Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals
No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source com...
Saved in:
Published in | mBio Vol. 6; no. 2; p. e00037 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Microbiology
01.05.2015
American Society for Microbiology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways.
IMPORTANCE
We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals.
We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals. |
---|---|
AbstractList | No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways.UNLABELLEDNo studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways.We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals.IMPORTANCEWe have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals. No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways. We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals. No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways. No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways. IMPORTANCE We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals. We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals. ABSTRACT No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways. IMPORTANCE We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals. No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective was to perform an intrasubject and intersite analysis to determine the contributions of two upper mucosal sites (mouth and nose) as source communities for the bacterial microbiome of lower sites (lungs and stomach). Oral wash, bronchoalveolar lavage (BAL) fluid, nasal swab, and gastric aspirate samples were collected from 28 healthy subjects. Extensive analysis of controls and serial intrasubject BAL fluid samples demonstrated that sampling of the lungs by bronchoscopy was not confounded by oral microbiome contamination. By quantitative PCR, the oral cavity and stomach contained the highest bacterial signal levels and the nasal cavity and lungs contained much lower levels. Pyrosequencing of 16S rRNA gene amplicon libraries generated from these samples showed that the oral and gastric compartments had the greatest species richness, which was significantly greater in both than the richness measured in the lungs and nasal cavity. The bacterial communities of the lungs were significantly different from those of the mouth, nose, and stomach, while the greatest similarity was between the oral and gastric communities. However, the bacterial communities of healthy lungs shared significant membership with the mouth, but not the nose, and marked subject-subject variation was noted. In summary, microbial immigration from the oral cavity appears to be the significant source of the lung microbiome during health, but unlike the stomach, the lungs exhibit evidence of selective elimination of Prevotella bacteria derived from the upper airways. We have demonstrated that the bacterial communities of the healthy lung overlapped those found in the mouth but were found at lower concentrations, with lower membership and a different community composition. The nasal microbiome, which was distinct from the oral microbiome, appeared to contribute little to the composition of the lung microbiome in healthy subjects. Our studies of the nasal, oral, lung, and stomach microbiomes within an individual illustrate the microbiological continuity of the aerodigestive tract in healthy adults and provide culture-independent microbiological support for the concept that microaspiration is common in healthy individuals. |
Author | Dickson, Robert P. Beck, James M. Bassis, Christine M. Curtis, Jeffrey L. Erb-Downward, John R. Young, Vincent B. Freeman, Christine M. Huffnagle, Gary B. Schmidt, Thomas M. |
Author_xml | – sequence: 1 givenname: Christine M. surname: Bassis fullname: Bassis, Christine M. organization: Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA – sequence: 2 givenname: John R. surname: Erb-Downward fullname: Erb-Downward, John R. organization: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA – sequence: 3 givenname: Robert P. surname: Dickson fullname: Dickson, Robert P. organization: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA – sequence: 4 givenname: Christine M. surname: Freeman fullname: Freeman, Christine M. organization: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA, Research Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA – sequence: 5 givenname: Thomas M. surname: Schmidt fullname: Schmidt, Thomas M. organization: Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA – sequence: 6 givenname: Vincent B. surname: Young fullname: Young, Vincent B. organization: Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA – sequence: 7 givenname: James M. surname: Beck fullname: Beck, James M. organization: Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA, Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA – sequence: 8 givenname: Jeffrey L. surname: Curtis fullname: Curtis, Jeffrey L. organization: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA, Pulmonary and Critical Care Medicine Section, Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA – sequence: 9 givenname: Gary B. surname: Huffnagle fullname: Huffnagle, Gary B. organization: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25736890$$D View this record in MEDLINE/PubMed |
BookMark | eNqFktFrFDEQxhep2Fr76Kvk0ZetyWaT7L4ItWh7cCJo-xwmyexdyt7mTLKFA_94d3tt8QQRAhOS33yZyXyvi6MhDFgUbxk9Z6xqPmw--XBOKeWqZOJFcVIxQUslGDua95KVFava4-IspTs6Y5w1nL4qjiuhuGxaelL8uhig3yWfSOhIXiO53W4xku-Ytj5CDnFHbiLYTL56G4PxIUMi05rRH2GMFp8Sl-OwIjA4cgUpR28PMvxArhH6vN6RxeD8vXcj9OlN8bKbAp49xtPi9svnm8vrcvntanF5sSytEFWeGhJGOquoUqxzpmnACWoMVJWF1tUdtoDQKMO5bWjb1tTW4JqaS0YlTN_AT4vFXtcFuNPb6DcQdzqA1w8HIa40xOxtj5q1grLOOFM1WNPpKWPQ1q1E5Ggk4KT1ca-1Hc0GncUhR-gPRA9vBr_Wq3Cvay4aytQk8P5RIIafI6asNz5Z7HsYMIxJM1XLmkql6P9RKWlbKdbM6Ls_y3qu52nSE1DugWkoKUXsnhFG9WwmPZtJP5hJMzHx_C_e-gzZh7kr3_8j6zcFAc9L |
CitedBy_id | crossref_primary_10_1097_MCP_0000000000000299 crossref_primary_10_1097_SHK_0000000000001654 crossref_primary_10_1002_ppul_24504 crossref_primary_10_1080_1040841X_2020_1830748 crossref_primary_10_1161_HYPERTENSIONAHA_120_15025 crossref_primary_10_1128_Spectrum_01669_21 crossref_primary_10_1139_cjm_2016_0603 crossref_primary_10_1186_s40168_022_01362_4 crossref_primary_10_1038_s41598_023_43821_4 crossref_primary_10_1038_s41598_023_45007_4 crossref_primary_10_1016_j_gpb_2018_03_009 crossref_primary_10_1164_rccm_202308_1357OC crossref_primary_10_1016_j_nupar_2021_04_002 crossref_primary_10_3390_medicina54050072 crossref_primary_10_3389_fmicb_2017_02477 crossref_primary_10_1186_s12931_020_01392_2 crossref_primary_10_1164_rccm_202210_1865OC crossref_primary_10_1016_j_jdsr_2023_10_004 crossref_primary_10_1080_1040841X_2021_1992345 crossref_primary_10_1186_s12903_024_04635_6 crossref_primary_10_1186_s12890_023_02638_7 crossref_primary_10_2169_internalmedicine_4825_24 crossref_primary_10_3389_fmolb_2021_718222 crossref_primary_10_1038_s41467_021_26500_8 crossref_primary_10_1016_S2213_2600_15_00427_0 crossref_primary_10_1186_s12931_016_0479_4 crossref_primary_10_3390_toxins9090266 crossref_primary_10_3389_fmicb_2020_575550 crossref_primary_10_3389_fped_2016_00010 crossref_primary_10_1371_journal_pone_0177340 crossref_primary_10_1128_JCM_02299_15 crossref_primary_10_1007_s00248_017_1068_x crossref_primary_10_1186_s40168_017_0277_3 crossref_primary_10_1164_rccm_201710_2028PP crossref_primary_10_1016_j_jaci_2017_02_004 crossref_primary_10_3389_fmed_2022_927607 crossref_primary_10_3390_cancers15143562 crossref_primary_10_1155_2021_9278441 crossref_primary_10_1186_s12866_019_1560_1 crossref_primary_10_1016_j_immuni_2020_01_007 crossref_primary_10_1002_1873_3468_12455 crossref_primary_10_1016_j_csbj_2019_09_010 crossref_primary_10_1371_journal_pone_0225636 crossref_primary_10_1186_s40168_017_0364_5 crossref_primary_10_3390_nu15102398 crossref_primary_10_1186_s40168_025_02031_y crossref_primary_10_1016_j_envres_2022_114125 crossref_primary_10_1152_physrev_00032_2017 crossref_primary_10_3390_cancers15204935 crossref_primary_10_3389_fmicb_2021_687513 crossref_primary_10_3389_fmicb_2021_709421 crossref_primary_10_1128_spectrum_01901_21 crossref_primary_10_3389_fimmu_2023_1220610 crossref_primary_10_1038_emm_2017_7 crossref_primary_10_3390_biology9100318 crossref_primary_10_1097_COH_0000000000000427 crossref_primary_10_3390_ijms25074051 crossref_primary_10_1016_j_jhazmat_2021_126710 crossref_primary_10_1016_j_jaci_2020_01_002 crossref_primary_10_3389_fonc_2022_1072474 crossref_primary_10_2147_COPD_S371958 crossref_primary_10_1038_s41598_018_29793_w crossref_primary_10_3390_nu15224738 crossref_primary_10_1080_1040841X_2018_1549019 crossref_primary_10_26442_20751753_2024_9_202675 crossref_primary_10_1007_s00204_023_03452_0 crossref_primary_10_1186_s40168_017_0234_1 crossref_primary_10_1038_s41522_022_00330_y crossref_primary_10_3389_fmicb_2024_1323842 crossref_primary_10_3390_microorganisms11082108 crossref_primary_10_1016_j_bioflm_2022_100067 crossref_primary_10_1097_NCQ_0000000000000359 crossref_primary_10_1042_CS20210879 crossref_primary_10_1080_21505594_2019_1682797 crossref_primary_10_1016_j_ygeno_2024_110816 crossref_primary_10_1111_brv_12407 crossref_primary_10_1165_rcmb_2023_0057WS crossref_primary_10_1128_mBio_00258_20 crossref_primary_10_1186_s12890_018_0632_6 crossref_primary_10_3390_cells11050916 crossref_primary_10_1021_acsomega_3c05846 crossref_primary_10_1186_s40168_018_0566_5 crossref_primary_10_1186_s41479_018_0051_8 crossref_primary_10_1016_j_healun_2017_07_007 crossref_primary_10_3389_fmicb_2020_589501 crossref_primary_10_1164_rccm_202202_0274OC crossref_primary_10_1371_journal_pone_0182520 crossref_primary_10_1186_s12866_023_02790_4 crossref_primary_10_1038_srep26985 crossref_primary_10_1152_ajplung_00279_2015 crossref_primary_10_1186_s13567_021_01020_x crossref_primary_10_1186_s40635_021_00398_4 crossref_primary_10_1186_s12931_022_01935_9 crossref_primary_10_1128_IAI_01539_15 crossref_primary_10_1111_apt_15650 crossref_primary_10_3389_fonc_2022_811279 crossref_primary_10_1128_mBio_01598_21 crossref_primary_10_1016_j_arr_2020_101235 crossref_primary_10_1038_s41538_020_00078_9 crossref_primary_10_1111_jcpe_13819 crossref_primary_10_1016_j_celrep_2025_115442 crossref_primary_10_1183_23120541_00008_2017 crossref_primary_10_1590_s1806_37562017000000209 crossref_primary_10_1186_s40168_024_01772_6 crossref_primary_10_1038_s41598_020_62424_x crossref_primary_10_1111_resp_12971 crossref_primary_10_1097_MCP_0000000000000399 crossref_primary_10_1136_gutjnl_2016_312904 crossref_primary_10_1093_femsec_fiaa127 crossref_primary_10_3389_fvets_2019_00354 crossref_primary_10_3389_fmicb_2022_719541 crossref_primary_10_1111_resp_12732 crossref_primary_10_1016_j_jff_2024_106272 crossref_primary_10_1111_all_13495 crossref_primary_10_1186_s12864_020_07252_z crossref_primary_10_1080_1040841X_2020_1863330 crossref_primary_10_3390_microorganisms11112703 crossref_primary_10_1016_j_tim_2019_04_005 crossref_primary_10_1111_prd_12388 crossref_primary_10_3389_fimmu_2022_954339 crossref_primary_10_3390_jof5020031 crossref_primary_10_1007_s00248_022_02148_9 crossref_primary_10_1016_j_canlet_2017_11_036 crossref_primary_10_1002_ppul_24336 crossref_primary_10_52586_4930 crossref_primary_10_1371_journal_pone_0191499 crossref_primary_10_1016_j_cbi_2019_108732 crossref_primary_10_1007_s40572_024_00437_8 crossref_primary_10_3389_fmicb_2017_01162 crossref_primary_10_1186_s40168_020_00869_y crossref_primary_10_1038_s41598_024_59514_5 crossref_primary_10_1016_j_scitotenv_2020_143623 crossref_primary_10_1016_j_arbres_2019_04_017 crossref_primary_10_1016_j_micres_2022_127244 crossref_primary_10_1111_apha_14266 crossref_primary_10_1080_21655979_2021_1997563 crossref_primary_10_1128_mbio_00300_23 crossref_primary_10_1186_s40168_021_01201_y crossref_primary_10_2174_2665978604666221122112434 crossref_primary_10_1055_s_0044_1785673 crossref_primary_10_3389_fmicb_2023_1236348 crossref_primary_10_3389_fimmu_2023_1091165 crossref_primary_10_1002_ppul_23243 crossref_primary_10_1186_s40168_018_0531_3 crossref_primary_10_1002_iid3_483 crossref_primary_10_1164_rccm_201504_0779OC crossref_primary_10_1016_j_chom_2018_10_019 crossref_primary_10_3390_life12101505 crossref_primary_10_1016_j_ecoenv_2024_116875 crossref_primary_10_1038_s41564_019_0640_1 crossref_primary_10_1007_s11894_017_0577_6 crossref_primary_10_1038_s41522_020_00171_7 crossref_primary_10_1186_s12931_023_02491_6 crossref_primary_10_1371_journal_pone_0232215 crossref_primary_10_21518_2079_701X_2019_2_173_182 crossref_primary_10_1016_j_ccm_2024_10_006 crossref_primary_10_1038_s41591_023_02617_9 crossref_primary_10_1371_journal_pone_0228085 crossref_primary_10_1038_s41385_022_00541_8 crossref_primary_10_1016_j_jaci_2020_08_035 crossref_primary_10_1007_s11739_019_02208_y crossref_primary_10_1183_13993003_00242_2018 crossref_primary_10_1165_rcmb_2019_0273TR crossref_primary_10_1016_j_jaci_2023_10_001 crossref_primary_10_1186_s40168_017_0372_5 crossref_primary_10_1038_s41467_022_31074_0 crossref_primary_10_1183_23120541_00720_2022 crossref_primary_10_1513_AnnalsATS_202110_1152OC crossref_primary_10_3389_fcimb_2018_00432 crossref_primary_10_1371_journal_pone_0154646 crossref_primary_10_1186_s13059_016_1021_1 crossref_primary_10_3390_antibiotics10070766 crossref_primary_10_1016_j_annepidem_2016_03_010 crossref_primary_10_1016_j_mimet_2016_01_013 crossref_primary_10_3390_diagnostics13101784 crossref_primary_10_1007_s12630_017_0896_y crossref_primary_10_1159_000508330 crossref_primary_10_3389_fimmu_2022_897462 crossref_primary_10_1016_S2666_5247_21_00035_5 crossref_primary_10_1016_j_critrevonc_2021_103404 crossref_primary_10_1186_s40168_016_0206_x crossref_primary_10_3390_cancers13010013 crossref_primary_10_1136_thoraxjnl_2016_208599 crossref_primary_10_1002_ppul_23953 crossref_primary_10_3389_fcimb_2024_1492881 crossref_primary_10_4187_respcare_07332 crossref_primary_10_1155_2022_6274265 crossref_primary_10_1165_rcmb_2017_0228OC crossref_primary_10_3390_cancers15010192 crossref_primary_10_1080_10408398_2020_1836605 crossref_primary_10_1186_s40168_018_0462_z crossref_primary_10_3390_ijerph16081375 crossref_primary_10_1038_s41598_022_14095_z crossref_primary_10_1002_ctm2_508 crossref_primary_10_1080_01902148_2023_2264947 crossref_primary_10_1080_20002297_2017_1324725 crossref_primary_10_1002_mbo3_1151 crossref_primary_10_1038_s41564_018_0278_4 crossref_primary_10_3390_ijms24032170 crossref_primary_10_7717_peerj_11806 crossref_primary_10_1016_j_arbr_2016_11_038 crossref_primary_10_1080_14767058_2019_1681961 crossref_primary_10_1136_bmjopen_2021_050271 crossref_primary_10_1111_1759_7714_14463 crossref_primary_10_1016_j_ecoenv_2023_115156 crossref_primary_10_1038_s41385_019_0160_6 crossref_primary_10_3389_fcimb_2020_00213 crossref_primary_10_3389_fmicb_2020_512581 crossref_primary_10_1186_s12866_023_02757_5 crossref_primary_10_1038_s41522_022_00290_3 crossref_primary_10_1016_j_pedneo_2016_09_004 crossref_primary_10_1097_MD_0000000000011175 crossref_primary_10_1164_rccm_201702_0441OC crossref_primary_10_1136_gutjnl_2022_327745 crossref_primary_10_1126_scitranslmed_abq5126 crossref_primary_10_1111_hel_12848 crossref_primary_10_1164_rccm_202406_1123LE crossref_primary_10_1038_s41590_019_0451_9 crossref_primary_10_1164_rccm_201803_0586ED crossref_primary_10_3748_wjg_v27_i18_2054 crossref_primary_10_1080_14787210_2016_1206469 crossref_primary_10_3389_fmicb_2016_00333 crossref_primary_10_1016_j_clim_2015_05_022 crossref_primary_10_17116_molgen20213903118 crossref_primary_10_1186_s40168_018_0487_3 crossref_primary_10_1080_08820139_2023_2298398 crossref_primary_10_1080_20002297_2024_2344278 crossref_primary_10_1016_j_medmic_2024_100104 crossref_primary_10_1128_spectrum_04144_23 crossref_primary_10_1016_j_chemosphere_2019_04_032 crossref_primary_10_1080_19490976_2021_1909459 crossref_primary_10_1371_journal_pone_0222589 crossref_primary_10_1016_j_foodres_2020_109577 crossref_primary_10_1016_j_rmed_2024_107580 crossref_primary_10_1186_s40733_017_0037_y crossref_primary_10_1016_j_rmed_2024_107586 crossref_primary_10_1155_2022_9976555 crossref_primary_10_1371_journal_pone_0164510 crossref_primary_10_1183_13993003_02467_2016 crossref_primary_10_1007_s10096_024_04980_y crossref_primary_10_1016_j_jaci_2024_11_008 crossref_primary_10_3389_fimmu_2020_01245 crossref_primary_10_1093_nar_gkw1027 crossref_primary_10_1371_journal_pone_0262082 crossref_primary_10_2147_IJGM_S304339 crossref_primary_10_1016_j_heliyon_2019_e02802 crossref_primary_10_3389_fimmu_2019_00426 crossref_primary_10_1371_journal_ppat_1006798 crossref_primary_10_1007_s00204_017_1951_8 crossref_primary_10_1002_mlf2_12136 crossref_primary_10_1038_s41392_023_01722_y crossref_primary_10_4049_jimmunol_1600279 crossref_primary_10_1080_1040841X_2024_2324864 crossref_primary_10_3389_fmicb_2021_798763 crossref_primary_10_1038_s41698_020_00138_z crossref_primary_10_1371_journal_pone_0244341 crossref_primary_10_1186_s12866_017_0933_6 crossref_primary_10_1111_apm_13386 crossref_primary_10_1080_14787210_2017_1349609 crossref_primary_10_1155_2017_3890601 crossref_primary_10_3390_nu15071696 crossref_primary_10_1002_mnfr_201800178 crossref_primary_10_1128_spectrum_02311_21 crossref_primary_10_1016_j_jep_2024_118043 crossref_primary_10_1016_j_rvsc_2023_105037 crossref_primary_10_1146_annurev_pathol_012615_044344 crossref_primary_10_1111_prd_12301 crossref_primary_10_3389_fimmu_2017_01678 crossref_primary_10_36233_0372_9311_2018_5_53_60 crossref_primary_10_1183_16000617_0053_2024 crossref_primary_10_1186_s40413_015_0074_z crossref_primary_10_1038_s41598_020_66178_4 crossref_primary_10_1038_nrmicro_2016_142 crossref_primary_10_1161_HYPERTENSIONAHA_122_19182 crossref_primary_10_3390_ijms24044086 crossref_primary_10_1038_s41598_017_11311_z crossref_primary_10_3389_fimmu_2018_02640 crossref_primary_10_18481_2077_7566_21_17_4_56_61 crossref_primary_10_1186_s40168_017_0385_0 crossref_primary_10_1002_1873_3468_12421 crossref_primary_10_12677_BP_2020_103003 crossref_primary_10_3390_jcm10153258 crossref_primary_10_1016_j_xcrm_2023_101167 crossref_primary_10_1021_acs_chemrev_2c00431 crossref_primary_10_1016_j_ebiom_2023_104731 crossref_primary_10_1111_1759_7714_15166 crossref_primary_10_3390_v12121425 crossref_primary_10_1038_s41522_021_00254_z crossref_primary_10_1128_mBio_02287_16 crossref_primary_10_1158_1940_6207_CAPR_21_0601 crossref_primary_10_3389_fped_2017_00123 crossref_primary_10_1007_s44337_024_00063_1 crossref_primary_10_1038_s41598_024_77273_1 crossref_primary_10_1186_s12915_025_02129_7 crossref_primary_10_3390_nu15030486 crossref_primary_10_1007_s42600_020_00113_4 crossref_primary_10_1016_j_semcancer_2021_07_005 crossref_primary_10_1038_s41467_021_22344_4 crossref_primary_10_3390_microorganisms10071391 crossref_primary_10_1186_s12931_019_1203_y crossref_primary_10_3389_fcimb_2018_00042 crossref_primary_10_29328_journal_acgh_1001018 crossref_primary_10_1186_s12879_020_05427_3 crossref_primary_10_21518_2079_701X_2020_4_85_92 crossref_primary_10_1007_s11938_019_00245_2 crossref_primary_10_1016_S1773_035X_20_30356_7 crossref_primary_10_1128_spectrum_03791_23 crossref_primary_10_3390_diagnostics13193157 crossref_primary_10_3389_fped_2017_00019 crossref_primary_10_1016_j_scitotenv_2022_154652 crossref_primary_10_1126_scitranslmed_aav3488 crossref_primary_10_1016_j_arbres_2016_11_008 crossref_primary_10_1146_annurev_physiol_021115_105238 crossref_primary_10_1007_s11882_016_0631_8 crossref_primary_10_3390_children8121161 crossref_primary_10_1158_2159_8290_CD_20_0263 crossref_primary_10_26724_2079_8334_2020_4_74_68_72 crossref_primary_10_3389_fcimb_2018_00158 crossref_primary_10_1128_jvi_00409_24 crossref_primary_10_1186_s40635_023_00496_5 crossref_primary_10_3343_alm_2018_38_2_110 crossref_primary_10_1186_s13054_020_03219_4 crossref_primary_10_1183_13993003_00810_2018 crossref_primary_10_1080_21505594_2022_2146568 crossref_primary_10_1016_j_jcf_2019_09_005 crossref_primary_10_3389_fmicb_2024_1416385 crossref_primary_10_1016_j_mib_2024_102428 crossref_primary_10_1186_s40168_024_01940_8 crossref_primary_10_1126_scitranslmed_aba0501 crossref_primary_10_1007_s13213_018_1384_5 crossref_primary_10_1016_j_cmi_2021_05_034 crossref_primary_10_1186_s40168_022_01434_5 crossref_primary_10_3389_fcimb_2021_541092 crossref_primary_10_1146_annurev_animal_030117_014611 crossref_primary_10_1186_s12938_022_00987_8 crossref_primary_10_1183_16000617_0068_2024 crossref_primary_10_1186_s13287_020_01902_5 crossref_primary_10_1093_carcin_bgaa044 crossref_primary_10_1038_cti_2017_6 crossref_primary_10_1099_jmm_0_000173 crossref_primary_10_1128_mSystems_00296_20 crossref_primary_10_2147_IDR_S373266 crossref_primary_10_1186_s12866_024_03594_w crossref_primary_10_3390_cimb45120627 crossref_primary_10_1186_s12890_016_0303_4 crossref_primary_10_2478_ahem_2021_0008 crossref_primary_10_1002_hcs2_15 crossref_primary_10_1186_s40168_019_0691_9 crossref_primary_10_1097_ACI_0000000000000738 crossref_primary_10_1016_j_ecoenv_2021_112006 crossref_primary_10_1016_j_gendis_2019_03_006 crossref_primary_10_1186_s43088_021_00134_7 crossref_primary_10_3389_fimmu_2022_982772 crossref_primary_10_3390_antibiotics11040474 crossref_primary_10_1093_intbio_zyaa021 crossref_primary_10_1038_s41598_024_84682_9 crossref_primary_10_3390_ijms241512296 crossref_primary_10_1186_s12890_021_01687_0 crossref_primary_10_1586_14737159_2016_1156536 crossref_primary_10_1038_s41598_022_25463_0 crossref_primary_10_3389_fped_2020_00528 crossref_primary_10_1038_s41522_025_00654_5 crossref_primary_10_1016_j_otc_2016_08_004 crossref_primary_10_1097_MOT_0000000000000631 crossref_primary_10_1183_13993003_02086_2016 crossref_primary_10_1016_j_intimp_2025_114222 crossref_primary_10_1128_spectrum_00216_24 crossref_primary_10_3389_fmicb_2018_02147 crossref_primary_10_3390_vaccines6030049 crossref_primary_10_1016_j_rmed_2017_03_019 crossref_primary_10_1044_2024_JSLHR_24_00436 crossref_primary_10_1186_s40168_016_0182_1 crossref_primary_10_1093_rheumatology_keab262 crossref_primary_10_1111_imr_70015 crossref_primary_10_1016_j_coi_2020_03_010 crossref_primary_10_3389_fcimb_2024_1296295 crossref_primary_10_1183_16000617_0032_2018 crossref_primary_10_3389_fmicb_2020_01840 crossref_primary_10_3390_children9060795 crossref_primary_10_1093_infdis_jiaa702 crossref_primary_10_26442_20751753_2024_12_202570 crossref_primary_10_3390_ijms232416154 crossref_primary_10_1016_j_chom_2017_03_011 crossref_primary_10_1080_17476348_2021_1893168 crossref_primary_10_18481_2077_7566_2022_18_2_15_22 crossref_primary_10_1038_s41598_025_85806_5 crossref_primary_10_3389_fmicb_2022_929752 crossref_primary_10_1136_gutjnl_2017_314814 crossref_primary_10_1183_23120541_00019_2017 crossref_primary_10_1038_s41392_022_00986_0 crossref_primary_10_1186_s12890_016_0339_5 crossref_primary_10_3389_fbioe_2020_539319 crossref_primary_10_3389_frmbi_2023_1067019 crossref_primary_10_1016_j_trsl_2016_06_007 crossref_primary_10_1186_s12864_017_4215_3 crossref_primary_10_1007_s00134_020_06338_2 crossref_primary_10_1186_s12903_022_02501_x crossref_primary_10_3390_jcm8111967 crossref_primary_10_3390_antibiotics13060484 crossref_primary_10_3389_fcimb_2022_1011254 crossref_primary_10_20538_1682_0363_2024_4_197_204 crossref_primary_10_3390_life14010095 crossref_primary_10_1038_s41392_022_00974_4 crossref_primary_10_3390_microorganisms12071448 crossref_primary_10_1016_j_bioflm_2020_100041 crossref_primary_10_1164_rccm_201512_2424OC crossref_primary_10_1186_s12866_017_1092_5 crossref_primary_10_1186_s40168_016_0215_9 crossref_primary_10_1111_jvim_16612 crossref_primary_10_1128_IAI_00871_18 crossref_primary_10_1155_2018_6515670 crossref_primary_10_1007_s40279_017_0846_4 crossref_primary_10_1016_j_healun_2021_04_014 crossref_primary_10_1136_thorax_2023_220455 crossref_primary_10_1186_s42523_023_00226_y crossref_primary_10_1002_advs_202203115 crossref_primary_10_1038_s41522_024_00623_4 crossref_primary_10_18093_0869_0189_2022_4144 crossref_primary_10_3389_fimmu_2019_02106 crossref_primary_10_4110_in_2021_21_e25 crossref_primary_10_1038_s41598_019_46173_0 crossref_primary_10_3390_ijms23020977 crossref_primary_10_1186_s40168_017_0381_4 crossref_primary_10_1002_ijc_31098 crossref_primary_10_1186_s40168_016_0170_5 crossref_primary_10_4049_jimmunol_2300716 crossref_primary_10_3390_nu14091701 crossref_primary_10_3390_ijms22147634 crossref_primary_10_1080_19424396_2023_2193372 crossref_primary_10_1002_mds_27105 crossref_primary_10_1002_ppul_24115 crossref_primary_10_1016_j_jinf_2024_01_017 crossref_primary_10_1111_ina_12750 crossref_primary_10_2217_fmb_2018_0349 crossref_primary_10_53730_ijhs_v2nS1_15085 crossref_primary_10_1186_s40168_016_0210_1 crossref_primary_10_1128_CMR_00096_15 crossref_primary_10_21518_2079_701X_2021_1_50_58 crossref_primary_10_1164_rccm_201601_0162LE crossref_primary_10_1172_JCI150473 crossref_primary_10_1007_s00281_019_00775_y crossref_primary_10_1111_jvim_16824 crossref_primary_10_1164_rccm_202109_2226ED crossref_primary_10_1016_j_ajog_2018_10_018 crossref_primary_10_1099_mgen_0_000754 crossref_primary_10_3389_fmicb_2020_561427 crossref_primary_10_1038_ismej_2016_181 crossref_primary_10_2217_fmb_2018_0118 crossref_primary_10_1093_molbev_msab018 crossref_primary_10_1128_microbiolspec_BAD_0005_2016 crossref_primary_10_1183_16000617_0084_2015 crossref_primary_10_1038_nrmicro_2017_14 crossref_primary_10_3389_fmicb_2022_871645 crossref_primary_10_1038_s41426_018_0097_y crossref_primary_10_1165_rcmb_2021_0515OC crossref_primary_10_1128_mSystems_00809_20 crossref_primary_10_3390_anatomia1020019 crossref_primary_10_4049_jimmunol_2001044 crossref_primary_10_1128_msystems_00262_18 crossref_primary_10_1146_annurev_genom_083117_021651 crossref_primary_10_1097_CPM_0000000000000268 crossref_primary_10_1016_j_jaci_2018_02_020 crossref_primary_10_3389_fmicb_2022_1085079 crossref_primary_10_3390_nu13114153 crossref_primary_10_14814_phy2_15761 crossref_primary_10_1016_j_prrv_2024_02_001 crossref_primary_10_1136_thoraxjnl_2015_207415 crossref_primary_10_4193_Rhin21_046 crossref_primary_10_1098_rstb_2014_0294 crossref_primary_10_1164_rccm_202112_2786OC crossref_primary_10_1513_AnnalsATS_201802_146OC crossref_primary_10_1097_CPM_0000000000000277 crossref_primary_10_1097_MD_0000000000038074 crossref_primary_10_1371_journal_pone_0188455 crossref_primary_10_1128_jb_00295_22 crossref_primary_10_1371_journal_pone_0219962 crossref_primary_10_1016_S2213_2600_18_30449_1 crossref_primary_10_1093_gigascience_giaa038 crossref_primary_10_1371_journal_pone_0216453 crossref_primary_10_14776_piv_2019_26_e24 crossref_primary_10_3389_fmicb_2021_667832 crossref_primary_10_1080_21505594_2016_1257458 crossref_primary_10_1128_mSphere_00916_19 crossref_primary_10_3390_cancers14215394 crossref_primary_10_1080_17476348_2018_1513331 crossref_primary_10_1002_iub_1969 crossref_primary_10_1128_mBio_02354_17 crossref_primary_10_1002_mco2_70018 crossref_primary_10_1016_j_heliyon_2024_e24032 crossref_primary_10_3389_fmed_2020_00396 crossref_primary_10_1016_j_celrep_2022_110725 crossref_primary_10_15406_jlprr_2018_05_00174 crossref_primary_10_1128_mSphere_00103_18 crossref_primary_10_1186_s12866_017_1022_6 crossref_primary_10_1016_j_anaerobe_2020_102230 crossref_primary_10_1152_physrev_00039_2023 crossref_primary_10_1371_journal_pone_0180561 crossref_primary_10_15789_2220_7619_2017_4_341_349 crossref_primary_10_1111_imm_12760 crossref_primary_10_1016_j_arbr_2019_04_014 crossref_primary_10_1007_s11377_018_0233_1 crossref_primary_10_1186_s13643_021_01806_2 crossref_primary_10_3389_fmicb_2022_963488 crossref_primary_10_3390_genes8120380 crossref_primary_10_1021_acs_est_2c00688 crossref_primary_10_1002_JLB_3RI0620_405RR crossref_primary_10_1016_j_tube_2015_07_004 crossref_primary_10_3103_S0891416821030058 crossref_primary_10_18093_0869_0189_2019_29_4_499_507 crossref_primary_10_1007_s00216_021_03488_0 crossref_primary_10_1186_s13020_023_00742_8 crossref_primary_10_1016_S2213_2600_18_30501_0 crossref_primary_10_3389_fcimb_2023_1121399 crossref_primary_10_3389_fvets_2020_00115 crossref_primary_10_3390_biomedicines9060675 crossref_primary_10_1371_journal_pone_0259596 crossref_primary_10_3390_ijms23126791 crossref_primary_10_1016_j_tube_2018_02_006 crossref_primary_10_1111_resp_13759 crossref_primary_10_5021_ad_22_117 crossref_primary_10_1371_journal_pone_0158622 crossref_primary_10_1016_j_celrep_2021_109113 crossref_primary_10_1038_mi_2016_108 crossref_primary_10_1371_journal_ppat_1004923 crossref_primary_10_3390_life12020192 crossref_primary_10_1007_s11427_017_9151_1 crossref_primary_10_1146_annurev_immunol_101819_024945 crossref_primary_10_1007_s12016_022_08928_y crossref_primary_10_1155_2018_6362716 crossref_primary_10_1007_s40496_020_00259_1 crossref_primary_10_1093_evlett_qrae030 crossref_primary_10_1016_j_healun_2017_11_017 crossref_primary_10_1186_s40168_015_0133_2 crossref_primary_10_1038_s42003_024_06706_4 crossref_primary_10_3390_microorganisms10071405 crossref_primary_10_1186_s12890_017_0512_5 crossref_primary_10_3390_pathogens12091110 crossref_primary_10_1016_j_envint_2021_106501 crossref_primary_10_3390_diagnostics11081376 crossref_primary_10_1186_s12866_020_02076_z crossref_primary_10_3389_fmicb_2023_1129690 crossref_primary_10_1164_rccm_202005_1596OC crossref_primary_10_1038_s41579_024_01048_8 crossref_primary_10_3389_fmicb_2020_630280 crossref_primary_10_1016_j_jaci_2017_08_020 |
Cites_doi | 10.1038/mi.2009.132 10.1111/jmp.12090 10.1034/j.1600-0463.2000.d01-13.x 10.1186/2049-2618-2-27 10.1001/archotol.1929.00620050048003 10.1007/s00248-013-0192-5 10.1046/j.1442-9993.2001.01070.x 10.1016/S0140-6736(14)61136-3 10.1371/journal.pone.0008578 10.1164/rccm.201111-2075OC 10.1586/ers.11.76 10.1371/journal.pone.0016384 10.1007/s00253-012-4450-0 10.1128/AEM.01541-09 10.1080/STA-200066418 10.1164/rccm.201210-1913OC 10.1073/pnas.0506655103 10.1371/journal.pone.0015216 10.1111/1574-6976.12027 10.1016/S2213-2600(14)70028-1 10.1111/imm.12376 10.1128/AEM.01467-07 10.1016/0002-9343(78)90574-0 10.1128/AAC.02262-13 10.1128/AEM.05498-11 10.1371/journal.pone.0047305 10.1371/journal.pone.0031976 10.1164/rccm.201104-0655OC 10.1111/j.1462-2920.2005.00956.x 10.1136/adc.74.6.531 10.1371/journal.pone.0097214 10.1016/j.jaci.2010.10.048 10.1128/JCM.01028-14 10.1038/ismej.2010.167 10.1586/ers.13.24 10.1038/nature11234 10.1172/JCI16889 10.1371/journal.pone.0027310 10.1089/omi.2009.0100 10.1164/rccm.201302-0341OC 10.1378/chest.111.5.1266 10.1186/2049-2618-1-19 10.1111/imm.12122 10.1126/science.1171700 |
ContentType | Journal Article |
Copyright | Copyright © 2015 Bassis et al. Copyright © 2015 Bassis et al. 2015 Bassis et al. |
Copyright_xml | – notice: Copyright © 2015 Bassis et al. – notice: Copyright © 2015 Bassis et al. 2015 Bassis et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1128/mBio.00037-15 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Analysis of the Aerodigestive Tract Microbiome |
EISSN | 2150-7511 |
ExternalDocumentID | oai_doaj_org_article_19501fbdb28e4088abbec496ee3eb6ae PMC4358017 25736890 10_1128_mBio_00037_15 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: L30 HL120241 – fundername: NHLBI NIH HHS grantid: R01 HL114447 – fundername: NHLBI NIH HHS grantid: T32 HL007749 – fundername: NHLBI NIH HHS grantid: R01HL114447 – fundername: NIDDK NIH HHS grantid: P30 DK034933 – fundername: NHLBI NIH HHS grantid: T32HL00774921 – fundername: NHLBI NIH HHS grantid: U01 HL098961 – fundername: NHLBI NIH HHS grantid: U01HL098961 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW C1A CITATION DIK E3Z EBS EJD FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c552t-755b6dc70771fdb88ad50bba22ca9d4fe9aea87b33c809940c4ad8436106a2163 |
IEDL.DBID | M48 |
ISSN | 2161-2129 2150-7511 |
IngestDate | Wed Aug 27 01:20:49 EDT 2025 Thu Aug 21 17:18:57 EDT 2025 Fri Jul 11 12:14:38 EDT 2025 Fri Jul 11 15:10:49 EDT 2025 Wed Feb 19 02:31:34 EST 2025 Tue Jul 01 01:52:26 EDT 2025 Thu Apr 24 23:11:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Copyright © 2015 Bassis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c552t-755b6dc70771fdb88ad50bba22ca9d4fe9aea87b33c809940c4ad8436106a2163 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 This article is a direct contribution from a Fellow of the American Academy of Microbiology. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.00037-15 |
PMID | 25736890 |
PQID | 1660927180 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19501fbdb28e4088abbec496ee3eb6ae pubmedcentral_primary_oai_pubmedcentral_nih_gov_4358017 proquest_miscellaneous_1746406770 proquest_miscellaneous_1660927180 pubmed_primary_25736890 crossref_primary_10_1128_mBio_00037_15 crossref_citationtrail_10_1128_mBio_00037_15 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150501 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 20150501 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2015 |
Publisher | American Society of Microbiology American Society for Microbiology |
Publisher_xml | – name: American Society of Microbiology – name: American Society for Microbiology |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_37_2 doi: 10.1038/mi.2009.132 – ident: e_1_3_3_42_2 doi: 10.1111/jmp.12090 – ident: e_1_3_3_24_2 doi: 10.1034/j.1600-0463.2000.d01-13.x – ident: e_1_3_3_38_2 doi: 10.1186/2049-2618-2-27 – ident: e_1_3_3_9_2 doi: 10.1001/archotol.1929.00620050048003 – ident: e_1_3_3_20_2 doi: 10.1007/s00248-013-0192-5 – ident: e_1_3_3_44_2 doi: 10.1046/j.1442-9993.2001.01070.x – ident: e_1_3_3_16_2 doi: 10.1016/S0140-6736(14)61136-3 – ident: e_1_3_3_4_2 doi: 10.1371/journal.pone.0008578 – ident: e_1_3_3_15_2 doi: 10.1164/rccm.201111-2075OC – ident: e_1_3_3_5_2 doi: 10.1586/ers.11.76 – ident: e_1_3_3_11_2 doi: 10.1371/journal.pone.0016384 – ident: e_1_3_3_29_2 doi: 10.1007/s00253-012-4450-0 – ident: e_1_3_3_41_2 doi: 10.1128/AEM.01541-09 – ident: e_1_3_3_45_2 doi: 10.1080/STA-200066418 – ident: e_1_3_3_18_2 doi: 10.1164/rccm.201210-1913OC – ident: e_1_3_3_21_2 doi: 10.1073/pnas.0506655103 – ident: e_1_3_3_23_2 doi: 10.1371/journal.pone.0015216 – ident: e_1_3_3_19_2 doi: 10.1111/1574-6976.12027 – ident: e_1_3_3_3_2 doi: 10.1016/S2213-2600(14)70028-1 – ident: e_1_3_3_35_2 doi: 10.1111/imm.12376 – ident: e_1_3_3_32_2 doi: 10.1128/AEM.01467-07 – ident: e_1_3_3_8_2 doi: 10.1016/0002-9343(78)90574-0 – ident: e_1_3_3_39_2 doi: 10.1128/AAC.02262-13 – ident: e_1_3_3_31_2 doi: 10.1128/AEM.05498-11 – ident: e_1_3_3_13_2 doi: 10.1371/journal.pone.0047305 – ident: e_1_3_3_36_2 doi: 10.1371/journal.pone.0031976 – ident: e_1_3_3_10_2 doi: 10.1164/rccm.201104-0655OC – ident: e_1_3_3_43_2 doi: 10.1111/j.1462-2920.2005.00956.x – ident: e_1_3_3_33_2 doi: 10.1136/adc.74.6.531 – ident: e_1_3_3_17_2 doi: 10.1371/journal.pone.0097214 – ident: e_1_3_3_12_2 doi: 10.1016/j.jaci.2010.10.048 – ident: e_1_3_3_28_2 doi: 10.1128/JCM.01028-14 – ident: e_1_3_3_30_2 doi: 10.1038/ismej.2010.167 – ident: e_1_3_3_2_2 doi: 10.1586/ers.13.24 – ident: e_1_3_3_6_2 doi: 10.1038/nature11234 – ident: e_1_3_3_34_2 doi: 10.1172/JCI16889 – ident: e_1_3_3_40_2 doi: 10.1371/journal.pone.0027310 – ident: e_1_3_3_26_2 doi: 10.1089/omi.2009.0100 – ident: e_1_3_3_25_2 doi: 10.1164/rccm.201302-0341OC – ident: e_1_3_3_7_2 doi: 10.1378/chest.111.5.1266 – ident: e_1_3_3_14_2 doi: 10.1186/2049-2618-1-19 – ident: e_1_3_3_27_2 doi: 10.1111/imm.12122 – ident: e_1_3_3_22_2 doi: 10.1126/science.1171700 |
SSID | ssj0000331830 |
Score | 2.5869114 |
Snippet | No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our objective... ABSTRACT No studies have examined the relationships between bacterial communities along sites of the upper aerodigestive tract of an individual subject. Our... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e00037 |
SubjectTerms | adults bacteria Bacteria - classification Bacteria - genetics bacterial communities bronchoscopy community structure DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Ribosomal - chemistry DNA, Ribosomal - genetics genes Healthy Volunteers Humans Lung - microbiology lungs microbiome Microbiota Molecular Sequence Data mouth Mouth - microbiology nasal cavity Nasal Cavity - microbiology Prevotella quantitative polymerase chain reaction Real-Time Polymerase Chain Reaction ribosomal RNA RNA, Ribosomal, 16S - genetics sequence analysis Sequence Analysis, DNA species diversity stomach Stomach - microbiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcELQ8ti2VKyFOhCZ--0irPkCUA3Sl3izbmRUrQXbV3R4q8eM7tjfLbgX0gpRTMlYcz4znc-z5hpA3EjRvg1GVDRwXKBFiZRqPtpwqjoYolI8pG_niizofik9X8mql1Fc6E1bogcvAHaYypc0otIEZEOgSPuBbhVUAHILykGZfjHkri6k8B_Nkq3VPqsnM4c-j8eR9plupUgnclSCUufr_BDDvn5NcCTynT8mTBWKkH0pPn5FH0G2RzVJD8nab_OppRehkRBHN0eF0Ctf06-8tdHqZMqHoxbhwLs39jOKVRL_lP_d9w8_o99R3LT3zqZhHXGsx7mjJWLqlH5c5XLPnZHh6cnl8Xi1KKlRRSjavtJRBtVHXWjcj1JHxraxD8IxFb1sxAuvBGx04jwaxo6ij8K0RHEGW8gyx2wuy0U06eEWoiDxIGb1qrRGWRxsAlVSDBRERSLEBedePsYsLvvFU9uKHy-sOZlxSicsqcY0ckLdL8Wkh2vib4FFS2FIo8WPnG2g1bmE17iGrGZCDXt0O_SltkvgOJjcz1yhVW4YRu_6HjBZKJOo9lHlZTGTZHZwCuTIWn-g141nr7_qTbvw983qLtCXd6J3_8YG75DFCO1mOZu6Rjfn1DbxG-DQP-9lT7gBs0x1U priority: 102 providerName: Directory of Open Access Journals |
Title | Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25736890 https://www.proquest.com/docview/1660927180 https://www.proquest.com/docview/1746406770 https://pubmed.ncbi.nlm.nih.gov/PMC4358017 https://doaj.org/article/19501fbdb28e4088abbec496ee3eb6ae |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB6kIvgi3l2rZQTxydQkc82DiBVrEeqTC_s2zExma2CbbLNZ6II_3nMyybZbWiHkITkThpzLfHM53yHkvQiKlU7LpHAMJig--ERnFmwZK446z6X1mI18-kueTPnPmZhdUQoNP3B169QO60lN28Xh5cXmCzj855gAoz-dH1XNYc-kkmC6-X0YlBT66OmA9PugzNB405Fl82Yr5AQWikmNsfnaANXz-N8GPm-eobw2KB0_Jo8GNEm_RvU_IfdC_ZQ8iPUlN8_I35FyhDZzCkiPrpfL0NL2anuddpglRc-ryMfU2RWFC0Xjqv7YcAExgdq6pGcWC334nRZVTWM65YZW2_yu1XMyPf7--9tJMpRbSLwQeZcoIZwsvUqVyuagP21LkTpn89zbouTzUNhgtXKMeQ24kqee21JzBgBM2hxw3QuyVzd1eEUo98wJ4a0sC80L5gsXSpenoQjcA8jKJ-Tj-I-NH7jIsSTGwvRzklwb1I7ptWMyMSEftuLLSMJxl-ARKmwrhNzZ_YOmPTODKxosfJvNHXRIBw5B1jqwY17IEFhw0oYJeTeq24Cv4QaKrUOzXplMyrTIYTRP_yOjuORIywcyL6OJbLszmtiEqB3j2env7pu6-tNzfnPcrs7U6zu_uU8eApYT8SzmG7LXtevwFvBS5w76dQa4_5hlB71X_APaFBjj |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+upper+respiratory+tract+microbiotas+as+the+source+of+the+lung+and+gastric+microbiotas+in+healthy+individuals&rft.jtitle=mBio&rft.au=Bassis%2C+Christine+M&rft.au=Erb-Downward%2C+John+R&rft.au=Dickson%2C+Robert+P&rft.au=Freeman%2C+Christine+M&rft.date=2015-05-01&rft.eissn=2150-7511&rft.volume=6&rft.issue=2&rft.spage=e00037&rft_id=info:doi/10.1128%2FmBio.00037-15&rft_id=info%3Apmid%2F25736890&rft.externalDocID=25736890 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |