Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cellular Models of Parkinson's Disease
6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells...
Saved in:
Published in | The Journal of neuroscience Vol. 22; no. 24; pp. 10690 - 10698 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
15.12.2002
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/jneurosci.22-24-10690.2002 |
Cover
Loading…
Abstract | 6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1alpha and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP+ and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease. |
---|---|
AbstractList | 6-Hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP super(+)), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1 alpha and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP super(+) and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease. 6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1alpha and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP+ and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease. 6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1alpha and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP+ and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease.6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1alpha and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP+ and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease. 6-Hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP + ), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1α and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP + and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease. |
Author | Angelastro, James M Ron, David Ryu, Elizabeth J Greene, Lloyd A Harding, Heather P Vitolo, Ottavio V |
AuthorAffiliation | 3 Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016 1 Department of Pathology, Center for Neurobiology and Behavior, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and 2 Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032, and |
AuthorAffiliation_xml | – name: 3 Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016 – name: 1 Department of Pathology, Center for Neurobiology and Behavior, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and – name: 2 Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032, and |
Author_xml | – sequence: 1 fullname: Ryu, Elizabeth J – sequence: 2 fullname: Harding, Heather P – sequence: 3 fullname: Angelastro, James M – sequence: 4 fullname: Vitolo, Ottavio V – sequence: 5 fullname: Ron, David – sequence: 6 fullname: Greene, Lloyd A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12486162$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv0zAYhi00xLrBX0ARB-CSYn9O4oQDApUCQ4NNGz1brv1l8XDsYidU_HtSOqbBBU627Od7_VrPETnwwSMhTxidsxL4i2uPYwxJ2zlADkXOaNXQOVAK98hsIprpkLIDMqMgaF4VojgkRyldU0oFZeIBOWRQ1BWrYEa6pTdh41Tqrc4ucLB6dGOfXQ4RU8qUN9nQYbbybXAGTXYew4DWT2TaBJ8wm_YLdG50KmafgkGXstBm5yp-tT4F_yxlb21ClfAhud8ql_DRzXpMVu-WXxYf8tOz9yeLN6e5LksYcl43hmrkUFXYIOMtNa1p1roQFOu6omsAURlO6xpagFJpsy6M0rwxwMu2pfyYvNrnbsZ1j0ajH6JychNtr-IPGZSVf95428mr8F1WoqyLchfw9CYghm8jpkH2Nunpj8pjGJMUIAQtRfVPkNWCl8D4BD6-W-m2y28LE_B6D-hJa4rYSm0HNdiwa2idZFTuxMuPn5eri7PLxYkEkFDIX-LlTvwU8fKviNtX_mf4-X64s1fd1kaUqVfOTXWZ3G63d3j-E-fbxOw |
CitedBy_id | crossref_primary_10_1080_14728222_2016_1254197 crossref_primary_10_1177_1087057109345525 crossref_primary_10_1016_j_nbd_2011_10_012 crossref_primary_10_1111_cns_14521 crossref_primary_10_3390_antiox11020281 crossref_primary_10_1016_j_neuroscience_2011_06_026 crossref_primary_10_1093_jb_mvq042 crossref_primary_10_1007_s10495_012_0699_0 crossref_primary_10_1089_ars_2011_4507 crossref_primary_10_1007_s00702_011_0710_x crossref_primary_10_1016_S0959_437X_03_00053_4 crossref_primary_10_1016_j_brainres_2008_02_068 crossref_primary_10_1111_j_1471_4159_2005_03442_x crossref_primary_10_1016_j_neulet_2009_04_047 crossref_primary_10_1007_s12640_009_9112_3 crossref_primary_10_1172_JCI38857 crossref_primary_10_1016_j_mehy_2011_01_007 crossref_primary_10_1016_j_neulet_2006_06_027 crossref_primary_10_1002_prca_200800234 crossref_primary_10_1128_JVI_77_23_12617_12629_2003 crossref_primary_10_1016_j_neuint_2010_08_023 crossref_primary_10_1080_1028415X_2019_1613764 crossref_primary_10_1016_j_expneurol_2009_07_009 crossref_primary_10_1074_jbc_M410413200 crossref_primary_10_1007_s11064_016_1922_0 crossref_primary_10_1016_j_nbd_2008_02_009 crossref_primary_10_3390_ijms23169489 crossref_primary_10_1038_s41419_017_0079_3 crossref_primary_10_1186_s40035_018_0125_9 crossref_primary_10_3390_ijms242216233 crossref_primary_10_1016_j_neuint_2009_04_004 crossref_primary_10_1074_jbc_M603393200 crossref_primary_10_3389_fnins_2019_00560 crossref_primary_10_1016_j_nbd_2004_09_008 crossref_primary_10_1038_nature04782 crossref_primary_10_1186_1471_2474_13_51 crossref_primary_10_1002_jnr_21318 crossref_primary_10_1038_cdd_2008_166 crossref_primary_10_1016_j_neuint_2007_08_017 crossref_primary_10_3390_cancers5031163 crossref_primary_10_1016_j_neuroscience_2006_10_008 crossref_primary_10_1523_JNEUROSCI_3568_04_2005 crossref_primary_10_1016_j_neulet_2009_04_060 crossref_primary_10_1074_jbc_M807325200 crossref_primary_10_1007_s00415_005_4006_7 crossref_primary_10_1007_s12035_010_8114_8 crossref_primary_10_1039_C4AN01893A crossref_primary_10_1152_ajpcell_00226_2015 crossref_primary_10_1016_j_ejphar_2016_02_042 crossref_primary_10_1016_j_phrs_2016_09_004 crossref_primary_10_1038_sj_emboj_7601477 crossref_primary_10_1111_cpr_12102 crossref_primary_10_1371_journal_pone_0049195 crossref_primary_10_1016_j_brainres_2020_147023 crossref_primary_10_1002_jnr_23630 crossref_primary_10_1523_ENEURO_0117_16_2017 crossref_primary_10_14336_AD_2016_0117 crossref_primary_10_1021_cn500214k crossref_primary_10_3390_ijms15011625 crossref_primary_10_1007_s11064_005_6877_5 crossref_primary_10_1074_jbc_M112_355172 crossref_primary_10_1093_hmg_ddr502 crossref_primary_10_1016_j_neuro_2023_11_001 crossref_primary_10_1016_j_bbih_2020_100037 crossref_primary_10_1111_j_1582_4934_2008_00402_x crossref_primary_10_1002_jcp_26080 crossref_primary_10_1002_jnr_23318 crossref_primary_10_1016_j_pan_2021_10_007 crossref_primary_10_1089_ars_2015_6402 crossref_primary_10_1016_j_neulet_2010_10_071 crossref_primary_10_3390_metabo13010112 crossref_primary_10_1111_j_1471_4159_2008_05392_x crossref_primary_10_1007_s00401_015_1462_8 crossref_primary_10_1002_prca_202200015 crossref_primary_10_1007_s12035_018_1334_z crossref_primary_10_1080_15548627_2015_1121360 crossref_primary_10_31857_S0320972521070071 crossref_primary_10_1152_ajpheart_00904_2004 crossref_primary_10_3390_ijms222212467 crossref_primary_10_3390_cells9112495 crossref_primary_10_1016_j_pneurobio_2017_08_001 crossref_primary_10_1515_ersc_2015_0008 crossref_primary_10_1152_ajpcell_00281_2011 crossref_primary_10_1016_j_bbrc_2004_12_066 crossref_primary_10_1007_s12035_022_02786_7 crossref_primary_10_1021_acs_chemrestox_2c00193 crossref_primary_10_1038_sj_jcbfm_9600003 crossref_primary_10_1002_jnr_22691 crossref_primary_10_1016_j_cbi_2010_06_003 crossref_primary_10_3389_fncel_2024_1328361 crossref_primary_10_3390_biomedicines10051143 crossref_primary_10_1038_sj_cdd_4401643 crossref_primary_10_1021_acschemneuro_9b00158 crossref_primary_10_1523_JNEUROSCI_2292_12_2013 crossref_primary_10_1111_j_1600_079X_2008_00629_x crossref_primary_10_1016_j_bbrc_2007_01_043 crossref_primary_10_1016_S0304_3940_03_00188_5 crossref_primary_10_1002_jnr_21480 crossref_primary_10_1016_j_freeradbiomed_2006_12_004 crossref_primary_10_1073_pnas_0813178106 crossref_primary_10_1523_JNEUROSCI_3928_08_2008 crossref_primary_10_1073_pnas_1321845111 crossref_primary_10_1016_j_tins_2009_01_006 crossref_primary_10_1074_jbc_M501308200 crossref_primary_10_1038_sj_cdd_4401778 crossref_primary_10_1111_j_1582_4934_2009_00775_x crossref_primary_10_1089_ars_2009_2529 crossref_primary_10_1016_j_yexcr_2016_09_006 crossref_primary_10_1007_s00018_015_2101_1 crossref_primary_10_1016_j_nbd_2006_05_011 crossref_primary_10_3389_fphar_2023_1288894 crossref_primary_10_1080_15548627_2021_1917129 crossref_primary_10_1016_j_ceb_2004_09_012 crossref_primary_10_1134_S1819712419010185 crossref_primary_10_1155_2016_6163934 crossref_primary_10_1177_0963689719840290 crossref_primary_10_1124_mol_112_077792 crossref_primary_10_1155_2013_318319 crossref_primary_10_1155_2019_7869318 crossref_primary_10_1016_j_neuint_2018_06_010 crossref_primary_10_1074_jbc_M413660200 crossref_primary_10_1073_pnas_0708725104 crossref_primary_10_1371_journal_pone_0069732 crossref_primary_10_1007_s11064_019_02757_w crossref_primary_10_1155_2010_214074 crossref_primary_10_1111_j_1471_4159_2008_05713_x crossref_primary_10_1074_jbc_M301392200 crossref_primary_10_1007_s10571_007_9245_y crossref_primary_10_1093_braincomms_fcac165 crossref_primary_10_2478_ersc_2013_0001 crossref_primary_10_1111_j_1600_079X_2007_00456_x crossref_primary_10_1002_cm_21294 crossref_primary_10_1016_j_lfs_2012_10_017 crossref_primary_10_1046_j_1471_4159_2003_02000_x crossref_primary_10_1371_journal_pone_0014207 crossref_primary_10_1016_j_nbd_2004_08_016 crossref_primary_10_1016_j_neuint_2004_01_003 crossref_primary_10_1074_jbc_M611909200 crossref_primary_10_1016_j_biopha_2021_112110 crossref_primary_10_1523_JNEUROSCI_1945_14_2014 crossref_primary_10_1111_j_1471_4159_2008_05571_x crossref_primary_10_1038_sj_jcbfm_9600380 crossref_primary_10_1016_j_expneurol_2018_01_015 crossref_primary_10_1038_s41598_020_70174_z crossref_primary_10_1089_ars_2006_1522 crossref_primary_10_1007_s00417_008_0770_2 crossref_primary_10_1016_j_toxlet_2009_08_024 crossref_primary_10_1016_j_tox_2021_152764 crossref_primary_10_1089_ars_2006_1524 crossref_primary_10_1016_j_biopha_2021_112389 crossref_primary_10_1089_ars_2006_1518 crossref_primary_10_1038_s41598_017_06012_6 crossref_primary_10_1016_j_addr_2022_114402 crossref_primary_10_1002_ajmg_b_30195 crossref_primary_10_1016_j_neuint_2010_10_006 crossref_primary_10_1016_j_ceb_2011_01_003 crossref_primary_10_1111_j_1440_1819_2006_01528_x_i1 crossref_primary_10_1016_j_neulet_2016_05_039 crossref_primary_10_1038_s41418_020_00688_6 crossref_primary_10_1111_j_1582_4934_2009_00849_x crossref_primary_10_1016_j_cellsig_2021_109922 crossref_primary_10_1002_bit_23282 crossref_primary_10_1111_j_1365_3083_2010_02504_x crossref_primary_10_1254_jphs_11R11FM crossref_primary_10_1002_path_3977 crossref_primary_10_1016_j_mcn_2009_01_005 crossref_primary_10_1016_j_neures_2009_10_005 crossref_primary_10_1016_j_biopha_2016_09_050 crossref_primary_10_1016_j_phytochem_2009_06_006 crossref_primary_10_1016_j_ymthe_2006_06_009 crossref_primary_10_1089_ars_2006_1513 crossref_primary_10_1074_jbc_M109_020891 crossref_primary_10_1111_jnc_15282 crossref_primary_10_1016_j_neuroscience_2011_08_045 crossref_primary_10_2174_1566524022666220508182051 crossref_primary_10_1016_j_pharmthera_2024_108604 crossref_primary_10_1186_1471_2202_8_67 crossref_primary_10_1074_jbc_M110_156430 crossref_primary_10_1242_jcs_01562 crossref_primary_10_1007_s12035_016_0114_x crossref_primary_10_1186_1750_1326_5_56 crossref_primary_10_1093_jnen_62_11_1144 crossref_primary_10_1016_j_brainres_2008_11_104 crossref_primary_10_3390_jcm9010257 crossref_primary_10_1098_rstb_2019_0415 crossref_primary_10_3389_fnagi_2018_00109 crossref_primary_10_1210_er_2007_0037 crossref_primary_10_1111_j_1365_2990_2011_01215_x crossref_primary_10_1016_j_neuint_2011_11_001 crossref_primary_10_1016_j_mito_2006_05_002 crossref_primary_10_1007_s10571_013_9957_0 crossref_primary_10_1111_j_1365_2990_2010_01107_x crossref_primary_10_1111_j_1471_4159_2005_03587_x crossref_primary_10_1242_jcs_127340 crossref_primary_10_1074_jbc_M110_170944 crossref_primary_10_1134_S0006297921070063 crossref_primary_10_2353_ajpath_2009_081019 crossref_primary_10_1016_j_yexcr_2006_09_004 crossref_primary_10_1016_j_neuroscience_2011_07_028 crossref_primary_10_1016_j_freeradbiomed_2007_12_014 crossref_primary_10_1016_j_freeradbiomed_2015_09_017 crossref_primary_10_1016_j_taap_2021_115558 crossref_primary_10_3858_emm_2010_42_5_040 crossref_primary_10_1016_j_neuint_2010_03_017 crossref_primary_10_1016_j_brainres_2004_07_026 crossref_primary_10_3389_fnmol_2022_762544 crossref_primary_10_1186_s13024_017_0183_y crossref_primary_10_1002_1873_3468_12890 crossref_primary_10_1038_nrn1725 crossref_primary_10_1186_1471_2202_6_71 crossref_primary_10_1016_j_bbrc_2015_07_035 crossref_primary_10_3389_fnagi_2014_00036 crossref_primary_10_1021_tx200098r crossref_primary_10_1111_nmo_14780 crossref_primary_10_1523_JNEUROSCI_5397_12_2013 crossref_primary_10_1007_s12640_009_9091_4 crossref_primary_10_1042_BJ20051643 crossref_primary_10_1038_sj_cdd_4401373 crossref_primary_10_1111_j_1755_5922_2010_00245_x crossref_primary_10_1002_jnr_22617 crossref_primary_10_1007_s00059_017_4564_3 crossref_primary_10_1152_physrev_00015_2006 crossref_primary_10_1016_j_toxlet_2013_03_003 crossref_primary_10_1038_cdd_2010_142 crossref_primary_10_3109_00207454_2014_986673 crossref_primary_10_1007_s12017_017_8462_x crossref_primary_10_1016_j_neuint_2009_01_010 crossref_primary_10_1007_s10616_005_3763_6 crossref_primary_10_1111_j_1471_4159_2005_03329_x crossref_primary_10_1038_s41598_017_16662_1 crossref_primary_10_1002_cbin_10923 crossref_primary_10_1016_j_febslet_2012_07_023 crossref_primary_10_1016_j_brainres_2023_148742 crossref_primary_10_1016_j_molmed_2009_11_004 crossref_primary_10_1016_j_schres_2018_02_010 crossref_primary_10_2131_jts_35_871 crossref_primary_10_1096_fj_04_1551fje crossref_primary_10_1371_journal_pone_0022354 crossref_primary_10_1016_j_cotox_2018_12_007 crossref_primary_10_1016_j_devcel_2004_08_011 crossref_primary_10_1016_j_toxlet_2010_03_1121 crossref_primary_10_1038_s41598_020_62309_z crossref_primary_10_1155_2016_6564212 crossref_primary_10_1074_jbc_M607038200 crossref_primary_10_1371_journal_pbio_3001096 crossref_primary_10_3109_02652048_2014_898709 crossref_primary_10_1016_j_neuroscience_2017_07_062 crossref_primary_10_1186_s12929_015_0146_y crossref_primary_10_1093_toxsci_kfq313 crossref_primary_10_1007_s00281_013_0370_z crossref_primary_10_1007_s11010_008_9862_x crossref_primary_10_1073_pnas_0510962103 crossref_primary_10_1016_j_phrs_2020_105161 crossref_primary_10_1038_cddis_2013_69 crossref_primary_10_1523_JNEUROSCI_1598_10_2010 crossref_primary_10_1212_01_WNL_0000167409_59089_C0 crossref_primary_10_1007_s12264_017_0123_4 crossref_primary_10_1074_jbc_M403884200 crossref_primary_10_1042_CS20080680 crossref_primary_10_1126_science_1129462 crossref_primary_10_1038_cddis_2014_333 crossref_primary_10_3390_ijms22158146 crossref_primary_10_1016_j_brainres_2003_11_047 crossref_primary_10_1111_imr_13012 crossref_primary_10_1016_j_lfs_2016_04_008 crossref_primary_10_1089_ars_2009_3018 crossref_primary_10_1111_j_1471_4159_2007_05106_x crossref_primary_10_1111_jnc_13385 crossref_primary_10_1016_j_brainresbull_2004_11_008 crossref_primary_10_1093_hmg_ddi371 crossref_primary_10_1073_pnas_0509227103 crossref_primary_10_1074_jbc_M505608200 crossref_primary_10_1155_2012_829207 crossref_primary_10_1186_1750_1326_9_17 crossref_primary_10_1517_14728220902980249 crossref_primary_10_1007_s10495_008_0309_3 crossref_primary_10_1080_15384101_2018_1475828 crossref_primary_10_1152_ajplung_90626_2008 crossref_primary_10_1111_j_1471_4159_2011_07179_x crossref_primary_10_1016_j_nbd_2019_104725 crossref_primary_10_1038_nrd2755 crossref_primary_10_1007_s12031_011_9694_0 crossref_primary_10_3389_fncel_2017_00052 crossref_primary_10_1016_j_neures_2020_04_003 crossref_primary_10_3390_biom14010073 crossref_primary_10_1177_0192623312470764 crossref_primary_10_1007_s10495_007_0065_9 crossref_primary_10_3389_fnmol_2021_748026 crossref_primary_10_1016_j_expneurol_2021_113648 crossref_primary_10_1016_j_neuro_2004_12_008 crossref_primary_10_1016_j_biopha_2020_110145 crossref_primary_10_1515_revneuro_2017_0040 crossref_primary_10_20515_otd_417682 crossref_primary_10_1007_s10495_016_1285_7 crossref_primary_10_3390_ijms24010823 crossref_primary_10_3390_biom11030354 crossref_primary_10_1016_j_neurobiolaging_2013_08_015 crossref_primary_10_1016_j_brainres_2007_03_073 crossref_primary_10_1016_j_ejphar_2014_09_023 crossref_primary_10_1016_j_fct_2021_112433 crossref_primary_10_1074_mcp_M600182_MCP200 crossref_primary_10_1111_j_1365_2990_2007_00866_x crossref_primary_10_1016_j_brainres_2019_146334 crossref_primary_10_1159_000333069 crossref_primary_10_3390_cells11233770 crossref_primary_10_4103_1673_5374_213559 crossref_primary_10_1186_1750_1326_9_35 crossref_primary_10_1152_physiolgenomics_00156_2007 crossref_primary_10_1371_journal_pone_0183076 crossref_primary_10_1016_j_jep_2011_01_056 crossref_primary_10_1016_j_freeradbiomed_2018_03_002 crossref_primary_10_1111_nan_12260 crossref_primary_10_1371_journal_pone_0059339 crossref_primary_10_1111_j_1471_4159_2009_06448_x crossref_primary_10_3389_fnins_2016_00578 crossref_primary_10_1007_s12035_015_9309_9 crossref_primary_10_1523_JNEUROSCI_3944_09_2010 crossref_primary_10_1523_JNEUROSCI_3292_06_2006 crossref_primary_10_1016_j_scib_2018_11_012 crossref_primary_10_1016_j_brainres_2019_03_027 crossref_primary_10_1111_ejn_13160 crossref_primary_10_1155_2015_645157 crossref_primary_10_1038_cdd_2009_203 crossref_primary_10_1007_s12017_008_8047_9 crossref_primary_10_3390_ijms24032381 crossref_primary_10_1016_j_eplepsyres_2005_12_007 crossref_primary_10_1002_prca_201500092 crossref_primary_10_1371_journal_pone_0097880 crossref_primary_10_1111_jnc_14969 crossref_primary_10_1016_j_jchemneu_2021_101922 crossref_primary_10_1016_j_neuroscience_2007_11_029 crossref_primary_10_1007_s13311_013_0234_1 crossref_primary_10_3390_ijms24065622 crossref_primary_10_1021_jf302792t crossref_primary_10_3390_cells10050970 crossref_primary_10_1371_journal_pbio_1000410 crossref_primary_10_1016_j_prostaglandins_2019_106385 crossref_primary_10_1111_j_1471_4159_2006_03777_x crossref_primary_10_1016_j_molmed_2012_12_005 crossref_primary_10_1007_s12031_007_0013_8 crossref_primary_10_1038_mt_2012_28 crossref_primary_10_1155_2019_5982625 crossref_primary_10_1016_j_abb_2006_09_010 crossref_primary_10_1007_s12035_016_9969_0 crossref_primary_10_1016_S0166_2236_03_00197_8 crossref_primary_10_1016_j_ceca_2005_06_019 crossref_primary_10_1002_biof_159 crossref_primary_10_1016_j_bbamcr_2008_01_020 crossref_primary_10_1016_j_mito_2020_12_003 crossref_primary_10_1371_journal_pone_0007227 crossref_primary_10_1016_j_aspen_2011_07_001 crossref_primary_10_1016_j_neulet_2004_08_029 crossref_primary_10_1152_ajpcell_00388_2006 crossref_primary_10_1016_j_tcb_2007_10_003 crossref_primary_10_1016_j_neuint_2009_11_007 crossref_primary_10_1002_jnr_20198 crossref_primary_10_1007_s10571_008_9262_5 crossref_primary_10_1038_s41380_019_0537_7 crossref_primary_10_3389_fcell_2015_00080 crossref_primary_10_1007_s12031_008_9170_7 crossref_primary_10_1016_j_expneurol_2012_05_022 crossref_primary_10_3389_fnagi_2021_691881 crossref_primary_10_1152_ajpcell_00305_2007 crossref_primary_10_1042_BST20160157 crossref_primary_10_1073_pnas_0405535101 crossref_primary_10_14336_AD_2020_0331 crossref_primary_10_3390_antiox12040809 crossref_primary_10_1016_j_neulet_2013_06_008 crossref_primary_10_1016_j_neulet_2010_02_033 crossref_primary_10_1016_j_phrs_2015_03_010 crossref_primary_10_1074_jbc_M404272200 crossref_primary_10_1016_j_mito_2009_06_001 crossref_primary_10_1002_jnr_21292 crossref_primary_10_1021_acschemneuro_6b00159 crossref_primary_10_1074_jbc_M114_619353 crossref_primary_10_1016_j_neuro_2009_08_012 crossref_primary_10_1074_jbc_M808255200 crossref_primary_10_1186_1471_2350_10_98 crossref_primary_10_1152_physrev_00004_2004 crossref_primary_10_1002_arch_21738 crossref_primary_10_4161_auto_19716 crossref_primary_10_1016_j_neuint_2015_07_011 crossref_primary_10_1007_s12031_008_9127_x crossref_primary_10_1093_hmg_ddy041 crossref_primary_10_2131_jts_31_149 crossref_primary_10_1093_pnasnexus_pgad439 crossref_primary_10_1016_j_neulet_2003_09_059 crossref_primary_10_15406_mojcsr_2014_01_00010 crossref_primary_10_1016_j_brainres_2014_01_003 crossref_primary_10_1111_j_1530_0277_2006_00068_x crossref_primary_10_1089_ars_2007_1791 crossref_primary_10_1007_s10565_023_09816_7 crossref_primary_10_1089_ars_2007_1793 crossref_primary_10_1517_14728222_2011_560837 crossref_primary_10_1186_1750_1326_6_2 crossref_primary_10_1186_1471_2105_6_S2_S8 crossref_primary_10_1016_j_ymthe_2021_01_033 crossref_primary_10_1016_j_tiv_2011_04_002 crossref_primary_10_1016_j_jmb_2020_02_012 crossref_primary_10_1016_j_brainres_2014_02_035 crossref_primary_10_1111_jnc_12116 crossref_primary_10_1007_s12640_019_00048_4 crossref_primary_10_1016_j_pharmthera_2005_05_008 crossref_primary_10_1177_14782715241234078 crossref_primary_10_1111_j_1471_4159_2006_04025_x crossref_primary_10_1016_j_brainresbull_2018_11_024 crossref_primary_10_1016_j_nbd_2016_06_011 crossref_primary_10_1074_mcp_M900179_MCP200 crossref_primary_10_1111_j_1750_3639_2003_tb00478_x crossref_primary_10_1089_ars_2005_7_639 crossref_primary_10_3390_molecules26041107 crossref_primary_10_1111_j_1471_4159_2005_03428_x crossref_primary_10_1016_j_tiv_2017_06_008 crossref_primary_10_1196_annals_1403_020 crossref_primary_10_1002_adma_201503893 crossref_primary_10_1002_jnr_21081 crossref_primary_10_1038_s41583_024_00812_2 crossref_primary_10_1089_ars_2007_1893 crossref_primary_10_1038_srep03388 crossref_primary_10_1111_j_1742_4658_2007_05639_x crossref_primary_10_1016_j_biochi_2023_10_019 crossref_primary_10_1016_j_toxlet_2020_01_019 crossref_primary_10_3390_ijms23115894 crossref_primary_10_3390_ijms25147679 crossref_primary_10_1016_j_vascn_2009_10_001 crossref_primary_10_1038_onc_2015_178 crossref_primary_10_1074_jbc_M413224200 crossref_primary_10_1523_JNEUROSCI_2993_04_2004 crossref_primary_10_1016_j_expneurol_2011_04_015 crossref_primary_10_1038_nrn1174 crossref_primary_10_1172_JCI24238 |
ContentType | Journal Article |
Copyright | Copyright © 2002 Society for Neuroscience 2002 |
Copyright_xml | – notice: Copyright © 2002 Society for Neuroscience 2002 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1523/jneurosci.22-24-10690.2002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 10698 |
ExternalDocumentID | PMC6758450 12486162 10_1523_JNEUROSCI_22_24_10690_2002 www22_24_10690 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: P50 NS38370 – fundername: NIEHS NIH HHS grantid: ES08681 – fundername: NINDS NIH HHS grantid: NS160636 – fundername: NINDS NIH HHS grantid: NS 436281 – fundername: NINDS NIH HHS grantid: NS33689 |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GJ GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RIG RPM TFN UQL VH1 WH7 WOQ X X7M XJT ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD ADXHL AFCFT AFOSN AFSQR AHWXS AI. AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK AFHIN CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c552t-389d0ce3266e9e13f0dfd9bc470e8860b2276d30882f225acdb4dac39d235ff03 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:30:27 EDT 2025 Fri Jul 11 02:26:28 EDT 2025 Fri Jul 11 13:48:10 EDT 2025 Wed Feb 19 01:29:37 EST 2025 Tue Jul 01 04:15:29 EDT 2025 Thu Apr 24 22:53:49 EDT 2025 Tue Nov 10 19:18:35 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c552t-389d0ce3266e9e13f0dfd9bc470e8860b2276d30882f225acdb4dac39d235ff03 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/22/24/10690.full.pdf |
PMID | 12486162 |
PQID | 18735213 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6758450 proquest_miscellaneous_72770576 proquest_miscellaneous_18735213 pubmed_primary_12486162 crossref_citationtrail_10_1523_JNEUROSCI_22_24_10690_2002 crossref_primary_10_1523_JNEUROSCI_22_24_10690_2002 highwire_smallpub1_www22_24_10690 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-12-15 |
PublicationDateYYYYMMDD | 2002-12-15 |
PublicationDate_xml | – month: 12 year: 2002 text: 2002-12-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2002 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
SSID | ssj0007017 |
Score | 2.315877 |
Snippet | 6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model... 6-Hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP super(+)), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used... 6-Hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP + ), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10690 |
SubjectTerms | 1-Methyl-4-phenylpyridinium - pharmacology Animals Apoptosis Cells, Cultured Dose-Response Relationship, Drug eIF-2 Kinase - genetics Endoplasmic Reticulum - drug effects Endoplasmic Reticulum - physiology Ganglia, Sympathetic - drug effects Ganglia, Sympathetic - metabolism Gene Expression Profiling Gene Expression Regulation Mice Mice, Knockout Neurons - drug effects Neurons - metabolism Oxidopamine - pharmacology Parkinson Disease - genetics Parkinson Disease - metabolism PC12 Cells Protein Folding Rats RNA, Messenger - biosynthesis Rotenone - pharmacology Sympatholytics - pharmacology Transcription, Genetic |
Title | Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cellular Models of Parkinson's Disease |
URI | http://www.jneurosci.org/cgi/content/abstract/22/24/10690 https://www.ncbi.nlm.nih.gov/pubmed/12486162 https://www.proquest.com/docview/18735213 https://www.proquest.com/docview/72770576 https://pubmed.ncbi.nlm.nih.gov/PMC6758450 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMcZHYYCREDylxI4TJ4_VNFSGGAI2tLfIiR1tU5tUNFU1_gR_mWvHzgdqpcFLFDVO0uacuPfax-ci9IaFUjIhCo9ITj3G88TLWJx7YZ7lQZBRRQo9o_v5NJqds5OL8GI0-t1TLa3rbJL_2rqu5H9Qhc8AV71K9h-QbS8KH8A-4AtbQBi2t8L4uJTVEsLfhfFhrpuhPLf8w0kj13CjuVTaDqDSpS2hpZHFGrcQPW5vhKimIk6jiBN6-NxoRPhqMIFz3TGrF8f2HDFbkny7WQ80Y93kk1YK2DIqsyb67FaYTbXAVsDXr1r9bjdY--NKV9rVB77UtXYWsPJcN2Jhiqc0azYnyvay1EzrkH43TGmPbpT1OlWi3ZS3dvehsZ24dj90Aok1ZZ5pb9Qn_ZMAuuXCEAFCmjgi9k9gaLbtDt1BdynkHbokxqevnf08h_7LOtfCrd_vvrH2orWXGgY8zoR6W0Lzty63F-icPUD3LbJ42tBtH41U-RAdTEtRV4sb_BYbzbCZjDlAlz0G4paBuGEgBgZiQBg7BmLLQOwYiGHfMRA3DMRVgVsGvlthy79H6PzD8dnRzLO1O7w8DGntQRws_VxBchCpRJGg8GUhkyxn3FdxHPkZpTySgU7wCvhLEbnMmBR5kEgahEXhB4_RXlmV6inCpIhkRgqRhJnPBJcJT7IoloxKHqiE-2OUuAec5tbYXtdXmac6wQWc0pNTLYv9fvQxpTSlLDU46QKsdIyC9txlY-9yq7NeOxzT1ULM5wAbSTebTa_hGL1yAKfQY-uHKUpVrVcpiTlkPSTY3QJyCg55VDRGTxpCdN_NkmqM-IAqbQPtFj88Ul5dGtd4PTLAQv_Zzms-R_e6t_UQ7dU_1-oFRNx19tK8BX8APqHZ1w |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endoplasmic+reticulum+stress+and+the+unfolded+protein+response+in+cellular+models+of+Parkinson%27s+disease&rft.jtitle=The+Journal+of+neuroscience&rft.au=Ryu%2C+Elizabeth+J&rft.au=Harding%2C+Heather+P&rft.au=Angelastro%2C+James+M&rft.au=Vitolo%2C+Ottavio+V&rft.date=2002-12-15&rft.eissn=1529-2401&rft.volume=22&rft.issue=24&rft.spage=10690&rft_id=info:doi/10.1523%2Fjneurosci.22-24-10690.2002&rft_id=info%3Apmid%2F12486162&rft.externalDocID=12486162 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |