Effects of a short-term shift to low temperature and of long-term cold hardening on photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye (Secale cereale L.)
The effect of a short-term (hours) shift to low temperature (5 degrees C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied in winter rye (Secale cereale L. cv Musketeer). Cold-hardened plants grown at 5 degrees C exhibited 25% higher in situ C02 exchange rate...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 106; no. 3; pp. 983 - 990 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Physiologists
01.11.1994
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effect of a short-term (hours) shift to low temperature (5 degrees C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied in winter rye (Secale cereale L. cv Musketeer). Cold-hardened plants grown at 5 degrees C exhibited 25% higher in situ C02 exchange rates than nonhardened plants grown at 24 degrees C. Cold-hardened plants maintained these high rates throughout the day, in contrast to nonhardened plants, which showed a gradual decline in photosynthesis after 3 h. Associated with the increase in photosynthetic capacity following cold hardening was an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase adivity and 3- to 4-fold increases in the pools of associated metabolites. Leaves of nonhardened plants shifted overnight to 5 degrees C required 9 h in the light at 5 degrees C before maximum rates of photosynthesis were reached. The gradual increase in photosynthesis in leaves shifted to 5 degrees C was correlated with a sharp decline in the 3-phosphoglycerate/triose phosphate ratio and by an increase in the ribulose bisphosphate/3-phosphoglycerate ratio, indicating the gradual easing of aninorganic phosphate-mediated feedback inhibition on photo-synthesis. We suggest that the strong recovery of photosynthesis in winter rye following cold hardening indicates that the buildup of photosynthetic enzymes, as well as those involved in sucrose synthesis, is an adaptive response that enables these plants to maximize the production of sugars that have both cryoprotedive and storage functions that are critical to the performance of these cultivars during over-wintering |
---|---|
AbstractList | The effect of a short-term (hours) shift to low temperature (5[deg]C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied in winter rye (Secale cereale L. cv Musketeer). Cold-hardened plants grown at 5[deg]C exhibited 25% higher in situ CO2 exchange rates than nonhardened plants grown at 24[deg]C. Cold-hardened plants maintained these high rates throughout the day, in contrast to nonhardened plants, which showed a gradual decline in photosynthesis after 3 h. Associated with the increase in photosynthetic capacity following cold hardening was an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity and 3- to 4-fold increases in the pools of associated metabolites. Leaves of nonhardened plants shifted overnight to 5[deg]C required 9 h in the light at 5[deg]C before maximum rates of photosynthesis were reached. The gradual increase in photosynthesis in leaves shifted to 5[deg]C was correlated with a sharp decline in the 3-phosphoglycerate/triose phosphate ratio and by an increase in the ribulose bisphosphate/3-phosphoglycerate ratio, indicating the gradual easing of aninorganic phosphate-mediated feedback inhibition on photo-synthesis. We suggest that the strong recovery of photosynthesis in winter rye following cold hardening indicates that the buildup of photosynthetic enzymes, as well as those involved in sucrose synthesis, is an adaptive response that enables these plants to maximize the production of sugars that have both cryoprotective and storage functions that are critical to the performance of these cultivars during over-wintering. The effect of a short-term (hours) shift to low temperature (5 degrees C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied in winter rye (Secale cereale L. cv Musketeer). Cold-hardened plants grown at 5 degrees C exhibited 25% higher in situ C02 exchange rates than nonhardened plants grown at 24 degrees C. Cold-hardened plants maintained these high rates throughout the day, in contrast to nonhardened plants, which showed a gradual decline in photosynthesis after 3 h. Associated with the increase in photosynthetic capacity following cold hardening was an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase adivity and 3- to 4-fold increases in the pools of associated metabolites. Leaves of nonhardened plants shifted overnight to 5 degrees C required 9 h in the light at 5 degrees C before maximum rates of photosynthesis were reached. The gradual increase in photosynthesis in leaves shifted to 5 degrees C was correlated with a sharp decline in the 3-phosphoglycerate/triose phosphate ratio and by an increase in the ribulose bisphosphate/3-phosphoglycerate ratio, indicating the gradual easing of aninorganic phosphate-mediated feedback inhibition on photo-synthesis. We suggest that the strong recovery of photosynthesis in winter rye following cold hardening indicates that the buildup of photosynthetic enzymes, as well as those involved in sucrose synthesis, is an adaptive response that enables these plants to maximize the production of sugars that have both cryoprotedive and storage functions that are critical to the performance of these cultivars during over-wintering The effect of a short-term (hours) shift to low temperature (5°C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied in winter rye (Secale cereale L. cv Musketeer). Cold-hardened plants grown at 5°C exhibited 25% higher in situ CO2 exchange rates than nonhardened plants grown at 24°C. Cold-hardened plants maintained these high rates throughout the day, in contrast to nonhardened plants, which showed a gradual decline in photosynthesis after 3 h. Associated with the increase in photosynthetic capacity following cold hardening was an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity and 3- to 4-fold increases in the pools of associated metabolites. Leaves of nonhardened plants shifted overnight to 5°C required 9 h in the light at 5°C before maximum rates of photosynthesis were reached. The gradual increase in photosynthesis in leaves shifted to 5°C was correlated with a sharp decline in the 3-phosphoglycerate/triose phosphate ratio and by an increase in the ribulose bisphosphate/3-phosphoglycerate ratio, indicating the gradual easing of aninorganic phosphate-mediated feedback inhibition on photo-synthesis. We suggest that the strong recovery of photosynthesis in winter rye following cold hardening indicates that the buildup of photo-synthetic enzymes, as well as those involved in sucrose synthesis, is an adaptive response that enables these plants to maximize the production of sugars that have both cryoprotective and storage functions that are critical to the performance of these cultivars during over-wintering. |
Author | Malmberg, G Gardestrom, P Hurry, V.M. (Australian National University, Canberra ACT, Australia) Oquist, G |
AuthorAffiliation | Department of Plant Physiology, Umea University, S-901 87 Umea, Sweden |
AuthorAffiliation_xml | – name: Department of Plant Physiology, Umea University, S-901 87 Umea, Sweden |
Author_xml | – sequence: 1 fullname: Hurry, V.M. (Australian National University, Canberra ACT, Australia) – sequence: 2 fullname: Malmberg, G – sequence: 3 fullname: Gardestrom, P – sequence: 4 fullname: Oquist, G |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3355410$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12232378$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkj1v2zAQhoUiReO43ToVRcGhQwpEDimKEjVkKIL0AzDQIc0snKmjzUAmVZJy6r_cX1H6A047EHfA-7x3R_IusjPrLGbZW0ZnjNHyehhmjFYzPmskf5FNmOBFXohSnmUTSlNOpWzOs4sQHimljLPyVXbOioIXvJaT7M-d1qhiIE4TIGHlfMwj-nVKjY4kOtK7JxJxPaCHOHokYLsd3Du7PJDK9R1Zge_QGrskzpJh5aILWxtXGEzYO7xZjL0LmLMrkS9MSEg6EJEo8Av3e9tDwOsUl2hTtveEUflkIc_svuZeVtFsTNwSY0mPsMH9BZ6MTRMRv0VyeY8K-lQdPe7ifPbpdfZSQx_wzTFOs4cvdz9vv-XzH1-_336e50qIIuYVByax6ACZWHCQqlJalhzrJAPQom4kQCVLLaCjDQXdCMVlp-tGNLykmk-zm0PdYVyssVNoo4e-HbxZg9-2Dkz7v2LNql26TctEU6WPmWaXR793v0YMsV2boLDvwaIbQ8tkapS6FSyhVwd091DBoz51YbTdbUc7DCmtWt6m7Uj4h38ne4aP65CAj0cAQno-7cEqE04c50KUjCbs_QF7DNH5k1wWdZXWL8nvDrIG18LSpwoP943gsqlL_hd5dNzo |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1016_j_envexpbot_2015_09_003 crossref_primary_10_1111_j_1365_313X_2006_02821_x crossref_primary_10_1016_j_cryobiol_2013_01_001 crossref_primary_10_1111_j_1399_3054_1996_tb00228_x crossref_primary_10_1186_s12864_015_1718_7 crossref_primary_10_1034_j_1399_3054_2003_00099_x crossref_primary_10_1046_j_1365_313x_2000_00888_x crossref_primary_10_1016_j_agrformet_2021_108322 crossref_primary_10_1016_j_envexpbot_2014_02_013 crossref_primary_10_1016_S0098_8472_96_01033_7 crossref_primary_10_1300_J411v17n01_04 crossref_primary_10_1139_b2012_007 crossref_primary_10_3389_fchem_2014_00018 crossref_primary_10_1111_j_1365_3040_2004_01299_x crossref_primary_10_1016_j_jplph_2016_03_021 crossref_primary_10_1023_B_PHOT_0000015468_67892_9c crossref_primary_10_1016_S0167_4781_00_00103_2 crossref_primary_10_1007_s11738_006_0031_0 crossref_primary_10_1007_s11120_013_9874_6 crossref_primary_10_1016_S0022_0981_00_00196_9 crossref_primary_10_4141_cjps2013_151 crossref_primary_10_1034_j_1399_3054_2003_00148_x crossref_primary_10_3390_ijms20205046 crossref_primary_10_1016_j_jembe_2007_05_034 crossref_primary_10_1111_j_1399_3054_2012_01611_x crossref_primary_10_3390_ijms140612729 crossref_primary_10_3923_jbs_2007_752_758 crossref_primary_10_1080_03650340_2019_1647336 crossref_primary_10_1016_j_jplph_2012_12_012 crossref_primary_10_1080_07352689_2014_870411 crossref_primary_10_1046_j_1365_3040_2003_00983_x crossref_primary_10_1007_s40242_014_3311_z crossref_primary_10_3923_ajps_2004_549_555 crossref_primary_10_1016_S0005_2728_98_00126_1 crossref_primary_10_1111_j_1365_2435_2010_01758_x crossref_primary_10_1016_j_envexpbot_2013_12_017 crossref_primary_10_1111_j_1365_3040_2006_01543_x crossref_primary_10_1007_s00122_009_1004_7 crossref_primary_10_1046_j_1365_3040_1999_00482_x crossref_primary_10_1111_j_1747_0765_2007_00234_x crossref_primary_10_1007_s00425_004_1410_7 crossref_primary_10_1034_j_1399_3054_2001_1110108_x crossref_primary_10_1016_j_jplph_2011_01_029 crossref_primary_10_1007_s11738_998_0046_9 crossref_primary_10_1111_j_1365_3040_2011_02294_x crossref_primary_10_1007_s10126_008_9147_0 crossref_primary_10_1016_S1369_5266_02_00258_3 crossref_primary_10_1016_j_jplph_2016_04_006 crossref_primary_10_1111_j_1399_3054_2005_00507_x crossref_primary_10_3389_fpls_2022_981581 crossref_primary_10_1046_j_1365_3040_1999_00386_x crossref_primary_10_1093_jb_mvw004 crossref_primary_10_1111_j_1365_3040_2007_01682_x crossref_primary_10_3389_fpls_2018_01715 crossref_primary_10_1016_j_jplph_2015_12_004 crossref_primary_10_1071_FP15339 crossref_primary_10_1271_bbb_100813 crossref_primary_10_1078_0176_1617_00730 crossref_primary_10_1007_s00300_006_0131_8 crossref_primary_10_1046_j_1365_3040_1999_00415_x crossref_primary_10_1023_A_1022627125355 crossref_primary_10_1007_s11120_013_9816_3 crossref_primary_10_1034_j_1399_3054_2000_108003270_x crossref_primary_10_1071_FP03176 crossref_primary_10_1104_pp_105_066233 crossref_primary_10_1111_j_1399_3054_2007_00999_x crossref_primary_10_1111_j_1439_037X_1998_tb00392_x crossref_primary_10_1111_j_1365_3040_2010_02265_x crossref_primary_10_1007_s11120_012_9769_y crossref_primary_10_1093_jxb_erw253 crossref_primary_10_1111_j_1469_8137_2007_02183_x crossref_primary_10_1074_jbc_M606417200 crossref_primary_10_1093_aob_mcn008 crossref_primary_10_1111_j_1438_8677_2012_00639_x crossref_primary_10_1104_pp_119_4_1387 crossref_primary_10_1007_s11105_008_0055_2 crossref_primary_10_1111_j_1399_3054_2011_01513_x crossref_primary_10_1016_S0176_1617_96_80172_6 crossref_primary_10_1111_j_1365_3040_2012_02552_x crossref_primary_10_1034_j_1399_3054_2001_1120404_x crossref_primary_10_3390_ijms14035312 crossref_primary_10_1007_BF01258676 crossref_primary_10_1186_s12870_021_03036_z crossref_primary_10_1111_j_1399_3054_2006_00627_x crossref_primary_10_21273_JASHS_133_5_684 crossref_primary_10_1046_j_1365_3040_1998_00259_x crossref_primary_10_1034_j_1399_3054_1999_106412_x crossref_primary_10_1034_j_1399_3054_2003_00164_x crossref_primary_10_2135_cropsci2001_413728x |
ContentType | Journal Article |
Copyright | Copyright 1994 American Society of Plant Physiologists 1995 INIST-CNRS |
Copyright_xml | – notice: Copyright 1994 American Society of Plant Physiologists – notice: 1995 INIST-CNRS |
DBID | FBQ IQODW NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1104/pp.106.3.983 |
DatabaseName | AGRIS Pascal-Francis PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 990 |
ExternalDocumentID | 10_1104_pp_106_3_983 12232378 3355410 4276153 US9538974 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGOD ACIPB ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFDAS AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGUYK AHMBA AICQM AIDAL AIDBO AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P FBQ FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2O M2P M2Q M7P MV1 MVM NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X QZG RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM ABXSQ AQVQM 08R AAPBV H13 IQODW 0R~ AAHBH AARHZ AAUAY ABMNT ABXVV ACZBC ADACV ADQBN AGMDO AHXOZ ALIPV ATGXG BEYMZ IPSME NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c552t-63a18e2dae15b3a8c6cf843e7c55aa02798aa684f5ad090af95c38df7959340f3 |
ISSN | 0032-0889 |
IngestDate | Tue Sep 17 21:18:03 EDT 2024 Fri Oct 25 21:25:56 EDT 2024 Thu Sep 12 19:00:48 EDT 2024 Wed Oct 16 00:52:17 EDT 2024 Sun Oct 29 17:08:46 EDT 2023 Fri Feb 02 08:15:41 EST 2024 Wed Dec 27 19:04:09 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Short term Monocotyledones Secale cereale Cold Enzyme Transferases Glycosyltransferases Ribulose-bisphosphate carboxylase Lyases Plant leaf Sucrose-phosphate synthase Long term Cereal crop Stress Carbon-carbon lyases Gramineae Carboxy-lyases Angiospermae Hexosyltransferases Spermatophyta Gas exchange Photosynthesis Adaptation Frost resistance |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c552t-63a18e2dae15b3a8c6cf843e7c55aa02798aa684f5ad090af95c38df7959340f3 |
Notes | 9538974 F60 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC159622 |
PMID | 12232378 |
PQID | 1859379521 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_159622 proquest_miscellaneous_1859379521 crossref_primary_10_1104_pp_106_3_983 pubmed_primary_12232378 pascalfrancis_primary_3355410 jstor_primary_4276153 fao_agris_US9538974 |
PublicationCentury | 1900 |
PublicationDate | 1994-11-01 |
PublicationDateYYYYMMDD | 1994-11-01 |
PublicationDate_xml | – month: 11 year: 1994 text: 1994-11-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 1994 |
Publisher | American Society of Plant Physiologists |
Publisher_xml | – name: American Society of Plant Physiologists |
SSID | ssj0001314 |
Score | 1.852613 |
Snippet | The effect of a short-term (hours) shift to low temperature (5 degrees C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was... The effect of a short-term (hours) shift to low temperature (5°C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied in... The effect of a short-term (hours) shift to low temperature (5[deg]C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 983 |
SubjectTerms | Acclimatization ACTIVIDAD ENZIMATICA ACTIVITE ENZYMATIQUE Adaptation to environment and cultivation conditions Agronomy. Soil science and plant productions Biological and medical sciences Carbon dioxide Cold hardening DURCISSEMENT ENDURECIMIENTO Environmental and Stress Physiology Enzymes FEUILLE FOTOSINTESIS FRIO FROID Fundamental and applied biological sciences. Psychology GEL Genetics and breeding of economic plants GLICOSILTRANSFERASAS GLYCOSYLTRANSFERASE HELADA HOJAS Leaves Low temperature METABOLISME METABOLISMO Phosphates PHOTOSYNTHESE Photosynthesis Physical agents Plant physiology and development Plants RESISTANCE A LA TEMPERATURE RESISTENCIA A LA TEMPERATURA RIBULOSA-BIFOSFATO CARBOXILASA RIBULOSE-BISPHOSPHATE CARBOXYLASE RITMOS BIOLOGICOS Rye RYTHME BIOLOGIQUE SECALE CEREALE TEMPERATURA TEMPERATURE Varietal selection. Specialized plant breeding, plant breeding aims Vegetative apparatus, growth and morphogenesis. Senescence |
Title | Effects of a short-term shift to low temperature and of long-term cold hardening on photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye (Secale cereale L.) |
URI | https://www.jstor.org/stable/4276153 https://www.ncbi.nlm.nih.gov/pubmed/12232378 https://search.proquest.com/docview/1859379521 https://pubmed.ncbi.nlm.nih.gov/PMC159622 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF61hQMXBKWAKUWLBBIo2PVj_Tq2VWkFLQWS0t6stb1uIhVvSGzR8JP5Fcx4_UrpoXBIZO0rdma-2Zn1PAh5xWKRei7LdB7GTGccDFYuMlvP4jC2fZ55fhUudvzJOzxlH87d85XVzZ7XUlnERvLrxriS_6EqtAFdMUr2HyjbLgoNcA30hW-gMHzfisb7nTMGHwzHoEnrI5C0cDnJCtQqj-TPwUiAZqwyJ1dvCvClgMwv1Mg9eZliIA9In8r9GSTiWBZyvshBMcRcJVX84iQuL-Vc6CD19lx9dzKfjiV8QE1Fh5FYXi1ABxfwHCdXC7hZuFYeoSXuwQKXrEcPcV3s3knqqhWTHFO81qlvzzB5xWzwdVEpvkMB_CMGiZihMjs4MppTi1qXxnpLhTqaUYmkYM4uxi_PU9474DgsZ8pV4JsxODa6E_jL741r20HbeoD_xLyYyQoln9v2kx_lRAXH1GPTOnCQ1QGDPdnv2Do6damdrxH3tg4mcrC0H5hej_GdnnQPVc2dWlEIVZ3Tv_cgk2Hh5KkBCxmO0U7qp_q-tgW3jpGVSWayaDqNYHbkRDB7ldyxQYqiv-LHL10qfMtRieubx2qjOth2_7eX9K3VjMvG8Ra9gPkcCJmpCi43mVjXPYV7qtfoAblf20x0RwHgIVkR-Tq5uyvBrlk8Ir9rFFCZUU47FNAKBbSQFFBAeyigwJs4uEUBRRTQFgVU5nQZBdWMDgXvljFAexjYbhFQzakRQFsE0AYBtEEAneRUIQDvSSGAAgLoG8X_tOZ_emS83SCn7_dHe4d6XcFET1zXLnTP4VYg7JQLy40dHiRekgXMET50c24CWQPOvYBlLk_N0ORZ6CZOkGY-pgtnZuY8Jmu5zMVTQrmHThNpYHE_Zmmact8zecrNDFT4xHOFRl43dI6mKlFNdBM3aWQdmCDiF6BDRKfDEBSe0Gca2aiYop3KbB9NQY1sLTFJ2--gnWKZGnnZME0E-xK-bOS5kOU8sjCRIjyHbWnkiWKi7r7AJrEdP9CIt8Re7QDMeb_ck0_GVe57C6uF2c9u-bCb5F4nCp6TtWJWii0wIor4RQWmP2NeITs |
link.rule.ids | 230,315,783,787,888,27938,27939 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+a+Short-Term+Shift+to+Low+Temperature+and+of+Long-Term+Cold+Hardening+on+Photosynthesis+and+Ribulose-1%2C5-Bisphosphate+Carboxylase%2FOxygenase+and+Sucrose+Phosphate+Synthase+Activity+in+Leaves+of+Winter+Rye+%28Secale+cereale+L.%29&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Hurry%2C+V.+M.&rft.au=Malmberg%2C+G.&rft.au=Gardestrom%2C+P.&rft.au=Oquist%2C+G.&rft.date=1994-11-01&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=106&rft.issue=3&rft.spage=983&rft.epage=990&rft_id=info:doi/10.1104%2Fpp.106.3.983&rft.externalDBID=n%2Fa&rft.externalDocID=10_1104_pp_106_3_983 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |