossref_primary_10_1186_s40168_018_0462_z
crossref_primary_10_3390_ijerph16081375
crossref_primary_10_1038_s41598_022_14095_z
crossref_primary_10_1002_ctm2_508
crossref_primary_10_1080_01902148_2023_2264947
crossref_primary_10_1080_20002297_2017_1324725
crossref_primary_10_1002_mbo3_1151
crossref_primary_10_1038_s41564_018_0278_4
crossref_primary_10_3390_ijms24032170
crossref_primary_10_7717_peerj_11806
crossref_primary_10_1016_j_arbr_2016_11_038
crossref_primary_10_1080_14767058_2019_1681961
crossref_primary_10_1136_bmjopen_2021_050271
crossref_primary_10_1111_1759_7714_14463
crossref_primary_10_1016_j_ecoenv_2023_115156
crossref_primary_10_1038_s41385_019_0160_6
crossref_primary_10_3389_fcimb_2020_00213
crossref_primary_10_3389_fmicb_2020_512581
crossref_primary_10_1186_s12866_023_02757_5
crossref_primary_10_1038_s41522_022_00290_3
crossref_primary_10_1016_j_pedneo_2016_09_004
crossref_primary_10_1097_MD_0000000000011175
crossref_primary_10_1164_rccm_201702_0441OC
crossref_primary_10_1136_gutjnl_2022_327745
crossref_primary_10_1126_scitranslmed_abq5126
crossref_primary_10_1111_hel_12848
crossref_primary_10_1164_rccm_202406_1123LE
crossref_primary_10_1038_s41590_019_0451_9
crossref_primary_10_1164_rccm_201803_0586ED
crossref_primary_10_3748_wjg_v27_i18_2054
crossref_primary_10_1080_14787210_2016_1206469
crossref_primary_10_3389_fmicb_2016_00333
crossref_primary_10_1016_j_clim_2015_05_022
crossref_primary_10_17116_molgen20213903118
crossref_primary_10_1186_s40168_018_0487_3
crossref_primary_10_1080_08820139_2023_2298398
crossref_primary_10_1080_20002297_2024_2344278
crossref_primary_10_1016_j_medmic_2024_100104
crossref_primary_10_1128_spectrum_04144_23
crossref_primary_10_1016_j_chemosphere_2019_04_032
crossref_primary_10_1080_19490976_2021_1909459
crossref_primary_10_1371_journal_pone_0222589
crossref_primary_10_1016_j_foodres_2020_109577
crossref_primary_10_1016_j_rmed_2024_107580
crossref_primary_10_1186_s40733_017_0037_y
crossref_primary_10_1016_j_rmed_2024_107586
crossref_primary_10_1155_2022_9976555
crossref_primary_10_1371_journal_pone_0164510
crossref_primary_10_1183_13993003_02467_2016
crossref_primary_10_1007_s10096_024_04980_y
crossref_primary_10_1016_j_jaci_2024_11_008
crossref_primary_10_3389_fimmu_2020_01245
crossref_primary_10_1093_nar_gkw1027
crossref_primary_10_1371_journal_pone_0262082
crossref_primary_10_2147_IJGM_S304339
crossref_primary_10_1016_j_heliyon_2019_e02802
crossref_primary_10_3389_fimmu_2019_00426
crossref_primary_10_1371_journal_ppat_1006798
crossref_primary_10_1007_s00204_017_1951_8
crossref_primary_10_1002_mlf2_12136
crossref_primary_10_1038_s41392_023_01722_y
crossref_primary_10_4049_jimmunol_1600279
crossref_primary_10_1080_1040841X_2024_2324864
crossref_primary_10_3389_fmicb_2021_798763
crossref_primary_10_1038_s41698_020_00138_z
crossref_primary_10_1371_journal_pone_0244341
crossref_primary_10_1186_s12866_017_0933_6
crossref_primary_10_1111_apm_13386
crossref_primary_10_1080_14787210_2017_1349609
crossref_primary_10_1155_2017_3890601
crossref_primary_10_3390_nu15071696
crossref_primary_10_1002_mnfr_201800178
crossref_primary_10_1128_spectrum_02311_21
crossref_primary_10_1016_j_jep_2024_118043
crossref_primary_10_1016_j_rvsc_2023_105037
crossref_primary_10_1146_annurev_pathol_012615_044344
crossref_primary_10_1111_prd_12301
crossref_primary_10_3389_fimmu_2017_01678
crossref_primary_10_36233_0372_9311_2018_5_53_60
crossref_primary_10_1183_16000617_0053_2024
crossref_primary_10_1186_s40413_015_0074_z
crossref_primary_10_1038_s41598_020_66178_4
crossref_primary_10_1038_nrmicro_2016_142
crossref_primary_10_1161_HYPERTENSIONAHA_122_19182
crossref_primary_10_3390_ijms24044086
crossref_primary_10_1038_s41598_017_11311_z
crossref_primary_10_3389_fimmu_2018_02640
crossref_primary_10_18481_2077_7566_21_17_4_56_61
crossref_primary_10_1186_s40168_017_0385_0
crossref_primary_10_1002_1873_3468_12421
crossref_primary_10_12677_BP_2020_103003
crossref_primary_10_3390_jcm10153258
crossref_primary_10_1016_j_xcrm_2023_101167
crossref_primary_10_1021_acs_chemrev_2c00431
crossref_primary_10_1016_j_ebiom_2023_104731
crossref_primary_10_1111_1759_7714_15166
crossref_primary_10_3390_v12121425
crossref_primary_10_1038_s41522_021_00254_z
crossref_primary_10_1128_mBio_02287_16
crossref_primary_10_1158_1940_6207_CAPR_21_0601
crossref_primary_10_3389_fped_2017_00123
crossref_primary_10_1007_s44337_024_00063_1
crossref_primary_10_1038_s41598_024_77273_1
crossref_primary_10_1186_s12915_025_02129_7
crossref_primary_10_3390_nu15030486
crossref_primary_10_1007_s42600_020_00113_4
crossref_primary_10_1016_j_semcancer_2021_07_005
crossref_primary_10_1038_s41467_021_22344_4
crossref_primary_10_3390_microorganisms10071391
crossref_primary_10_1186_s12931_019_1203_y
crossref_primary_10_3389_fcimb_2018_00042
crossref_primary_10_29328_journal_acgh_1001018
crossref_primary_10_1186_s12879_020_05427_3
crossref_primary_10_21518_2079_701X_2020_4_85_92
crossref_primary_10_1007_s11938_019_00245_2
crossref_primary_10_1016_S1773_035X_20_30356_7
crossref_primary_10_1128_spectrum_03791_23
crossref_primary_10_3390_diagnostics13193157
crossref_primary_10_3389_fped_2017_00019
crossref_primary_10_1016_j_scitotenv_2022_154652
crossref_primary_10_1126_scitranslmed_aav3488
crossref_primary_10_1016_j_arbres_2016_11_008
crossref_primary_10_1146_annurev_physiol_021115_105238
crossref_primary_10_1007_s11882_016_0631_8
crossref_primary_10_3390_children8121161
crossref_primary_10_1158_2159_8290_CD_20_0263
crossref_primary_10_26724_2079_8334_2020_4_74_68_72
crossref_primary_10_3389_fcimb_2018_00158
crossref_primary_10_1128_jvi_00409_24
crossref_primary_10_1186_s40635_023_00496_5
crossref_primary_10_3343_alm_2018_38_2_110
crossref_primary_10_1186_s13054_020_03219_4
crossref_primary_10_1183_13993003_00810_2018
crossref_primary_10_1080_21505594_2022_2146568
crossref_primary_10_1016_j_jcf_2019_09_005
crossref_primary_10_3389_fmicb_2024_1416385
crossref_primary_10_1016_j_mib_2024_102428
crossref_primary_10_1186_s40168_024_01940_8
crossref_primary_10_1126_scitranslmed_aba0501
crossref_primary_10_1007_s13213_018_1384_5
crossref_primary_10_1016_j_cmi_2021_05_034
crossref_primary_10_1186_s40168_022_01434_5
crossref_primary_10_3389_fcimb_2021_541092
crossref_primary_10_1146_annurev_animal_030117_014611
crossref_primary_10_1186_s12938_022_00987_8
crossref_primary_10_1183_16000617_0068_2024
crossref_primary_10_1186_s13287_020_01902_5
crossref_primary_10_1093_carcin_bgaa044
crossref_primary_10_1038_cti_2017_6
crossref_primary_10_1099_jmm_0_000173
crossref_primary_10_1128_mSystems_00296_20
crossref_primary_10_2147_IDR_S373266
crossref_primary_10_1186_s12866_024_03594_w
crossref_primary_10_3390_cimb45120627
crossref_primary_10_1186_s12890_016_0303_4
crossref_primary_10_2478_ahem_2021_0008
crossref_primary_10_1002_hcs2_15
crossref_primary_10_1186_s40168_019_0691_9
crossref_primary_10_1097_ACI_0000000000000738
crossref_primary_10_1016_j_ecoenv_2021_112006
crossref_primary_10_1016_j_gendis_2019_03_006
crossref_primary_10_1186_s43088_021_00134_7
crossref_primary_10_3389_fimmu_2022_982772
crossref_primary_10_3390_antibiotics11040474
crossref_primary_10_1093_intbio_zyaa021
crossref_primary_10_1038_s41598_024_84682_9
crossref_primary_10_3390_ijms241512296
crossref_primary_10_1186_s12890_021_01687_0
crossref_primary_10_1586_14737159_2016_1156536
crossref_primary_10_1038_s41598_022_25463_0
crossref_primary_10_3389_fped_2020_00528
crossref_primary_10_1038_s41522_025_00654_5
crossref_primary_10_1016_j_otc_2016_08_004
crossref_primary_10_1097_MOT_0000000000000631
crossref_primary_10_1183_13993003_02086_2016
crossref_primary_10_1016_j_intimp_2025_114222
crossref_primary_10_1128_spectrum_00216_24
crossref_primary_10_3389_fmicb_2018_02147
crossref_primary_10_3390_vaccines6030049
crossref_primary_10_1016_j_rmed_2017_03_019
crossref_primary_10_1044_2024_JSLHR_24_00436
crossref_primary_10_1186_s40168_016_0182_1
crossref_primary_10_1093_rheumatology_keab262
crossref_primary_10_1111_imr_70015
crossref_primary_10_1016_j_coi_2020_03_010
crossref_primary_10_3389_fcimb_2024_1296295
crossref_primary_10_1183_16000617_0032_2018
crossref_primary_10_3389_fmicb_2020_01840
crossref_primary_10_3390_children9060795
crossref_primary_10_1093_infdis_jiaa702
crossref_primary_10_26442_20751753_2024_12_202570
crossref_primary_10_3390_ijms232416154
crossref_primary_10_1016_j_chom_2017_03_011
crossref_primary_10_1080_17476348_2021_1893168
crossref_primary_10_18481_2077_7566_2022_18_2_15_22
crossref_primary_10_1038_s41598_025_85806_5
crossref_primary_10_3389_fmicb_2022_929752
crossref_primary_10_1136_gutjnl_2017_314814
crossref_primary_10_1183_23120541_00019_2017
crossref_primary_10_1038_s41392_022_00986_0
crossref_primary_10_1186_s12890_016_0339_5
crossref_primary_10_3389_fbioe_2020_539319
crossref_primary_10_3389_frmbi_2023_1067019
crossref_primary_10_1016_j_trsl_2016_06_007
crossref_primary_10_1186_s12864_017_4215_3
crossref_primary_10_1007_s00134_020_06338_2
crossref_primary_10_1186_s12903_022_02501_x
crossref_primary_10_3390_jcm8111967
crossref_primary_10_3390_antibiotics13060484
crossref_primary_10_3389_fcimb_2022_1011254
crossref_primary_10_20538_1682_0363_2024_4_197_204
crossref_primary_10_3390_life14010095
crossref_primary_10_1038_s41392_022_00974_4
crossref_primary_10_3390_microorganisms12071448
crossref_primary_10_1016_j_bioflm_2020_100041
crossref_primary_10_1164_rccm_201512_2424OC
crossref_primary_10_1186_s12866_017_1092_5
crossref_primary_10_1186_s40168_016_0215_9
crossref_primary_10_1111_jvim_16612
crossref_primary_10_1128_IAI_00871_18
crossref_primary_10_1155_2018_6515670
crossref_primary_10_1007_s40279_017_0846_4
crossref_primary_10_1016_j_healun_2021_04_014
crossref_primary_10_1136_thorax_2023_220455
crossref_primary_10_1186_s42523_023_00226_y
crossref_primary_10_1002_advs_202203115
crossref_primary_10_1038_s41522_024_00623_4
crossref_primary_10_18093_0869_0189_2022_4144
crossref_primary_10_3389_fimmu_2019_02106
crossref_primary_10_4110_in_2021_21_e25
crossref_primary_10_1038_s41598_019_46173_0
crossref_primary_10_3390_ijms23020977
crossref_primary_10_1186_s40168_017_0381_4
crossref_primary_10_1002_ijc_31098
crossref_primary_10_1186_s40168_016_0170_5
crossref_primary_10_4049_jimmunol_2300716
crossref_primary_10_3390_nu14091701
crossref_primary_10_3390_ijms22147634
crossref_primary_10_1080_19424396_2023_2193372
crossref_primary_10_1002_mds_27105
crossref_primary_10_1002_ppul_24115
crossref_primary_10_1016_j_jinf_2024_01_017
crossref_primary_10_1111_ina_12750
crossref_primary_10_2217_fmb_2018_0349
crossref_primary_10_53730_ijhs_v2nS1_15085
crossref_primary_10_1186_s40168_016_0210_1
crossref_primary_10_1128_CMR_00096_15
crossref_primary_10_21518_2079_701X_2021_1_50_58
crossref_primary_10_1164_rccm_201601_0162LE
crossref_primary_10_1172_JCI150473
crossref_primary_10_1007_s00281_019_00775_y
crossref_primary_10_1111_jvim_16824
crossref_primary_10_1164_rccm_202109_2226ED
crossref_primary_10_1016_j_ajog_2018_10_018
crossref_primary_10_1099_mgen_0_000754
crossref_primary_10_3389_fmicb_2020_561427
crossref_primary_10_1038_ismej_2016_181
crossref_primary_10_2217_fmb_2018_0118
crossref_primary_10_1093_molbev_msab018
crossref_primary_10_1128_microbiolspec_BAD_0005_2016
crossref_primary_10_1183_16000617_0084_2015
crossref_primary_10_1038_nrmicro_2017_14
crossref_primary_10_3389_fmicb_2022_871645
crossref_primary_10_1038_s41426_018_0097_y
crossref_primary_10_1165_rcmb_2021_0515OC
crossref_primary_10_1128_mSystems_00809_20
crossref_primary_10_3390_anatomia1020019
crossref_primary_10_4049_jimmunol_2001044
crossref_primary_10_1128_msystems_00262_18
crossref_primary_10_1146_annurev_genom_083117_021651
crossref_primary_10_1097_CPM_0000000000000268
crossref_primary_10_1016_j_jaci_2018_02_020
crossref_primary_10_3389_fmicb_2022_1085079
crossref_primary_10_3390_nu13114153
crossref_primary_10_14814_phy2_15761
crossref_primary_10_1016_j_prrv_2024_02_001
crossref_primary_10_1136_thoraxjnl_2015_207415
crossref_primary_10_4193_Rhin21_046
crossref_primary_10_1098_rstb_2014_0294
crossref_primary_10_1164_rccm_202112_2786OC
crossref_primary_10_1513_AnnalsATS_201802_146OC
crossref_primary_10_1097_CPM_0000000000000277
crossref_primary_10_1097_MD_0000000000038074
crossref_primary_10_1371_journal_pone_0188455
crossref_primary_10_1128_jb_00295_22
crossref_primary_10_1371_journal_pone_0219962
crossref_primary_10_1016_S2213_2600_18_30449_1
crossref_primary_10_1093_gigascience_giaa038
crossref_primary_10_1371_journal_pone_0216453
crossref_primary_10_14776_piv_2019_26_e24
crossref_primary_10_3389_fmicb_2021_667832
crossref_primary_10_1080_21505594_2016_1257458
crossref_primary_10_1128_mSphere_00916_19
crossref_primary_10_3390_cancers14215394
crossref_primary_10_1080_17476348_2018_1513331
crossref_primary_10_1002_iub_1969
crossref_primary_10_1128_mBio_02354_17
crossref_primary_10_1002_mco2_70018
crossref_primary_10_1016_j_heliyon_2024_e24032
crossref_primary_10_3389_fmed_2020_00396
crossref_primary_10_1016_j_celrep_2022_110725
crossref_primary_10_15406_jlprr_2018_05_00174
crossref_primary_10_1128_mSphere_00103_18
crossref_primary_10_1186_s12866_017_1022_6
crossref_primary_10_1016_j_anaerobe_2020_102230
crossref_primary_10_1152_physrev_00039_2023
crossref_primary_10_1371_journal_pone_0180561
crossref_primary_10_15789_2220_7619_2017_4_341_349
crossref_primary_10_1111_imm_12760
crossref_primary_10_1016_j_arbr_2019_04_014
crossref_primary_10_1007_s11377_018_0233_1
crossref_primary_10_1186_s13643_021_01806_2
crossref_primary_10_3389_fmicb_2022_963488
crossref_primary_10_3390_genes8120380
crossref_primary_10_1021_acs_est_2c00688
crossref_primary_10_1002_JLB_3RI0620_405RR
crossref_primary_10_1016_j_tube_2015_07_004
crossref_primary_10_3103_S0891416821030058
crossref_primary_10_18093_0869_0189_2019_29_4_499_507
crossref_primary_10_1007_s00216_021_03488_0
crossref_primary_10_1186_s13020_023_00742_8
crossref_primary_10_1016_S2213_2600_18_30501_0
crossref_primary_10_3389_fcimb_2023_1121399
crossref_primary_10_3389_fvets_2020_00115
crossref_primary_10_3390_biomedicines9060675
crossref_primary_10_1371_journal_pone_0259596
crossref_primary_10_3390_ijms23126791
crossref_primary_10_1016_j_tube_2018_02_006
crossref_primary_10_1111_resp_13759
crossref_primary_10_5021_ad_22_117
crossref_primary_10_1371_journal_pone_0158622
crossref_primary_10_1016_j_celrep_2021_109113
crossref_primary_10_1038_mi_2016_108
crossref_primary_10_1371_journal_ppat_1004923
crossref_primary_10_3390_life12020192
crossref_primary_10_1007_s11427_017_9151_1
crossref_primary_10_1146_annurev_immunol_101819_024945
crossref_primary_10_1007_s12016_022_08928_y
crossref_primary_10_1155_2018_6362716
crossref_primary_10_1007_s40496_020_00259_1
crossref_primary_10_1093_evlett_qrae030
crossref_primary_10_1016_j_healun_2017_11_017
crossref_primary_10_1186_s40168_015_0133_2
crossref_primary_10_1038_s42003_024_06706_4
crossref_primary_10_3390_microorganisms10071405
crossref_primary_10_1186_s12890_017_0512_5
crossref_primary_10_3390_pathogens12091110
crossref_primary_10_1016_j_envint_2021_106501
crossref_primary_10_3390_diagnostics11081376
crossref_primary_10_1186_s12866_020_02076_z
crossref_primary_10_3389_fmicb_2023_1129690
crossref_primary_10_1164_rccm_202005_1596OC
crossref_primary_10_1038_s41579_024_01048_8
crossref_primary_10_3389_fmicb_2020_630280
crossref_primary_10_1016_j_jaci_2017_08_020
Cites_doi 10.1038/mi.2009.132
10.1111/jmp.12090
10.1034/j.1600-0463.2000.d01-13.x
10.1186/2049-2618-2-27
10.1001/archotol.1929.00620050048003
10.1007/s00248-013-0192-5
10.1046/j.1442-9993.2001.01070.x
10.1016/S0140-6736(14)61136-3
10.1371/journal.pone.0008578
10.1164/rccm.201111-2075OC
10.1586/ers.11.76
10.1371/journal.pone.0016384
10.1007/s00253-012-4450-0
10.1128/AEM.01541-09
10.1080/STA-200066418
10.1164/rccm.201210-1913OC
10.1073/pnas.0506655103
10.1371/journal.pone.0015216
10.1111/1574-6976.12027
10.1016/S2213-2600(14)70028-1
10.1111/imm.12376
10.1128/AEM.01467-07
10.1016/0002-9343(78)90574-0
10.1128/AAC.02262-13
10.1128/AEM.05498-11
10.1371/journal.pone.0047305
10.1371/journal.pone.0031976
10.1164/rccm.201104-0655OC
10.1111/j.1462-2920.2005.00956.x
10.1136/adc.74.6.531
10.1371/journal.pone.0097214
10.1016/j.jaci.2010.10.048
10.1128/JCM.01028-14
10.1038/ismej.2010.167
10.1586/ers.13.24
10.1038/nature11234
10.1172/JCI16889
10.1371/journal.pone.0027310
10.1089/omi.2009.0100
10.1164/rccm.201302-0341OC
10.1378/chest.111.5.1266
10.1186/2049-2618-1-19
10.1111/imm.12122
10.1126/science.1171700
ContentType Journal Article
Copyright Copyright © 2015 Bassis et al.
Copyright © 2015 Bassis et al. 2015 Bassis et al.
Copyright_xml – notice: Copyright © 2015 Bassis et al.
– notice: Copyright © 2015 Bassis et al. 2015 Bassis et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1128/mBio.00037-15
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Analysis of the Aerodigestive Tract Microbiome
EISSN 2150-7511
ExternalDocumentID oai_doaj_org_article_19501fbdb28e4088abbec496ee3eb6ae
PMC4358017
25736890
10_1128_mBio_00037_15
Genre Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: L30 HL120241
– fundername: NHLBI NIH HHS
  grantid: R01 HL114447
– fundername: NHLBI NIH HHS
  grantid: T32 HL007749
– fundername: NHLBI NIH HHS
  grantid: R01HL114447
– fundername: NIDDK NIH HHS
  grantid: P30 DK034933
– fundername: NHLBI NIH HHS
  grantid: T32HL00774921
– fundername: NHLBI NIH HHS
  grantid: U01 HL098961
– fundername: NHLBI NIH HHS
  grantid: U01HL098961
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
C1A
CITATION
DIK
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c552t-755b6dc70771fdb88ad50bba22ca9d4fe9aea87b33c809940c4ad8436106a2163
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:20:49 EDT 2025
Thu Aug 21 17:18:57 EDT 2025
Fri Jul 11 12:14:38 EDT 2025
Fri Jul 11 15:10:49 EDT 2025
Wed Feb 19 02:31:34 EST 2025
Tue Jul 01 01:52:26 EDT 2025
Thu Apr 24 23:11:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright © 2015 Bassis et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-755b6dc70771fdb88ad50bba22ca9d4fe9aea87b33c809940c4ad8436106a2163
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
This article is a direct contribution from a Fellow of the American Academy of Microbiology.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.00037-15
PMID 25736890
PQID 1660927180
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_19501fbdb28e4088abbec496ee3eb6ae
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4358017
proquest_miscellaneous_1746406770
proquest_miscellaneous_1660927180
pubmed_primary_25736890
crossref_primary_10_1128_mBio_00037_15
crossref_citationtrail_10_1128_mBio_00037_15
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 20150501
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2015
Publisher American Society of Microbiology
American Society for Microbiology
Publisher_xml – name: American Society of Microbiology
– name: American Society for Microbiology
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_37_2
  doi: 10.1038/mi.2009.132
– ident: e_1_3_3_42_2
  doi: 10.1111/jmp.12090
– ident: e_1_3_3_24_2
  doi: 10.1034/j.1600-0463.2000.d01-13.x
– ident: e_1_3_3_38_2
  doi: 10.1186/2049-2618-2-27
– ident: e_1_3_3_9_2
  doi: 10.1001/archotol.1929.00620050048003
– ident: e_1_3_3_20_2
  doi: 10.1007/s00248-013-0192-5
– ident: e_1_3_3_44_2
  doi: 10.1046/j.1442-9993.2001.01070.x
– ident: e_1_3_3_16_2
  doi: 10.1016/S0140-6736(14)61136-3
– ident: e_1_3_3_4_2
  doi: 10.1371/journal.pone.0008578
– ident: e_1_3_3_15_2
  doi: 10.1164/rccm.201111-2075OC
– ident: e_1_3_3_5_2
  doi: 10.1586/ers.11.76
– ident: e_1_3_3_11_2
  doi: 10.1371/journal.pone.0016384
– ident: e_1_3_3_29_2
  doi: 10.1007/s00253-012-4450-0
– ident: e_1_3_3_41_2
  doi: 10.1128/AEM.01541-09
– ident: e_1_3_3_45_2
  doi: 10.1080/STA-200066418
– ident: e_1_3_3_18_2
  doi: 10.1164/rccm.201210-1913OC
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.0506655103
– ident: e_1_3_3_23_2
  doi: 10.1371/journal.pone.0015216
– ident: e_1_3_3_19_2
  doi: 10.1111/1574-6976.12027
– ident: e_1_3_3_3_2
  doi: 10.1016/S2213-2600(14)70028-1
– ident: e_1_3_3_35_2
  doi: 10.1111/imm.12376
– ident: e_1_3_3_32_2
  doi: 10.1128/AEM.01467-07
– ident: e_1_3_3_8_2
  doi: 10.1016/0002-9343(78)90574-0
– ident: e_1_3_3_39_2
  doi: 10.1128/AAC.02262-13
– ident: e_1_3_3_31_2
  doi: 10.1128/AEM.05498-11
– ident: e_1_3_3_13_2
  doi: 10.1371/journal.pone.0047305
– ident: e_1_3_3_36_2
  doi: 10.1371/journal.pone.0031976
– ident: e_1_3_3_10_2
  doi: 10.1164/rccm.201104-0655OC
– ident: e_1_3_3_43_2
  doi: 10.1111/j.1462-2920.2005.00956.x
– ident: e_1_3_3_33_2
  doi: 10.1136/adc.74.6.531
– ident: e_1_3_3_17_2
  doi: 10.1371/journal.pone.0097214
– ident: e_1_3_3_12_2
  doi: 10.1016/j.jaci.2010.10.048
– ident: e_1_3_3_28_2
  doi: 10.1128/JCM.01028-14
– ident: e_1_3_3_30_2
  doi: 10.1038/ismej.2010.167
– ident: e_1_3_3_2_2
  doi: 10.1586/ers.13.24
– ident: e_1_3_3_6_2
  doi: 10.1038/nature11234
– ident: e_1_3_3_34_2
  doi: 10.1172/JCI16889
– ident: e_1_3_3_40_2
  doi: 10.1371/journal.pone.0027310
– ident: e_1_3_3_26_2
  doi: 10.1089/omi.2009.0100
– ident: e_1_3_3_25_2
  doi: 10.1164/rccm.201302-0341OC
– ident: e_1_3_3_7_2
  doi: 10.1378/chest.111.5.1266
– ident: e_1_3_3_14_2
  doi: 10.1186/2049-2618-1-19
– ident: e_1_3_3_27_2
  doi: 10.1111/imm.12122
– ident: e_1_3_3_22_2
  doi: 10.1126/science.1171700
SSID ssj0000331830
Score 2.5869114
Snippet No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective...
ABSTRACT No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e00037
SubjectTerms adults
bacteria
Bacteria - classification
Bacteria - genetics
bacterial communities
bronchoscopy
community structure
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Ribosomal - chemistry
DNA, Ribosomal - genetics
genes
Healthy Volunteers
Humans
Lung - microbiology
lungs
microbiome
Microbiota
Molecular Sequence Data
mouth
Mouth - microbiology
nasal cavity
Nasal Cavity - microbiology
Prevotella
quantitative polymerase chain reaction
Real-Time Polymerase Chain Reaction
ribosomal RNA
RNA, Ribosomal, 16S - genetics
sequence analysis
Sequence Analysis, DNA
species diversity
stomach
Stomach - microbiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcELQ8ti2VKyFOhCZ--0irPkCUA3Sl3izbmRUrQXbV3R4q8eM7tjfLbgX0gpRTMlYcz4znc-z5hpA3EjRvg1GVDRwXKBFiZRqPtpwqjoYolI8pG_niizofik9X8mql1Fc6E1bogcvAHaYypc0otIEZEOgSPuBbhVUAHILykGZfjHkri6k8B_Nkq3VPqsnM4c-j8eR9plupUgnclSCUufr_BDDvn5NcCTynT8mTBWKkH0pPn5FH0G2RzVJD8nab_OppRehkRBHN0eF0Ctf06-8tdHqZMqHoxbhwLs39jOKVRL_lP_d9w8_o99R3LT3zqZhHXGsx7mjJWLqlH5c5XLPnZHh6cnl8Xi1KKlRRSjavtJRBtVHXWjcj1JHxraxD8IxFb1sxAuvBGx04jwaxo6ij8K0RHEGW8gyx2wuy0U06eEWoiDxIGb1qrRGWRxsAlVSDBRERSLEBedePsYsLvvFU9uKHy-sOZlxSicsqcY0ckLdL8Wkh2vib4FFS2FIo8WPnG2g1bmE17iGrGZCDXt0O_SltkvgOJjcz1yhVW4YRu_6HjBZKJOo9lHlZTGTZHZwCuTIWn-g141nr7_qTbvw983qLtCXd6J3_8YG75DFCO1mOZu6Rjfn1DbxG-DQP-9lT7gBs0x1U
  priority: 102
  providerName: Directory of Open Access Journals
Title Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals
URI https://www.ncbi.nlm.nih.gov/pubmed/25736890
https://www.proquest.com/docview/1660927180
https://www.proquest.com/docview/1746406770
https://pubmed.ncbi.nlm.nih.gov/PMC4358017
https://doaj.org/article/19501fbdb28e4088abbec496ee3eb6ae
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB6kIvgi3l2rZQTxydQkc82DiBVrEeqTC_s2zExma2CbbLNZ6II_3nMyybZbWiHkITkThpzLfHM53yHkvQiKlU7LpHAMJig--ERnFmwZK446z6X1mI18-kueTPnPmZhdUQoNP3B169QO60lN28Xh5cXmCzj855gAoz-dH1XNYc-kkmC6-X0YlBT66OmA9PugzNB405Fl82Yr5AQWikmNsfnaANXz-N8GPm-eobw2KB0_Jo8GNEm_RvU_IfdC_ZQ8iPUlN8_I35FyhDZzCkiPrpfL0NL2anuddpglRc-ryMfU2RWFC0Xjqv7YcAExgdq6pGcWC334nRZVTWM65YZW2_yu1XMyPf7--9tJMpRbSLwQeZcoIZwsvUqVyuagP21LkTpn89zbouTzUNhgtXKMeQ24kqee21JzBgBM2hxw3QuyVzd1eEUo98wJ4a0sC80L5gsXSpenoQjcA8jKJ-Tj-I-NH7jIsSTGwvRzklwb1I7ptWMyMSEftuLLSMJxl-ARKmwrhNzZ_YOmPTODKxosfJvNHXRIBw5B1jqwY17IEFhw0oYJeTeq24Cv4QaKrUOzXplMyrTIYTRP_yOjuORIywcyL6OJbLszmtiEqB3j2env7pu6-tNzfnPcrs7U6zu_uU8eApYT8SzmG7LXtevwFvBS5w76dQa4_5hlB71X_APaFBjj
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+upper+respiratory+tract+microbiotas+as+the+source+of+the+lung+and+gastric+microbiotas+in+healthy+individuals&rft.jtitle=mBio&rft.au=Bassis%2C+Christine+M&rft.au=Erb-Downward%2C+John+R&rft.au=Dickson%2C+Robert+P&rft.au=Freeman%2C+Christine+M&rft.date=2015-05-01&rft.eissn=2150-7511&rft.volume=6&rft.issue=2&rft.spage=e00037&rft_id=info:doi/10.1128%2FmBio.00037-15&rft_id=info%3Apmid%2F25736890&rft.externalDocID=25736890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon