Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cellular Models of Parkinson's Disease

6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 22; no. 24; pp. 10690 - 10698
Main Authors Ryu, Elizabeth J, Harding, Heather P, Angelastro, James M, Vitolo, Ottavio V, Ron, David, Greene, Lloyd A
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 15.12.2002
Society for Neuroscience
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/jneurosci.22-24-10690.2002

Cover

Loading…
Abstract 6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1alpha and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP+ and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease.
AbstractList 6-Hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP super(+)), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1 alpha and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP super(+) and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease.
6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1alpha and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP+ and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease.
6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1alpha and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP+ and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease.6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1alpha and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP+ and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease.
6-Hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP + ), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1α and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP + and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease.
Author Angelastro, James M
Ron, David
Ryu, Elizabeth J
Greene, Lloyd A
Harding, Heather P
Vitolo, Ottavio V
AuthorAffiliation 3 Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
1 Department of Pathology, Center for Neurobiology and Behavior, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and
2 Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032, and
AuthorAffiliation_xml – name: 3 Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
– name: 1 Department of Pathology, Center for Neurobiology and Behavior, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and
– name: 2 Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032, and
Author_xml – sequence: 1
  fullname: Ryu, Elizabeth J
– sequence: 2
  fullname: Harding, Heather P
– sequence: 3
  fullname: Angelastro, James M
– sequence: 4
  fullname: Vitolo, Ottavio V
– sequence: 5
  fullname: Ron, David
– sequence: 6
  fullname: Greene, Lloyd A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12486162$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv0zAYhi00xLrBX0ARB-CSYn9O4oQDApUCQ4NNGz1brv1l8XDsYidU_HtSOqbBBU627Od7_VrPETnwwSMhTxidsxL4i2uPYwxJ2zlADkXOaNXQOVAK98hsIprpkLIDMqMgaF4VojgkRyldU0oFZeIBOWRQ1BWrYEa6pTdh41Tqrc4ucLB6dGOfXQ4RU8qUN9nQYbbybXAGTXYew4DWT2TaBJ8wm_YLdG50KmafgkGXstBm5yp-tT4F_yxlb21ClfAhud8ql_DRzXpMVu-WXxYf8tOz9yeLN6e5LksYcl43hmrkUFXYIOMtNa1p1roQFOu6omsAURlO6xpagFJpsy6M0rwxwMu2pfyYvNrnbsZ1j0ajH6JychNtr-IPGZSVf95428mr8F1WoqyLchfw9CYghm8jpkH2Nunpj8pjGJMUIAQtRfVPkNWCl8D4BD6-W-m2y28LE_B6D-hJa4rYSm0HNdiwa2idZFTuxMuPn5eri7PLxYkEkFDIX-LlTvwU8fKviNtX_mf4-X64s1fd1kaUqVfOTXWZ3G63d3j-E-fbxOw
CitedBy_id crossref_primary_10_1080_14728222_2016_1254197
crossref_primary_10_1177_1087057109345525
crossref_primary_10_1016_j_nbd_2011_10_012
crossref_primary_10_1111_cns_14521
crossref_primary_10_3390_antiox11020281
crossref_primary_10_1016_j_neuroscience_2011_06_026
crossref_primary_10_1093_jb_mvq042
crossref_primary_10_1007_s10495_012_0699_0
crossref_primary_10_1089_ars_2011_4507
crossref_primary_10_1007_s00702_011_0710_x
crossref_primary_10_1016_S0959_437X_03_00053_4
crossref_primary_10_1016_j_brainres_2008_02_068
crossref_primary_10_1111_j_1471_4159_2005_03442_x
crossref_primary_10_1016_j_neulet_2009_04_047
crossref_primary_10_1007_s12640_009_9112_3
crossref_primary_10_1172_JCI38857
crossref_primary_10_1016_j_mehy_2011_01_007
crossref_primary_10_1016_j_neulet_2006_06_027
crossref_primary_10_1002_prca_200800234
crossref_primary_10_1128_JVI_77_23_12617_12629_2003
crossref_primary_10_1016_j_neuint_2010_08_023
crossref_primary_10_1080_1028415X_2019_1613764
crossref_primary_10_1016_j_expneurol_2009_07_009
crossref_primary_10_1074_jbc_M410413200
crossref_primary_10_1007_s11064_016_1922_0
crossref_primary_10_1016_j_nbd_2008_02_009
crossref_primary_10_3390_ijms23169489
crossref_primary_10_1038_s41419_017_0079_3
crossref_primary_10_1186_s40035_018_0125_9
crossref_primary_10_3390_ijms242216233
crossref_primary_10_1016_j_neuint_2009_04_004
crossref_primary_10_1074_jbc_M603393200
crossref_primary_10_3389_fnins_2019_00560
crossref_primary_10_1016_j_nbd_2004_09_008
crossref_primary_10_1038_nature04782
crossref_primary_10_1186_1471_2474_13_51
crossref_primary_10_1002_jnr_21318
crossref_primary_10_1038_cdd_2008_166
crossref_primary_10_1016_j_neuint_2007_08_017
crossref_primary_10_3390_cancers5031163
crossref_primary_10_1016_j_neuroscience_2006_10_008
crossref_primary_10_1523_JNEUROSCI_3568_04_2005
crossref_primary_10_1016_j_neulet_2009_04_060
crossref_primary_10_1074_jbc_M807325200
crossref_primary_10_1007_s00415_005_4006_7
crossref_primary_10_1007_s12035_010_8114_8
crossref_primary_10_1039_C4AN01893A
crossref_primary_10_1152_ajpcell_00226_2015
crossref_primary_10_1016_j_ejphar_2016_02_042
crossref_primary_10_1016_j_phrs_2016_09_004
crossref_primary_10_1038_sj_emboj_7601477
crossref_primary_10_1111_cpr_12102
crossref_primary_10_1371_journal_pone_0049195
crossref_primary_10_1016_j_brainres_2020_147023
crossref_primary_10_1002_jnr_23630
crossref_primary_10_1523_ENEURO_0117_16_2017
crossref_primary_10_14336_AD_2016_0117
crossref_primary_10_1021_cn500214k
crossref_primary_10_3390_ijms15011625
crossref_primary_10_1007_s11064_005_6877_5
crossref_primary_10_1074_jbc_M112_355172
crossref_primary_10_1093_hmg_ddr502
crossref_primary_10_1016_j_neuro_2023_11_001
crossref_primary_10_1016_j_bbih_2020_100037
crossref_primary_10_1111_j_1582_4934_2008_00402_x
crossref_primary_10_1002_jcp_26080
crossref_primary_10_1002_jnr_23318
crossref_primary_10_1016_j_pan_2021_10_007
crossref_primary_10_1089_ars_2015_6402
crossref_primary_10_1016_j_neulet_2010_10_071
crossref_primary_10_3390_metabo13010112
crossref_primary_10_1111_j_1471_4159_2008_05392_x
crossref_primary_10_1007_s00401_015_1462_8
crossref_primary_10_1002_prca_202200015
crossref_primary_10_1007_s12035_018_1334_z
crossref_primary_10_1080_15548627_2015_1121360
crossref_primary_10_31857_S0320972521070071
crossref_primary_10_1152_ajpheart_00904_2004
crossref_primary_10_3390_ijms222212467
crossref_primary_10_3390_cells9112495
crossref_primary_10_1016_j_pneurobio_2017_08_001
crossref_primary_10_1515_ersc_2015_0008
crossref_primary_10_1152_ajpcell_00281_2011
crossref_primary_10_1016_j_bbrc_2004_12_066
crossref_primary_10_1007_s12035_022_02786_7
crossref_primary_10_1021_acs_chemrestox_2c00193
crossref_primary_10_1038_sj_jcbfm_9600003
crossref_primary_10_1002_jnr_22691
crossref_primary_10_1016_j_cbi_2010_06_003
crossref_primary_10_3389_fncel_2024_1328361
crossref_primary_10_3390_biomedicines10051143
crossref_primary_10_1038_sj_cdd_4401643
crossref_primary_10_1021_acschemneuro_9b00158
crossref_primary_10_1523_JNEUROSCI_2292_12_2013
crossref_primary_10_1111_j_1600_079X_2008_00629_x
crossref_primary_10_1016_j_bbrc_2007_01_043
crossref_primary_10_1016_S0304_3940_03_00188_5
crossref_primary_10_1002_jnr_21480
crossref_primary_10_1016_j_freeradbiomed_2006_12_004
crossref_primary_10_1073_pnas_0813178106
crossref_primary_10_1523_JNEUROSCI_3928_08_2008
crossref_primary_10_1073_pnas_1321845111
crossref_primary_10_1016_j_tins_2009_01_006
crossref_primary_10_1074_jbc_M501308200
crossref_primary_10_1038_sj_cdd_4401778
crossref_primary_10_1111_j_1582_4934_2009_00775_x
crossref_primary_10_1089_ars_2009_2529
crossref_primary_10_1016_j_yexcr_2016_09_006
crossref_primary_10_1007_s00018_015_2101_1
crossref_primary_10_1016_j_nbd_2006_05_011
crossref_primary_10_3389_fphar_2023_1288894
crossref_primary_10_1080_15548627_2021_1917129
crossref_primary_10_1016_j_ceb_2004_09_012
crossref_primary_10_1134_S1819712419010185
crossref_primary_10_1155_2016_6163934
crossref_primary_10_1177_0963689719840290
crossref_primary_10_1124_mol_112_077792
crossref_primary_10_1155_2013_318319
crossref_primary_10_1155_2019_7869318
crossref_primary_10_1016_j_neuint_2018_06_010
crossref_primary_10_1074_jbc_M413660200
crossref_primary_10_1073_pnas_0708725104
crossref_primary_10_1371_journal_pone_0069732
crossref_primary_10_1007_s11064_019_02757_w
crossref_primary_10_1155_2010_214074
crossref_primary_10_1111_j_1471_4159_2008_05713_x
crossref_primary_10_1074_jbc_M301392200
crossref_primary_10_1007_s10571_007_9245_y
crossref_primary_10_1093_braincomms_fcac165
crossref_primary_10_2478_ersc_2013_0001
crossref_primary_10_1111_j_1600_079X_2007_00456_x
crossref_primary_10_1002_cm_21294
crossref_primary_10_1016_j_lfs_2012_10_017
crossref_primary_10_1046_j_1471_4159_2003_02000_x
crossref_primary_10_1371_journal_pone_0014207
crossref_primary_10_1016_j_nbd_2004_08_016
crossref_primary_10_1016_j_neuint_2004_01_003
crossref_primary_10_1074_jbc_M611909200
crossref_primary_10_1016_j_biopha_2021_112110
crossref_primary_10_1523_JNEUROSCI_1945_14_2014
crossref_primary_10_1111_j_1471_4159_2008_05571_x
crossref_primary_10_1038_sj_jcbfm_9600380
crossref_primary_10_1016_j_expneurol_2018_01_015
crossref_primary_10_1038_s41598_020_70174_z
crossref_primary_10_1089_ars_2006_1522
crossref_primary_10_1007_s00417_008_0770_2
crossref_primary_10_1016_j_toxlet_2009_08_024
crossref_primary_10_1016_j_tox_2021_152764
crossref_primary_10_1089_ars_2006_1524
crossref_primary_10_1016_j_biopha_2021_112389
crossref_primary_10_1089_ars_2006_1518
crossref_primary_10_1038_s41598_017_06012_6
crossref_primary_10_1016_j_addr_2022_114402
crossref_primary_10_1002_ajmg_b_30195
crossref_primary_10_1016_j_neuint_2010_10_006
crossref_primary_10_1016_j_ceb_2011_01_003
crossref_primary_10_1111_j_1440_1819_2006_01528_x_i1
crossref_primary_10_1016_j_neulet_2016_05_039
crossref_primary_10_1038_s41418_020_00688_6
crossref_primary_10_1111_j_1582_4934_2009_00849_x
crossref_primary_10_1016_j_cellsig_2021_109922
crossref_primary_10_1002_bit_23282
crossref_primary_10_1111_j_1365_3083_2010_02504_x
crossref_primary_10_1254_jphs_11R11FM
crossref_primary_10_1002_path_3977
crossref_primary_10_1016_j_mcn_2009_01_005
crossref_primary_10_1016_j_neures_2009_10_005
crossref_primary_10_1016_j_biopha_2016_09_050
crossref_primary_10_1016_j_phytochem_2009_06_006
crossref_primary_10_1016_j_ymthe_2006_06_009
crossref_primary_10_1089_ars_2006_1513
crossref_primary_10_1074_jbc_M109_020891
crossref_primary_10_1111_jnc_15282
crossref_primary_10_1016_j_neuroscience_2011_08_045
crossref_primary_10_2174_1566524022666220508182051
crossref_primary_10_1016_j_pharmthera_2024_108604
crossref_primary_10_1186_1471_2202_8_67
crossref_primary_10_1074_jbc_M110_156430
crossref_primary_10_1242_jcs_01562
crossref_primary_10_1007_s12035_016_0114_x
crossref_primary_10_1186_1750_1326_5_56
crossref_primary_10_1093_jnen_62_11_1144
crossref_primary_10_1016_j_brainres_2008_11_104
crossref_primary_10_3390_jcm9010257
crossref_primary_10_1098_rstb_2019_0415
crossref_primary_10_3389_fnagi_2018_00109
crossref_primary_10_1210_er_2007_0037
crossref_primary_10_1111_j_1365_2990_2011_01215_x
crossref_primary_10_1016_j_neuint_2011_11_001
crossref_primary_10_1016_j_mito_2006_05_002
crossref_primary_10_1007_s10571_013_9957_0
crossref_primary_10_1111_j_1365_2990_2010_01107_x
crossref_primary_10_1111_j_1471_4159_2005_03587_x
crossref_primary_10_1242_jcs_127340
crossref_primary_10_1074_jbc_M110_170944
crossref_primary_10_1134_S0006297921070063
crossref_primary_10_2353_ajpath_2009_081019
crossref_primary_10_1016_j_yexcr_2006_09_004
crossref_primary_10_1016_j_neuroscience_2011_07_028
crossref_primary_10_1016_j_freeradbiomed_2007_12_014
crossref_primary_10_1016_j_freeradbiomed_2015_09_017
crossref_primary_10_1016_j_taap_2021_115558
crossref_primary_10_3858_emm_2010_42_5_040
crossref_primary_10_1016_j_neuint_2010_03_017
crossref_primary_10_1016_j_brainres_2004_07_026
crossref_primary_10_3389_fnmol_2022_762544
crossref_primary_10_1186_s13024_017_0183_y
crossref_primary_10_1002_1873_3468_12890
crossref_primary_10_1038_nrn1725
crossref_primary_10_1186_1471_2202_6_71
crossref_primary_10_1016_j_bbrc_2015_07_035
crossref_primary_10_3389_fnagi_2014_00036
crossref_primary_10_1021_tx200098r
crossref_primary_10_1111_nmo_14780
crossref_primary_10_1523_JNEUROSCI_5397_12_2013
crossref_primary_10_1007_s12640_009_9091_4
crossref_primary_10_1042_BJ20051643
crossref_primary_10_1038_sj_cdd_4401373
crossref_primary_10_1111_j_1755_5922_2010_00245_x
crossref_primary_10_1002_jnr_22617
crossref_primary_10_1007_s00059_017_4564_3
crossref_primary_10_1152_physrev_00015_2006
crossref_primary_10_1016_j_toxlet_2013_03_003
crossref_primary_10_1038_cdd_2010_142
crossref_primary_10_3109_00207454_2014_986673
crossref_primary_10_1007_s12017_017_8462_x
crossref_primary_10_1016_j_neuint_2009_01_010
crossref_primary_10_1007_s10616_005_3763_6
crossref_primary_10_1111_j_1471_4159_2005_03329_x
crossref_primary_10_1038_s41598_017_16662_1
crossref_primary_10_1002_cbin_10923
crossref_primary_10_1016_j_febslet_2012_07_023
crossref_primary_10_1016_j_brainres_2023_148742
crossref_primary_10_1016_j_molmed_2009_11_004
crossref_primary_10_1016_j_schres_2018_02_010
crossref_primary_10_2131_jts_35_871
crossref_primary_10_1096_fj_04_1551fje
crossref_primary_10_1371_journal_pone_0022354
crossref_primary_10_1016_j_cotox_2018_12_007
crossref_primary_10_1016_j_devcel_2004_08_011
crossref_primary_10_1016_j_toxlet_2010_03_1121
crossref_primary_10_1038_s41598_020_62309_z
crossref_primary_10_1155_2016_6564212
crossref_primary_10_1074_jbc_M607038200
crossref_primary_10_1371_journal_pbio_3001096
crossref_primary_10_3109_02652048_2014_898709
crossref_primary_10_1016_j_neuroscience_2017_07_062
crossref_primary_10_1186_s12929_015_0146_y
crossref_primary_10_1093_toxsci_kfq313
crossref_primary_10_1007_s00281_013_0370_z
crossref_primary_10_1007_s11010_008_9862_x
crossref_primary_10_1073_pnas_0510962103
crossref_primary_10_1016_j_phrs_2020_105161
crossref_primary_10_1038_cddis_2013_69
crossref_primary_10_1523_JNEUROSCI_1598_10_2010
crossref_primary_10_1212_01_WNL_0000167409_59089_C0
crossref_primary_10_1007_s12264_017_0123_4
crossref_primary_10_1074_jbc_M403884200
crossref_primary_10_1042_CS20080680
crossref_primary_10_1126_science_1129462
crossref_primary_10_1038_cddis_2014_333
crossref_primary_10_3390_ijms22158146
crossref_primary_10_1016_j_brainres_2003_11_047
crossref_primary_10_1111_imr_13012
crossref_primary_10_1016_j_lfs_2016_04_008
crossref_primary_10_1089_ars_2009_3018
crossref_primary_10_1111_j_1471_4159_2007_05106_x
crossref_primary_10_1111_jnc_13385
crossref_primary_10_1016_j_brainresbull_2004_11_008
crossref_primary_10_1093_hmg_ddi371
crossref_primary_10_1073_pnas_0509227103
crossref_primary_10_1074_jbc_M505608200
crossref_primary_10_1155_2012_829207
crossref_primary_10_1186_1750_1326_9_17
crossref_primary_10_1517_14728220902980249
crossref_primary_10_1007_s10495_008_0309_3
crossref_primary_10_1080_15384101_2018_1475828
crossref_primary_10_1152_ajplung_90626_2008
crossref_primary_10_1111_j_1471_4159_2011_07179_x
crossref_primary_10_1016_j_nbd_2019_104725
crossref_primary_10_1038_nrd2755
crossref_primary_10_1007_s12031_011_9694_0
crossref_primary_10_3389_fncel_2017_00052
crossref_primary_10_1016_j_neures_2020_04_003
crossref_primary_10_3390_biom14010073
crossref_primary_10_1177_0192623312470764
crossref_primary_10_1007_s10495_007_0065_9
crossref_primary_10_3389_fnmol_2021_748026
crossref_primary_10_1016_j_expneurol_2021_113648
crossref_primary_10_1016_j_neuro_2004_12_008
crossref_primary_10_1016_j_biopha_2020_110145
crossref_primary_10_1515_revneuro_2017_0040
crossref_primary_10_20515_otd_417682
crossref_primary_10_1007_s10495_016_1285_7
crossref_primary_10_3390_ijms24010823
crossref_primary_10_3390_biom11030354
crossref_primary_10_1016_j_neurobiolaging_2013_08_015
crossref_primary_10_1016_j_brainres_2007_03_073
crossref_primary_10_1016_j_ejphar_2014_09_023
crossref_primary_10_1016_j_fct_2021_112433
crossref_primary_10_1074_mcp_M600182_MCP200
crossref_primary_10_1111_j_1365_2990_2007_00866_x
crossref_primary_10_1016_j_brainres_2019_146334
crossref_primary_10_1159_000333069
crossref_primary_10_3390_cells11233770
crossref_primary_10_4103_1673_5374_213559
crossref_primary_10_1186_1750_1326_9_35
crossref_primary_10_1152_physiolgenomics_00156_2007
crossref_primary_10_1371_journal_pone_0183076
crossref_primary_10_1016_j_jep_2011_01_056
crossref_primary_10_1016_j_freeradbiomed_2018_03_002
crossref_primary_10_1111_nan_12260
crossref_primary_10_1371_journal_pone_0059339
crossref_primary_10_1111_j_1471_4159_2009_06448_x
crossref_primary_10_3389_fnins_2016_00578
crossref_primary_10_1007_s12035_015_9309_9
crossref_primary_10_1523_JNEUROSCI_3944_09_2010
crossref_primary_10_1523_JNEUROSCI_3292_06_2006
crossref_primary_10_1016_j_scib_2018_11_012
crossref_primary_10_1016_j_brainres_2019_03_027
crossref_primary_10_1111_ejn_13160
crossref_primary_10_1155_2015_645157
crossref_primary_10_1038_cdd_2009_203
crossref_primary_10_1007_s12017_008_8047_9
crossref_primary_10_3390_ijms24032381
crossref_primary_10_1016_j_eplepsyres_2005_12_007
crossref_primary_10_1002_prca_201500092
crossref_primary_10_1371_journal_pone_0097880
crossref_primary_10_1111_jnc_14969
crossref_primary_10_1016_j_jchemneu_2021_101922
crossref_primary_10_1016_j_neuroscience_2007_11_029
crossref_primary_10_1007_s13311_013_0234_1
crossref_primary_10_3390_ijms24065622
crossref_primary_10_1021_jf302792t
crossref_primary_10_3390_cells10050970
crossref_primary_10_1371_journal_pbio_1000410
crossref_primary_10_1016_j_prostaglandins_2019_106385
crossref_primary_10_1111_j_1471_4159_2006_03777_x
crossref_primary_10_1016_j_molmed_2012_12_005
crossref_primary_10_1007_s12031_007_0013_8
crossref_primary_10_1038_mt_2012_28
crossref_primary_10_1155_2019_5982625
crossref_primary_10_1016_j_abb_2006_09_010
crossref_primary_10_1007_s12035_016_9969_0
crossref_primary_10_1016_S0166_2236_03_00197_8
crossref_primary_10_1016_j_ceca_2005_06_019
crossref_primary_10_1002_biof_159
crossref_primary_10_1016_j_bbamcr_2008_01_020
crossref_primary_10_1016_j_mito_2020_12_003
crossref_primary_10_1371_journal_pone_0007227
crossref_primary_10_1016_j_aspen_2011_07_001
crossref_primary_10_1016_j_neulet_2004_08_029
crossref_primary_10_1152_ajpcell_00388_2006
crossref_primary_10_1016_j_tcb_2007_10_003
crossref_primary_10_1016_j_neuint_2009_11_007
crossref_primary_10_1002_jnr_20198
crossref_primary_10_1007_s10571_008_9262_5
crossref_primary_10_1038_s41380_019_0537_7
crossref_primary_10_3389_fcell_2015_00080
crossref_primary_10_1007_s12031_008_9170_7
crossref_primary_10_1016_j_expneurol_2012_05_022
crossref_primary_10_3389_fnagi_2021_691881
crossref_primary_10_1152_ajpcell_00305_2007
crossref_primary_10_1042_BST20160157
crossref_primary_10_1073_pnas_0405535101
crossref_primary_10_14336_AD_2020_0331
crossref_primary_10_3390_antiox12040809
crossref_primary_10_1016_j_neulet_2013_06_008
crossref_primary_10_1016_j_neulet_2010_02_033
crossref_primary_10_1016_j_phrs_2015_03_010
crossref_primary_10_1074_jbc_M404272200
crossref_primary_10_1016_j_mito_2009_06_001
crossref_primary_10_1002_jnr_21292
crossref_primary_10_1021_acschemneuro_6b00159
crossref_primary_10_1074_jbc_M114_619353
crossref_primary_10_1016_j_neuro_2009_08_012
crossref_primary_10_1074_jbc_M808255200
crossref_primary_10_1186_1471_2350_10_98
crossref_primary_10_1152_physrev_00004_2004
crossref_primary_10_1002_arch_21738
crossref_primary_10_4161_auto_19716
crossref_primary_10_1016_j_neuint_2015_07_011
crossref_primary_10_1007_s12031_008_9127_x
crossref_primary_10_1093_hmg_ddy041
crossref_primary_10_2131_jts_31_149
crossref_primary_10_1093_pnasnexus_pgad439
crossref_primary_10_1016_j_neulet_2003_09_059
crossref_primary_10_15406_mojcsr_2014_01_00010
crossref_primary_10_1016_j_brainres_2014_01_003
crossref_primary_10_1111_j_1530_0277_2006_00068_x
crossref_primary_10_1089_ars_2007_1791
crossref_primary_10_1007_s10565_023_09816_7
crossref_primary_10_1089_ars_2007_1793
crossref_primary_10_1517_14728222_2011_560837
crossref_primary_10_1186_1750_1326_6_2
crossref_primary_10_1186_1471_2105_6_S2_S8
crossref_primary_10_1016_j_ymthe_2021_01_033
crossref_primary_10_1016_j_tiv_2011_04_002
crossref_primary_10_1016_j_jmb_2020_02_012
crossref_primary_10_1016_j_brainres_2014_02_035
crossref_primary_10_1111_jnc_12116
crossref_primary_10_1007_s12640_019_00048_4
crossref_primary_10_1016_j_pharmthera_2005_05_008
crossref_primary_10_1177_14782715241234078
crossref_primary_10_1111_j_1471_4159_2006_04025_x
crossref_primary_10_1016_j_brainresbull_2018_11_024
crossref_primary_10_1016_j_nbd_2016_06_011
crossref_primary_10_1074_mcp_M900179_MCP200
crossref_primary_10_1111_j_1750_3639_2003_tb00478_x
crossref_primary_10_1089_ars_2005_7_639
crossref_primary_10_3390_molecules26041107
crossref_primary_10_1111_j_1471_4159_2005_03428_x
crossref_primary_10_1016_j_tiv_2017_06_008
crossref_primary_10_1196_annals_1403_020
crossref_primary_10_1002_adma_201503893
crossref_primary_10_1002_jnr_21081
crossref_primary_10_1038_s41583_024_00812_2
crossref_primary_10_1089_ars_2007_1893
crossref_primary_10_1038_srep03388
crossref_primary_10_1111_j_1742_4658_2007_05639_x
crossref_primary_10_1016_j_biochi_2023_10_019
crossref_primary_10_1016_j_toxlet_2020_01_019
crossref_primary_10_3390_ijms23115894
crossref_primary_10_3390_ijms25147679
crossref_primary_10_1016_j_vascn_2009_10_001
crossref_primary_10_1038_onc_2015_178
crossref_primary_10_1074_jbc_M413224200
crossref_primary_10_1523_JNEUROSCI_2993_04_2004
crossref_primary_10_1016_j_expneurol_2011_04_015
crossref_primary_10_1038_nrn1174
crossref_primary_10_1172_JCI24238
ContentType Journal Article
Copyright Copyright © 2002 Society for Neuroscience 2002
Copyright_xml – notice: Copyright © 2002 Society for Neuroscience 2002
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1523/jneurosci.22-24-10690.2002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 10698
ExternalDocumentID PMC6758450
12486162
10_1523_JNEUROSCI_22_24_10690_2002
www22_24_10690
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: P50 NS38370
– fundername: NIEHS NIH HHS
  grantid: ES08681
– fundername: NINDS NIH HHS
  grantid: NS160636
– fundername: NINDS NIH HHS
  grantid: NS 436281
– fundername: NINDS NIH HHS
  grantid: NS33689
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GJ
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RIG
RPM
TFN
UQL
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
ADXHL
AFCFT
AFOSN
AFSQR
AHWXS
AI.
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
AFHIN
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c552t-389d0ce3266e9e13f0dfd9bc470e8860b2276d30882f225acdb4dac39d235ff03
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:30:27 EDT 2025
Fri Jul 11 02:26:28 EDT 2025
Fri Jul 11 13:48:10 EDT 2025
Wed Feb 19 01:29:37 EST 2025
Tue Jul 01 04:15:29 EDT 2025
Thu Apr 24 22:53:49 EDT 2025
Tue Nov 10 19:18:35 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c552t-389d0ce3266e9e13f0dfd9bc470e8860b2276d30882f225acdb4dac39d235ff03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.jneurosci.org/content/jneuro/22/24/10690.full.pdf
PMID 12486162
PQID 18735213
PQPubID 23462
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6758450
proquest_miscellaneous_72770576
proquest_miscellaneous_18735213
pubmed_primary_12486162
crossref_citationtrail_10_1523_JNEUROSCI_22_24_10690_2002
crossref_primary_10_1523_JNEUROSCI_22_24_10690_2002
highwire_smallpub1_www22_24_10690
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-12-15
PublicationDateYYYYMMDD 2002-12-15
PublicationDate_xml – month: 12
  year: 2002
  text: 2002-12-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2002
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
SSID ssj0007017
Score 2.315877
Snippet 6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model...
6-Hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP super(+)), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used...
6-Hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP + ), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10690
SubjectTerms 1-Methyl-4-phenylpyridinium - pharmacology
Animals
Apoptosis
Cells, Cultured
Dose-Response Relationship, Drug
eIF-2 Kinase - genetics
Endoplasmic Reticulum - drug effects
Endoplasmic Reticulum - physiology
Ganglia, Sympathetic - drug effects
Ganglia, Sympathetic - metabolism
Gene Expression Profiling
Gene Expression Regulation
Mice
Mice, Knockout
Neurons - drug effects
Neurons - metabolism
Oxidopamine - pharmacology
Parkinson Disease - genetics
Parkinson Disease - metabolism
PC12 Cells
Protein Folding
Rats
RNA, Messenger - biosynthesis
Rotenone - pharmacology
Sympatholytics - pharmacology
Transcription, Genetic
Title Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cellular Models of Parkinson's Disease
URI http://www.jneurosci.org/cgi/content/abstract/22/24/10690
https://www.ncbi.nlm.nih.gov/pubmed/12486162
https://www.proquest.com/docview/18735213
https://www.proquest.com/docview/72770576
https://pubmed.ncbi.nlm.nih.gov/PMC6758450
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMcZHYYCREDylxI4TJ4_VNFSGGAI2tLfIiR1tU5tUNFU1_gR_mWvHzgdqpcFLFDVO0uacuPfax-ci9IaFUjIhCo9ITj3G88TLWJx7YZ7lQZBRRQo9o_v5NJqds5OL8GI0-t1TLa3rbJL_2rqu5H9Qhc8AV71K9h-QbS8KH8A-4AtbQBi2t8L4uJTVEsLfhfFhrpuhPLf8w0kj13CjuVTaDqDSpS2hpZHFGrcQPW5vhKimIk6jiBN6-NxoRPhqMIFz3TGrF8f2HDFbkny7WQ80Y93kk1YK2DIqsyb67FaYTbXAVsDXr1r9bjdY--NKV9rVB77UtXYWsPJcN2Jhiqc0azYnyvay1EzrkH43TGmPbpT1OlWi3ZS3dvehsZ24dj90Aok1ZZ5pb9Qn_ZMAuuXCEAFCmjgi9k9gaLbtDt1BdynkHbokxqevnf08h_7LOtfCrd_vvrH2orWXGgY8zoR6W0Lzty63F-icPUD3LbJ42tBtH41U-RAdTEtRV4sb_BYbzbCZjDlAlz0G4paBuGEgBgZiQBg7BmLLQOwYiGHfMRA3DMRVgVsGvlthy79H6PzD8dnRzLO1O7w8DGntQRws_VxBchCpRJGg8GUhkyxn3FdxHPkZpTySgU7wCvhLEbnMmBR5kEgahEXhB4_RXlmV6inCpIhkRgqRhJnPBJcJT7IoloxKHqiE-2OUuAec5tbYXtdXmac6wQWc0pNTLYv9fvQxpTSlLDU46QKsdIyC9txlY-9yq7NeOxzT1ULM5wAbSTebTa_hGL1yAKfQY-uHKUpVrVcpiTlkPSTY3QJyCg55VDRGTxpCdN_NkmqM-IAqbQPtFj88Ul5dGtd4PTLAQv_Zzms-R_e6t_UQ7dU_1-oFRNx19tK8BX8APqHZ1w
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endoplasmic+reticulum+stress+and+the+unfolded+protein+response+in+cellular+models+of+Parkinson%27s+disease&rft.jtitle=The+Journal+of+neuroscience&rft.au=Ryu%2C+Elizabeth+J&rft.au=Harding%2C+Heather+P&rft.au=Angelastro%2C+James+M&rft.au=Vitolo%2C+Ottavio+V&rft.date=2002-12-15&rft.eissn=1529-2401&rft.volume=22&rft.issue=24&rft.spage=10690&rft_id=info:doi/10.1523%2Fjneurosci.22-24-10690.2002&rft_id=info%3Apmid%2F12486162&rft.externalDocID=12486162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon